9-2015

Recurrent *Streptococcus equi* subsp. *zooepidemicus* Bacteremia in an Infant

Joshua R. Watson
Ohio State University

Amy Leber
Ohio State University

Sridhar Velineni
University of Kentucky, sridharvelineni@uky.edu

John F. Timoney
University of Kentucky, jtimoney@uky.edu

Monica I. Ardura
Ohio State University

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/gerc_facpub

Part of the Large or Food Animal and Equine Medicine Commons

Repository Citation
https://uknowledge.uky.edu/gerc_facpub/9

This Article is brought to you for free and open access by the Gluck Equine Research Center at UKnowledge. It has been accepted for inclusion in Gluck Equine Research Center Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Recurrent *Streptococcus equi* subsp. *zooepidemicus* Bacteremia in an Infant

Notes/Citation Information
Published in *Journal of Clinical Microbiology*, v. 53, no. 9, p. 3096-3099.

Copyright © 2015, American Society for Microbiology. All Rights Reserved.

The copyright holders have granted the permission for posting the article here.

Digital Object Identifier (DOI)
http://dx.doi.org/10.1128/JCM.01306-15
A male infant was born via spontaneous vaginal delivery to a gravida 1, para 1 female at 32 weeks and 6 days of gestation because of preterm labor with Apgar scores of 7 at 1 min and 8 at 5 min. The mother’s group B streptococcal colonization status was unknown, and she received 2 doses of ampicillin prior to delivery. Artificial rupture of membranes occurred approximately 1 h prior to delivery. Placental pathology was normal. The infant required continuous positive airway pressure for respiratory distress and received 1 dose of surfactant. He was admitted to the neonatal intensive care unit at the delivery hospital and received ampicillin and gentamicin until a blood culture was negative at 48 h. On day of life (DOL) 12, the infant developed apnea, bradycardia, and hypoxemia. Physical examination revealed poor perfusion, poor tone, and skin erythema on the right side of his neck, chest, and abdomen. Neck ultrasound demonstrated parotitis and cellulitis, and blood culture yielded Gram-positive cocci identified by the outside hospital as group C streptococcus (GCS). He received intravenous ampicillin for 10 days with clinical improvement and clearance of bacteremia. He was discharged home on DOL 23.

Throat cultures obtained from both parents during the second hospitalization were negative for GCS carriage. The infant and his family lived on a farm in Ohio where the father cared for approximately 100 horses, none of which were ill. Additional history revealed that 48 h prior to the patient’s first episode of GCS sepsis, his mother had developed fever and malaise requiring hospitalization. Her blood and urine cultures were negative, and her symptoms resolved. Days before the patient’s second episode of GCS sepsis, the mother developed pharyngitis. A throat culture yielded GCS, for which she was prescribed azithromycin. Epidemiological history revealed that the family lived on a farm in Ohio where the father cared for approximately 100 horses, none of which were ill.

Throat cultures obtained from both parents during the second hospitalization were negative for GCS carriage. The infant and his parents were treated with a 2-day course of rifampin prior to hospital discharge. At a 6-week follow-up appointment, the infant was clinically well. Throat cultures from the infant and father at

that time were negative. The mother’s throat culture yielded an isolate that was identified as described above as GCS susceptible to penicillin (MIC, 0.03 µg/mL), resistant to clindamycin (disk diffusion), and with a rifampin MIC of 0.023 µg/mL. Concern that maternal GCS pharyngeal colonization could serve as a source of re-exposure of the infant to GCS prompted treatment of the mother with oral penicillin for 10 days combined with rifampin during the final 4 days. At an appointment 3 months following the second hospitalization, the infant continued to do well and had negative throat and rectal cultures. Maternal throat culture was also negative at that time. At 16 months of age, the infant has had no further recurrences of GCS bacteremia or sepsis.

