Method of Inhibiting Alu RNA and Therapeutic Uses Thereof

Jayakrishna Ambati
University of Kentucky, jayakrishna.ambati@uky.edu

Follow this and additional works at: https://uknowledge.uky.edu/ophthalmology_patents
Part of the Ophthalmology Commons

Recommended Citation
https://uknowledge.uky.edu/ophthalmology_patents/8
METHOD OF INHIBITING ALU RNA AND THERAPEUTIC USES THEREOF

Inventor: Jayakrishna Ambati, Lexington, KY (US)

Assignee: University of Kentucky Research Foundation, Lexington, KY (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Appl. No.: 13/701,450

PCT Filed: Jun. 1, 2011

PCT No.: PCT/US2011/038753

§ 371 (e)(1), (2), (4) Date: Mar. 21, 2013

Prior Publication Data

US 2013/0197207 A1 Aug. 1, 2013

Other Publication Data

Related U.S. Application Data

IntCl.

C07H 21/04 (2006.01)
C12N 15/11 (2006.01)
C12N 15/113 (2010.01)
C12Q 1/68 (2006.01)

Field of Classification Search

None

References Cited

U.S. PATENT DOCUMENTS

2006/0228361 A1 10/2006 Mello
2007/0031417 A2 2/2007 Mello

FOREIGN PATENT DOCUMENTS

OTHER PUBLICATIONS

Primary Examiner — Tracy Vivlemore
Assistant Examiner — Kate Poliakova-Georgantus
Attorney, Agent, or Firm — Stites & Harbison PLLC; Mandy Wilson Decker

ABSTRACT

The presently-disclosed subject matter includes methods of identifying an Alu RNA inhibitor, and methods and compositions for inhibiting Alu RNA. Methods and compositions can be used for the treatment of geographic atrophy and other conditions of interest.

4 Claims, 25 Drawing Sheets

References Cited

OTHER PUBLICATIONS

* cited by examiner
FIG. 1
FIG. 1, Continued
FIG. 2
FIG. 3
FIG. 4
FIG. 6
FIG. 7

a

Fold change in DICER1 RNA

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>GA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

b DICER1
c isotype

d GA

e Normal
FIG. 8
FIG. 9
FIG. 12

FIG. 13

Cell viability (%)

HCT116 HCT-DICER1

NS
(SEQ ID NO: 27) (SEQ ID NO: 28)

FIG. 14
FIG. 15
FIG. 18

a

Nucleus Cytoplasm

DICER1

Tubulin

b

DICER1

DNA

merged

merged

FIG. 18
FIG. 19

Fold change

Normal

GA

0.5
1.0
1.5
2.0

L1.3 HERV-WE1 hY3

DICER1 as

Ctrl as

0.5
1.0
1.5

L1.3 HERV-WE1 hY3

FIG. 19
FIG. 26
FIG. 28

(a) Bar graph showing human RPE cell viability (%).

- pNull: 120
- pAlu: 100
- pAlu + Alu Frag: 80

Note: NS indicates no significant difference.

(b) Images of Alu Frag and Alu Frag + pAlu.
FIG. 29
METHOD OF INHIBITING ALU RNA AND THERAPEUTIC USES THEREOF

RELATED APPLICATIONS

This application claims priority from U.S. Provisional Application Ser. No. 61/396,747, filed on Jun. 1, 2010; U.S. Provisional Application Ser. No. 61/432,110, filed on Jan. 12, 2011; and U.S. Provisional Application Ser. No. 61/432,948, filed Jan. 14, 2011. The entire disclosures of these applications are incorporated herein by reference.

TECHNICAL FIELD

The presently-disclosed subject matter relates to uses of DICER overexpression and the inhibition of Alu RNA.

INTRODUCTION

Geographic atrophy, an advanced form of age-related macular degeneration that causes blindness in millions of people worldwide and for which there is no approved treatment, results from death of retinal pigmented epithelium (RPE) cells. As described herein the present inventors show that expression of DICER, an enzyme involved in microRNA (miRNA) biogenesis, is reduced in the RPE of human eyes with geographic atrophy, and that conditional ablation of Dicer induces RPE degeneration in mice. Surprisingly, ablation of seven other enzymes responsible for miRNA biogenesis or function does not induce such pathology. Instead, knockdown of Dicer1 leads to accumulation of Alu repeat RNA in human RPE cells and of B1 and B2 (Alu-like elements) repeat RNAs in the RPE of mice.

Alu RNA is dramatically increased in the RPE of human eyes with geographic atrophy, and introduction of this pathological RNA induces death of human RPE cells and RPE degeneration in mice.

Antisense oligonucleotides targeting Alu/B1/B2 RNAs inhibit Dicer1 depletion-induced RPE degeneration despite persistence of global miRNA downregulation. Dicer1 degrades Alu RNA, and Alu RNA loses the ability to induce RPE degeneration in mice when digested by Dicer1. These findings reveal a novel miRNA-independent cell survival function for Dicer1 via degradation of retrotransposon transcripts, introduce the concept that Alu RNA can directly cause human pathology, and identify new molecular targets for treating a major cause of blindness.

Age-related macular degeneration (AMD), which is as prevalent as cancer in industrialized countries, is a leading cause of blindness worldwide. In contrast to the neovascular form of AMD, for which many approved treatments exist, the far more common atrophic form of AMD remains poorly understood and without effective clinical intervention. Extensive atrophy of the retinal pigment epithelium (RPE) leads to severe vision loss and is termed geographic atrophy, the pathogenesis of which is unclear. As described herein, the present inventors identify dysregulation of the RNase Dicer1 and the resulting accumulation of transcripts of Alu elements, the most common small interspersive repetitive elements in the human genome, as a cause of geographic atrophy, and describe treatment strategies to inhibit this pathology in vivo.

SUMMARY

The presently-disclosed subject matter meets some or all of the needs identified herein, as will become evident to those of ordinary skill in the art after a study of information provided in this document.

This Summary describes several embodiments of the presently-disclosed subject matter, and in many cases lists variations and permutations of these embodiments. This Summary is merely exemplary of the numerous and varied embodiments. Mention of one or more representative features of a given embodiment is likewise exemplary. Such an embodiment can typically exist with or without the feature(s) mentioned; likewise, those features can be applied to other embodiments of the presently disclosed subject matter, whether listed in this Summary or not. To avoid excessive repetition, this Summary does not list or suggest all possible combinations of such features.

In some embodiments, the presently-disclosed subject matter includes a method of identifying an Alu RNA inhibitor. The method can include providing a cell in culture wherein Alu RNA is upregulated; contacting the cell with a candidate compound; and determining whether the candidate compound results in a change in the Alu RNA. In some embodiments, the cell is an RPE cell. In some embodiments, the Alu RNA can be upregulated by decreasing native levels of DICER polyproteins in the cell. In some embodiments, the Alu RNA can be upregulated using heat shock stress. In some embodiments, the change in the Alu RNA is a measurable decrease in Alu RNA, said change being an indication that the candidate compound is an Alu RNA inhibitor.

In some embodiments, the presently-disclosed subject matter includes a method of treating geographic atrophy, including inhibiting Alu RNA associated with an RPE cell. In some embodiments, the presently-disclosed subject matter includes a method of protecting an RPE cell, including inhibiting Alu RNA associated with the RPE cell. In some embodiments, the RPE cell is of a subject having age-related macular degeneration.

In some embodiments, the presently-disclosed subject matter includes a method of treating a condition of interest, including inhibiting Alu RNA associated with a subject. In some embodiments, the condition of interest is selected from: geographic atrophy, dry age-related macular degeneration, thalassemia, familial hypercholesterolemia, Dent's disease, acute intermittent porphyria, anterior pituitary aplasia, Apert syndrome, Hemophilia A, Hemophilia B, glycogen kinase deficiency, autoimmune lymphoproliferative syndrome, X-linked agammaglobulinemia, X-linked severe combined immunodeficiency, adenoleukodystrophy, Menkes disease, hyper-immunoglobulin M syndrome, retinal blindness, Type 1 anti-thrombin deficiency, Muckle-Wells syndrome, hypocalcemic hypercalcemia and hyperparathyroidism, cholinesterase deficiency, hereditary desmoid disease, chronic hemolytic anemia, cystic fibrosis, branchio-oto-renal syndrome, lipoprotein lipase deficiency, CHARGE syndrome, Walker-Warburg syndrome, Complement deficiency, Muscular dystrophy type II, breast cancer, ovarian cancer, prostate cancer, von Hippel Lindau disease, Hereditary nonpolyposis colorectal cancer, multiple endocrine neoplasia type 1, hereditary diffuse gastric cancer, hepatoma, neurofibromatosis type 1, acute myeloid leukemia, T-acute lymphoblastic leukemia, and Ewing sarcoma.

In some embodiments of the methods of the presently disclosed subject matter including inhibiting Alu RNA associated with a cell, the inhibiting Alu RNA comprises increasing levels of a DICER polyprotein in the cell. In some embodiments, increasing levels of a DICER polyprotein comprises overexpressing the DICER polyprotein in the cells. In some embodiments, increasing levels of a DICER polyprotein comprises using a vector comprising a nucleotide encoding the DICER polyprotein. In some embodiments, the vector is a viral vector. In some embodiments, the
virus is selected from an adeno-associated virus, a lentivirus, and an adenovirus. In some embodiments, the vector is a plasmid vector. In some embodiments, the nucleotide encoding the DICER1 polypeptide is selected from SEQ ID NO: 7 and SEQ ID NO: 8. In some embodiments, the DICER1 polypeptide is selected from SEQ ID NO: 9, 10, 11, 12, 13, 14, 15, 16, 18, and 20. In some embodiments, the DICER1 polypeptide comprises a functional fragment of the sequence of SEQ ID NO: 9, 18, or 20. In some embodiments, the DICER1 polypeptide comprises the following amino acid residues of the polypeptide of SEQ ID NO: 9: 605-1912, 605-1912, 1666-1912, 1666-1912, 605-1786 and 1800-1922, 605-1786 and 1800-1912, 1666-1786 and 1800-1922, 1666-1786 and 1800-1912, 1276-1922, 1276-1876 and 1800-1922, 1276-1786, 800-1912, 1275-1824, or 1276-1824.

In some embodiments of the methods of the presently disclosed subject matter including inhibiting Alu RNA associated with a cell, the inhibiting Alu RNA comprises increasing levels of a DICER1 polypeptide comprised using DICER mRNA or a functional fragment thereof. In some embodiments, the DICER1 mRNA has the sequence of SEQ ID NO: 17, 19, or 21. In some embodiments, the DICER1 mRNA encoded DICER1 polypeptide, for example, the DICER1 polypeptide of SEQ ID NO: 9, 18, or 20, or a functional fragment thereof.

In some embodiments of the methods of the presently disclosed subject matter including inhibiting Alu RNA associated with a cell, the inhibiting Alu RNA comprises administering an oligonucleotide targeting Alu RNA. In some embodiments, the oligonucleotide has a sequence including a sequence selected from SEQ ID NO: 22, 23, 24, 25, and 26. In some embodiments, at least two oligonucleotides are administered. The presently-disclosed subject matter further includes an isolated oligonucleotide that inhibits the expression of Alu RNA, including a sequence selected from SEQ ID NO: 22, 23, 24, 25, and 26 and including about 29 to 100 nucleotides.

In some embodiments of the methods of the presently disclosed subject matter including inhibiting Alu RNA associated with a cell, the inhibiting Alu RNA comprises administering an siRNA targeting Alu RNA. In some embodiments, the siRNA includes a first strand having a sequence selected from SEQ ID NO: 1, 2, 3, 4, 5, and 6. The presently-disclosed subject matter further includes an isolated double-stranded RNA molecule that inhibits expression of Alu RNA, wherein a first strand of the double-stranded RNA comprises a sequence selected from SEQ ID NO: 1, 2, 3, 4, 5, and 6 and including about 19 to 25 nucleotides.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 DICER1 deficit in geographic atrophy induces RPE degeneration. a, DICER1 mRNA abundance, relative to 18S rRNA, monitored by real-time RT-PCR, was lower in the retinal pigmented epithelium (RPE) of human eyes with geographic atrophy (GA; n=10) compared to the RPE of normal human eyes without GA (n=11). P<0.004 by Mann Whitney U test. The abundance of DROSHA, DGC8R, and EEF2C2 (encoding AG02) mRNA transcripts in the RPE was not significantly different (P>0.11 by Mann Whitney U test) in human eyes with geographic atrophy and control eyes. Transcript abundance quantified by real-time RT-PCR and normalized to 18S rRNA and to control eye levels. n=10-11. b, Relative quantification of DICER1 protein abundance, relative to Vinculin, assessed by Western blotting (Supplementary FIG. 1), was lower in the RPE of human eyes with geographic atrophy (GA; n=4) compared to the RPE of normal human eyes without GA (n=4). P<0.003 by Student t test. c, Immunohistochemistry for DICER1 (blue) showed reduced protein abundance in the RPE of human eyes with GA compared to normal eyes without GA. d, Fundus photographs show extensive RPE degeneration in BEST1 Cre; Dicer1−/−mice but not in littermate control mice. e, Toluidine blue-stained sections show marked RPE degeneration in BEST1 Cre; Dicer1−/−mice compared to normal RPE architecture in control mice. Arrowheads point to basal surface of RPE. f, Flat mounts of the RPE and choroid stained with antibodies against zonula occludens-1 (ZO-1; red) show marked disruption of the RPE monolayer architecture in BEST1 Cre; Dicer1−/−mice compared to the uniformly tesselated RPE layer in littermate control mice. g, Fundus photographs show RPE degeneration in Dicer1−/−mice following subretinal injection of AAV1-BEST1-Cre but not AAV1-BEST1-GFP. h, Toluidine blue-stained sections show marked degeneration of RPE and photoreceptor outer segments in Dicer1−/− mice following subretinal injection of AAV1-BEST1-Cre but not AAV1-BEST1-GFP. i, Flat mounts show increased RPE cell size and distortion of RPE cell shape in Dicer1−/− mice following subretinal injection of AAV1-BEST1-Cre but not AAV1-BEST1-GFP. RPE cell borders outlined by ZO-1 staining (red). Nuclei stained blue with Hoechst 33342. Representative images shown, n=16-32 (d-i); 10-12 (g-i). Scale bars, (c, e, h), 10 µm; (f, i) 20 µm, j, Transfection of adenoviral vector coding for Cre recombinase (Ad-Cre) in RPE cells isolated from Dicer1−/−mice resulted in loss of cell viability, as monitored by MTS assay at 7 days, compared to transfection with Ad-Null or untransfected (no Tx) cells. k, Transfection of antisense oligonucleotide (as) targeting DICER1 into human RPE cells resulted in increased loss of cell viability over time compared to scrambled sequence antisense (Ctrl as)-treated cells. n=6-8.

FIG. 2 Alu RNA accumulation in geographic atrophy triggered by DICER1 reduction. a, Immunohistochemistry with anti-double stranded RNA (dsRNA) antibody (J2) shows abundant accumulation of dsRNA (blue staining) in the retinal pigmented epithelium (RPE) of a human eye with geographic atrophy. b, Lack of immuno labeling with an isotype antibody in the same eye with geographic atrophy confirms specificity of dsRNA staining c, dsRNA is immunolocalized (blue staining) in the RPE and sub-RPE deposits (drusen) of a human eye with geographic atrophy (c) but not in the RPE of a normal (control) eye (d). Scale bars, (a-d), 10 µm. n=10 (a-d). e, PCR amplification of dsRNA immunoprecipitated by J2 antibody from RPE isolates from human eyes with geographic atrophy and normal eyes yielded amplicons with sequence homology to Alu sequences (Supplementary FIG. S7) in eyes with geographic atrophy but not in normal eyes. Water negative control (−) showed no amplification and positive control (+) recombinant dsRNA showed predicted amplicon. f, Alu RNA abundance, relative to 18S rRNA, monitored by real-time RT-PCR, was higher in the RPE of human eyes with geographic atrophy compared to the RPE of normal human eyes without GA (n=7). P<0.05 by Student t test. There was no significant difference in Alu RNA abundance in the neural retina of these two patient groups. Values normalized to relative abundance in normal eyes.

FIG. 3 DICER1 degrades Alu RNA. a, Transfection of antisense oligonucleotide (as) targeting DICER1 into human RPE cells induced a time-dependent increase in the abundance of Alu RNA transcripts, b, c, Transfection of adenoviral vector coding for Cre recombinase (Ad-Cre) into mouse RPE cells isolated from Dicer1−/− mice increased, in the nucleus (b) and the cytoplasm (c), the abundance of B1 and B2 RNAs, the Alu-like repetitive elements in the mouse, compared to cells
transfected with adenoviral vector coding for green fluorescent protein (Ad-GFP). d, DICER1 as treatment of human RPE cells upregulated Alu RNA levels in both the nucleus (Nuc) and cytoplasm (Cyt). e, Alu RNA isolated and cloned from the RPE of human eye with geographic atrophy was degraded by recombinant DICER1 digestion (+) as visualized by agarose gel electrophoresis. Digestion with heat denatured DICER1 did not degrade Alu RNA. Image representative of 6 experiments. f, The increased abundance of Alu RNA in human RPE cells transfected with plasmid coding for Alu (pAlu) compared to pNull or no treatment (no Tx) at 24 h was reduced by co-transfection with pDICER1. * P<0.05. n=4–8 (a–d, f). RNA abundance was quantified by real-time RT-PCR, normalized to 18S rRNA levels, and normalized to levels in control treated (pAlu) or Ad-GFP-infected cells (pB elements).

FIG. 4 DICER1 protects RPE cells from Alu RNA cytotoxicity. a, Transfection of mouse or human retinal pigmented epithelium cells (mRPE or hRPE) with plasmid coding for Alu RNA (pAlu) compromised cell viability. b, Subretinal administration of pAlu induced RPE degeneration in wild-type mice whereas pNull did not do so. Fundus photograph (top row) shows area of degeneration in pAlu injected eye compared to the normal appearance in pNull. Flat mount preparations stained with anti-zonula occludens-1 antibody (ZO-1, red, bottom row) showed marked distortion of RPE cell shape and size compared to pNull-injected eye. c, Alu RNA induced dose-dependent increase in cell death of human RPE cells. d, Cell death of human RPE cells induced by transfection of pAlu was inhibited by co-transfection with pDICER1 but not pNull. (a, c, d) Cell viability monitored by MTS assay at 2 days. Values normalized to null plasmid (pNull) transfected or vehicle treated cells. * P<0.05 by Student t test. n=4–6 (a, c, d). Subretinal co-administration of pDICER1, but not of pNull, inhibited pAlu induced RPE degeneration in wild-type mice. f, Subretinal administration of Alu RNA isolated and cloned from the RPE of a human eye with geographic atrophy (GA) induced RPE degeneration in wild-type mice whereas subretinal injection of vehicle did not. g, Subretinal injection of this Alu RNA, when subjected to cleavage by DICER1, did not induce RPE degeneration in wild-type mice whereas Alu RNA subjected to mock cleavage by DICER1 did so, as evidenced on fundus photography (top row) or flat mount preparation (bottom row). Area of degeneration outlined by blue arrowheads in fundus photographs (b, e–g).

Scale bars (20 μm). n=10–15 (b, e–g).

FIG. 5 DICER1 dysregulation induces RPE cell death via Alu RNA accumulation. a, Loss of human RPE cell viability, as monitored by MTS assay, induced by transfection of antisense oligonucleotide (as) targeting DICER1 was rescued by co-transfection of Alu RNA as. Levels normalized or compared to transfection with control (Ctrl) antisense oligonucleotide. b, Alu RNA as inhibited accumulation of Alu RNA induced by DICER1 as. c, Ad-Cre but not Ad-Null induced loss of cell viability of Dicer1+/−/mouse RPE cells. This was rescued by transfection of antisense oligonucleotide targeting B1 and B2 RNAs but not by control (Ctrl) antisense oligonucleotide. Levels normalized to untreated cells (no Tx). d, B1/B2 RNA as inhibited accumulation of B1 and B2 RNAs induced by Ad-Cre-induced Dicer1 depletion. * P<0.05 by Student t test. n=4–6 (a–d). d, Subretinal AAV-BEST1-Cre administration induced RPE degeneration (blue arrowheads in fundus photograph on top row and marked increase in RPE cell size and distortion of RPE cell shape in ZO-1 stained (red) RPE flat mounts (bottom row) in Dicer1+/−/mice 20 days after injection. Subretinal administration of cholesterol-conjugated B1/B2 as, but not Ctrl as, 10 days after AAV-BEST1-Cre injection inhibited RPE degeneration (e) and abundance of B1/B2 RNAs in the RPE of these mice, as monitored by real-time RT-PCR at 10 days after as injection, normalized to 18S rRNA levels, and normalized to levels in eyes treated with cholesterol-conjugated Ctrl as (f). n=8 (e, f). Scale bar, 20 μm. g, Dicer1 as treatment of human RPE cells led to global reduction of mRNA expression at 2 days compared to Ctrl as. There was no significant difference in mRNA abundance between Alu as and Ctrl as-treated DICER1 depleted cells, n=3.

FIG. 6 DICER1 levels in RPE are reduced in geographic atrophy. Western blots of macular RPE lysates from individual human donor eyes show that DICER1 protein abundance, normalized to the levels of the housekeeping protein Vinculin, are reduced in geographic atrophy (GA) compared to age-similar control human eyes without age-related macular degeneration.

FIG. 7 DICER1 levels in neural retina are unchanged in geographic atrophy. a, DICER1 mRNA abundance in the neural retina, as monitored by real-time RT-PCR, was not significantly different (P>0.05 by Mann Whitney U test) between normal human retinas and those with geographic atrophy. Levels normalized to 18S rRNA abundance and to normal retinas. n=7. b–e, DICER1 protein immunolocalization in the neural retina was not different between human eyes with geographic atrophy (b) and normal (d) eyes. Specificity of DICER1 staining was confirmed by absence of reaction production with isotype control antibody (c, e). Representative images shown. n=8. Scale bars (20 μm, b–e).

FIG. 8 DICER1 is not generally downregulated in retinal diseases. Immunolocalization studies revealed abundant DICER1 protein expression (blue, left column) in the RPE in the eye of an 85-year-old man with Best disease (vittelliform macular dystrophy), a 68-year-old man with retinal detachment secondary to choroidal melanoma, and a 72-year-old woman with retinitis pigmentosa. Specificity of DICER1 staining was confirmed by absence of reaction production with isotype control antibody (right column). Representative images shown. n=13. Scale bars (10 μm). Diced mRNA expression in the RPE was not significantly (NS) different in Ccl2−/−/Ccr2−/−/mice or Cpr−/−/Heph−/−/mice compared to their background strains. Transcript abundance quantified by real-time RT-PCR and normalized to 18S rRNA and to control eye levels. n=6. NS, not significant.

FIG. 9 Cre recombinase expression does not induce retinal pigmented epithelium (RPE) degeneration. Subretinal administration of adeno-associated viral vector coding for Cre recombinase directed by the BEST1 promoter (AAV1-BEST1-Cre) in wild-type mice did not induce retinal toxicity that was evident on fundus photography (top left) and did not disrupt the tiling pattern of the RPE monolayer (top right). Circular flash artefact is seen in the centre of the fundus photograph. RPE cell borders delineated by staining with anti-ZO-1 antibody (red) and nuclei stained by Hoechst 33342 (blue). RPE flat mounts show successful Cre recombinase expression (red) following subretinal injection of AAV1-BEST1-Cre in wild-type (bottom left) and Dicer1+/−/ (bottom right) mouse eyes. Representative images shown. n=8–10. Scale bar (20 μm).

