Material response characterization of new-class ablators in view of numerical model calibration

6th Ablation Workshop
April 10, 2014
Urbana Champaign, Illinois

B. Helber 1,2, A. Turchi 1, T. E. Magin 1

1 Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Belgium
2 Research Group Electrochemical and Surface Engineering, Vrije Universiteit Brussel
TPM for Atmospheric Reentry

Missions
Sample return, ISS serving (Dragon, ARV, ...), MPCV
- Atm. reentry speeds > 10km/s
- Ablative materials
 - Mass loss and surface recession
 - Prediction of material response required
 - High margins decrease payload

New materials (1990’s)
- Phenolic impregnated carbon fiber preform
- Very porous low density ablators
Complex Multiphysics - Multiscale problem
Coupled phenomena

Gas-Surface Interaction

Material

Radiation

Air plasma
Nitrogen plasma

Material:
- Air plasma
- Nitrogen plasma
- C$_{248}$
- OH (A–X)
- CH (A–X)
- C$_2$ Swan
- Na
- H$_\beta$
- O$_{777}$
- N lines

Gas-Surface Interaction:
- C$_2$48
- OH (A–X)
- CN violet (B–X)

Radiation:
- N lines
We aim at improvement of

Experimental Methods
(VKI)

Material Response Modeling & Validation
(VKI, collaborations)

TPS Design / Material
(VUB, Astrium, ESA)

Calibration (AIAA G-077-1998)

The process of adjusting numerical or physical modeling parameters in the computational model for the purpose of improving agreement with experimental data.
In the following:

1. Materials and Methods for Ablation Characterization
2. Gas-phase \leftrightarrow BL emission & temp
3. Surface \leftrightarrow Char blowing rates
4. Material \leftrightarrow Pyrolysis outgassing
Approach for ablation modeling (Kendall et al.\cite{1})

VKI: 1D Stagnation line description w/ surface ablation
(A. Munafo\cite{2} / A. Turchi, VKI)

Boundary condition from experiments & plasma free-stream
Experimental data for validation

GOAL: Coupling 1-D SL-code & material code (P. Schrooyen)

\[\text{Surface Energy Balance (SEB)}\]
- convective flux
- enthalpy by diffusion
- HOT GAS radiation
- re-radiation
- convected enthalpy

\[\text{Surface Mass Balance (SMB)}\]
- mass blowing
- HOT GAS species diffusion

\[\text{MATERIAL}\]
-enthalpy char mass loss
- material conduction

\[\text{CONTROL VOLUME}\]
-chem. active surface

\[\text{[1] Kendall et al., NASA CR 1060 (1968)}\]
Materials of Investigation

Carbon fiber preform, non-pyrolyzing (Mersen Scotland Holytown Ltd.)

AQ61, carbon-phenolic (AIRBUS DS)
1.2-MW Inductively Coupled Plasmatron

Gas: Air, N₂, CO₂, Ar
Power: 1.2-MW
Heat Flux: > 12 MW/m²
Pressure: 10 mbar - 1 atm
Our interest

Surface temperature
Emissivity
Internal Temperature
In-situ recession analysis
Volumetric recession
Chemical composition
Temperature estimation

(AIAA 2013-2770)
Boundary Layer Radiation Profiles

Experimental: Spatial CN violet emission

CN Production:
- **gas phase:** $\text{CO} + \text{N} \rightleftharpoons \text{CN} + \text{O}$
- **wall:** $\text{C}_\text{w} + \text{N}_\text{w} \rightarrow \text{CN}$

Graphs:
- **Graph 1:**
 - I, W/(m2.sr.nm)
 - λ, nm
 - dist. surf., mm
- **Graph 2:**
 - I_{λ}^2, [W/(m2.sr)]
 - Distance from surface, mm
- **Legend:**
 - Exp. data
 - Polynomial fit
 - 95% Conf. bnd

Conditions:
- $T = 2180\text{K}$, $p_s = 15\text{mbar}$
Boundary Layer Radiation Profiles
Numerical: Simplified approach using Specair slab

Simulate line-of-sight measurement

stagn. line solution \(\chi_i, T_i, p_i \)

slab width \(\Delta y_i \) at \(x_i \)

Perspective:
Radiation Coupling (J.B. Scoggins)
Comparison of Boundary Layer Radiation Profiles

Very preliminary approach but promising comparison

- Locations of maxima
- BL thickness
- Order of magnitude

$T = 2020K, p_s = 200\text{mbar}$

$T = 2783K, p_s = 200\text{mbar}$

$T = 2848K, p_s = 15\text{mbar}$
CN Radiation Simulation for Temperature Estimation

Non-equilibrium?