Further phenotypic characterization was performed with the two blood isolates from the infant and the throat isolate from the mother (from the 6-week follow-up appointment). The isolates were identified as *Streptococcus equi* subsp. *zooepidemicus* by Vitek 2 (bioMérieux, Durham, NC) by using the Gram-positive identification card with 99% probability and excellent identification confidence. The isolates fermented lactose and sorbitol but not trehalose, consistent with *S. equi* subsp. *zooepidemicus* (3). Matrix-assisted laser desorption ionization–time of flight mass spectrometry (Vitek MS; bioMérieux, Durham, NC) was performed and identified all of the isolates as *S. equi* subsp. *zooepidemicus* with a confidence value of 99.9 (Vitek MS IVD version 2.0, unclaimed identification).

Sequence of the 16S rRNA genes (MicroSEQ 500 16S rDNA Bacterial Identification System; Life Technologies, Grand Island, NY) of the three isolates revealed identical 499-bp consensus sequences. Comparison to sequences available in databases at the National Center for Biotechnology Information, MicroSEQ v2.1, and SmartGene (Lausanne, Switzerland) showed that our isolates clustered closely with *S. equi* subsp. *equi* and *zooepidemicus*, but the sequence length was not sufficient to reliably distinguish between the two subspecies.

Analysis of the isolates by pulse-field gel electrophoresis (PFGE) with Smal revealed that the two blood isolates from the infant were indistinguishable from one another. The PFGE pattern of the isolate from the mother’s throat culture had two bands different from the infant’s blood isolates, a difference that may be explained by a single genetic event (4). The PFGE results indicate that the mother’s isolate was closely related to the infant’s isolates and was probably the same strain.

Additional molecular characterization of the isolates is shown in Table 1. The *S. equi* subsp. *zooepidemicus* *szm* and *szp* genes were detected and sequenced (5) and were identical in the three isolates. Molecular detection of *S. equi* subsp. *equi* *eqbN* and *se18.9* was also attempted (6,7). Absence of *eqbN* and *se18.9* (as found in *S. equi* subsp. *equi*), together with the presence of identical *szm* and *szp* sequences typical of *S. equi* subsp. *zooepidemicus*, in all three isolates confirmed the identification and supported the conclusion that the isolates from the infant and the mother were the same strain of *S. equi* subsp. *zooepidemicus*. Multilocus sequence typing (MLST) (5) revealed that all three isolates had the same novel sequence type, 190 (ST190) (http://pubmlst.org/szooepidemicus/). As may be seen in *S. equi* subsp. *zooepidemicus*, superantigen genes *szeN* and *szeP*, but not *szeF*, were detected by PCR (8).

This report describes, to our knowledge, the first case of recurrent *S. equi* subsp. *zooepidemicus* infection in a young infant. Epidemiological history prompted a detailed molecular characterization that identified the bacterial isolates as *S. equi* subsp.

TABLE 1 Molecular characterization of *S. equi* subsp. *zooepidemicus* clinical isolates from infant and mother^a

<table>
<thead>
<tr>
<th>Source of bacterial isolate</th>
<th>MLST result</th>
<th>S. equi subsp. zooepidemicus</th>
<th>S. equi subsp. equi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SzP protein<sup>b</sup></td>
<td>SzM protein<sup>b</sup></td>
</tr>
<tr>
<td>Infant’s blood</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial episode</td>
<td>ST190</td>
<td>N2HV5, 5PEPK</td>
<td>A3(b), B2 tandem repeats</td>
</tr>
<tr>
<td>Recurrent episode</td>
<td>ST190</td>
<td>N2HV5, 5PEPK</td>
<td>A3(b), B2 tandem repeats</td>
</tr>
<tr>
<td>Mother’s throat at 6-wk follow-up</td>
<td>ST190</td>
<td>N2HV5, 5PEPK</td>
<td>A3(b), B2 tandem repeats</td>
</tr>
</tbody>
</table>

^a*SzP*, protective protein; *SzM*, M-like protein; *szeF*, *szeN*, and *szeP*, superantigen genes; *eqbN*, equibactin gene of *S. equi* subsp. *equi*; *se18.9*, gene for factor H binding protein of *S. equi* subsp. *equi*; N2HV5, N-terminal N2 and hypervariable 5 sequence motifs; 5PEPK, five carboxy-terminal PEPK repeats.