FIG. 10 Retinal pigmented epithelium (RPE) cell dysmorphology in human age-related macular degeneration eye with atrophy. In contrast to the well tessellated RPE cell monolayer observed in a normal human eye (right), marked changes in RPE cell size and shape are observed in the human eye with geographic atrophy (left). These changes resemble those observed in eyes of mice wherein Dicer1 has been depleted in the RPE. RPE cell borders delineated by staining
with anti-ZO-1 antibody (green) and nuclei stained by propidium iodine (red). Representative image shown. n=8. Scale bar, 50 µm.

FIG. 11 Conditional ablation of Drosophila Dicer, Dicer-8, or Ago2 in the retinal pigmented epithelium (RPE) does not induce degeneration as seen in Dicer-1-ablated mice. Fundus photographs (left column) show no significant degeneration following subretinal injection of AAV-BEST1-Cre in mice “fixed” for Drosophila, Dicer-8, or Ago2. Circular flash artifacts are seen near the centre of the fundus photographs. Injection site wound appears white in the fundus photographs of the Ago2CR eye. RPE flat mounts (middle column) stained with anti-ZO-1 antibody (red) and Hoechst 33342 (blue) show normal tiling pattern of RPE with no gross disturbance of cell size or shape. RPE flat mounts (right column) stained with anti-Cre recombinase antibody (red) and Hoechst 33342 (blue) shows successful Cre expression in these mice. Images are not shown. n=8–12. Scale bar (20 µm).

FIG. 12 Deficiency of Ago1, Ago3, Ago4, or Tarbp2 does not induce RPE degeneration. Mice deficient in Ago1, Ago3, Ago4, or Tarbp2 have normal retinal appearance on fundus photography (top row) and normal RPE monolayer architecture on ZO-1 stained (red) flat mounts (bottom row). Circular flash artifact is seen in the centre of the fundus photographs. Scale bar, 20 µm.

FIG. 13 DICER1 mutant cells impaired in miRNA biogenesis do not have compromised cell viability. There was no difference in baseline cell viability between HCT-DICER15/5 cells, which are impaired in miRNA biogenesis1, and control HCT116 cells over 3 days of analysis. Experiments were performed in 96-well plates. n=3. NS, not significant.

FIG. 14 Human geographic atrophy eye retinal pigmented epithelium contain Alu RNA sequences. a. Top: Typical Alu element with conserved structural regions (adapted from ref 2). The left arm consists of RNA polymerase III binding sites (Box A and Box B). The right arm occasionally contains a terminal poly A tail that may be interspersed with non-A bases. The 5’ and 3’ regions of the Alu element are linked by a mid-stretch A-rich sequence. Bottom: Representative Alu cDNA (Sequence 1). The conserved regions mentioned above are highlighted and correspond to the coloured boxes in the top figure. Alignment of Alu cDNA Sequences 1 and 2 isolated from human eyes with geographic atrophy to Alu Sq consensus sequence. These sequences contain the highly conserved U5’ Alu consensus elements (5’ characteristic Alu region—blue; RNA polymerase III promoter B box—red), with extensive heterogeneity located 3’ to the mid-sequence poly-A stretch that have been reported to exist in Alu sequences13.

FIG. 15 J2 anti-dsRNA antibody recognizes Alu RNA, a. A new RNA duplex isolated and cloned from the retinal pigmented epithelium (RPE) of a human eye with geographic atrophy was recognized by J2 anti-dsRNA antibody in an immuno-dot blot format. J2 antibody did not recognize tRNA or rRNA (negative controls), but did recognize RNA duplexes of 325-bp or 1-kbp in length (positive controls). b. Immunofluorescent imaging of human RPE cells transfected with pNull shows that J2 recognizes Alu expressed in these cells (left panel). Specificity of staining confirmed by absence of staining with isotype control antibody (middle panel) and by the absence of immunodetection following transfection with pNull (right panel). Representative images shown. n=3. Scale bar (20 µm).

FIG. 16 Confirmation of lack of DNA contamination in Alu RNA PCR. The relative abundance of Alu RNA in the RPE of human eyes with geographic atrophic eyes was presented in FIG. 2f. Shown above is the detection of the PCR product band for a sample of human geographic atrophy RPE that underwent reverse transcription (RT+). No amplification was detected in the negative controls where reverse transcriptase (RT−) was omitted or where water alone was analyzed. These data demonstrate the absence of DNA contamination in the sample.

FIG. 17 Validation of DICER1 knockdown. Transfection of DICER1 antisense oligonucleotides (as) into human RPE cells knocked down DICER1 protein abundance, as monitored by Western blot analysis, over 2 days. Efficiency of protein loading is monitored by blotting for the housekeeping Vinculin protein. Representative of 3 experiments.

FIG. 18 DICER1 is expressed in nucleus and cytoplasm. a. Western blot shows expression of DICER1 in both the nuclear and cytoplasmic fractions of human RPE cells. Blotting of the same protein sample reveals the presence of Tubulin in the cytoplasmic fraction and not in the nuclear fraction. b. Merged images (bottom row) of DICER1 immunofluorescence (red, top row) and nuclear DAPI fluorescence (middle row) confirm expression of DICER1 in both the nucleus and the cytoplasm of human RPE cells. Representative images shown. Scale bar, 10 µm.

FIG. 19 Retrotransposons and repetitive RNAs are not generically activated in geographic atrophy or by DICER1 depletion. In the RPE of human eyes with geographic atrophy (GA, n=7), there was no significant increase in the abundance of RNAs coded by LINE L1.3, a long interspersed repetitive element, human endogenous retrovirus W envelope (HERV-W1), a long terminal repeat retrotransposon, or hY3, a repetitive small cytoplasmic Ro RNA compared to normal human eyes (top, n=8). These RNAs also were not upregulated by DICER1 antisense (as) knockdown, compared to control (Ctrl) as treatment, in human RPE cells (bottom). n=3. Transcript abundance monitored by real-time RT-PCR and normalized to 18S RNA levels.

FIG. 20 Alu RNA induced by DICER1 depletion is RNA Pol III derived. a. The expression of Alu RNA in RPE cells treated with antisense (as) oligonucleotides targeting DICER1, compared to control (Ctrl), is inhibited by treatment with the Pol III inhibitor tagetitoxin (tagetin), but not by the Pol II inhibitor em-aminomustine. *, P<0.05, NS, not significant, compared to treatment with DICER1 as treatment alone. b. Northern blot (NB) shows that the abundance of Alu RNA species in the RPE of a human eye with geographic atrophy (GA) is greater than in normal human eye RPE, and is principally approximately 300 nucleotides long, consistent with the length of a non-embedded Pol III derived transcript. Reprobing these samples with a probe corresponding to the “S region” of the 7SL RNA gene that is not present in Alu elements shows that 7SL RNA abundance is not different between the RPE of normal and GA human eyes. Abundance of 6S RNA in GA and normal eyes shows loading efficiency. c. Northern blot shows that Alu probe detects in vitro transcribed Alu RNA but not 7SL RNA in mouse liver (which lacks primate-specific Alu), and reprobing these samples confirms specificity of the 7SL probe. d. DICER1 knockdown by antisense (as) oligonucleotides in human RPE cells does not, compared to control (Ctrl) as treatment, induce upregulation of several Pol II-transcribed genes (ADAR2, NICN, NLRP, SLFN 11) that contain embedded Alu sequences in their exons. n=3.

FIG. 21 7SL RNA is not regulated in geographic atrophy or by inhibition of DICER1 or Alu. a. 7SL RNA abundance was not different in the RPE of human eyes with geographic atrophy (GA) compared to the RPE of normal human eyes without GA (n=8). b. 7SL RNA abundance was not different in human RPE cells transfected with antisense oligonucleotide.
otide (as) targeting Dicer1 from those transfected with control (Ctrl) as. N=3. c, 7SL RNA abundance was not different in human RPE cells transfected with antisense oligonucleotide (as) targeting Alu from those transfected with control (Ctrl) as. N=3. 7SL RNA abundance, relative to 18S rRNA, was monitored by real-time RT-PCR. NS, not significant by Student t test.

FIG 22 Overexpression of B1 or B2 RNA induces RPE degeneration. Subretinal transfection of pB1 or pB2 RNAs, but not of pNull, induces RPE degeneration in wild-type mice. Top row shows fundus photographs demonstrating areas of degeneration outlined by blue arrowheads. Bottom row shows ZO-1 stained (red) RPE flat mounts demonstrated marked degeneration and disarray of the RPE cells in mice overexpressing B1 or B2 RNAs. Circular flash artefact is seen in the centre of the fundus photographs. N=4. Representative images shown. Scale bar, 20 μm.

FIG 23 Alu RNA enters retinal pigmented epithelium (RPE) cells in vivo. Subretinal administration of Alu RNA in wild-type mice achieved RPE cell delivery at 8 h after injection as monitored by real-time RT-PCR in isolated cells lysates (n=3).

FIG 24 Human GA Alu dsRNA does not induce RPE degeneration when cleaved by DICER1. a, Subretinal administration of a fully complementary synthetic Alu RNA (dsRNA) corresponding to the sequence of an Alu RNA isolated from a human eye with geographic atrophy (GA) induces RPE degeneration in wild-type mice. Vehicle administration does not damage the retina. Top panels show fundus photographs with the area of RPE degeneration outlined by blue arrowheads. Circular flash artefact is seen in the centre of the fundus photographs. Bottom panels show ZO-1 stained (red) RPE flat mounts that are well armed in vehicle (bottom) but disorganized in Alu dsRNA (top). b, This Alu dsRNA did not induce RPE degeneration when it was first subjected to cleavage by recombinant DICER1. However, when subjected to mock cleavage by DICER1, this Alu dsRNA did induce RPE degeneration. N=4. Representative images shown. Scale bar, 20 μm.

FIG 25 RPE degeneration does not occur in response to a variety of structured RNAs. Subretinal transfection of transfer RNA (tRNA) or of plasmids coding for 7SL RNA, pri-miRNA-29b1 or pri-miRNA26a2 in wild-type mice did not induce retinal toxicity that was evident on fundus photography. Circular flash artefact is seen in the centre of the fundus photographs. N=4. Representative images shown.

FIG 26 Alu RNA does not cause RPE degeneration via TLR3. a, Western blot shows that transfection of pAlu or pNull does not induce TLR3 phosphorylation, relative to the levels of the housekeeping protein Vinculin, in human RPE cells. b, Subretinal transfection of pAlu induced RPE degeneration in Tlr3−/− mice where pNull transfection did not do so. Representative images shown. N=4. Scale bar, 20 μm.

FIG 27 DICER1 reduction or Alu RNA augmentation induces caspase-3 activation. a, Immunolocalization of activated caspase-3 (red) in the RPE of human eyes with geographic atrophy (left panel). Specificity of immunolabelling revealed by absence of staining with isotype control antibody (middle panel) and in control eyes stained with antibody against cleaved caspase-3 (right panel). Autofluorescence of RPE and choroid seen in green channel. Nuclei stained by DAPI (blue). b, Flat mounts of BEST1 Cre; Dicer1+/− mice show evidence of caspase-3 activation (red staining, top left panel). Specificity of immunolabelling revealed by absence of staining with isotype control antibody (top right panel). No caspase-3 activation was detectable in the RPE of littermate control BEST1 Cre or Dicer1−/− mice (bottom panels). c, Human RPE cells transfected with pAlu showed evidence of caspase-3 activation (red staining, top left panel). DAPI (blue staining) and merged images are also shown. Scale bars (20 μm, a; 10 μm, c). Representative images shown. N=4-6. d, Exposure of human RPE cells to Alu RNA induced dose-dependent increase in caspase-3 activation, as monitored by fluorometric plate assay. N=3. * P<0.05 compared to vehicle by Student t test. e, Transfection of human RPE cells with pAlu induced increase in caspase-3 activation. N=3. * P=0.47 by Student t test.

FIG 28 Alu RNA cleavage fragments do not modulate RPE degeneration. a, Transfection of pAlu induced cell death in human RPE cells. Cotransfection of DICER1-cleaved Alu RNA fragments did not change the degree of cell death. N=3. b, Subretinal transfection of DICER1-cleaved Alu RNA fragments (Frags) in wild-type mice did not cause RPE degeneration as seen by fundus photography (top left) or ZO-1 stained (red) RPE flat mounts (bottom left). Cotransfections of these fragments did not prevent the RPE degeneration induced by pAlu in wild-type mice (right panels). N=4. Representative images shown. Scale bar, 20 μm.

FIG 29 Impaired DICER1 processing of microRNAs does not increase Alu RNA abundance or modulate Alu RNA cytotoxicity. a, There was no significant difference (P=0.05) in Alu RNA transcript abundance between HCT116 parent cells and HCT mutant cells carrying a mutation in exon 5 (ex5) of DICER1 which renders it incapable of processing microRNAs. b, Transfection of anti-sense oligonucleotide (as) targeting DICER1 into HCT116 cells increased the abundance of Alu RNA transcripts compared to control anti-sense oligonucleotide (Ctrl as) at 48 h. Transcript abundance monitored by real-time RT-PCR and normalized to 18S rRNA levels. c, Alu RNA induced similar levels of cell death in HCT116 parent and HCT-DICER1−/− cells. * P<0.05 by Student t test. n=4-6.

FIG 30 Oxidative stress downregulates DICER1 in human RPE cells. Human retinal pigmented epithelium (RPE) cells exposed to varying concentrations of hydrogen peroxide (H2O2) display a dose- and time-dependent reduction in DICER1 mRNA abundance, as monitored by real-time RT-PCR and normalized to 18S rRNA levels. N=3.

BRIEF DESCRIPTION OF THE SEQUENCE LISTING

SEQ ID NO: 1 is an embodiment of a first strand of an siRNA provided in accordance with the presently-disclosed subject matter.

SEQ ID NO: 2 is an embodiment of a first strand of an siRNA provided in accordance with the presently-disclosed subject matter.

SEQ ID NO: 3 is an embodiment of a first strand of an siRNA provided in accordance with the presently-disclosed subject matter.

SEQ ID NO: 4 is an embodiment of a first strand of an siRNA provided in accordance with the presently-disclosed subject matter.

SEQ ID NO: 5 is an embodiment of a first strand of an siRNA provided in accordance with the presently-disclosed subject matter.

SEQ ID NO: 6 is an embodiment of a first strand of an siRNA provided in accordance with the presently-disclosed subject matter.

SEQ ID NO: 7 is nucleotide sequence encoding a human DICER polypeptide, including all untranslated regions (GenBank Accession Number NM_177438).
SEQ ID NO: 8 is a cDNA sequence encoding a human DICER polypeptide.
SEQ ID NO: 9 is a polypeptide sequence for a human DICER polypeptide.
SEQ ID NO: 10 is a polypeptide sequence for a human DICER polypeptide, including residues 1276-1922 of SEQ ID NO: 9.
SEQ ID NO: 11 is a polypeptide sequence for a human DICER polypeptide, including residues 605-1922 of SEQ ID NO: 9.
SEQ ID NO: 12 is a polypeptide sequence for a human DICER polypeptide, including residues 1666-1922 of SEQ ID NO: 9.
SEQ ID NO: 13 is a polypeptide sequence for a human DICER polypeptide, including residues 1666-1912 of SEQ ID NO: 9.
SEQ ID NO: 14 is a polypeptide sequence for a human DICER polypeptide, including residues 1666-1786 and 1800-1912 of SEQ ID NO: 9.
SEQ ID NO: 15 is a polypeptide sequence for a human DICER polypeptide, including residues 1275-1824 of SEQ ID NO: 9.
SEQ ID NO: 16 is a polypeptide sequence for a human DICER polypeptide, including residues 1276-1824 of SEQ ID NO: 9.
SEQ ID NO: 17 is an mRNA sequence encoding a human DICER polypeptide.
SEQ ID NO: 18 is a polypeptide sequence for a Schizosaccharomyces pombe DICER polypeptide.
SEQ ID NO: 19 is an mRNA sequence encoding a Schizosaccharomyces pombe DICER polypeptide.
SEQ ID NO: 20 is a polypeptide sequence for a Giardia lamblia DICER polypeptide.
SEQ ID NO: 21 is an mRNA sequence encoding a Giardia lamblia DICER polypeptide.
SEQ ID NO: 22 is an embodiment of an antisense oligonucleotide sequence provided in accordance with the presently-disclosed subject matter.
SEQ ID NO: 23 is an embodiment of an antisense oligonucleotide sequence provided in accordance with the presently-disclosed subject matter.
SEQ ID NO: 24 is an embodiment of an antisense oligonucleotide sequence provided in accordance with the presently-disclosed subject matter.
SEQ ID NO: 25 is an embodiment of an antisense oligonucleotide sequence provided in accordance with the presently-disclosed subject matter.
SEQ ID NO: 26 is an embodiment of an antisense oligonucleotide sequence provided in accordance with the presently-disclosed subject matter.

DESCRIPTION OF EXEMPLARY EMBODIMENTS

The presently-disclosed subject matter includes methods for identifying Alu RNA inhibitors, and methods and compositions for inhibiting Alu RNA and therapeutic uses thereof.

As disclosed herein, Alu RNA (including Alu repeat RNA in human cells and B1 and B2, Alu-like element repeat RNAs) increases are associated with cells that are associated with certain conditions of interest. For example, Alu RNA increase is associated with the retinal pigment epithelium (RPE) cells of eyes with geographic atrophy. This increase of Alu RNA induces the death of RPE cells. Methods and compositions disclosed herein can protect a cell from Alu RNA-triggered cell death, thereby treating conditions associated with such cell death.

The presently-disclosed subject matter further includes methods useful for identifying an Alu RNA inhibitor and uses of such inhibitors, including therapeutic and protective uses. In some embodiments, the method makes use of a cultured cell wherein Alu RNA is upregulated. Candidate compounds can be screened using the cultured cell to determine efficacy as antagonists of Alu RNA. Candidate compounds include, for example, small molecules, biologics, and combinations thereof, such as compositions including multiple compounds. The term small molecules is inclusive of traditional pharmaceutical compounds. The term biologics is inclusive of polypeptides and nucleotides.

In some embodiments, the screening method includes providing a cell in culture wherein Alu RNA is upregulated; and contacting a candidate compound with the cell. The method can further include identifying a change in Alu RNA. For example, a measurable change in Alu RNA levels can be indicative of efficacy associated with the candidate compound. In some embodiments, wherein the change in the Alu RNA is a measurable decrease in Alu RNA, the change is an indication that the candidate compound is an Alu RNA inhibitor. Such Alu RNA inhibitors can have utility for therapeutic applications as disclosed herein.

In some embodiments, the Alu RNA can be upregulated by decreasing native levels of DICER polypeptides in the cell using methods known to those skilled in the art. In some embodiments, the Alu RNA associated with cultured cell can be upregulated by using heat shock stress using methods known to those skilled in the art. In some embodiments, the cultured cell is an RPE cell.

Methods and compositions of the presently-disclosed subject matter for treating a condition of interest include inhibiting Alu RNA associated with a cell, such as a cell of a subject in need of treatment. Examples of conditions of interest include, but are not limited to: geographic atrophy, dry age-related macular degeneration, thalassemia, familial hypercholesterolemia, Dent’s disease, acute intermittent porphyria, anterior pituitary aplasia, Apert syndrome, Hemophilia A, Hemophilia B, glycerol kinase deficiency, autoimmune lymphoproliferative syndrome, X-linked agammaglobulinemia, X-linked severe combined immunodeficiency, adenoleukodystrophy, Menkes disease, hyper-immunoglobulin M syndrome, retinal blinding, Type 1 anti-thrombin deficiency, Muckle-Wells syndrome, hypocalciuric hypercalciemia and hyperparathyroidism, cholinesterase deficiency, hereditary desmoid disease, chronic hemolytic anemia, cystic fibrosis, h unreachable-ot renal syndrome, lipoprotein lipase deficiency, CHARGE syndrome, Walker Warburg syndrome, complement deficiency, Mucoisolipidosis type II, Breast cancer, ovarian cancer, prostate cancer, von Hippel Lindau disease, Hereditary non-polyposis colorectal cancer, multiple endocrine neoplasia type 1, hereditary diffuse gastric cancer, hepatoma, neurofibromatosis type 1, acute myeloid leukemia, T-acute lymphoblastic leukemia, and Ewing sarcoma.

As used herein, the terms treatment or treating relate to any treatment of a condition of interest, including but not limited to prophylactic treatment and therapeutic treatment. As such, the terms treatment or treating include, but are not limited to: preventing a condition of interest or the development of a condition of interest; inhibiting the progression of a condition of interest; arresting or preventing the development of a condition of interest; reducing the severity of a condition of interest; ameliorating or relieving symptoms associated with
a condition of interest; and causing a regression of the condition of interest or one or more of the symptoms associated with the condition of interest.

As used herein, the term “subject” refers to a target of treatment. The subject of the herein disclosed methods can be a vertebrate, such as a mammal, a fish, a bird, a reptile, or an amphibian. Thus, the subject of the herein disclosed methods can be a human or non-human. Thus, veterinary therapeutic uses are provided in accordance with the presently disclosed subject matter.

In some embodiments, the condition of interest is geographic atrophy and the cell is an RPE cell. In this regard, a subject having age-related macular degeneration can be treated using methods and compositions as disclosed herein.

As will be understood by those skilled in the art upon studying this application, inhibition of Alu RNA associated with a cell can be achieved in a number of manners. For example, in some embodiments, inhibiting Alu RNA associated with a cell comprises increasing levels of a DICER polypeptide in the cell, for example, by overexpressing the DICER polypeptide in the cell. For another example, a DICER mRNA could be used. For another example, in some embodiments, inhibiting Alu RNA associated with a cell comprises administering an oligonucleotide or a small RNA molecule targeting the Alu RNA. As used herein, inhibiting Alu RNA associated with a cell refers to a reduction in the levels of Alu RNA inside and/or outside the cell in the extracellular space.

The term DICER Polypeptide refers to polypeptides known to those of ordinary skill in the art as DICER, including, but not limited to polypeptides comprising the sequences of SEQ ID NO: 9, 18, and 20, and functional fragments or functional variants thereof.

It is noted that one of ordinary skill in the art will be able to readily obtain publicly-available information related to DICER, including relevant nucleotide and polypeptide sequences included in publicly-accessible databases, such as GENBANK®. Some of the sequences disclosed herein are cross-referenced to GENBANK® accession numbers, e.g., GenBank Accession Number NM_177438. The sequences cross-referenced in the GENBANK® database are expressly incorporated by reference as are equivalent and related sequences present in GENBANK® or other public databases. Also expressly incorporated herein by reference are all annotations present in the GENBANK® database associated with the sequences disclosed herein. Unless otherwise indicated or apparent, the references to the GENBANK® database are references to the most recent version of the database as of the filing date of this Application.