Non-thermal vibrational level distribution at low pressure (AIAA 2013-2770)

- Thermal non-equilibrium?
- Deviation from Boltzmann distribution?
Boundary Layer Temperature Profile
Non-equilibrium at the wall?

$p_s = 15\text{mbar}, \ T_S = 2130K$

$p_s = 100\text{mbar}, \ T_S = 2097K$
In-situ Recession Analysis (HSC)

Preform
- 1724K, 15mbar
- 2180K, 15mbar
- 2020K, 200mbar
- 2848K, 15mbar
- 2783K, 200mbar

AQ61
- 2167K, 15mbar
- 1890K, 200mbar
- 2884K, 15mbar
- 2906K, 200mbar

Graphs showing recession analysis for different materials and conditions.
Ablation Regimes of Preform and AQ61

Diffusion limited ablation and sublimation regime

Recession not much influenced by pressure!
Diffusion Limited Ablation and Code Comparison

Surface temperature driven by catalytic reactions:

\[\text{N} + \text{N} \rightarrow \text{N}_2 \]

Modeling of tests in nitrogen

15mbar: good agreement, possibly misleading measurement? (AIAA 2012-2876)
Pyrolysis-Gas Blowing Rate Determination

Non-pyrolyzing carbon-preform

\[m_{pg} + m_c = (\rho V)_w \]

\[m_{pg} = m_{pg} - \frac{(V_{abl} \cdot \rho_c)}{t_{exp}} \]

Carbon Preform (non-pyroly.):

\[m_c = m_{tot} = V_{abl} \cdot \rho_c \]

Pyrolyzing Ablators:

\[\Rightarrow \text{char density required} \]
Pyrolysis-Gas Blowing Rate Determination
Non-pyrolyzing carbon-preform

discrepancy:
- water
- initial density
- damage by deinstallation

![Bar chart showing total mass loss for different test cases with weighed and estim. HSC values.](chart.png)
Pyrolysis-Gas Blowing Rate Determination

Thermogravimetric Analysis (TGA)

Argon (20-200 ml/min), 10 K/min, 1 atm

charred AQ61: $\rho_c = 80\text{-}85\% \rho_v$
Pyrolysis-Gas Blowing Rate Determination

Carbon - phenolic: AQ61

\[m_{pg} + m_c = (\rho V)_w \]

\[m_{pg} = m_{pg} - \left(\frac{V_{abl} \cdot \rho_c}{t_{exp}} \right) \]

AQ61 (carbon-phenolic):

\[m_{meas} = 4.03 \text{ g} \]

\[m_{c,HSC} = 2.26 \pm 0.4 \text{ g} \]

\[\Rightarrow m_{pg} = 1.77 \text{ g} \pm 0.4 \text{ g} \]

Main challenges:

Side-wall outgassing, non-1D effects, too-long test times
Ongoing Work
Rebuilding of ablation tests in nitrogen plasmas $\rightarrow \gamma_N$

Nitridation negligible for recession \Rightarrow Match of T_s for γ_N
Conclusions

(1) Materials and Methods
• hemispherical samples
• HSC imaging
• coupled w/ 3 Spectrometers

(2) BL emission
• steady ablation process
• preliminary comparison num/exp radiation profiles

(3) Char blowing rates
• diffusion limited ablation and sublimation
• deviation from num. model

(4) Pyrolysis outgassing
• Vol. ablation + TGA $\Rightarrow \dot{m}_{pg}$

Which chemical and physical phenomena matter?
ACKNOWLEDGEMENTS

Funding and materials supply:

In particular:

- Jean-Marc Bouilly & Gregory Pinaud (Airbus Defence & Space)
- N.N. Mansour (NASA ARC), J. Lachaud (UC Santa Cruz), F. Panerai (University of Kentucky) for informative support
- VKI Plasmatron & Ablation Team
- VUB SURF research team