^bThe N, HV, and PEPK regions of *SzP* are variable among isolates of *S. equi* subsp. *zooepidemicus*. The genes were completely sequenced and were identical in all three isolates (18).

^cThe A and B regions of *SzM* are variable among isolates of *S. equi* subsp. *zooepidemicus*. The genes were completely sequenced and were identical in all three isolates (19).
zooepidemicus (ST190) and elucidated the mother as the potential source. This result provided a risk factor that could be modified to prevent future disease.

S. equi subsp. zooepidemicus and its clonal derivative S. equi subsp. equi share high DNA homology but differ in their pathogenicity (9). S. equi subsp. equi is the causative agent of a highly contagious respiratory tract infection of horses called strangles. S. equi subsp. zooepidemicus, in contrast, is a commensal organism of equine mucosal surfaces that may cause invasive infections in horses during times of viral infection, heat stress, or tissue injury (8, 9).

The production of superantigens may be important in the pathogenesis of S. equi subsp. zooepidemicus infections. Similar to Streptococcus pyogenes, three genes encoding superantigens (szF, szN, and szP) have been described in the S. equi subsp. zooepidemicus genome (8). Of 165 S. equi subsp. zooepidemicus isolates examined by Païlot et al. (8), one or more superantigens were detected in 49%. The three superantigens possess a characteristic amino acid sequence signature, and their amino acid sequences are 34 to 59% identical to those of superantigens produced by S. pyogenes. The presence of szN and szP was associated with mitogenic activity, but the presence of szF was not. In our case, both szN and szP, but not szF, were detected.

Cases of S. equi subsp. zooepidemicus infections in adults with close and continuous contact with horses and dogs have been described previously (10, 11). A search of the MEDLINE database for English-language publications of infections in infants ≤3 months of age with the key words “Group C Strep*,” “S. equi,” and “S. zooepidemicus” yielded three prior reports that identified S. equi subsp. zooepidemicus causing meningitis and sepsis (12–14). Two of the cases occurred during outbreaks related to the consumption of unpasteurized cow’s milk but without confirmation of infection in family members of the infants (12, 13). Another report of S. equi subsp. zooepidemicus infection described a 14-week-old infant whose family owned a horse (15). In that case, the mother had a lower respiratory tract infection 3 weeks before the infant’s illness, but she was not tested for S. equi subsp. zooepidemicus colonization. In the case of our infant, results of molecular analysis supported mother-to-infant transmission. Although we questioned the possibility of an equine reservoir, we were unable to test the horses to confirm a zoonosis. No cases of recurrent S. equi subsp. zooepidemicus infection during the first 3 months of life were found in the published literature.

Because of concern that the patient’s mother was a chronic pharyngeal carrier of S. equi subsp. zooepidemicus, she was treated with penicillin and rifampin according to guidelines for chronic S. pyogenes carriage (16, 17). We believed this was a necessary intervention given the infant’s recurrent episodes of sepsis, prematurity, and immature immune system. This strategy appeared to be successful at least temporarily, as evidenced by a negative maternal streptococcal throat culture at the 3-month follow-up visit and lack of disease recurrence in the infant.

In conclusion, this report describes the first case of recurrent bacteremia in a young infant caused by S. equi subsp. zooepidemicus, likely transmitted from mother to infant. Molecular characterization of bacterial isolates was essential to determine the precise identity of the pathogen and to identify modifiable risk factors for recurrent infection. Additionally, molecular techniques detected superantigen genes that may explain the organism’s pathogenicity. Clinicians should be aware that S. equi subsp. zooepidemicus may cause invasive infections in young infants and that recurrence is possible.

Nucleotide sequence accession numbers. The nucleotide sequences of the S. equi subsp. zooepidemicus szm and szp genes have been deposited in the GenBank database and assigned accession numbers KF735516 (szm) and KF735515 (szp).

ACKNOWLEDGMENT

We thank Susi Miller, medical librarian at Nationwide Children’s Hospital, for her assistance with the literature search.

REFERENCES