The terms “polypeptide”, “protein”, and “peptide”, which are used interchangeably herein, refer to a polymer of the 20 protein amino acids, or amino acid analogs, regardless of its size. The terms “polypeptide fragment” or “fragment”, when used in reference to a reference polypeptide, refers to a polypeptide in which amino acid residues are deleted as compared to the reference polypeptide itself, but where the remaining amino acid sequence is usually identical to the corresponding positions in the reference polypeptide. Such deletions can occur at the amino-terminus (e.g., removing residues 1-604, 1-1274, 1-1275, or 1-1665 of SEQ ID NO: 9) or carboxy-terminus of the reference polypeptide (e.g., removing residues 1825-1922, or 1913-1922 of SEQ ID NO: 9), from internal portions of the reference polypeptide (e.g., removing residues 1787-1799 of SEQ ID NO: 9), or a combination thereof.

A fragment can also be a “functional fragment,” in which case the fragment retains some or all of the activity of the reference polypeptide as described herein. For example, in some embodiments, a functional fragment of the polypeptide of SEQ ID NO: 9 can retain some or all of the ability of the polypeptide of SEQ ID NO: 9 to degrade Alu RNA. Examples of functional fragments of the polypeptide of SEQ ID NO: 9 include the polypeptides of SEQ ID NO: 10-16. Additional examples include, but are not limited to, the polypeptide of SEQ ID NO: 9, including the following residues: 605-1922, 605-1912, 1666-1922, 1666-1912, 605-1786 and 1800-1922, 605-1786 and 1800-1912, 1666-1786 and 1800-1922, 1666-1786 and 1800-1912, 1276-1922, 1276-1912, 1276-1786 and 1800-1922, 1276-1786 and 1800-1912, 1275-1824, or 1276-1824.

The terms “modified amino acid”, “modified polypeptide”, and “variant” refer to an amino acid sequence that is different from the reference polypeptide by one or more amino acids, e.g., one or more amino acid substitutions. A variant of a reference polypeptide also refers to a variant of a fragment of the reference polypeptide, for example, a fragment wherein one or more amino acid substitutions have been made relative to the reference polypeptide. A variant can also be a “functional variant”, in which the variant retains some or all of the activity of the reference protein as described herein. The term functional variant includes a functional variant of a functional fragment of a reference polypeptide.

In some embodiments, the DICER Polypeptide can be overexpressed in the cell using a vector comprising a nucleotide encoding the DICER polypeptide, for example, the nucleotide of SEQ ID NOS: 7 or 8, or an appropriate fragment thereof, or a nucleotide encoding a DICER Polypeptide, for example, a nucleotide encoding SEQ ID NOS: 9, 10, 11, 12, 13, 14, 15, 16, 18, or 20. As will be recognized by those skilled in the art, the vector can be a plasmid vector or a viral vector (e.g., adeno-associated virus, lentivirus, adenovirus).

As noted above, in some embodiments, inhibiting Alu RNA comprises use of a DICER mRNA. In some embodiments, a functional fragment of a DICER mRNA could be used. In some embodiments, a DICER mRNA having the sequence of SEQ ID NOS: 17, 19, or 21, or a functional fragment thereof could be used. In some embodiments an mRNA encoding a DICER Polypeptide could be used, for example, an mRNA encoding SEQ ID NOS: 9, 10, 11, 12, 13, 14, 15, 16, 18, or 20.

As noted above, in some embodiments, inhibiting Alu RNA comprises administering an oligonucleotide or a small RNA molecule targeting the Alu RNA. Such nucleotides can target and degrade Alu RNA.

As such, in some embodiments, a method is provided including administering an oligonucleotide targeting Alu RNA. Examples of oligonucleotides targeting Alu RNA include those set forth in SEQ ID NOS: 22-26. In some embodiments, more than one oligonucleotide is administered.

In some embodiments, a method is provided including administering an siRNA targeting Alu RNA. Examples of siRNAs for targeting Alu RNA include those set forth in SEQ ID NOS: 1-6.

The details of one or more embodiments of the presently-disclosed subject matter are set forth in this document. Modifications to embodiments described in this document, and other embodiments, will be evident to those of ordinary skill in the art after a study of the information provided in this document. The information provided in this document, and particularly the specific details of the described exemplary embodiments, is provided primarily for clearness of understanding and no unnecessary limitations are to be understood therefrom. In case of conflict, the specification of this document, including definitions, will control.
While the terms used herein are believed to be well understood by one of ordinary skill in the art, definitions are set forth to facilitate explanation of the presently-disclosed subject matter.

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the presently-disclosed subject matter belongs. Although any methods, devices, and materials similar or equivalent to those described herein can be used in the practice or testing of the presently-disclosed subject matter, representative methods, devices, and materials are now described.

Following long-standing patent law convention, the terms “a”, “an”, and “the” refer to “one or more” when used in this application, including the claims. Thus, for example, reference to “a cell” includes a plurality of such cells, and so forth.

Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about”. Accordingly, unless indicated to the contrary, the numerical parameters set forth in this specification and claims are approximations that can vary depending upon the desired properties sought to be obtained by the presently-disclosed subject matter.

As used herein, the term “about”, when referring to a value or to an amount of mass, weight, time, volume, concentration or percentage is meant to encompass variations of in some embodiments ±20%, in some embodiments ±10%, in some embodiments ±5%, in some embodiments ±1%, in some embodiments ±0.5%, and in some embodiments ±0.1% from the specified amount, as such variations are appropriate to perform the disclosed method.

As used herein, ranges can be expressed as from “about” one particular value, and/or to “about” another particular value. It is also understood that there are a number of values disclosed herein, and that each value is also herein disclosed as “about” that particular value in addition to the value itself. For example, if the value “10” is disclosed, then “about 10” is also disclosed. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.

The presently-disclosed subject matter is further illustrated by the following specific but non-limiting examples. The following examples may include compilations of data that are representative of data gathered at various times during the course of development and experimentation related to the present invention.

EXAMPLES

DICER1 Reduction in Geographic Atrophy

In human donor eyes with geographic atrophy (n=10), the present inventors found using real-time RT-PCR that DICER1 mRNA abundance was reduced in the macular RPE by 65±3% (mean±SEM; P=0.0036; Mann-Whitney U test) compared to age-similar human eyes without geographic atrophy (n=11) (FIG. 1a). Because the best understood function of DICER1 is mRNA generation, the present inventors measured the expression of other enzymes involved in mRNA biogenesis. The abundance of the genes encoding DROSHA or the double stranded RNA (dsRNA) binding protein DGCR8, which form a complex that processes pri-miRNAs into pre-miRNAs, was not reduced in the RPE of human eyes with geographic atrophy. There was also no reduction in the expression of the gene encoding Argonaute 2 (AGO2, encoded by EIF2C2), the core component of the miRNA effector complex, in the RPE of human eyes with geographic atrophy. Corroborating the miRNA data, the present inventors observed a marked reduction of DICER1 protein expression in the RPE layer of human eyes with geographic atrophy compared to controls in Western blot (FIG. 1b and FIG. 6) and immunohistochemistry analyses (FIG. 1c). Interestingly, DICER1 mRNA and protein abundance in the adjacent neural retina was similar between the two groups (FIG. 7).

Because DICER1 downregulation is observed in some cell types in culture conditions in response to various chemical stresses, the present inventors wondered whether DICER1 reduction in geographic atrophy might be a common downstream pathway in dying retina. DICER1 protein levels were not reduced in the RPE of human eyes with several other retinal disorders such as vitelliform macular dystrophy, retinitis pigmentosa, or retinal detachment (FIG. 8). Also, Dicer1 mRNA abundance in the RPE in two animal models of retinal degeneration—Ccl−/−Ccr2−/− (refs. 9,10) and Cpp−/− Hepc−/− mice—was unchanged compared to their background strains (FIG. 8). Gene expression studies in numerous other mouse models of retinal degeneration also have not reported modulation of Dicer1 (Supplemental Notes). These data argue that DICER1 depletion in the RPE of eyes with geographic atrophy is not a generic response of damaged or dying retinal cells in vivo.

DICER1 Depletion Induces RPE Degeneration

To determine the functional consequence of reduced DICER1 levels, the present inventors conditionally ablated Dicer1 in mouse RPE cells by interbreeding “fixed” Dicer1 mice (Dicer1f/f) with best1Cre mice, which express Cre recombinase under the control of the RPE cell-specific BEST 1 promoter, BEST1 Cre; Dicer1f/f mice uniformly exhibited dramatic RPE cell degeneration (FIG. 1d/f) that was evident by the time of weaning. None of the littermate controls exhibited similar pathology. The present inventors also deleted Dicer1 in adult mouse RPE by subretinal injection of an adenovirus-associated viral vector coding for Cre recombinase under the control of the BEST 1 promoter (AAV1-BEST1-Cre) in Dicer1f/f mice (FIG. 9). These eyes uniformly displayed RPE cell degeneration at 28 days after injection similar to that observed in mice depleted of Dicer1 expression during development (FIG. 1g-i; FIG. 9). In contrast, neither the contralateral eyes of Dicer1f/f mice that underwent subretinal injection of AAV1-BEST1-GFP nor the eyes of wild-type mice injected with subretinal AAV1-BEST1-Cre developed RPE cell degeneration (FIG. 1g-i and FIG. 9). The RPE cell demorphology in mice depleted of Dicer1 expression resembled that observed in the eyes of humans with RPE atrophy due to AMD (FIG. 10). When cultured RPE cells isolated from Dicer1f/f mice were infected with an adenoviral vector coding for Cre recombinase (Ad-Cre), the present inventors observed a reduction of cell viability compared to infection with Ad-Null (FIG. 1j). Similarly, antisense oligonucleotide mediated knockdown of DICER1 in human RPE cells resulted in increasing cell death over time (FIG. 1k). Collectively, these data support the hypothesis that DICER1 dysregulation is involved in the pathogenesis of geographic atrophy.

DICER1 Depletion Phenotype is not Due to miRNA Dysregulation

The present inventors tested whether depletion of other enzymes involved in miRNA biogenesis also would induce RPE degeneration. Subretinal injection of AAV1-BEST1-Cre in Drosophila (ref. 15; Dicer811/11 (refs. 15,16), or variegated Ace211f/f mice did not result in dramatic RPE cell damage that was evident in similarly treated Dicer811/mice (FIG. 11). These
data suggest that miRNA imbalances are not responsible for RPE degeneration induced by DICER1 depletion. However, the present inventors and others have reported that a small subset (approximately 7%) of mammalian miRNAs is generated by Dicer1 independent of Drosha and Dicer8. There is also debate as to whether Ago2 is essential for miRNA function: Ago2 deficiency leads to global reduction of miRNA expression uncompensated by other three Ago proteins in mice 17.20 and in mouse embryonic fibroblasts and oocytes21,22, yet functional redundancy among Argonaute proteins has been reported in mouse embryonic stem cells23. The present inventors found no RPE degeneration in mice deficient in Ago1, Ago3, or Ago4 (Fig. 12). TRBP (the human immunodeficiency virus transactivating response RNA-binding protein encoded by Tarbp2) recruits DICER1 to the four Argonaute proteins to enable miRNA processing and RNA silencing (ref 24 and R. Shiekhattar, personal communication); Tarbp2−/− mice too had no RPE degeneration (Fig. 12). These data suggest that RPE degeneration induced by Dicer1 ablation involves a mechanism specific to Dicer1 and not to miRNA machinery in general.

To further investigate whether miRNA imbalances might contribute to the phenotype observed in the setting of DICER1 depletion, the present inventors studied human HCT116 colon cancer cells in which the helicase domain in exon 5 of DICER1 was disrupted. Despite the impairment of miRNA biogenesis in these HCT-DICER1−/− cells25, there was no difference between HCT-DICER1−/− and parental HCT116 cells in baseline cell viability (Fig. 13). Collectively, these findings suggest that the principal biological effect of DICER1 deficit contributing to the development of geographic atrophy is not miRNA dysregulation. The findings do not, however, exclude the possibility that miRNA dysregulation could promote geographic atrophy through other pathways.

Alu RNA Accumulation in Geographic Atrophy

Because miRNA perturbations could not be implicated, the present inventors speculated that impaired processing of other dsRNAs might be involved. Using an antibody26,27 that recognizes long dsRNA (J2), the present inventors detected abundant dsRNA immunoreactivity in the mucular RPE of human eyes with geographic atrophy (n=10; Fig. 2a–c). In contrast, no J2 immunoreactivity was observed in eyes without geographic atrophy (n=10; Fig. 2d). To identify this dsRNA species, the present inventors immunoprecipitated RPE lysates with J2 antibody and then sequenced the dsRNA using a 14 RNA ligase-aided, adaptor-PCR amplification strategy. Interestingly, approximately 300-nucleotide-long dsRNA species were found in the mucular RPE of human eyes with geographic atrophy (12/12) but not in eyes without geographic atrophy (0/18) (P<2.1×10−6 by Fisher’s exact test) (Fig. 2e).

The present inventors recovered clones from 8 of the 12 geographic atrophy eyes and identified two distinct sequences with high homology (E=3.3×10−102; 1.1×10−76) to Alu repeat RNAs (Fig. 14). These sequences showed homology to the Alu Sq subfamily consensus sequence. Apart from mitochondrial RNAs that were occasionally found in the RPE of both geographic atrophy and normal eyes, Alu RNAs were the only dsRNA transcripts identified specifically in the geographic atrophy samples. The present inventors confirmed that the J2 monoclonal antibody recognized Alu RNA both in immunoblotting and in immunofluorescence assays (Fig. 15). The present inventors also detected a greater than 40-fold increase in the abundance of Alu RNAs in the RPE of human eyes with geographic atrophy compared to control eyes (n=7), but no significant difference in Alu RNA abundance was detected in the adjacent neural retina between the two groups (Fig. 2f; Fig. 16). The present inventors did not identify exact matches to these Alu sequences in the reference human genome. This could be attributed to genetic variations or regions not represented in the reference genome or to chimeric Alu origin. Further studies are needed to elucidate the genomic origin and of regulatory factors involved in transcription of these Alu RNAs.

DICER1 Depletion Induces Alu RNA Accumulation

The present inventors tested whether Alu RNA accumulation in the RPE of geographic atrophy was the result of deficient DICER1 processing activity. DICER1 knockdown in human RPE cells using antisense oligonucleotides resulted in increasing Alu RNA accumulation over time (Fig. 3a, 17). Similarly, Ad-Cre infection of RPE cells isolated from Dicer1−/− mice resulted in accumulation of B1 and B2 repeat RNAs (Fig. 3b, c), which are Alu-like repetitive elements in the mouse. Interestingly, DICER1 was expressed in both the nucleus and cytoplasm of RPE cells and its depletion led to accumulation of Alu/B1/B2 RNA in both cellular compartments (Fig. 3b–d, 18). In addition, recombinant DICER1 degraded Alu RNA, and the biological specificity of this cleavage was confirmed by the inability of heat-denatured DICER1 to degrade Alu RNA (Fig. 3e). Enforced expression of DICER1 in human RPE cells reduced Alu RNA abundance following enforced expression of Alu RNA (Fig. 3f, consistent with degradation of these repetitive transcripts by DICER1 in vivo. Collectively, these data confirm that DICER1 dysregulation can trigger Alu/B1/B2 RNA accumulation.

Because cell stresses such as heat shock or viral infection can induce generalized retrotransposition activation, the present inventors wondered whether Alu RNA accumulation in geographic atrophy might be a generic response in dying retina. However, in the RPE of human eyes with geographic atrophy and in DICER1−/− depleted human RPE cells, there was no increase in the abundance of RNAs coded by L1.3 (a long interspersed repetitive element), human endogenous retrovirus-W envelope (a long terminal repeat retrotransposon), or hY (a repetitive small cytoplasmic R0 RNA) (Fig. 19). These data demonstrate that Alu RNA accumulation is a biologically specific response to DICER1 depletion.

To determine whether Alu RNA accumulation was derived from RNA polymerase II (Pol II) or Pol III transcription, the present inventors performed experiments using α-amanitin (a Pol II inhibitor) and tategitoxin (a Pol III inhibitor). Alu RNA upregulation induced by DICER1 knockdown was inhibited by tategitoxin but not α-amanitin (Fig. 20). The present inventors also found using Northern blotting that Alu RNA from the RPE of human eyes with geographic atrophy was approximately 300 nucleotides in length, consistent with the length of non-embedded Pol III Alu transcripts. Because homology between Alu RNA and 7SL RNA, the evolutionary precursor of Alu, can complicate interpretation of northern blot analysis, the present inventors reprobed these samples using a probe that specifically detects the non-Alu “S domain” of 7SL RNA. In contrast to the increased amounts of RNA species detected by the Alu-targeting probe in geographic atrophy RPE, there was no difference in 7SL RNA abundance. The present inventors also confirmed that the Alu probe did not detect endogenous 7SL RNA under the stringent conditions the present inventors employed. Corroborating these data, real-time RT-PCR analysis showed that 7SL RNA was not dysregulated in the RPE of human eyes with geographic atrophy or in DICER1−/−depleted human RPE cells (Fig. 21).
DICER1 knockdown also did not induce upregulation of several Pol II-transcribed genes (ADAR2, NICN, NL1, R, SLFN11) that contain embedded Alu sequences in their exons. Collectively, these data suggest that Alu RNA detected in the RPE of human eyes with geographic atrophy are primary Alu transcripts and not passenger or bystander sequences embedded in other RNAs. Conclusive assignment of these Alu sequences as Pol III transcripts must await precise determination of their transcription start site.

Alu RNA Induces RPE Degeneration

Next the present inventors tested whether accumulation of Alu RNA might promote the development of geographic atrophy. Transfecting human or wild-type mouse RPE cells with a plasmid coding for Alu (pAlu) reduced cell viability (Fig. 4a). Subretinal transfection of plasmids coding for two different Alu RNAs or for B1 or B2 RNAs induced RPE degeneration in wild-type mice (Fig. 4b, Fig. 22, and data not shown). Treatment of human RPE cells with a recombinant 281 nucleotide (nt)-long Alu RNA that is identical to a Pol III derived Alu RNA isolated from a human embryonal carcinoma cell line, i.e., a single RNA strand that folds into a defined secondary structure, resulted in a dose-dependent increase in cell death (Fig. 4c). These findings suggest that endogenous DICER1 can degrade small amounts of Alu RNA but are overwhelmed by high levels. Consistent with this concept, overexpression of DICER1 blocked pAlu-induced cell death in human RPE cells (Fig. 4d) and RPE degeneration in wild-type mice (Fig. 4e).

The present inventors verified that subretinal injection of Alu RNA resulted in its delivery to RPE cells in wild-type mice (Fig. 23), consistent with the ability of long RNAs with duplex motifs to enter cells. The present inventors then cloned a 302-nt long Alu RNA isolated from the RPE of a human eye with geographic atrophy and transfected it in vitro to generate partially and completely annealed structures that mimic Alu RNAs transcribed by Pol III and Pol II, respectively. Subretinal injection of either of these Alu RNAs resulted in RPE degeneration in wild-type mice (Fig. 4f, Fig. 24), supporting the assignment of disease causality in accord with the molecular Koch’s postulates. In contrast, subretinal injection of these Alu RNAs digested with DICER1 did not induce RPE degeneration in wild-type mice (Fig. 4g, Fig. 24). When these Alu RNAs were subjected to mock DICER1 digestion, they retained their ability to induce RPE degeneration, suggesting a role for DICER1 in protecting against Alu RNA-induced degeneration.

The present inventors tested whether other structured RNAs of similar length as Alu would damage the retina. Subretinal transfection of RNA or plasmids coding for 7SL RNA or two different primary miRNAs did not induce RPE degeneration in wild-type mice (Fig. 25). The present inventors reported that chemically synthesized dsRNAs that mimic viral dsRNA can induce RPE degeneration by activating toll like receptor-3 (TLR3)0, a pattern receptor that generically recognizes dsRNA. However, transfection of a plasmid coding for Alu RNA did not induce TLR3 phosphorylation in human RPE cells and did induce RPE degeneration in TLR3−/− mice (Fig. 26). These results indicate that the ability of Alu RNA to induce RPE degeneration cannot be attributed solely to its repetitive or double stranded nature, as it exerted effects distinct from other structured dsRNAs of similar length.

The mechanism of RPE cell death in geographic atrophy has not been previously defined. DNA fragmentation has been identified in RPE cells in human eyes with geographic atrophy05, and Dicer1 knockdown has been associated with induction of apoptosis in diverse tissues12,13. The present inventors now provide evidence of caspase-3 cleavage in regions of RPE degeneration in human eyes with geographic atrophy (Fig. 27). Caspase-3 cleavage was also observed in the RPE cells of BEST1 Cre; Dicer1−/− mice and in Alu RNA-stimulated or -overexpressing human RPE cells. These data suggest a role for Alu RNA-induced RPE cell apoptosis triggered by DICER1 dysregulation in geographic atrophy.

Although the present inventors show that Alu RNA induces RPE degeneration, the presented observations could be consistent with the idea that an imbalance in small RNA species produced from long Alu RNAs could contribute to the RPE degeneration phenotype. To study this question, the present inventors exposed human RPE cells or wild-type mice to DICER1 cleavage fragments of Alu RNA. Subretinal transfection of these fragments alone in wild-type mice had no detectable effect on RPE cell morphology, and co-administering these fragments did not prevent RPE cell degeneration induced by subretinal transfection of a plasmid coding for Alu RNA (Fig. 28). Similarly, these fragments did not prevent human RPE cell death induced by overexpression of Alu RNA. These data suggest that upregulation of long Alu RNA rather than imbalance in Alu RNA-derived small RNA fragments is responsible for RPE degeneration induced by DICER1 reduction.

As these experiments were performed with in vitro cleavage fragments the present inventors cannot be certain whether in vivo cleavage fragments would function similarly. However, Alu RNAs with varying sequences induced RPE degeneration in vivo. Because the cleavage fragments of these different Alu RNAs would not be identical it is unlikely that they all execute identical biological functions, particularly if they functioned as miRNAs. Another line of evidence that Alu RNA, and not its cleavage fragments, is responsible for RPE degeneration comes from functional rescue experiments (see below) wherein antisense-mediated inhibition of Alu RNA blocks human RPE cell death induced by DICER1 knockdown and inhibition of B1/B2 RNA blocks RPE degeneration in Dicer1-depleted mice and mouse RPE cells. Because these antisense treatments would not be expected to alter the reduced levels of DICER1-cleaved Alu/B1/B2 RNA fragments, the imbalance in these fragments is unlikely to have induced RPE degeneration. Nevertheless, subtle functions of these small RNAs in modulating Alu RNA induced pathology cannot be excluded.

To dissect the contribution of Alu RNA accumulation versus that of miRNA dysregulation to RPE degeneration in the context of reduced DICER1 expression, the present inventors re-examined HCT-DICER1−/− cells in which miRNA biogenesis is impaired but long dsRNA cleavage is preserved due to the intact RNase III domains. The present inventors found no significant difference in Alu RNA levels between HCT-DICER1−/− and parent HCT116 cells (Fig. 29). In contrast, when DICER1 was knocked down by antisense oligonucleotides in HCT116 cells, increased Alu RNA accumulation was observed. Also, Alu RNA induces similar levels of cytotoxicity in HCT-DICER1−/− and parent HCT116 cells, suggesting that coexisting miRNA expression deficits do not augment Alu RNA induced RPE degeneration. In conjunction with the discordance in the RPE degeneration phenotype between ablation of Dicer1 and that of various other small RNA biogenesis pathway genes in mice, the findings suggest that Alu RNA accumulation is critical to cytotoxicity induced by DICER1 reduction.

RPE Degeneration Blocked by Alu RNA Inhibition

The present inventors then tested whether the cytotoxic effects of DICER1 reduction could be attributed to Alu RNA accumulation. DICER1 knockdown in human RPE cells by
antisense oligonucleotides reduced cell viability (FIG. 5a). This cytotoxic effect of DICER1 reduction was inhibited by antisense oligonucleotides targeting Alu RNA sequences but not by a scrambled antisense control (FIG. 5a, b and FIG. 21). Ad-Cre infection of RPE cells isolated from Dicer1−/− mice resulted in reduced cell viability, and this was blocked by antisense oligonucleotides targeting both B1 and B2 repeat RNAs but not by a scrambled antisense control (FIG. 5c, d). Subretinal administration of antisense oligonucleotides that reduced accumulation of B1 and B2 RNAs also inhibited RPE degeneration in Dicer1−/− mice treated with AA1-BEST1-Cre (FIG. 5e, f), providing evidence of in vivo functional rescue.

The present inventors tested whether Alu inhibition also rescued miRNA expression deficits as a potential explanation for the functional rescue of RPE degeneration induced by DICER1 depletion. As expected, DICER1 knockdown in human RPE cells reduced the abundance of numerous miRNAs including let-7a, which is ubiquitously expressed, miR-184, miR-204/211, and miR-221/222, which are enriched in the RPE, and miR-320b, and miR-484 and miR-877, which are DROSHA/DGCR8-independent and DICER1-dependent (FIG. 5g). However, inhibition of Alu RNA did not lead to recovery of miRNA expression in these DICER1-depleted cells. Thus the rescue of RPE cell viability by Alu RNA inhibition despite the persistence of global miRNA expression deficits argues that RPE degeneration induced by DICER1 deficiency is due to Alu RNA accumulation and not miRNA dysregulation.

These data, taken together, support a model in which primary Alu transcripts are responsible for the observed RPE degeneration. Whether similar pathology can also result from upregulation of as yet undefined Pol II transcripts with embedded Alu sequences is an intriguing possibility that may be addressed in future studies. Importantly, the present inventors show here that primary Alu transcripts are elevated in human disease, that Alu transcripts recapitulate disease in relevant experimental models, and that targeted suppression of Alu transcripts successfully inhibits this pathology. These observations have direct relevance for clinical strategies to prevent and treat geographic atrophy.

Discussion

The findings elucidate a critical cell survival function for DICER1 by functional silencing of toxic Alu transcripts. This unexpected function suggests that RNAi-independent mechanisms should be considered in interpreting the phenotypes of systems in which DICER1 is dysregulated. For example, it would be interesting to test the speculation that Dicer1 ablation induced cell death in mouse neural retina and heart might also involve B1/B2 RNA accumulation. More broadly, recognition of DICER1’s hitherto unidentified function as an important controller of transcripts derived from the most abundant repetitive elements in the human and mouse genomes can illuminate new functions forRNAs in cytoprotective surveillance. DICER1 expression is reduced in geographic atrophy and partial loss of DICER1 promotes RPE degeneration; thus the present inventors could speculate that loss of heterozygosity in DICER1 may underlie the development of geographic atrophy, similar to its function as a haploinsufficient tumor suppressor.

This also is, to our knowledge, the first example of how Alu could cause a human disease via direct RNA cytotoxicity rather than by inducing chromosomal DNA rearrangements or insertional mutagenesis through retrotransposition, which have been implicated in diseases such as α-thalassemia, colon cancer, hypercholesterolemia, and neurofibromatosis. Future studies can be employed to determine the precise chromosomal locus of the Alu RNA elements that accumulate in geographic atrophy and the nature of transcriptional and post-transcriptional machinery that enable their biogenesis.

In addition to processing miRNAs, DICER1 has been implicated in heterochromatin assembly. Since Alu repeat elements are abundant within heterochromatin, it would be interesting to investigate whether perturbations in centromeric silencing also underlie the pathogenesis of geographic atrophy. Indeed, the finding that chromatin remodeling at Alu repeats can regulate miRNA expression raises the intriguing possibility of other types of regulatory intersections between DICER1 and Alu. It also remains to be investigated whether centromeric satellite repeats that have been described to accumulate in Dicer1-null mouse embryonic stem cells might be involved in the pathogenesis of geographic atrophy.

In the mouse germline, Dicer1 has been implicated in the generation of endogenous small interfering RNAs (endo-siRNAs) from repeat elements. If this process is conserved in mammalian somatic tissues, it would be interesting to learn whether endo-siRNAs serve a homeostatic function in preventing the development of geographic atrophy. A recent study in nematodes demonstrated that caspases can cleave Dicer1 and convert it into a DNase that promotes apoptosis. The finding that Alu RNA can induce caspase activation therefore introduces the possibility of bidirectional regulation between DICER1 and Alu that could trigger feed-forward loops that further amplify the disease state.

The inciting events that trigger an RPE-specific reduction of DICER1 in patients with geographic atrophy remain to be determined. Potential culprit can include oxidative stress, which is postulated to underlie AMD pathogenesis, as the present inventors found that exposure to hydrogen peroxide downregulates DICER1 in human RPE cells (FIG. 30). While the upstream triggers of DICER1 dysregulation and the possible role of other DICER-dependent DROSHA/DGCR8-independent small RNAs in geographic atrophy await clarification, the ability of Alu RNA antisense oligonucleotides to inhibit RPE cell death induced by DICER1 depletion provides a rationale to investigate Alu RNA inhibition or DICER1 augmentation as potential therapies for geographic atrophy.

Additional Notes

Dicer1 mRNA levels are not modulated in multiple mouse models of retinal degeneration including light damage, hyperoxia, retinal detachment, Crx−/− mice, Rsh−/− mice, rd1 mice, cpfl1 mice, or Mitf mice. Dicer1 abundance also is not reduced in mouse models of cellular stress in the retina including exposure to advanced glycation endproducts or retinal detachment. Therefore, Dicer1 downregulation is not a generic late-stage stress response in the retina.

Materials and Methods

Animals

All animal experiments were approved by institutional review committees and the Association for Research in Vision and Ophthalmology. C57Bl/6J and Dicer1−/− mice were purchased from The Jackson Laboratory. Transgenic mice that express Cre recombinase in the retinal pigmented epithelium under the control of the human bestrophin-1 promoter (BEST1 Cre mice), DGCGR8/−, Drosophila2/−, Tarb2−/−, Cer2−/−, and CpreHep−/− mice have been previously described. Ag02/− mice and mice deficient in Ag01, Ag03, or Ag04 (ref. 73) were generously provided by A. Tarakhovsky. For all procedures, anesthesia was achieved by intraperitoneal injection of 50 mg/kg ketamine hydrochloride.
(Ft. Dodge Animal Health) and 10 mg/kg xylazine (Phoenix Scientific), and pupils were dilated with topical 1% tropicamide (Alcon Laboratories).

Funding Photography.

Retinal photographs of dilated mouse eyes were taken with a TRC-50 IX camera (Topcon) linked to a digital imaging system (Sony).

Human Tissue.

Donor eyes or ocular tissues from patients with geographic atrophy due to AMD or patients without AMD were obtained from various eye banks in Australia and the United States of America. These diagnoses were confirmed by dilated ophthalmic examination prior to acquisition of the tissues or eyes or upon examination of the eye globes post mortem. The study followed the guidelines of the Declaration of Helsinki. Institutional review boards granted approval for allocation and histological analysis of specimens.

Immunolabeling.

Human eyes fixed in 2-4% paraformaldehyde were prepared as eye cups, cryoprotected in 30% sucrose, embedded in optimal cutting temperature compound (Tissue-Tek OCT; Sakura Finetek), and cryosectioned into 10 µm sections. Depigmentation was achieved using 0.25% potassium permanganate and 0.5% oxalic acid. Immunohistochemical staining was performed with the mouse antibody against dsRNA (1:1,000, clone J2, English & Scientific Consulting) or rabbit antibody against human Dicer1 (1:100, Santa Cruz Biotechnology). Isotype IgG was substituted for the primary antibody to assess the specificity of the staining. Bound antibody was detected with biotin-conjugated secondary antibodies (Vector Laboratories). Slides were further incubated in alkaline phosphatase-streptavidin solution (Invitrogen) and the enzyme complex was visualized by Vector Blue (Vector Laboratories). Levamisole (Vector Laboratories) was used to block endogenous alkaline phosphatase activity. Slides were washed in PBS, rinsed with deionized water, air-dried, and then mounted in Clear Mount (EMS). Mouse RPE/choroid flat mounts were fixed with 4% paraformaldehyde or 100% methanol and stained with rabbit antibodies against human zonula occludens-1 (1:100, Invitrogen), Cre recombinase (1:100, EMD Biosciences), or human elevated caspase-3 (1:200, Cell Signaling) and visualized with Alexa Fluor 594- or Cy5-conjugated secondary antibodies. Both antibodies are cross-reactive against the mouse homologues. Primary human RPE cells were grown to 70-80% confluency in chamber slides (Lab-Tek). After 24 h of transfection with pAlu or pUC19, cells were fixed in acetone for 10 min at -20°C. Cells were blocked with PBS-3% BSA and incubated with mouse antibody against dsRNA (1:500, clone J2) overnight at 4°C. and visualized with Alexa Fluor 488-conjugated secondary antibodies. For Dicer1 staining, cells were fixed in methanol/acetone (7:3) for 30 min on ice, blocked with PBS-3% BSA-5% FBS, incubated with rabbit antibody against human Dicer1 (1:100, Santa Cruz Biotechnology) overnight at 4°C, and visualized with goat-anti-rabbit Alexa Fluor 594-conjugated secondary antibodies. After DAPI counterstaining, slides were cover slipped in Vectashield (Vector Laboratories). Images were obtained using the Leica SP-5 or Zeiss Axio Observer Z1 microscopes.

Histology.

Mouse eyes were fixed with 4% paraformaldehyde and 3.5% glutaraldehyde, postfixed in 2% osmium tetroxide, and dehydrated in ethanol and embedded. Semi-thin (1 µm) sections were cut and stained with toluidine blue. Bright field images were obtained using the Zeiss Axio Observer Z1 microscope.

Subretinal Injection.

Subretinal injections (1 μl) in mice were performed using a Pico-Injector (PL1-100, Harvard Apparatus). In vivo transfection of plasmids coding for Dicer1 (ref. 74), Alu Ya5 (ref. 75), Alu Yb9 (ref. 76), T5 promoter RNA (ref. 77), pri-miR29b1 (Addgene), or pri-miR26a2 (Addgene) and bovine tRNA (Sigma-Aldrich) (0.5 mg/mL) was achieved using 10% Neuroporter (Genlantis). AAV1-Best1-Cre⁺ or AAV1-Best1-GFP were injected at 1×10¹¹ plaque-forming units (pfu)/μL and recombinant Alu RNAs: (1) a single RNA strand of 281 nucleotides whose sequence is that of the cDNA clone TS 105 (ref 51) and inserts into the 3′ end of a defined secondary structure identical to a Pol III derived transcript; (2) a single RNA strand of 302 nucleotides whose sequence is identical to that of a clone isolated from the RPE of a human eye with geographic atrophy that folds into a defined secondary structure identical to a Pol III derived transcript; or (3) a complementary double-stranded single-strand DNA version of this 302 nucleotide long sequence that mimics a Pol II derived transcript) was injected at 0.3 mg/mL. Cell-permeating cholesterol-conjugated B1/B2 antisense oligonucleotides (5′-TCAGATCTCGTACGGATGTGTTGAG-3′) or cholesterol-conjugated control (5′-TTGGTACCATGTTGTGACTGTTGAC-3′) (both from Integrated DNA Technologies) were injected (2 μg in 1 μL) 10 days after AAV1-Best1-Cre was injected in Dicer1^{−/−} mice.

Isolation of dsRNA.

Human eyes were stored in RNAlater (Ambion). Tissue extracts were prepared by lysis in buffer containing 50 mM Tris-HCl, pH 8, 150 mM NaCl, 1% Nonidet P-40, protease and phosphatase inhibitors (complete mini EDTA-free, protease inhibitor and phosphatase inhibitor cocktail tablets, Roche), and RNase inhibitor (SUPERase-In, Ambion). After homogenization using a bullet blender (Next Advance) and centrifugation, immunoprecipitations were performed by adding 40 μg of mouse antibody against dsRNA (clone J2) for 16 h at 4°C. Immunocomplexes were collected on protein A/G agarose (Thermoscientific) and dsRNA species were separated and isolated using Trizol (Invitrogen) according to the manufacturer’s instructions.

Ligation of dsRNA and Anchor Primer.

An anchor primer (PC3-17 loop, 5′-p-3′GATCCCAGGAGATCTGGTAATACGACTCAT-3′) was ligated to dsRNA (200-400 ng) at 50 mM HEPES/NaOH, pH 8 (w/v), 18 mM MgCl₂ (Invitrogen), 0.01% BSA (Fisher Scientific), 1 mM ATP (Roche), 3 mM DTT (Fluka), 10% DMSO (Finnzymes), 20% PEG 6000 (Alfa Aesar), and 30 U T4 RNA ligase (Ambion). Ligation was performed at 37°C for 16 h, and ligated dsRNA was purified by MiniElute gel extraction columns (Qiagen).

Sequence-Independent cDNA Synthesis.

After denaturation, ligated dsRNA was reverse transcribed in a RT reaction containing 50 mM Tris-HCl, pH 8.3, 10 mM MgCl₂, 70 mM KCl, 30 mM β-mercaptoethanol, 1 mM dNTPs and 15 U cloned AMV reverse transcriptase (Invitrogen). The mixture was incubated in a thermal cycler (Eppendorf) at 42°C for 45 min followed by 55°C for 15 min.

Polymerase Chain Reaction (PCR) Amplification.

Amplification of cDNA was performed using primer PC2 (5′-p-3′GCCATCCCTCGGGATC-3′, IDT) in a reaction buffer containing 5 μL cDNA and 40 μL Platinum PCR SuperMix (Invitrogen). The PCR cycling parameters consisted of one step of 72°C for 1 min to fill incomplete cDNA ends and produce intact DNA, followed by one step of initial denaturation (94°C, 2 min), 39 cycles of 94°C for 30 s, 55°C for 30 s, and 72°C for 1 min, and a final extension step of
25 72°C for 10 min. In vitro transcribed dsRNAs of varying lengths (325 bp, 1 and 2 kb) were used as positive controls. Cloning and Sequencing.

The amplified cDNA products were incubated with 1U calf intestinal alkaline phosphatase (Invitrogen) at 37°C for 5 min to remove the 5'-phosphate group, separated on a low-melting point agarose gel (1%) and purified using a Qiagen gel extraction kit (Qiagen). The purified dephosphorylated cDNA fragments were cloned in PCRII TOPO vector (Invitrogen) and sequenced using M13 forward (−20) and M13 reverse primers at the University of Kentucky Advanced Genetic Technologies Center using multi-color fluorescence based DNA sequence analyzer (ABI 3730xl). Sequences were assembled using ContigExpress from vector NTI Advance. The homology of the isolated cDNA sequences to known Alu consensus sequences was determined using the CENSOR server41 (a WU-BLAST-powered database of repetitive elements (http://www.girinst.org/censor). For each cDNA sequence, the homologous region of the query was aligned to the consensus Alu sequence using BLASTn62 (http://www.ncbi.nlm.nih.gov/BLAST). Multiple sequence alignment was performed using ClustalW2 (http://www.ebi.ac.uk/Tools/clustalw2). The consensus sequences have been deposited in GenBank under the accession numbers HN176584 and HN176585.

Alu RNA Synthesis.

The present inventors synthesized two Alu RNAs: a 281 nt Alu sequence originating from the cDNA clone TS 103 which is known to be expressed in human cells40 and a 302 nt Alu sequence isolated from the RPE of a human eye with geographic atrophy. Both of these Alu RNAs were synthesized using a RNA polymerase T7 promoter and runoff transcription followed by gel purification as previously described45. This yields single stranded RNAs that fold into a defined secondary structure identical to Pol III derived transcripts. The present inventors also synthesized a fully complementary dsRNA form (resembling a Pol II derived transcript) of the 302 nt human geographic atrophy Alu using linearized PCRII TOPO plasmid templates using T7 or SP6 RNA polymerases (MegaScript, Ambion) according to the manufacturer’s recommendations. After purification, equal molar amount of each transcript were combined and heated at 95°C for 1 min, cooled and then annealed at room temperature for 24 h. The Alu dsRNA was precipitated, suspended in water and analyzed on 1.4% non-denaturing agarose gel using the single-stranded complementary strands as controls.

Real-Time PCR.

Total RNA was extracted from tissues or cells using Trizol reagent (Invitrogen) according to manufacturer’s recommendations and were treated with RNase free DNase (Ambion). Total RNA (1 μg) was reverse transcribed as previously described53 using qScript cDNA SuperMix (Quanta Bio-Sciences). The RT products (cDNA) were amplified by real-time quantitative PCR (Applied Biosystems 7900 HT Fast Real-Time PCR system) with Power SYBR green Master Mix. Oligonucleotide primers specific for Dicer1 (forward 5'-GCCCTAGCTCCCCAGAACTAG-3' and reverse 5'-CGGTGATTTCTTCTGCAATTTCA-3'), LINE L1.3 (ORF2) (forward 5'-CGGTTGATTTCTTCTGCAATTTCA-3' and reverse 5'-GTGGTTCGACTTCCAGTTGAGA-3'), HERV-WEI (forward 5'-CGGGCTGTATGACAGTTACT-3' and reverse 5'-GGGACGCTGTATCCTTCCAC-3'), human Ro-associated Y3 (Y3) (forward 5'-CGGATTGACGAGTTGTACA-3' and reverse 5'-GGAAGGCGAGAAACCACA-3'), 7SL (forward 5'-CGGCTACATATGTTGACCCCT-3' and reverse 5'-GCTGCATGACGAGTTGACCCCT-3'), B1 (forward 5'-TGCTCTATATCCTCAGT-3' and reverse 5'-GTCGCTGACGAGTTGACCCCT-3'), B2 (forward 5'-GAGTTTTGCTCAGT-3' and reverse 5'-GATGTTTCAAAAGTTGCCTG-3'), mouse 18S rRNA (forward 5'-CTTGATATGCCTGGGTTCC-3' and reverse 5'-TTGGATGAGTTGAGTTG-3'), Dicer1 (forward 5'-CCAAGGCATTCCGACGTTG-3' and reverse 5'-ATTGGTATGATGAGTTGACCT-3') were used individually or in combination. The PCR products were also confirmed by agarose gel and shown only one specific band of the predicted size. For negative controls, the RT products were used as templates in the qPCR and verified by the absence of gel-detected bands. Relative expressions of target genes were determined by the 2^−ΔΔCT method.

miRNA PCR.

miRNA abundance was quantified using the All-in-One™ miRNA qRT-PCR Detection Kit (GeneCopoeia). Briefly, total RNA was polyadenylated and reverse transcribed using a poly dT-adaptor primer. Quantitative RT-PCR was carried out using a miRNA-specific forward primer and universal reverse primer. PCR products were subjected to dissociation curve and gel electrophoresis analyses to ensure that single, mature miRNA products were amplified. Data were normalized to ACTB levels. The forward primers for the miRNAs were as follows: mir-184 (5'-TGGACGAGAAGTTGTTCTGCA-3'); mir-221/222 (5'-AGCTTATCCTGCCC-3'); mir-204/211 (5'-TTTCCTTGTGGCTCCTGCTCCT-3'); mir-77 (5'-GTAGGAGGATGGGCCAGAA-3'); mir-320a (5'-AAAGCTTATCGGGATTGCAGAA-3'); mir-484 (5'-TCGAGGTTTCGAGCAC-3'); let-7a (5'-TGAGGAGGATGGGCCAGAA-3'); the reverse primers were proprietary (GeneCopoeia). The primers for ACTB were forward 5'-TGGATGAGAAGTTGTTCTGCA-3' and reverse 5'-GCATTGTCCGAGAACCG-3'.

Dot Blot (Immuno-Dot Binding).

Increasing amounts of Alu RNA were spotted onto nylon N°2 positively charged nylon membrane (Amersham) and UV cross-linked. After blocking, the membranes were incubated with mouse antibody against dsRNA (1:1,000, clone J2) for 1 h at RT. The peroxidase-conjugated goat anti-mouse secondary antibody (1:5,000, Sigma) was used for 1 h at RT. After several washes, the signal was visualized by enhanced chemiluminescence (ECL plus, Amersham). In vitro transcribed dsRNAs of different length were used as positive controls. Transfer and ribosomal RNAs were used as negative controls.
Northern Blot.
Total RNA from normal and diseased murine RPE was extracted as described above using Trizol. RNA integrity and quality was assessed using 1% agarose gel electrophoresis and RNA concentrations and purity were determined for each sample by NanoDrop 1000 spectrophotometer V3.7 (Thermo Fisher Scientific). dsRNA (2 µg) was separated on denaturing 15% PAGE-urea ready gel (Bio-Rad), and total RNA (10 µg) was separated by size on 1% agarose, 0.7M formaldehyde gels and visualized on an ultraviolet transilluminator to ensure consistent loading between different groups and to record the distance of migration of the 18S and 28S rRNA bands. dsRNA ladder (21-500 bp, New England BioLabs) and RNA ladder (0.1-2 kb, Invitrogen) were used as markers. Gels were then transferred to a positively charged nylon membrane (Hybond-N+, GE Healthcare Bio-Sciences) by vacuum blotting apparatus (VacuGene XL Vacuum Blotting System, GE Healthcare Bio-Sciences). The RNAs were crosslinked to the membranes by ultraviolet irradiation and baked at 80°C for 20-30 min. Membranes were hybridized with (α-32P)-dCTP-labeled DNA Alu probe at 42°C overnight. On the following day, the membranes were rinsed twice with 1xSSC, 0.1% SDS at 55°C. Each wash was for 20 min, and then membranes were subjected to storage in a phosphor autoradiography cassette. Hybridization signals were determined by using Typhoon phosphorimagery (GE Healthcare Bio-Sciences). The 7SL probe was synthesized by PCR amplification of a 7SL RNA plasmid77,78 with the following primers (forward 5'-ATCGGGTGTCCTCCGACATGA-3' and reverse 5'-ATACGCACCGAGTGTTTGAC-3') designed to amplify a 128-bp fragment within the S-region that is not contained in Alu. For visualization of U6, membranes were stripped and blotted again using the High Sensitive mRNA Northern Blot Assay Kit (Signosis) according to the manufacturer's instructions.

Western Blot.
Tissues were homogenized in lysis buffer (10 mM Tris base, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 0.5% NP-40, protease and phosphatase inhibitor cocktail (Roche)). Protein concentrations were determined using a Bradford assay kit (Bio-Rad) with bovine serum albumin as a standard. Proteins (40-100 µg) were run on 4-12% Novex Bis-Tris gels (Invitrogen). The transferred membranes were blocked for 1 h at RT and incubated with antibodies against Dicer1 (1:1,000, ref 85; or 1:200, Santa Cruz Biotechnology) at 4°C overnight. Protein loading was assessed by immunoblotting using an anti-Tubulin antibody (1:1,000, Sigma-Aldrich). The secondary antibodies were used at (1:5,000) for 1 h at RT. The signal was visualized by enhanced chemiluminescence (ECL Plus) and captured by VisionWorks LS Image Acquisition and Analysis software (Version 6.7.2, UVP, LLC). Densitometry analysis was performed using ImageJ (NIH). The value of 1 was arbitrarily assigned for normal eye samples.

DICER1 Cleavage.
The ability of DICER1 to cleave Alu RNA was tested using Recombinant Human Dicer Enzyme Kit (Genlantis) according to the manufacturer’s instructions. The products of the digestion were purified for the in vivo injection using RNA Purification Column (Genlantis).

Cell Culture.
All cell lines were cultured at 37°C and 5% CO₂. Primary mouse RPE cells were isolated as previously described52 and grown in Dulbecco Modified Eagle Medium (DMEM) supplemented with 10% FBS and standard antibiotics concentrations. Primary human RPE cells were isolated as previously described27 and maintained in DMEM supplemented with 20% FBS and antibiotics. Parental HCT116 and isogenic Dicer−/− cells23 were cultured in McCoy's 5A medium supplemented with 10% FBS.

Transient Transfection.
Human and mouse RPE cells were transfected with pUC19, pAlu, pcDNA3.1/Dicer-FLAG, pcDNA3.1, DICER1 antisense oligonucleotide (as) (5'-GGUCUGAC- CTTTTGCTUCUA-3'), B1/B2 as (5'-TCAGATCTGTT- TACGATGTTTGA-3'), control (for DICER1 and B1/B2) as (5'-GGTGATACGCAATCGTTTGACTTGGA-3'), Alu as (5'-GCGGATGTTACGGATTCCG-3') (Invitrogen) or Oligofectamine (Invitrogen) according to the manufacturer’s instructions.

Adenoviral Infection.
Cells were plated at density of 1×10⁴/cm² and after 16 h, at approximately 50% confluence, were infected with AdCre or AdNull (Vector Laboratories) with a multiplicity of infection of 1,000.

RNA Polymerase Inhibition.
Human RPE cells were transfected with DICER or control antisense oligonucleotides using Lipofectamine 2000. After a change of medium at 6 the cells were incubated with 45 µM tagetitoxin (Epicentre Technologies, Tagetin) or 10 α-amanitin (Sigma-Aldrich) and the total RNA was collected after 24 h.

Cell Viability.
MTS assays were performed using the CellTiter 96 AQueous One Solution Cell Proliferation Assay (Promega) in accordance to the manufacturer’s instructions.

Caspase-3 Activity.
Sub-confluent human RPE cells were treated with PBS or Alu RNA at different concentrations in 2% FBS medium for 8 h. The caspase-3 activity was measured using Caspase-3 Fluorometric Assay (R&D Systems) according to the manufacturer’s instructions.

Oxidative Stress.
Confluent human RPE cells were exposed to hydrogen peroxide (0-2 mM, Fisher Scientific).

Statistics.
Results are expressed as mean±SEM, with P<0.05 considered statistically significant. Differences between groups were compared by using Mann-Whitney U test or Student t test, as appropriate, and 2-tailed P values are reported.

Throughout this document, various references are mentioned. All such references are incorporated herein by reference, including the references set forth in the following list:

REFERENCES

It will be understood that various details of the presently disclosed subject matter can be changed without departing from the scope of the subject matter disclosed herein. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 29
<210> SEQ ID NO 1
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA
<400> SEQUENCE: 1
ctcagctca cagtagct
   19

<210> SEQ ID NO 2
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA
<400> SEQUENCE: 2
tggactaca ggcgcgcga
   19

<210> SEQ ID NO 3
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA
<400> SEQUENCE: 3
gcctcagct cacagtagct t
   21

<210> SEQ ID NO 4
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA
<400> SEQUENCE: 4
gttggacta cagccgccgc a
   21

<210> SEQ ID NO 5
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA
<400> SEQUENCE: 5
gggactacag ggcgcgcaca c
   21

<210> SEQ ID NO 6
<211> LENGTH: 21
```
<210> SEQ ID NO 7
<211> LENGTH: 10323
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 7

cgagggccg ccagcccct c 21

cgggacggc ggcagagcc gctgcagccc aggtaacctg aagatggagt cagcggggac 60
gaggcagg cggcagcgag gaaatggcg cggggcgagc ggccgaggcc gctgcagggc 120
ggctcgagtc ggctgaggcc gcgcagagc ggctgaggta ggctgaggag gcgcagagc 180
cccctggtgtg cagtaagtg tggtaagaac aaatgtcaat gaagaagaac tggagcgtat 240
gaaagaacct gcttgcagac cctccagcat ggacggtcttgtcgccatg cccctgccctc 300
cctcaccatg ggctgccct ttggctgccg atggccacaa gaagactcct ccgatatc 360
ttatacgca agaataaatc aggttgaaact gcttgcagaa atctctgccat atatatcctat 420
cgtctgttaa aacactggt cgaggagac aatttagcga gtacactcat ctaaagagtt 480
gtctctagt atcaggggag acttcagcag aatggaaaaa aggacggtgc tcttggtcga 540
tctgaccaaa caggtgcgct acaagggctc aagtgctgaca atctctctag acttcagggc 600	tgaggaatc tcacacctac agaataatgc acctctgacca aagagcgcag ggaaccaaga 660
gtttactag caccaggtc tattaagtc ttgcttactgc gctttggaact tttggaaaaaa 720
tgattacttca actcctgtgc acattaatgt tttgctgtct ggattgtgcc acaattgcattc 780
cctcagacc cctatctag gc aatgtgtaa a tgtgctgta aatgtccagt ccaattctcg 840
cattttgga ctaatcattg cctttctaaa tggaaatgt gcttcagcag aattggaaga 900
aaaatccag ccaactgaca aaattctaa gagtaattgc gaaactgcaaa ctgaccctgtg 960
gctctcgag aagttactct ctaggctagt tgaagattgt ctgggtattg gacccattac 1020
tgacgaagtt ggcctgattg aagactcgtct gatggaattc gaagaagcact taatttattc 1080
caatgattgt aatattcgtata cattcctaaa agaacaagat gttacttttaa tttggaaca 1140
gatattgtaa gctgcgtcgt ccgttaattgt agtctctgga cctttggtgt cgcataagt 1200
agctgtaagat atgtaagag cactacagaa atacatcaca cttgaacag aggagatgca 1260
cagggaaatct catttgctta cagacacctt ctaaggaaa atacatgcac tatgtgaaga 1320
gcacttcctc cttgcctcag tttgactgtaa attttagct ctaaaggtta tcatactgtc 1380
cgaatatct tggcagagta aacaccata gagaacagcg ttaaaagcgg tggagtggca 1440
ttaaatagta aactcagata attagtgtgc attagaggtat tttgagttggt atgcagagga 1500
tgaagaatt cagagaacaag agaagcgcaat gacaattdtt ccctcttcott ttaccaactc 1560
tttgccgga atttattttg tgaagaagag atacacgca gttgcttttaa acatattgtat 1620
aagagatcg ggtcagacag atccagagct ggcttattac atgtagcaatt tctatactgg 1680
acattggtct gagaagaatc ctggcctgcaaa caaacaatgtag gagaagata tcggaaaca 1740
ggaaggtgta tttcgagaga tttgagacaa cattgctattg caacaagtat 1800
ttgagagtg gcattgttgca taccacaaagt ccaactggtct gttgcccttt atttgcccac 1860
ccgccttctca tatatgaaac gcagaagggac ctcgcaactgc aatctgtgtat ggcctttggga 4320
aaagagaaggc ctacccacgccc gcagtgtggtgt tcgaatattt gatcccccttg taatattggt 4380
ttcctctgtgt tattgtgaaa ataataaaca aagcgacaca ctaataagg aaaaaagatta 4440
aactgacaa gacgtcatgctcg ggggaatgag caacactgcgatt aggattcagc aggaggagga 4500
tgaggaggag gagacgccgtc tctgaggggct ctggagagggaa gaggctgacctg atgaagagta 4560
tttctctggag tatacatcag aacatcatact attatatgatt aataatgttata tggggtcagg 4620
agctttctcga aagaaactact ttctctctcccc ttctctcacaag ctgcattcta catatgattg 4680
ggaagaagccc aaaaaattcct ccctaggtac tagccatttt tctactcaatt tgggatttt 4740
tgactaagcc tgctctggatct attgctctaa tctggtactc aactgacaa aagctactggtg 4800
tgacttctgct gctggtctct aagtctcatct cagaaataaac tggtgttctg acagcggagaa 4860
gcacatcacttt ctcacactgtag gcagtgctatt gctgacaaaag catagcggcca 4920
cctggggtcag cgcctgtgggt ggtgctatctt aacactgtgtg ggaggagggg agcttctagct 4980
ctcctctcttc tctcctgggcc tgaaggggtc cccggttattt aaagagctctcgcttgaaaaa 5040
ggccttggcc gctactgctgg aaggtcctaaaa gagccaaacaa aacacactcttat tcgaggcttg 5100
tcctctctgt cctcctggccag gcctctccatt tttccttttgga aataatcggcctgcagaggg 5160
cttttgagaggt aaccaactta attgtgtggta tttctccatt tgggagataaa actgagatct 5220
cctatatttct gggctttggaa attttggaaa aaaaaaattcct ctaaatgattc aagaaagagc 5280
ttcctctcttcctaa cagagtctttt ctcacactaaatat ctaatactc taattttgttta 5340
ccacagctcttt ctcctctctgtcag gaacagttgtagc tctgctttttg aacactcacttt 5400
tcgagacgccc cccggggttc cttgccagacactgtcctgtc cccggtttaaa 5460
cacacactt tttcctcttgctg gcaggaactgtag gaacagacactttt ttcctgtatg 5520
ccttttctcctgt ctttctctgctttaatt ctttgttatcg ttcctctctctttagaaagagag 5580
aatgcaagga attagtttctg gtgctctggag tgtgaagagct aagaaagagggg 5640
ttttggatttt ttttggatttt aagctcactgg ctgtctgttcg gccatttcac cctgattatt 5700
ggactattctg acagatgctgg aacctgctgac tccagctgata tagcctggcact 5760
aatagaaaaac ttctctctccat aagctatcagcg tctctctcttctg gagaattttg ttttatttgg 5820
accagaaacttc cccggggtgac gaagtctcttttttt ccgggctaggg tacagttctttttt 5880
tttgtggaatttatttttaagggagtctgttgcccgctgtttttttttttaagggggctttggtt
aatttgaaaa agataattat aatgcctgca atgtgtcata tacgcacaca acttaaatag 9060
tcttttttt tcgtggcat tttactgtt ttgtgaagta tgaacagat ttgtaacttg 9120
aatcttaat atgtttttta aatgtttgat tatattttct tctttttttto ttatatattta 9180
cgtggaactga tgaatattag aatgccttct aacactcttg ttaattctct ttaaatattct 9240
gatattttta ttttgtataa atactttgccc ttcagaagga tttgtatacc ctgccttgac 9300
aacgaaaacc tttgctcattct gtgtggctac gatctccaggt gtccccccagg cagctgctttct 9360
ttcgaatgc cctgggaggg caagttgggca cttgcaagga tcaactggaat ccaagatcag 9420
cgcactttcat gccaagggcc cctggttttt aaaaatatgg atctttcctct gttagggggt 9480
tacatcctt tacacaagat tgaagcacc accagcagac ctgtatacct ttttttaacc 9540
gcatggtaag atatgttaag ccaattgctat tctgtcagga agagaaacct 9600
atgtcattgatt taataactttta atgtgctttt taaatacatt gataaattta taatttttca 9660
aacactgttt aactttcaggg aatattaatta tttccagata aatcttttta ttttatattg 9720
tacakagaa gttttatagaa tgtgtaaag accaactctta ttaaatagtt ttatttattg 9780
gttgagagc ccatacatga aatotgtagaa atgtctagttg agacactattg attttttcac 9840
agcagtttgaa atgtattttta ctactactaact tgaatataata tttttatcat tttttttttt 9900
ttttataatc acatttttttt ggcacatcaac cccagacacttt tttatatatata tagatgcaat 9960
aagaattccac tgcagcagca gtgatacatag caaattatgc caagggaca aagagttaaat 10020
ttcggttttt ttcggtctaa atatgtaggg aaaaatcta aatacacaata aataaatattgc 10080
atatattttg atacgtataa aaatattttt cattaaacgtgc cgacagcttg ttttaagggas 10140
catagtctca tttactcatt gcaatacagc gttccagttgctt gcaactttatc 10200
gacvcaactt aacatttttt gttttttttt tataaatggt agocaaattt aacctttaatttt 10260
aagttatctgt ttggccatcaaaaaa aaaaaaaa aaaaaaaa aaaaaaaaaaaaa 10320
aaa 10323

<210> SEQ ID NO: 8
<211> LENGTH: 10220
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE:
8 ggaaactcttg aagaactcta gcacccagtct tttgagcagga gaagtctggg gatcggcttg 60
ttttcacaata acagctcata caaatgctca aatgcagttc agacaaagag aacacagaga 120
tttcacaata aaaaatggaa gcttgcctag aacaaaaatg caatgaagaag aacactgyat 180
gaatgaaag ccgtctggct caccctctca gcctgtgcggg cctgcagcctt atggacccccctg 240
ttctctcacc atggagccct tttctctgagc tcggcttgggca aacaagagaa atccagctaa 300
acatattcac gcaacagaga tatacagttg aacgttgtgga acagcctcttg gataafaata 360
ccattgtcttg ttttaacact gtgcagggga agatatattt tgcagtaacta tccacttaag 420
agcgcttctca tccgtaaggg ggaacttcca gcagaaatgg aaaaagagct gttgtcttgg 480
tccacttcgg aacccagtctg tcgcacacag tcgcagtctg cagacatccct tcgaactctga 540
aggtgggga atacccaaac tctagaagta atgcaccttg gacaaaaaag agatggaacc 600
aagagtttccc taagcaacag gtttctcatt tgaactttgta tgcgctccttg aatgctttaa 660
aataagttta ctcatcacttg tcgacattta aacctttttggt gttgtgagg tgtctcttgg 720
caactctaga ccccctcat cgagaatttca tgaagctcctg tgaanaacttgctcctactgc 780
cctgcatttt tcggaacta gctccattt taattgcggaa atgtatccca cggaaatttg 840
aagaaagaag tccagaaacta gagaaatctta ttaaggttaa tgtgaacaactgcaacctgc 900
tggtgttcctt agacagctat acacctagcag catgtgtgaccttgtgaccaagcatc 960
ttactgcaag aagttggtctt catgaaagac tgtgtactgga attagaagga gcatattaatc 1020
tttataactga tgtgtacatt tcctgtacatt caaagaagac gatattcact ttaatctcga 1080
aatcagataa actacagactgcttgtgcttatgtggtctcttgaaaccccgagcagattg 1140
aagagtacgtta aatgattgta agaagaactac agaaatacct caaaccgtg caagaggagc 1200
tgaacaggga aaattttattg tttaacagaca attttctcaag gaataactac gcaatattg 1260
aaragcactt actacactgcct tcctgtgaccc gtaaattttg aaccttcccc ataatccaa 1320
atcagaaat ctaaacgctg acagtgtgatc acctagttta aatcactgact 1380
agtgataaacta taaaactcag gaaatatttg tgaacactgg gattcagtag gatgtagatg 1440
aagagatgaa aatgaaagac aaagaagac cagagacaatttcccttcctcttttaca 1500
aagacggata ccaagtattg agcttgcttt cattgtagca aactctcataa 1560
tgaatataa aagcttgagaa caagcctcag acgtagctcttg gatgagtattg 1620
tggcagctct ccaccggaga aatcagccttc gcaccacacac cgtgacgcaagcataac 1680
aagacgagaa gcgtcattagg aatattcagcacgagacacccgcttcagtttcattg 1740
gtgtttgtagg gagattagcc ataactacagcttgata cttgattagcagttt 1800
ccacagacta tgcattctctat tcaactctta aagagagaga cagggcaccct acctccataatt 1860
atatattgtt gaggataacca gaaacaaataa aaattttttga aagaaacactc aaacaacta 1920
aagacattga aagacattctag gaaacaaatg tgcacagctctgtgtgactgtgtagacag 1980
aagcttagc tcgctactcatg gatgatagcc tttttcaccat atatgattgtaggttcaagctg 2040
agtgctgtctg agagctcaca atcaacaccg ccattgacca catcaatagtagtgcagta 2100
gattacacgattcagcttttctcaactag ccttcctactg gacagagctgg gaatgtcctgctgtagt 2160
agtctctatt cttaaatcat ttttatcctgc caaattaact acctttttgagctctadrg 2220
tgtttccacc aatgagctctgt gtacaggttgg ctaaatagctc ttagatcctcttattg 2280
agaaactcgca caaaattggtcc gacaggttag agcatttggt gcagagttggg aagagacgctg 2340
attatatga aagacagcttg gatttgctatg atgaagagac ggaccagttct cggagagacctg 2400
caggttccac caaaaaaccgag cagtgctacc ccaaaaccatt ccaacagttg tggagggataa 2460
gttatcccg cccgttacg ccctgttacc tgtaagtgatgg agaatgtagtt ttaaactacgc 2520
tttccctca tgaactctac cttgaaaggg gcagagctcta tttccttgg gaataaccaga 2580
gattccttagg aataacagct gcaccaccaac ttcctcctgcag tcccactctttcctgtcaca 2640
caacgcctttg agagatcattct actaacttgaagtttgattatggtggttgtc 2700
atatcactgt tagtttgtgtt acacagacctc acctatatat atctccactat 2760
ttggataaacc tgcactagaa ttaacacta cagacgcttg tccagcatacg tgggtctttcc 2820
ctttaaagttgatt cggcaactctctgtagtatcttttaaccctctgtttgaagattgat 2880
ttgagatctgc tgaagctcctgc atcgcttaaaccgccatataa gaaaccccttatactccctg 2940
ttggtttttaattagagat tataaatgcattgctaatgcttctttctcagacatatggg 3000
atcagccttc gatggtattg gatgtacattc ttttaccaccgccctaagtgttactaat 3060
ttttccctttgctgactgttg cgattcctga tttttccttccctgatacctg 3120
taaccaactct caaccagcaca ctgcgttgatg tggaaccocac atcttcaga caattactttt 3180
tgacacctcg acatttggaat cagaagggga aagcgccttc ttaagcgagt gctgagaaga 3240
ggaagcoaca atgggaaagt ctgctagaata aacagatct ggtcgcagaa ctctggtcta 3300	
tacatcactaat tccacacata ctggggagaa aagctgttttg tcctcccagc atactttatc 3360
gcttcagct ctttcttgac cgcagggagc taagagccca gactgcgagc gatgctggcgg 3420
tggaggtctag atactacctct cgggttttaa gataccttaa cttagatcct ggggtagaaaa 3480
aatctatagaa cagcagacac ttcacccctg aaaaagctgc acatacaggt gtaataagaa 3540

tctxctctct agaaatacat gaccaaatgt ctgtgaacctg cagaaagttg ctcagagcgt 3600
cctctgctgtaa gttggccccg cagatctttc agcaaattaa ggtttctttct 3660
acacacaaacag ttcgagagtt atattgtcaga cagaagcttt tgcggagaa 3720
atcagtaaaa ttactcaaa acagaaatac cgtggccacc aacactcaac cattccatcc 3780
agaattttac cgtacgacg aacccggccc acgcgcaga cgcgttact tccgtgagaa 3840
atatatacct tggatggaat gtaaaacaaat ctacttccga tggaggtttcgt gtgtatgggag 3900
taatgcctgg tgcagcagac actacacagc tgcgcgaaggg cagatggtag tctgagcaga 3960
gecccttctaat gggtggctcc tcaaaaccct gttcgcccaac tcttgaacctt atttctcag 4020
cggggacagct ctggggcaggt taaaacctgga cggagctgtaa atgtgattcag 4080

tttaggctct gtcacaagcct atgttggatt ttaaactccgga cgggctggaa atgtgtggccg 4140
actctcttttttaa aacagcagcc acttcacacat acatattttg ccccttactgct gttgggccat 4200
gggggcgacct ttctatagtt aagcaaaaga agttcagcaca ctgtaatctg tattgcttct 4260
gaaacagaaa ggacacatcc acgctgattg gggttgtcaatt ttttgctcc cctggatat 4320

ggtctctccag tggatgtgta gtaaaacaag cacaagacca caaagatgaa cggggaaaag 4380
atgaataagc aaaaagctgc atgtgctgca atggccaaact ggtgtgagat takggaggg 4440
agatggagaa gggagagagc ctgtggtggga ggttcgagaa gagaggagct gaactagaa 4500
atgattttctt ggggtgatat cagaacacta tcaatatttat aatataattag ttaaagcgggt 4560
cggagcttg tggaaaaaatt atcctccttctt ccccttttcc aacacttgat tctctatagt 4620
aatggaaat gcccacaaaaa cctctctcag tcatatgcc attttcacat aattttgggag 4680
atcttgacta cagcttcctgg gagcaagatg gtcattaggg gcaatgctaatct ggtttggag 4740
agatggactt tcgggctgggg ttcgggacte ctgcagaga aaccgctgggt gttggacccgy 4800
gaaacgatct ctaccttctc gaccgcacca gctgccagct tattgtggag aaaaagctat 4860
cggacgtgctg ggaagccctct ctgggctgtct attcaccaag cttcgagggag aggtgtgctc 4920
agatcttttcc tctgcaactcg ggggttgagg tgcctccggc tattttcaggg actggacggg 4980
aaaaggcctct gcgcctctac ctggagaaa tcaacacacca cacaagacac cttctcagtga 5040
gctgtgctgg tcgctctcctg gcacgtccaa gctctctctg attttggagc cggagttagat 5100
gttggggtaa gatttgcaca agatgtatgg tttgacactc agatgcagat aaaaagctta 5160
attaccaatt atcgaggggt gaaatttttg aaaaagaaa ccaactacaga ttcacgataa 5220
aggtttactct tccacctgcct tttacacatg cctcctacca ctactacact atcaactgatt 5280
gtccacagcg cttgacatttc cttgggctagtg cgattttggga cttcttcata cacaacgcoc 5340
	ttaatgaaga ccccgccgac cacttcctgg ggttcctgcag agatgtggg gtcggctccttg 5400
tccacaaacc cattttttgc aagctgtggct taaagtcgca ttcacacagc ttcacgaaag 5460
<210> SEQ ID NO 9
<211> LENGTH: 1922
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 9

Met Lys Ser Pro Ala Leu Gln Pro Leu Ser Met Ala Gly Leu Gln Leu
1 5 10 15

Met Thr Pro Ala Ser Ser Pro Met Gly Pro Phe Phe Gly Leu Pro Trp
20 25 30

Gln Gln Glu Ala Ile His Asp Asn Ile Tyr Thr Pro Arg Lys Tyr Gln
35 40 45

Val Glu Leu Leu Glu Ala Leu Asp His Asn Thr Ile Val Cys Leu
50 55 60

Asn Thr Gly Ser Gly Lys Thr Phe Ile Ala Val Leu Leu Thr Lys Glu
65 70 75 80

Leu Ser Tyr Gln Ile Arg Gly Asp Phe Ser Arg Asn Gly Lys Arg Thr
95 100 105 110

Val Phe Leu Val Asn Ser Ala Asn Gln Val Ala Gln Glu Val Ser Ala
120 125

Val Arg Thr His Ser Asp Leu Lys Val Gly Gly Tyr Ser Asn Leu Glu
130 135 140

Val Asn Ala Ser Trp Thr Lys Glu Arg Trp Asn Gln Glu Phe Thr Lys
145 150 155 160

His Gln Val Leu Ile Met Thr Cys Tyr Val Ala Leu Asn Val Leu Lys
165 170 175

Asn Gly Tyr Leu Ser Leu Ser Asp Ile Asn Leu Leu Val Phe Asp Glu
180 185 190

Cys His Leu Ala Ile Leu Asp His Pro Tyr Arg Glu Ile Met Lys Leu
195 200 205

Cys Glu Asn Cys Pro Ser Cys Pro Arg Ile Leu Gly Leu Thr Ala Ser
210 215 220

Ile Leu Asn Gly Lys Cys Asp Pro Glu Glu Leu Glu Glu Lys Ile Gln
225 230 235 240

Val Val Leu Asp Arg Tyr Thr Ser Gln Pro Cys Glu Ile Val Val Asp
245 250 255

Cys Gly Pro Phe Thr Asp Arg Ser Gly Leu Tyr Glu Arg Leu Leu Met
260 265 270

Glu Leu Glu Ala Leu Asn Phe Ile Asn Asp Cys Asn Ile Ser Val
275 280 285

His Ser Lys Glu Arg Asp Ser Thr Leu Ile Ser Lys Glu Ile Leu Ser
290 295 300

Asp Cys Arg Ala Val Leu Val Leu Gly Pro Trp Cys Ala Asp Lys
305 310 315 320

Val Ala Gly Met Met Val Arg Glu Leu Glu Lys Tyr Ile Lys His Glu
325 330 335

Gln Glu Glu Leu His Arg Lys Phe Leu Thr Asp Thr Phe Leu
340 345 350

Arg Lys Ile His Ala Leu Cys Glu Glu His Phe Ser Pro Ala Asp Leu
355 360 365
Asp Leu Lys Phe Val Thr Pro Lys Val Ile Lys Leu Leu Glu Ile Leu 370 375 380
Arg Lys Tyr Lys Pro Tyr Glu Arg Gln Gln Phe Glu Ser Val Glu Trp 385 390 395 400
Tyr Asn Asn Arg Asn Gln Asp Tyr Val Ser Trp Ser Asp Ser Glu 405 410 415
Asp Asp Asp Glu Asp Glu Glu Ile Glu Glu Lys Pro Glu Thr 420 425 430
Asn Phe Pro Ser Pro Phe Thr Arg Ile Leu Cys Gly Ile Ile Phe Val 435 440 445
Glu Arg Arg Tyr Thr Ala Val Val Leu Asn Arg Leu Ile Lys Glu Ala 450 455 460
Gly Lys Gln Asp Pro Glu Leu Ala Tyr Ile Ser Ser Asn Phe Ile Thr 465 470 475 480
Gly His Gly Ile Gly Lys Asn Gln Pro Arg Asn Lys Gln Met Glu Ala 485 490 495
Glu Phe Arg Lys Gln Glu Glu Val Leu Arg Lys Phe Arg Ala His Glu 500 505 510
Thr Asn Leu Leu Ile Ala Thr Ser Val Ile Glu Glu Gly Val Asp Ile 515 520 525
Pro Lys Cys Asn Leu Val Val Arg Phe Asp Leu Pro Thr Glu Tyr Arg 530 535 540
Ser Tyr Val Gln Ser Lys Gly Arg Ala Arg Ala Pro Ile Ser Asn Tyr 545 550 555 560
Ile Met Leu Ala Asp Thr Asp Lys Ile Lys Ser Phe Glu Asp Leu 565 570 575
Lys Thr Tyr Lys Ala Ile Glu Lys Ile Leu Arg Asn Lys Cys Ser Lys 580 585 590
Ser Val Asp Thr Gly Glu Thr Asp Ile Asp Pro Val Met Asp Asp Asp 595 600 605
Asp Val Phe Pro Pro Tyr Val Leu Arg Pro Asp Gly Gly Pro Arg 610 615 620
Val Thr Ile Asn Thr Ala Ile Gly His Ile Asn Arg Tyr Cys Ala Arg 625 630 635 640
Leu Pro Ser Asp Pro Phe Thr His Leu Ala Pro Lys Cys Arg Thr Arg 645 650 655
Glu Leu Pro Asp Gly Thr Phe Tyr Ser Thr Leu Tyr Leu Pro Ile Asn 660 665 670
Ser Pro Leu Arg Ala Ser Ile Val Gly Pro Pro Met Ser Cys Val Arg 675 680 685
Leu Ala Glu Arg Val Ala Leu Ile Cys Cys Glu Lys Leu His Lys 690 695 700
Ile Gly Glu Leu Asp His Leu Met Pro Val Gly Lys Glu Thr Val 705 710 715 720
Lys Tyr Glu Glu Leu Asp Leu His Asp Glu Glu Glu Thr Ser Val 725 730 735
Pro Gly Arg Pro Gly Ser Thr Lys Arg Arg Glu Cys Tyr Pro Lys Ala 740 745 750
Ile Pro Glu Cys Leu Arg Asp Ser Tyr Pro Arg Pro Asp Gln Pro Cys 755 760 765
Tyr Leu Tyr Val Ile Gly Met Val Leu Thr Thr Pro Leu Pro Asp Glu 770 775 780
Leu Asn Phe Arg Arg Arg Lys Leu Tyr Pro Pro Glu Asp Thr Thr Arg
<table>
<thead>
<tr>
<th>785</th>
<th>790</th>
<th>795</th>
<th>800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cys Phe Gly Ile Leu Thr Ala Lys Pro Ile Pro Gln Ile Pro His Phe 805</td>
<td>810</td>
<td>815</td>
<td></td>
</tr>
<tr>
<td>Pro Val Tyr Thr Arg Ser Gly Glu Val Thr Ile Ser Ile Glu Leu Lys 820</td>
<td>825</td>
<td>830</td>
<td></td>
</tr>
<tr>
<td>Lys Ser Gly Phe Met Leu Ser Leu Gln Met Leu Glu Leu Ile Thr Arg 825</td>
<td>940</td>
<td>845</td>
<td></td>
</tr>
<tr>
<td>Leu His Glu Tyr Ile Phe Ser His Ile Leu Arg Leu Glu Lys Pro Ala 850</td>
<td>855</td>
<td>860</td>
<td></td>
</tr>
<tr>
<td>Leu Glu Phe Lys Pro Thr Asp Ala Asp Ser Ala Tyr Cys Val Leu Pro 865</td>
<td>870</td>
<td>875</td>
<td>880</td>
</tr>
<tr>
<td>Leu Asn Val Val Asn Asp Ser Ser Thr Leu Asp Ile Asp Phe Lys Phe 885</td>
<td>890</td>
<td>895</td>
<td></td>
</tr>
<tr>
<td>Met Glu Asp Ile Glu Lys Ser Glu Ala Arg Ile Gly Ile Pro Ser Thr 900</td>
<td>905</td>
<td>910</td>
<td></td>
</tr>
<tr>
<td>Lys Tyr Thr Lys Glu Thr Pro Phe Val Phe Lys Leu Glu Asp Tyr Gln 915</td>
<td>920</td>
<td>925</td>
<td></td>
</tr>
<tr>
<td>Asp Ala Val Ile Ile Pro Arg Tyr Arg Asn Phe Asp Gln Pro His Arg 930</td>
<td>935</td>
<td>940</td>
<td></td>
</tr>
<tr>
<td>Phe Tyr Val Ala Asp Val Tyr Thr Asp Leu Thr Pro Leu Ser Lys Phe 945</td>
<td>950</td>
<td>955</td>
<td>960</td>
</tr>
<tr>
<td>Pro Ser Pro Glu Tyr Glu Thr Phe Ala Glu Tyr Tyr Lys Thr Tyr 965</td>
<td>970</td>
<td>975</td>
<td></td>
</tr>
<tr>
<td>Asn Leu Asp Leu Thr Asn Leu Asn Gln Pro Leu Leu Asp Val Asp His 980</td>
<td>985</td>
<td>990</td>
<td></td>
</tr>
<tr>
<td>Thr Ser Ser Arg Leu Asn Leu Leu Thr Pro Arg His Leu Asn Gln Lys 995</td>
<td>1000</td>
<td>1005</td>
<td></td>
</tr>
<tr>
<td>Gly Lys Ala Leu Pro Leu Ser Ser Ala Glu Lys Arg Lys Ala Lys 1010</td>
<td>1015</td>
<td>1020</td>
<td></td>
</tr>
<tr>
<td>Trp Glu Ser Leu Glu Asn Lys Gln Ile Leu Val Pro Glu Leu Cys 1025</td>
<td>1030</td>
<td>1035</td>
<td></td>
</tr>
<tr>
<td>Ala Ile His Pro Ile Pro Ala Ser Leu Trp Arg Lys Ala Val Cys 1040</td>
<td>1045</td>
<td>1050</td>
<td></td>
</tr>
<tr>
<td>Leu Pro Ser Ile Leu Tyr Arg Leu His Cys Leu Leu Thr Ala Glu 1055</td>
<td>1060</td>
<td>1065</td>
<td></td>
</tr>
<tr>
<td>Glu Leu Arg Ala Glu Thr Ala Ser Asp Ala Gly Val Gly Val Arg 1070</td>
<td>1075</td>
<td>1080</td>
<td></td>
</tr>
<tr>
<td>Ser Leu Pro Ala Asp Phe Arg Tyr Pro Asn Leu Asp Phe Gly Trp 1085</td>
<td>1090</td>
<td>1095</td>
<td></td>
</tr>
<tr>
<td>Lys Lys Ser Ile Asp Ser Lys Ser Phe Ile Ser Ile Ser Asn Ser 1100</td>
<td>1105</td>
<td>1110</td>
<td></td>
</tr>
<tr>
<td>Ser Ser Ala Glu Asn Asp Tyr Cys Lys His Ser Thr Ile Val 1115</td>
<td>1120</td>
<td>1125</td>
<td></td>
</tr>
<tr>
<td>Pro Glu Asn Ala Ala His Gln Gly Ala Asn Arg Thr Ser Ser Leu 1130</td>
<td>1135</td>
<td>1140</td>
<td></td>
</tr>
<tr>
<td>Glu Asn His Asp Gln Met Ser Val Asn Cys Arg Thr Leu Leu Ser 1145</td>
<td>1150</td>
<td>1155</td>
<td></td>
</tr>
<tr>
<td>Glu Ser Pro Gly Lys Leu His Val Glu Val Ser Ala Asp Leu Thr 1160</td>
<td>1165</td>
<td>1170</td>
<td></td>
</tr>
<tr>
<td>Ala Ile Asn Gly Leu Ser Tyr Asn Gln Asn Leu Ala Asn Gly Ser 1175</td>
<td>1180</td>
<td>1185</td>
<td></td>
</tr>
<tr>
<td>Tyr Asp Leu Ala Asn Arg Asp Phe Cys Glu Gly Asn Gln Leu Asn 1190</td>
<td>1195</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>Tyr</td>
<td>Lys</td>
<td>Gln</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>1205</td>
<td>1210</td>
<td>1215</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Gln</td>
<td>Asn</td>
<td>Leu</td>
</tr>
<tr>
<td>1220</td>
<td>1225</td>
<td>1230</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Cys</td>
<td>Thr</td>
<td>Leu</td>
</tr>
<tr>
<td>1235</td>
<td>1240</td>
<td>1245</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Ser</td>
<td>Thr</td>
<td>Ser</td>
</tr>
<tr>
<td>1250</td>
<td>1255</td>
<td>1260</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Thr</td>
<td>Asp</td>
<td>Thr</td>
</tr>
<tr>
<td>1265</td>
<td>1270</td>
<td>1275</td>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>Ser</td>
<td>Pro</td>
<td>Ser</td>
</tr>
<tr>
<td>1280</td>
<td>1285</td>
<td>1290</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Gly</td>
<td>Leu</td>
<td>Ile</td>
</tr>
<tr>
<td>1295</td>
<td>1300</td>
<td>1305</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Phe</td>
<td>Asn</td>
<td>Leu</td>
</tr>
<tr>
<td>1310</td>
<td>1315</td>
<td>1320</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>His</td>
<td>Ala</td>
<td>Ile</td>
</tr>
<tr>
<td>1325</td>
<td>1330</td>
<td>1335</td>
<td></td>
</tr>
<tr>
<td>His</td>
<td>Glu</td>
<td>Gly</td>
<td>Arg</td>
</tr>
<tr>
<td>1340</td>
<td>1345</td>
<td>1350</td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>Asn</td>
<td>Leu</td>
<td>Tyr</td>
</tr>
<tr>
<td>1355</td>
<td>1360</td>
<td>1365</td>
<td></td>
</tr>
<tr>
<td>Met</td>
<td>Val</td>
<td>Val</td>
<td>Ser</td>
</tr>
<tr>
<td>1370</td>
<td>1375</td>
<td>1380</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Tyr</td>
<td>Val</td>
<td>Val</td>
</tr>
<tr>
<td>1385</td>
<td>1390</td>
<td>1395</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Asp</td>
<td>Glu</td>
<td>Met</td>
</tr>
<tr>
<td>1400</td>
<td>1405</td>
<td>1410</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Glu</td>
<td>Asp</td>
<td>Tyr</td>
</tr>
<tr>
<td>1415</td>
<td>1420</td>
<td>1425</td>
<td></td>
</tr>
<tr>
<td>Trp</td>
<td>Arg</td>
<td>Ala</td>
<td>Pro</td>
</tr>
<tr>
<td>1430</td>
<td>1435</td>
<td>1440</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Tyr</td>
<td>Asp</td>
<td>Gln</td>
</tr>
<tr>
<td>1445</td>
<td>1450</td>
<td>1455</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Ser</td>
<td>Gly</td>
<td>Ala</td>
</tr>
<tr>
<td>1460</td>
<td>1465</td>
<td>1470</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Thr</td>
<td>Asp</td>
<td>Ser</td>
</tr>
<tr>
<td>1475</td>
<td>1480</td>
<td>1485</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Gly</td>
<td>Ser</td>
<td>Met</td>
</tr>
<tr>
<td>1490</td>
<td>1495</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Ser</td>
<td>Trp</td>
<td>Asp</td>
</tr>
<tr>
<td>1505</td>
<td>1510</td>
<td>1515</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Glu</td>
<td>Asp</td>
<td>Asp</td>
</tr>
<tr>
<td>1520</td>
<td>1525</td>
<td>1530</td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>Cys</td>
<td>Gly</td>
<td>Val</td>
</tr>
<tr>
<td>1535</td>
<td>1540</td>
<td>1545</td>
<td></td>
</tr>
<tr>
<td>His</td>
<td>Thr</td>
<td>Glu</td>
<td>Gln</td>
</tr>
<tr>
<td>1550</td>
<td>1555</td>
<td>1560</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Ala</td>
<td>Leu</td>
<td>Leu</td>
</tr>
<tr>
<td>1565</td>
<td>1570</td>
<td>1575</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Gln</td>
<td>Leu</td>
<td>Phe</td>
</tr>
<tr>
<td>1580</td>
<td>1585</td>
<td>1590</td>
<td></td>
</tr>
</tbody>
</table>
Ile Lys Arg Thr Asp Arg Glu Lys Ala Leu Cys Pro Thr Arg Glu
1595 1600 1605
Asn Phe Asn Ser Gln Gln Lys Asn Leu Ser Val Ser Cys Ala Ala
1610 1615 1620
Ala Ser Val Ala Ser Ser Arg Ser Ser Val Leu Lys Asp Ser Glu
1625 1630 1635
Tyr Gly Cys Leu Lys Ile Pro Pro Arg Cys Met Phe Asp His Pro
1640 1645 1650
Asp Ala Asp Lys Thr Leu Asn His Leu Ile Ser Gly Phe Glu Asn
1655 1660 1665
Phe Glu Lys Lys Ile Asn Tyr Arg Phe Lys Asn Lys Ala Tyr Leu
1670 1675 1680
Leu Gln Ala Phe Thr His Ala Ser Tyr His Tyr Asn Thr Ile Thr
1685 1690 1695
Asp Cys Tyr Glu Arg Leu Glu Phe Leu Gly Asp Ala Ile Leu Asp
1700 1705 1710
Tyr Leu Ile Thr Lys His Leu Tyr Glu Asp Pro Arg Glu His Ser
1715 1720 1725
Pro Gly Val Leu Thr Asp Leu Arg Ser Ala Leu Val Asn Asn Thr
1730 1735 1740
Ile Phe Ala Ser Leu Ala Val Lys Tyr Asp Tyr His Lys Tyr Phe
1745 1750 1755
Lys Ala Val Ser Pro Glu Leu Phe His Val Ile Asp Asp Phe Val
1760 1765 1770
Gln Phe Gln Leu Glu Lys Asn Glu Met Gln Gly Met Asp Ser Glu
1775 1780 1785
Leu Arg Arg Ser Glu Asp Glu Glu Lys Glu Glu Asp Ile Glu
1790 1795 1800
Val Pro Lys Ala Met Gly Asp Ile Phe Glu Ser Leu Ala Gly Ala
1805 1810 1815
Ile Tyr Met Asp Ser Gly Met Ser Leu Glu Thr Val Trp Gin Val
1820 1825 1830
Tyr Tyr Pro Met Met Arg Pro Leu Ile Glu Lys Phe Ser Ala Asn
1835 1840 1845
Val Pro Arg Ser Pro Val Arg Glu Leu Leu Glu Met Glu Pro Glu
1850 1855 1860
Thr Ala Lys Phe Ser Pro Ala Glu Arg Thr Tyr Asp Gly Lys Val
1865 1870 1875
Arg Val Thr Val Glu Val Val Gly Lys Gly Lys Phe Lys Gly Val
1880 1885 1890
Gly Arg Ser Tyr Arg Ile Ala Lys Ser Ala Ala Arg Arg Ala
1895 1900 1905
Leu Arg Ser Leu Lys Ala Asn Gln Pro Gln Val Pro Asn Ser
1910 1915 1920

<210> SEQ ID NO 10
<211> LENGTH: 647
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 10

Asp Ser Glu Gln Ser Pro Ser Ile Gly Tyr Ser Ser Arg Thr Leu Gly
1 5 10 15
Pro Asn Pro Gly Leu Ile Leu Gln Ala Leu Thr Leu Ser Asn Ala Ser
20 25 30
<table>
<thead>
<tr>
<th>Residue</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asp Gly Phe Arg Leu Glu Arg Leu Gly Asp Ser Phe Leu</td>
<td>35 40 45</td>
</tr>
<tr>
<td>Lys His Ala Ile Thr Thr Tyr Leu Phe Cys Thr Tyr Pro Asp Ala His</td>
<td>50 55 60</td>
</tr>
<tr>
<td>Glu Gly Arg Leu Ser Tyr Met Arg Ser Lys Val Ser Asn Cys Asn</td>
<td>65 70 75 80</td>
</tr>
<tr>
<td>Leu Tyr Arg Leu Gly Lys Val Gly Leu Pro Ser Arg Met Val Val</td>
<td>85 90 95</td>
</tr>
<tr>
<td>Ser Ile Phe Asp Pro Pro Val Asn Trp Leu Pro Pro Gly Tyr Val Val</td>
<td>100 105 110</td>
</tr>
<tr>
<td>Asn Gln Asp Gly Ser Asn Thr Asp Lys Trp Glu Lys Asp Gly Met Thr</td>
<td>115 120 125</td>
</tr>
<tr>
<td>Lys Asp Cys Met Leu Ala Asn Gly Leu Asp Glu Asp Tyr Glu Glu</td>
<td>130 135 140</td>
</tr>
<tr>
<td>Glu Asp Glu Glu Glu Glu Ser Leu Met Trp Arg Ala Pro Lys Glu Glu</td>
<td>145 150 155 160</td>
</tr>
<tr>
<td>Ala Asp Tyr Glu Asp Asp Phe Leu Glu Tyr Asp Gln Glu His Ile Arg</td>
<td>165 170 175</td>
</tr>
<tr>
<td>Phe Ile Asp Ala Met Leu Met Gly Ser Gly Ala Phe Val Lys Lys Ile</td>
<td>180 185 190</td>
</tr>
<tr>
<td>Ser Leu Ser Pro Phe Ser Thr Thr Asp Ser Ala Tyr Glu Trp Lys Met</td>
<td>195 200 205</td>
</tr>
<tr>
<td>Pro Lys Lys Ser Ser Leu Gly Ser Met Pro Phe Ser Ser Asp Phe Glu</td>
<td>210 215 220</td>
</tr>
<tr>
<td>Asp Phe Asp Tyr Ser Ser Trp Asp Ala Met Cys Tyr Leu Asp Pro Ser</td>
<td>225 230 235 240</td>
</tr>
<tr>
<td>Lys Ala Val Glu Asp Gly Phe Val Val Gly Phe Trp Asn Pro Ser</td>
<td>245 250 255</td>
</tr>
<tr>
<td>Glu Glu Asp Cys Gly Val Asp Thr Gly Lys Gin Ser Ile Ser Tyr Asp</td>
<td>260 265 270</td>
</tr>
<tr>
<td>Leu His Thr Glu Gln Cys Ile Ala Asp Ser Ile Ala Asp Cys Val</td>
<td>275 280 285</td>
</tr>
<tr>
<td>Glu Ala Leu Leu Gly Cys Tyr Leu Thr Ser Cys Gly Glu Arg Ala Ala</td>
<td>290 295 300</td>
</tr>
<tr>
<td>Gin Leu Phe Leu Cys Ser Leu Gly Leu Val Leu Pro Val Ile Lys</td>
<td>305 310 315 320</td>
</tr>
<tr>
<td>Arg Thr Asp Arg Glu Lys Ala Leu Cys Pro Thr Arg Glu Asn Phe Asn</td>
<td>325 330 335</td>
</tr>
<tr>
<td>Ser Gin Gin Lys Gin Asn Ser Val Ser Cys Ala Ala Ala Ser Val Ala</td>
<td>340 345 350</td>
</tr>
<tr>
<td>Ser Ser Arg Ser Ser Val Leu Asp Ser Gly Tyr Gly Cys Leu Lys</td>
<td>355 360 365</td>
</tr>
<tr>
<td>Ile Pro Pro Arg Cys Met Phe Asp His Pro Asp Ala Asp Tyr Thr Leu</td>
<td>370 375 380</td>
</tr>
<tr>
<td>Asn His Leu Ile Ser Gly Phe Glu Asn Phe Glu Lys Ile Asn Tyr</td>
<td>385 390 395 400</td>
</tr>
<tr>
<td>Arg Phe Lys Asn Ala Tyr Leu Leu Gin Ala Phe Thr His Ala Ser</td>
<td>405 410 415</td>
</tr>
<tr>
<td>Tyr His Tyr Asp Ile Thr Asp Cys Tyr Gin Arg Leu Glu Phe Leu</td>
<td>420 425 430</td>
</tr>
<tr>
<td>Gly Asp Ala Ile Leu Asp Tyr Leu Ile Thr Lys His Leu Tyr Glu Asp</td>
<td>435 440 445</td>
</tr>
</tbody>
</table>
Pro Arg Gln His Ser Pro Gly Val Leu Thr Asp Leu Arg Ser Ala Leu 450 455 460
Val Asn Asn Thr Ile Phe Ala Ser Leu Ala Val Lys Tyr Asp Tyr His 465 470 475 480
Lys Tyr Phe Lys Ala Val Ser Pro Glu Leu Phe His Val Ile Asp Asp 485 490 495
Phe Val Gln Phe Glu Leu Glu Lys Asn Glu Met Glu Gly Met Asp Ser 500 505 510
Glu Leu Arg Arg Ser Glu Gly Asp Glu Lys Glu Glu Asp Ile Glu 515 520 525
Val Pro Lys Ala Met Gly Asp Ile Phe Glu Ser Leu Ala Gly Ala Ile 530 535 540
Tyr Met Asp Ser Gly Met Ser Leu Glu Thr Val Thr Val Tyr Tyr 545 550 555 560
Pro Met Met Arg Pro Leu Ile Glu Lys Phe Ser Ala Asn Val Pro Arg 565 570 575
Ser Pro Val Arg Glu Leu Leu Glu Met Glu Pro Glu Thr Ala Lys Phe 580 585 590
Ser Pro Ala Glu Arg Thr Tyr Asp Gly Val Arg Val Arg Val Tyr 595 600 605
Val Val Gly Lys Gly Phe Lys Gly Val Gly Arg Ser Tyr Arg Ile 610 615 620
Ala Lys Ser Ala Ala Ala Arg Arg Ala Leu Arg Ser Leu Lys Ala Asn 625 630 635 640
Gln Pro Gln Val Pro Asn Ser 645

<210> SEQ ID NO 11
<211> LENGTH: 1318
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 11
Met Asp Asp Asp Val Phe Pro Pro Tyr Val Leu Arg Pro Asp Asp 1 5 10 15
Gly Gly Pro Arg Val Thr Ile Asn Thr Ala Ile Gly His Ile Asn Arg 20 25 30
Tyr Cys Ala Arg Leu Pro Ser Asp Pro Phe Thr His Leu Ala Pro Lys 35 40 45
Cys Arg Thr Arg Glu Leu Pro Asp Gly Thr Phe Tyr Ser Thr Leu Tyr 50 55 60
Leu Pro Ile Asn Ser Pro Leu Arg Ala Ser Ile Val Gly Pro Pro Met 65 70 75 80
Ser Cys Val Arg Leu Ala Glu Arg Val Val Ala Ile Cys Cys Glu 85 90 95
Lys Leu His Lys Ile Gly Glu Leu Asp Asp His Leu Met Pro Val Gly 100 105 110
Lys Glu Thr Val Lys Tyr Glu Glu Leu Asp Leu His Asp Glu Glu 115 120 125
Glu Thr Ser Val Pro Gly Arg Pro Gly Ser Thr Tyr Arg Arg Glu Cys 130 135 140
Tyr Pro Lys Ala Ile Pro Glu Cys Leu Arg Asp Ser Tyr Pro Arg Pro 145 150 155 160
Asp Glu Pro Cys Tyr Leu Tyr Val Ile Gly Met Val Leu Thr Thr Pro 165 170 175
| Leu Pro Asp Glu Leu Asn Phe Arg Arg Arg Lys Leu Tyr Pro Pro Glu |
|-------------------|------------------|------------------|------------------|
| | 180 | 185 | 190 |

| Asp Thr Thr Arg Cys Phe Gly Ile Leu Thr Ala Lys Pro Ile Pro Gln |
|-------------------|------------------|------------------|------------------|
| | 195 | 200 | 205 |

| Ile Pro His Phe Pro Val Tyr Thr Arg Ser Gly Glu Val Thr Ile Ser |
|-------------------|------------------|------------------|------------------|
| | 210 | 215 | 220 |

| Ile Glu Leu Lys Lys Ser Gly Phe Met Leu Ser Leu Gln Met Leu Glu |
|-------------------|------------------|------------------|------------------|
| | 225 | 230 | 235 | 240 |

| Leu Ile Thr Arg Leu His Gln Tyr Ile Phe Ser His Ile Leu Arg Leu |
|-------------------|------------------|------------------|------------------|
| | 245 | 250 | 255 |

| Glu Lys Pro Ala Leu Glu Phe Lys Pro Thr Asp Ala Asp Ser Ala Tyr |
|-------------------|------------------|------------------|------------------|
| | 260 | 265 | 270 |

| Cys Val Leu Pro Leu Asn Val Val Asn Ser Ser Thr Leu Asp Ile |
|-------------------|------------------|------------------|------------------|
| | 275 | 280 | 285 |

| Asp Phe Lys Phe Met Glu Asp Ile Glu Lys Ser Glu Ala Arg Ile Gly |
|-------------------|------------------|------------------|------------------|
| | 290 | 295 | 300 |

| Ile Pro Ser Thr Lys Tyr Thr Tyr Thr Tyr Thr Pro Phe Val Phe Lys Leu |
|-------------------|------------------|------------------|------------------|
| | 305 | 310 | 315 | 320 |

| Glu Asp Tyr Gln Asp Ala Val Ile Ile Pro Arg Tyr Arg Asp Phe Asp |
|-------------------|------------------|------------------|------------------|
| | 325 | 330 | 335 |

| Gln Pro His Arg Phe Tyr Val Ala Asp Val Tyr Thr Asp Leu Thr Pro |
|-------------------|------------------|------------------|------------------|
| | 340 | 345 | 350 |

| Leu Ser Lys Phe Pro Ser Pro Glu Tyr Glu Thr Phe Ala Ala Glu Tyr Tyr |
|-------------------|------------------|------------------|------------------|
| | 355 | 360 | 365 |

| Lys Thr Lys Tyr Asm Leu Asp Leu Thr Asm Leu Asn Gln Pro Leu Leu |
|-------------------|------------------|------------------|------------------|
| | 370 | 375 | 380 |

| Asp Val Asp His Thr Ser Ser Arg Leu Asn Leu Leu Thr Pro Arg His |
|-------------------|------------------|------------------|------------------|
| | 385 | 390 | 395 | 400 |

| Leu Asn Gln Lys Gly Lys Ala Leu Pro Leu Ser Ser Ala Glu Lys Arg |
|-------------------|------------------|------------------|------------------|
| | 405 | 410 | 415 |

| Lys Ala Lys Trp Glu Ser Leu Gln Asn Lys Gln Ile Leu Val Pro Glu |
|-------------------|------------------|------------------|------------------|
| | 420 | 425 | 430 |

| Leu Cys Ala Ile His Pro Ile Pro Ala Ser Leu Trp Arg Lys Ala Val |
|-------------------|------------------|------------------|------------------|
| | 435 | 440 | 445 |

| Cys Leu Pro Ser Ile Leu Tyr Arg Leu His Cys Leu Thr Ala Gln |
|-------------------|------------------|------------------|------------------|
| | 450 | 455 | 460 |

| Glu Leu Arg Ala Gln Thr Ala Ser Asp Ala Gly Val Gly Val Arg Ser |
|-------------------|------------------|------------------|------------------|
| | 465 | 470 | 475 | 480 |

| Leu Pro Ala Asp Phe Arg Tyr Pro Asn Leu Asp Phe Gly Trp Lys Lys |
|-------------------|------------------|------------------|------------------|
| | 485 | 490 | 495 |

| Ser Ile Asp Ser Lys Ser Phe Ile Ser Ile Ser Asn Ser Ser Ser Ala |
|-------------------|------------------|------------------|------------------|
| | 500 | 505 | 510 |

| Glu Asn Asp Asn Tyr Cys Lys His Ser Thr Ile Val Pro Glu Asn Ala |
|-------------------|------------------|------------------|------------------|
| | 515 | 520 | 525 |

| Ala His Gln Gly Ala Asn Arg Thr Ser Ser Leu Glu Asn His Asp Gln |
|-------------------|------------------|------------------|------------------|
| | 530 | 535 | 540 |

| Met Ser Val Asn Cys Arg Thr Leu Ser Glu Ser Pro Gly Lys Leu |
|-------------------|------------------|------------------|------------------|
| | 545 | 550 | 555 | 560 |

| His Val Glu Val Ser Ala Asp Leu Thr Ala Ile Asn Gly Leu Ser Tyr |
|-------------------|------------------|------------------|------------------|
| | 565 | 570 | 575 |

| Asn Gln Asn Leu Ala Asn Gly Ser Tyr Asp Leu Ala Asn Arg Asp Phe |
|-------------------|------------------|------------------|------------------|
| | 580 | 585 | 590 |
Cys Gln Gly Asn Gln Leu Asn Tyr Tyr Lys Gln Glu Ile Pro Val Gin
695 690 695
Pro Thr Thr Ser Tyr Ser Ile Gln Leu Tyr Ser Tyr Glu Asn Gin
610 615 620
Pro Gln Pro Ser Asp Glu Cys Thr Leu Leu Ser Asn Tyr Leu Asp
625 630 635 640
Gly Asn Ala Gin Lys Ser Thr Ser Asp Gly Ser Pro Val Met Ala Val
645 650 655
Met Pro Gly Thr Thr Asp Thr Ile Gin Val Leu Lys Gin Arg Met Asp
660 665 670
Ser Glu Gin Ser Pro Ser Ile Gly Tyr Ser Ser Ser Arg Thr Leu Gly Pro
675 680 685
Asn Pro Gly Leu Ile Leu Gin Ala Leu Thr Leu Ser Asn Ala Ser Asp
690 695 700
Gly Phe Asn Leu Glu Arg Leu Met Leu Gly Asp Ser Phe Leu Lys
705 710 715 720
His Ala Ile Thr Thr Tyr Leu Phe Cys Thr Tyr Pro Asp Ala His Glu
725 730 735
Gly Arg Leu Ser Tyr Met Arg Ser Lys Leu Val Ser Asn Cys Asn Leu
740 745 750
Tyr Arg Leu Gly Lys Lys Gly Leu Pro Ser Arg Met Val Val Ser
755 760 765
Ile Phe Asp Pro Pro Val Asn Trp Leu Pro Pro Gly Tyr Val Val Asn
770 775 780
Gln Asp Lys Ser Asn Thr Asp Lys Trp Glu Lys Asp Glu Met Thr Lys
785 790 795 800
Asp Cys Met Leu Ala Asn Gly Leu Asp Glu Asp Tyr Glu Glu Glu
805 810 815
Asp Glu Glu Glu Ser Leu Met Trp Arg Ala Pro Lys Glu Glu Ala
820 825 830
Asp Tyr Glu Asp Asp Phe Leu Glu Tyr Asp Gin Glu His 1Le Arg Phe
835 840 845
Ile Asp Asn Met Leu Met Gly Ser Gly Ala Phe Val Lys Ile Ser
850 855 860
Leu Ser Pro Phe Ser Thr Thr Ser Ala Tyr Glu Trp Lys Met Pro
865 870 875 880
Lys Lys Ser Ser Leu Gly Ser Met Pro Phe Ser Ser Asp Phe Glu Asp
885 890 895
Phe Asp Tyr Ser Ser Thr Asp Ala Met Cys Tyr Leu Asp Pro Ser Lys
900 905 910
Ala Val Glu Glu Asp Phe Val Val Gly Phe Trp Asn Pro Ser Glu
915 920 925
Glu Asn Cys Gin Val Asp Thr Lys Gin Ser Ile Ser Tyr Asp Leu
930 935 940
His Thr Glu Gin Cys Ile Ala Asp Lys Ser Ile Ala Asp Cys Val Glu
945 950 955 960
Ala Leu Leu Gly Cys Tyr Leu Thr Ser Cys Gly Arg Ala Ala Gin
965 970 975
Leu Phe Leu Cys Ser Leu Gly Leu Val Leu Pro Val Ile Lys Arg
980 985 990
Thr Asp Arg Glu Lys Ala Leu Cys Pro Thr Arg Glu Asn Phe Asn Ser
995 1000 1005
Gln Gin Lys Asn Leu Ser Val Ser Cys Ala Ala Ala Ser Val Ala
1010 1015 1020
Ser Ser Arg Ser Ser Val Leu Lys Asp Ser Glu Tyr Gly Cys Leu
1025 1030 1035
Lys Ile Pro Pro Arg Cys Met Phe Asp His Pro Asp Ala Asp Lys
1040 1045 1050
Thr Leu Asn His Leu Ile Ser Gly Phe Glu Asn Phe Glu Lys Lys
1055 1060 1065
Ile Asn Tyr Arg Phe Lys Asn Lys Ala Tyr Leu Leu Gln Ala Phe
1070 1075 1080
Thr His Ala Ser Tyr His Tyr Asn Thr Ile Thr Asp Cys Tyr Gln
1085 1090 1095
Arg Leu Glu Phe Leu Gly Asp Ala Ile Leu Asp Tyr Leu Ile Thr
1100 1105 1110
Lys His Leu Tyr Glu Asp Pro Arg Gln His Ser Pro Gly Val Leu
1115 1120 1125
Thr Asp Leu Arg Ser Ala Leu Val Asn Asn Thr Ile Phe Ala Ser
1130 1135 1140
Leu Ala Val Lys Tyr Asp Tyr His Lys Tyr Phe Lys Ala Val Ser
1145 1150 1155
Pro Glu Leu Phe His Val Ile Asp Asp Phe Val Gln Phe Gln Leu
1160 1165 1170
Glu Lys Asn Glu Met Gln Gly Met Asp Ser Glu Leu Arg Arg Ser
1175 1180 1185
Glu Glu Asp Glu Glu Lys Glu Glu Asp Ile Glu Val Pro Lys Ala
1190 1195 1200
Met Gly Asp Ile Phe Glu Ser Leu Ala Gly Ala Ile Tyr Met Asp
1205 1210 1215
Ser Gly Met Ser Leu Glu Thr Val Trp Gln Val Tyr Tyr Pro Met
1220 1225 1230
Met Arg Pro Leu Ile Glu Lys Phe Ser Ala Asn Val Pro Arg Ser
1235 1240 1245
Pro Val Arg Glu Leu Leu Glu Met Glu Pro Glu Thr Ala Lys Phe
1250 1255 1260
Ser Pro Ala Glu Arg Thr Tyr Asp Gly Lys Val Arg Val Thr Val
1265 1270 1275
Glu Val Val Gly Lys Gly Lys Phe Lys Gly Val Gly Arg Ser Tyr
1280 1285 1290
Arg Ile Ala Lys Ser Ala Ala Ala Arg Arg Ala Leu Arg Ser Leu
1295 1300 1305
Lys Ala Asn Gln Pro Gln Val Pro Asn Ser
1310 1315
<210> SEQ ID NO 12
<211> LENGTH: 257
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 12

Phe Glu Asn Phe Glu Lys Lys Ile Asn Tyr Arg Phe Lys Asn Lys Ala
1 5 10 15
Tyr Leu Leu Gln Ala Phe Thr His Ala Ser Tyr His Tyr Asn Thr Ile
20 25 30
Thr Asp Cys Tyr Gln Arg Leu Glu Phe Leu Gly Asp Ala Ile Leu Asp
35 40 45
<210> SEQ ID NO 13
<211> LENGTH: 247
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 13

Phe Glu Asn Phe Glu Lys Lys Asn Tyr Arg Phe Lys Asn Lys Ala 1 5 10 15
Tyr Leu Leu Gln Ala Phe Thr His Ala Ser Tyr His Tyr Asn Thr Ile 20 25 30
Thr Asp Cys Tyr Gln Arg Leu Glu Phe Leu Gly Asp Ala Ile Leu Asp 35 40 45
Tyr Leu Ile Thr Lys His Leu Tyr Glu Asp Pro Arg Gln His Ser Pro 50 55 60
Gly Val Leu Thr Asp Leu Arg Ser Ala Leu Val Asn Asn Thr Ile Phe 65 70 75 80
Ala Ser Leu Ala Val Lys Tyr Asp Tyr His Lys Tyr Phe Lys Ala Val 85 90 95
Ser Pro Glu Leu Phe His Val Ile Asp Asp Phe Val Gln Phe Glu Leu 100 105 110
Glu Lys Asn Glu Met Gln Gly Met Asp Ser Glu Leu Arg Arg Ser Glu 115 120 125
Glu Asp Glu Glu Lys Glu Glu Asp Ile Glu Val Pro Lys Ala Met Gly 130 135 140
Asp Ile Phe Glu Ser Leu Ala Gly Ala Ile Tyr Met Asp Ser Gly Met 145 150 155 160
Ser Leu Glu Thr Val Trp Gln Val Tyr Tyr Pro Met Met Arg Pro Leu 165 170 175
Ile Glu Lys Phe Ser Ala Asn Val Pro Arg Ser Pro Val Arg Glu Leu 180 185 190
Leu Glu Met Glu Pro Glu Thr Ala Lys Phe Ser Pro Ala Glu Arg Thr 195 200 205
Tyr Asp Gly Lys Val Arg Val Thr Glu Val Val Gly Lys Gly Lys 210 215 220
Phe Lys Gly Val Gly Arg Ser Tyr Arg Ile Ala Lys Ser Ala Ala Ala 225 230 235 240
Arg Arg Ala Leu Arg Ser Leu Lys Ala Asn Gln Pro Gln Val Pro Asn 245 250 255
Ser
Ser Leu Glu Thr Val Trp Gln Val Tyr Tyr Pro Met Met Arg Pro Leu
165 170 175
Ile Glu Lys Phe Ser Ala Asn Val Pro Arg Ser Pro Val Arg Glu Leu
180 185 190
Leu Glu Met Glu Pro Glu Thr Ala Lys Phe Ser Pro Ala Glu Arg Thr
195 200 205
Tyr Asp Gly Lys Val Arg Val Thr Val Glu Val Val Gly Lys Gly Lys
210 215 220
Phe Lys Gly Val Gly Arg Ser Tyr Arg Ile Ala Lys Ser Ala Ala Ala
225 230 235 240
Arg Arg Ala Leu Arg Ser Leu
245

<210> SEQ ID NO 14
<211> LENGTH: 234
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 14
Phe Glu Asn Phe Glu Lys Lys Ile Asn Tyr Arg Phe Lys Asn Lys Ala
1 5 10 15
Tyr Leu Leu Gln Ala Phe Thr His Ala Ser Tyr His Tyr Asn Thr Ile
20 25 30
Thr Asp Cys Tyr Gln Arg Leu Glu Phe Leu Gly Asp Ala Ile Leu Asp
35 40 45
Tyr Leu Ile Thr Lys His Leu Tyr Glu Asp Pro Arg Gln His Ser Pro
50 55 60
Gly Val Leu Thr Asp Leu Arg Ser Ala Leu Val Asn Asn Thr Ile Phe
65 70 75 80
Ala Ser Leu Ala Val Lys Tyr Asp Tyr His Lys Tyr Phe Lys Ala Val
95 90 95
Ser Pro Glu Leu Phe His Val Ile Asp Asp Phe Val Gln Phe Glu Leu
100 105 110
Glu Lys Asn Glu Met Gln Gly Met Asp Glu Asp Ile Glu Glu Val Pro Lys
115 120 125
Ala Met Gly Asp Ile Phe Glu Ser Leu Ala Gly Ala Ile Tyr Met Asp
130 135 140
Ser Gly Met Ser Leu Glu Thr Val Trp Glu Tyr Tyr Pro Met Met
145 150 155 160
Arg Pro Leu Ile Glu Lys Phe Ser Ala Asn Val Pro Arg Ser Pro Val
165 170 175
Arg Glu Leu Leu Glu Met Glu Pro Glu Thr Ala Lys Phe Ser Pro Ala
180 185 190
Glu Arg Thr Tyr Asp Gly Lys Val Arg Val Thr Val Glu Val Val Gly
195 200 205
Lys Gly Lys Phe Lys Gly Val Gly Arg Ser Tyr Arg Ile Ala Lys Ser
210 215 220
Ala Ala Ala Arg Arg Ala Leu Arg Ser Leu
225 230

<210> SEQ ID NO 15
<211> LENGTH: 550
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 15
Met Asp Ser Glu Gln Ser Pro Ile Gly Tyr Ser Ser Arg Thr Leu 1 5 10 15
Gly Pro Asn Pro Gly Leu Ile Leu Gln Ala Leu Thr Leu Ser Asn Ala 20 25 30
Ser Asp Gly Phe Asn Leu Glu Arg Leu Glu Met Leu Gly Asp Ser Phe 35 40 45
Leu Lys His Ala Ile Thr Thr Tyr Leu Phe Cys Thr Tyr Pro Asp Ala 50 55 60
His Glu Gly Arg Leu Ser Tyr Met Arg Ser Lys Lys Val Ser Asn Cys 65 70 75 80
Asn Leu Tyr Arg Leu Gly Lys Lys Gly Leu Pro Ser Arg Met Val 85 90 95
Val Ser Ile Phe Asp Pro Pro Val Asn Trp Leu Pro Pro Gly Tyr Val 100 105 110
Val Asn Gln Asp Lys Ser Asn Thr Asp Lys Trp Glu Lys Asp Glu Met 115 120 125
Thr Lys Asp Cys Met Leu Ala Asn Gly Lys Leu Asp Gly Tyr Glu 130 135 140
Glu Glu Asp Glu Glu Gly Ser Leu Met Trp Arg Ala Pro Lys Glu 145 150 155 160
Glu Ala Asp Tyr Glu Asp Asp Phe Leu Glu Tyr Asp Glu Gly His Ile 170 175
Arg Phe Ile Asp Asn Met Leu Met Gly Ser Gly Ala Phe Val Lys Lys 180 185 190
Ile Ser Leu Ser Pro Phe Ser Thr Thr Asp Ser Ala Tyr Glu Trp Lys 195 200 205
Met Pro Lys Lys Ser Ser Leu Gly Ser Met Pro Phe Ser Ser Asp Phe 210 215 220
Glu Asp Phe Asp Tyr Ser Ser Trp Asp Ala Met Cys Tyr Leu Asp Pro 225 230 235 240
Ser Lys Ala Val Glu Asp Asp Phe Val Val Gly Phe Trp Asn Pro 245 250 255
Ser Glu Glu Asn Cys Gly Val Asp Thr Gly Lys Gin Ser Ile Ser Tyr 260 265 270
Asp Leu His Thr Glu Gin Cys Ile Ala Asp Lys Ser Ile Ala Asp Cys 275 280 285
Val Glu Ala Leu Leu Gly Cys Tyr Leu Thr Ser Cys Gly Glu Arg Ala 290 295 300
Ala Gln Leu Phe Leu Cys Ser Leu Gly Leu Lys Val Leu Pro Val Ile 305 310 315 320
Lys Arg Thr Asp Arg Glu Lys Ala Leu Cys Pro Thr Arg Glu Asn Phe 325 330 335
Asn Ser Gin Gin Lys Asn Leu Ser Val Ser Cys Ala Ala Ala Ser Val 340 345 350
Ala Ser Ser Arg Ser Ser Val Leu Lys Asp Ser Glu Tyr Gly Cys Leu 355 360 365
Lys Ile Pro Pro Arg Cys Met Phe His Pro Asp Ala Asp Lys Thr 370 375 380
Leu Asn His Leu Ile Ser Gly Phe Glu Asn Phe Glu Lys Lys Ile Asn 385 390 395 400
Tyr Arg Phe Lys Asn Lys Ala Tyr Leu Leu Gin Ala Phe Thr His Ala 405 410 415
Ser Tyr His Tyr Asn Thr Ile Thr Asp Cys Tyr Gin Arg Leu Glu Phe
Leu Gly Asp Ala Ile Leu Asp Tyr Leu Ile Thr Lys His Leu Tyr Glu
420 425 430
Leu Asp Pro Arg Glu His Ser Pro Gly Val Leu Thr Asp Leu Arg Ser Ala
435 440 445
Leu Val Asn Thr Ile Phe Ala Ser Leu Ala Val Lys Tyr Asp Tyr
450 455 460
His Lys Tyr Phe Lys Ala Val Ser Pro Glu Leu Phe His Val Ile Asp
465 470 475 480
Asp Phe Val Glu Phe Gln Leu Glu Lys Arg Glu Met Glu Gly Met Asp
485 490 495
Ser Glu Leu Arg Arg Ser Glu Asp Glu Met Lys Glu Glu Asp Ile
500 505 510
Ser Glu Val Pro Lys Ala Met Gly Asp Ile Phe Glu Ser Leu Ala Gly Ala
515 520 525
Ile Tyr Met Asp Ser Gly
530 535 540
545 550

<210> SEQ ID NO: 16
<211> LENGTH: 549
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 16

Asp Ser Glu Gln Ser Pro Ser Ile Gly Tyr Ser Ser Arg Thr Leu Gly
1 5 10 15
Pro Asn Pro Gly Leu Ile Leu Gln Ala Leu Thr Leu Ser Asn Ala Ser
20 25 30
Asp Gly Phe Asn Leu Glu Arg Leu Glu Met Leu Gly Asp Ser Phe Leu
35 40 45
Lys His Ala Ile Thr Thr Tyr Leu Phe Cys Thr Tyr Pro Asp Ala His
50 55 60
Glu Gly Arg Leu Ser Tyr Met Arg Ser Lys Val Ser Asn Cys Asn
65 70 75 80
Leu Tyr Arg Leu Gly Lys Leu Gly Leu Pro Ser Ser Met Val Val
85 90 95
Ser Ile Phe Asp Pro Pro Val Asn Trp Leu Pro Pro Gly Tyr Val Val
100 105 110
Asn Gln Asp Lys Ser Asn Thr Asp Lys Trp Glu Lys Asp Glu Met Thr
115 120 125
Lys Asp Cys Met Leu Ala Asn Gly Lys Leu Asp Glu Asp Tyr Glu
130 135 140
Glu Asp Glu Glu Glu Ser Leu Met Trp Arg Ala Pro Lys Glu Glu
145 150 155 160
Asp Tyr Glu Asp Asp Phe Leu Glu Tyr Asp Gin Glu His Ile Arg
165 170 175
Phe Ile Asp Asn Met Leu Met Gly Ser Gly Ala Phe Val Lys Lys Ile
180 185 190
Ser Leu Ser Pro Phe Ser Thr Thr Asp Ser Ala Tyr Glu Trp Lys Met
195 200 205
Pro Lys Lys Ser Ser Leu Gly Ser Met Pro Phe Ser Ser Asp Phe Glu
210 215 220
Asp Phe Asp Tyr Ser Ser Trp Asp Ala Met Cys Tyr Leu Asp Pro Ser
225 230 235 240
Lys Ala Val Glu Glu Asp Asp Phe Val Val Gly Phe Trp Asn Pro Ser 245 250 255
Glu Glu Asn Cys Gly Val Asp Thr Gly Lys Gin Ser Ile Ser Tyr Asp 260 265 270
Leu His Thr Glu Gin Cys Ile Ala Asp Lys Ser Ile Ala Asp Cys Val 275 280 285
Glu Ala Leu Leu Gly Cys Tyr Leu Thr Ser Cys Gly Glu Arg Ala Ala 290 295 300
Gln Leu Phe Leu Cys Ser Leu Gly Lys Val Leu Pro Val Ile Lys 305 310 315 320
Arg Thr Asp Arg Glu Lys Ala Leu Cys Pro Thr Arg Glu Asn Phe Ann 325 330 335
Ser Gin Gin Lys Asn Leu Ser Val Ser Cys Ala Ala Ser Val Ala 340 345 350
Ser Ser Arg Ser Ser Val Leu Lys Asp Ser Glu Tyr Gly Cys Leu Lys 355 360 365
Ile Pro Pro Arg Cys Met Phe Asp His Pro Asp Ala Asp Tyr Thr Leu 370 375 380
Asn His Leu Ile Ser Gly Phe Glu Asn Phe Glu Lys Ile Asn Tyr 385 390 395 400
Arg Phe Lys Asn Lys Ala Tyr Leu Leu Gin Ala Phe Thr His Ala Ser 405 410 415
Tyr His Tyr Ann Thr Ile Thr Asp Cys Tyr Gin Arg Leu Glu Phe Leu 420 425 430
Gly Asp Ala Ile Leu Asp Tyr Leu Ile Thr Lys His Leu Tyr Glu Asp 435 440 445
Pro Arg Gin His Ser Pro Gly Val Leu Thr Aep Arg Ser Ala Leu 450 455 460
Val Asn Ann Thr Ile Phe Ala Ser Leu Ala Val Lys Tyr Asp Tyr His 465 470 475 480
Lys Tyr Phe Lys Ala Val Ser Pro Glu Leu Phe His Val Ile Asp Aep 485 490 495
Phe Val Gin Phe Gin Leu Lys Ann Glu Met Gin Gly Met Asp Ser 500 505 510
Glu Leu Arg Arg Ser Glu Glu Asp Glu Glu Lys Glu Asp Ile Glu 515 520 525
Val Pro Lys Ala Met Gly Asp Ile Phe Glu Ser Leu Ala Gly Ala Ile 530 535 540
Tyr Met Asp Ser Gly 545

<210> SEQ ID NO 17
<211> LENGTH: 10323
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 17
cggagggcgc ggcagcgtgc tgcagggccc aggtgaatgg agtaaccctga cagcggggagc 60
gagcgagccg cgagccgctg gaaatggcgg cgggggggcc gcggcgcggc gcggccggga 120
ggcctgtgct gtacgccgag cgccgggcgc ggcggatcag gttctgcagag gcggagcgag 180
cccccgtgtcg cagtagctgc tgcagggaca aaaaaatgca tggagaacgtgctggtgaa 240
gaaaggccgtg cccttgcaag cccctagcat ggcaggcctg cagctcagtt cccctgtgctc 300
cctaccaattt ggcctcttcttgactgcc atggccaacaa gaagcatactc atgataacat 360
ttatacggca agaaatatac agggtgaact gcttggaagca gctctggagt ataataccat 420
cgctggttta aacactgtgc cagaggaac attataggca gttactacctca ctaagagct 480
gtocatcag atcaggggag acttcagcag aaattgaaa agagggttct tctgtgcaaa 540
cctgcgaac acaggtgtgc aacaaggtgc aagtgctcaga actcatcag catccaaagt 600
tggggagatac tcaacctag aagtaaatgc atttggagaca aagagagat ggaaccaaga 660
gttataagc caccaggttc tcctattgcag ttgctatgtgc gctctgaatg tttgggaata 720
tggttaatac tccctgtcag acattaccc tttggttttt gatgagctgc actttgcaat 780
cctagacacc cctatcgctg aatattatgaa gctctgtgaa aatgtcccat cagctctctg 840
cattttgagga cttacagtgct cctatgtaaa ttgggaaatgt gatcgcagag aatgggaaga 900
aaagatctcgc aacactgagc aatcttctaa ggtataatgc gaaactgcga ctgacagttg 960
gctcttacg agcattactc ctcagccatg tggattttgtg gtggattttg gacactttac 1020	tgacagaaag ggcttttaga aagaagtctg gttggaattc gaagaagcag ttaatattat 1080
caatatatgtg attattcttg ctatcatcaca aagaagtagt cctattctttat ttgggaaca 1140
gatactaca gccctgtctgt ccctttgattg atgtctggca gctccgggta aagatttaat 1200
agctggaagat atgttgagag aacactcagaa atacatcaca catgaccaag aggagctgca 1260
cagggatttt tcatttgata cacacaattt cctaaagggata atacattcgac tatttggaaga 1320
goactcttcta cctgcgctcac ttgactggaa atttggactc cttcaagtaa tcaaaactgt 1380
cgaatatattc ggaataataa aacactataa gccaagcagc ctttgaagct ttgaattgga 1440
taataataa aacactgacata attattgtc agcatggatg tcttcggagat atgcagggga 1500	tgagaaattt gaagaaagaa aagacccaga gcaattattc ctttcccttt catccacact 1560	ttggtgagga attatattttat tggaaaaag actaacacgct gtttgctttca atcagattt 1620
aagagctgct gccaccaagc atcccaagct gcgctttatgc aagatcttgg 1680
acntggaattt ggagagacag acgctgccaa caaaagatgc gaagagacag tcaaaaaa 1740
ggaagaggtta cttggaaatta ttggagcaca tggacaccac ctgctttatg caaagatgat 1800
tgtagagag gggtgttgata taccaaaatg ccaactgttggt gttgctttttt attcggccac 1860
agaataagatc taatctgttc aacacttaag aagagcaagc gcaccacattt caataaatat 1920
ataagtgagc gatagagata ccaaaaaaag tttggaagaag ccoccttttttt cctaaagc 1980	tatgtgaaag atcttggaag agaatgtgtc caaagctgtt gataactgtg agactgcaat 2040
tgtatgctgc atgctatggtg atgcagttttt cccacactat gtgctggagc tggagctgtt 2100
tggtccacaag gttcacaatcta acaagggcact tggacacata aatagatgtc gtgctagatt 2160
acntgagatg cgttttactc atcttggtcct ttaatgcaaga accggacagc tgctctgtgct 2220	taactcttttt tcaacctttc atctgcaatc cttcagagct ccagtctgtg 2280
tccaccaaat tgcgctgtac ggttgggtga aagagttgtga gtctctcattt gctctggaag 2340
actggcaaaat atggcggaaac tttgatgacaa tttgagacca gttggaagag aagagtattta 2400
ataagagag ggatgtggtg tctattgagta agaagacagcc atgggggcaag ggaagacag 2460
ttcacaaaaa gcaaggctgtc gtttcaaaaaa aagactttttat gagtttttgga ggagtaggt 2520	tccagagct gatagagcttt gttctattgt gttgtggtaa attttttttttta ctaatactttt 2580
acctgtagga atccactttta gaagccccga gcttctacct cctgaagata ccacagatg 2640
cctggaaata cttgagggca aacccatacc tcaagtttca caaattctctc tgcaccaag 2700
ctctgagag gttaacactat ccattgtgtt gaaagagtct ggttccatgt tgtctctaca 2760
aatgttgc ggatgccacca gactccacca gtatatatttc ttcactatacct ttcggcgttga 2820
aaaaacgca ctagaaatatta aacatcagca cggtgattga gcatactgtg ttctacctct 2880
tactgtggta aagcttcaac gctttgctgg tattgatcctt aatcattaggg aagataatta 2940
gagagctgaa gatgogctaat gcctttcagc tacaagatgt acaaaagagaa cacccctttgt 3000
ttttaatatta gacttacacc aagagttcctt ttccttcacc aatgtcagca attttgtcaca 3060
gcccttcatg tttatatagc ctgatgtgta cactgtcttt acccactaca gtaaatccca 3120
ttcctctgac ttgtaaactct tttcagaaata tttcatcacc taatccatcct ttcgcttac 3180
caatcctacc ccagcactgc tggatatgga ccacacactct tcaagactta tctttttgac 3240
acagcactt ttagctggag aagccggaacc gtcctttaata gcagttgtcg agagagggagaa 3300
agcacaattg gaaaggtaaag aagataacca gccatgtggtt ccgagactct gtgtatatca 3360
tcctaatcaca gcgtacttcgtt ggaagacaacc tgctggcttccc ccacatcata tttattgctt 3420
tcactgtcctt ttcagctgag ggaagcctta agcagcagact gcagctttgcg ttcagccttg 3480
agcagactca ctctcctggtg atttttgata ccctctaactta gaccttgcagtg gaaaaaactc 3540
tattgaagc accttaattcct ttccgcttgtc ttcctgctttac ttagcttatta 3600
tgcgagcc acgcgttactt ttcgctggaa acagttgctat acagtaaatcct 3660
tctcttaga aacctgtcacc acctgtctgt gaaacgctgac acctgtttctga ggcagttcc 3720
tggaatcctt cactctggag ttcacctcgcct ttatgctgct cttttnctttcata 3780
tcacaacctt gcacgacgta gttatgatttc gatctaccag gccttctgccc aagaaatcct 3840
gtataaaacc ttaacacaggc aataccctgt gcacacactttt gcacatcactttt ctctcagaa 3900
rttatcagtg taagagacacc acgcctaccc cagccctgtaa tgcacttcttc tgtgtaatt 3960
atccctgatt ggaatacgtaca aacaatatct ttcagctgga gcctgttggta tgcgccgtaat 4020
gcggcgtgac acagcactcttt tgcagctgct cagccgtcaaggg atgctggtcagc agcagacgcc 4080
tttatgtggt tacctctcgc gactcttggtt ccccaacacttg ggcattttttcctttcgt 4140
gactgtcgtc aaggcttctgt atggattttaa cctggacggct ttgaaatgct tggccgatc 4200
tttttaaaa agacacactta cccatcatact ttttgcctt caatcctgtgctc gcctgtggagg 4260
cgctccttttt catattgaa ccttattggtctt cagctctctgt atacttgtt ccctgtgagaa 4320
aaaaagggaa ctacccagcc gcacacggtgtc tcaaatatt gtatccctttt ctaatgtgct 4380
tttcctctttg ttgcatagaa atcgacaccag acacacacacgtg aaaaaatgag 4440
aatgacacaaa acgcttcatgc ttgggaatgg ccacgcctatg gaggattcag agaggaggg 4500
tggaggggag agagctgctga ttggaggggc tcgaagagagag ggcgtcagct atgaagattg 4560
cttctggagct catctggctt acaatatcagg attatgatatt aatgatatattttt ggggtcaggg 4620
agcttcttta aagacactct ttctttctcc tttttcascacct agcttttctgc cactatgtg 4680
gaaatgcgcc aaaaaattct ttctagattgct tctatatcatt tctacacatttt ttcaggatt 4740
tgacactact cttgaggcttg ctaagatccttt ttcgatctgctt agaagacgctg aagagagaa 4800
tggactttgt tggggtctctt gcacttcacca aagaaagaaa ctgggtttgcttc aaccgggaaa 4860
ggagctcatctttt ctaacacagta gcagctgttatt ttcgacaaaaa gcaatacggag 4920
cgtctggaag acgcctggtg ggtcgatttt aaccagctgt cggagagagg gctgcctcagct 4990
ctctctcttt ttcactggtgg tgaagctgct gcggcttattt aaaaagctgc atcgggaaaaa 5040
ggctcgtgct ctcctcctcg agaattttaaa cagcccaataa aagaaactccctt cagccgcttg 5100
tgcgctgtct ctcggtgccct tgcctacgttt gcagacttgg aataagttgtg 5160

nttgaaggtct cccccagatg tcttggttgg tcttcgccag tgcagataa cactgtaa 5220
cctattctc gcgggtgaaa attttggaat gaaataaacat cagattcatta cagataagg 5280

ctaccttctcc cagggcttt tcacagctct ctcacactac aaactataa atgttggtta 5340

cctaggtctca ggatactctg gagaagcgtc tgtggagact ctcataaacct acggatctta 5400
tggagacgctt cccgggctgt cctgagacgctt ctgggtcttg cctgggtct ga 5460
caccaaacat ttcgtccttc gtcgctgtcaat gcagagactac ccaagagaact taaagctgtg 5520

tctctctgac ccccttcactct ctaaggatc ctttagcct gttcactggg 5580

aatgaagaag aatgctatcc gcctgtcgag atctggagag gataggaaga aatagagag 5640

tttagggag tcaagttggc tgggggtatt ttggtgccg ttggtgccg ct 5700

ggagatgcgg atgccacgg tgttgactgt 5760

atagagccag ttcgagggaa atggtggggc atcccagcttg ggcagacttgt 5820

acccggacgt tcccccttgg cccggttgg gaactgt actgccggag 5880

tgctgttggtt ggtggtgggg gcggagggaa cagaggtcctcc 5940

atgtcgcgac gcggagggaa cctcgcggag ctcggggcct aatgctcttc ggtggtgctc 6000
tggagcgaagt aatgctcttc ggtggtgggg gcggagggaa 6060

attataatg gagaagattg acactgtaat gataggttgtg 6120

ggagatgttc ttcagggctag aacaggtttag atcagacaggtta 6180

acacatcactc actttttgtgtag tatggctttt gttgggttct 6240

tgctctgggttt ttccttttga aacagctttt gacaggtttag 6300

acacagtttg tagttttttttt tgcagagctt gttctttaagtt 6360

acccaggagctt tcccacccagt ttcgctagcat ctcgctattc ctcgctattc 6420

tctcggttgtg tgcctggtatg cagcttttggc agagtttgtg 6480

gtagttgctgtc cctccccctc ctttttttct ctcgctattc 6540

tgcttgccgtgctt gcaggttgctg cggactcgaa atgggaaatt gccagtttaa 6600

tgctctgggttt ttgagcctttct cttttttttt cttttttttt cttttttttt 6660

acacagcttgtc aacagttttt atctggtttctg ttcctttttt tgcagagctt 6720

acacagcttgtc aacagttttt atctggtttctg ttcctttttt tgcagagctt 6780

acacagcttgtc aacagttttt atctggtttctg ttcctttttt tgcagagctt 6840

atagcctagc ctttttttttc aacccataat gttgggttctg ttcctttttt tgcagagctt 6900

tgctttgtgc ttcaggtttag cagcttttggc agagtttgtg 6960

acacagcttgtc aacagttttt atctggtttctg ttcctttttt tgcagagctt 7020

agccttttactc ctctttttttt cttttttttt cttttttttt cttttttttt 7080

agccttttactc ctctttttttt cttttttttt cttttttttt cttttttttt 7140

ttcaggtttag cagcttttggc agagtttgtg 7200

gttgggtttta cttttttttt cttttttttt cttttttttt cttttttttt 7260

acacagcttgtc aacagttttt atctggtttctg ttcctttttt tgcagagctt 7320

ccgatccttc cttttttttt cttttttttt cttttttttt cttttttttt 7380

ttcaggtttag cagcttttggc agagtttgtg 7440
aatttttttt tttttgcact gtaactataa tacctottaa tttaacctttt taaaagcgtt
7500
gggtcgacct tcgacactca etcacatacct acttacgactc ttcggtgcatt tcggccgata
7560
attacttgctg aagttaaga aagctgacac gaggctcctc ataatccca cacacagatt
7620
tcgacgtgct gctgcctgcc aatgtgcatc ttatattgaa ctgacatattg aacctgttcc
7680
tctccgcttt ttctgtcataa tacacataca gagaatgcgc ttcggtgcag tcggccgaca
7740
gaaactgcct gctgctctcc cctgatagcag ggctgttcatc aatcttcctca
7800
gtggcttttg tttgttctaaa tttaaacacct aaattggagat ataatatttttaa aacgaggtt
7860
ttgagcacaat tagtgcaact gtgtaaaaaa tatttaaatc ctgattggaag ccttagatgt
7920
catattgatt tttttttttttt ccattaatgta agatagacg aagataacaa aagcaattct
7980
tgtattatat aacctgatgg ctgtctgatt accaagctgc gtagtcgaatt ttatctctag
8040
gggtccttttt ttctgcaattttttaa aacctgatgg ctgtaacact cctgattgtt
8100
ggcgggacctt gcgtctgatt ctcgatcactaa cattgcctcc cagtcgtcgg gactcctctg
8160
attctggcct cctaaactcc atgtttttctca gxtcttttattt tggcgttcag aagaaatctg
8220
tctatctct tctgtaaccc aagggagatatc ttttatttttt attacagaca tgtccaaact
8280	tagaatgctg tagtgcaacttttgcttgaa gttgcaattttttta aagaggttttattttgatt
8340
ttataacaca cccgacgctg cctgctccct ttgagttgg cgaagatagc aatgtttttttttt
8400
ttgacgacac ctggtgtcgg ccctgggtta ccttgatatttt taaaagaaaaaag
8460
tcatttgattg acaagatgatg cttgggatggt aagttattttttt aactggtaaa gtaaatatttttt
8520
aagtttttcc ttcggtgctc ttcggttagtt ttttatttttt attaaggtaa gggagagatg
8580
aatacactta cttgcgaccc tatttttagc gcggttgcgc gctgtgggtttt ggcctctgttt
8640
aatttttggg cggactgtaaatggtcttc ttctgaccgtgg gttggttgcttt gccttgactc
8700
tctttttgcgt gcttttttttt gttgttggtaa ggtgggtggct ttggttggtt
8760
tgagttgtggc aagttgcttgta atcctgtcctttt cttggttttctct cttggtcttcttt
8820
taatattgctt tctctggtgct tattttttttt cgggctttt cttggtctttttt
8880
tcctgtcaatgt agccacgata acgtacctgct cttggtaaeact ctttcagctattcaagaa
8940
aatattttttta aacaggtgaa aaaaaattttt ccctgttctttt aggctgttgtt ggtggtgttt
9000
aatttttggg aaaaattttt aagtttgggatgattttttt attaagggtaaagtattt
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met</td>
<td>Asp</td>
<td>Ile</td>
<td>Ser</td>
<td>Ser</td>
<td>Phe</td>
<td>Leu</td>
<td>Leu</td>
<td>Pro</td>
<td>Gln</td>
<td>Leu</td>
<td>Leu</td>
<td>Arg</td>
<td>Lys</td>
<td>Tyr</td>
</tr>
<tr>
<td>20</td>
<td>Arg</td>
<td>Thr</td>
<td>Gly</td>
<td>Ala</td>
<td>Gly</td>
<td>Lys</td>
<td>Thr</td>
<td>Leu</td>
<td>Ala</td>
<td>Val</td>
<td>Lys</td>
<td>Leu</td>
<td>Ile</td>
<td>Lys</td>
</tr>
<tr>
<td>40</td>
<td>Lys</td>
<td>Leu</td>
<td>Glu</td>
<td>Glu</td>
<td>Gln</td>
<td>Ile</td>
<td>Leu</td>
<td>Ile</td>
<td>Glu</td>
<td>Ser</td>
<td>Am</td>
<td>Leu</td>
<td>Glu</td>
<td>His</td>
</tr>
<tr>
<td>60</td>
<td>Lys</td>
<td>Ile</td>
<td>Ser</td>
<td>Val</td>
<td>Phe</td>
<td>Leu</td>
<td>Val</td>
<td>Am</td>
<td>Lys</td>
<td>Val</td>
<td>Pro</td>
<td>Leu</td>
<td>Val</td>
<td>Phe</td>
</tr>
<tr>
<td>80</td>
<td>Ala</td>
<td>Glu</td>
<td>Tyr</td>
<td>Ile</td>
<td>Arg</td>
<td>Ser</td>
<td>Gln</td>
<td>Leu</td>
<td>Pro</td>
<td>Ala</td>
<td>Lys</td>
<td>Val</td>
<td>Gly</td>
<td>Met</td>
</tr>
<tr>
<td>95</td>
<td>Gly</td>
<td>Glu</td>
<td>Leu</td>
<td>Ser</td>
<td>Ile</td>
<td>Glu</td>
<td>Met</td>
<td>Ser</td>
<td>Glu</td>
<td>Gin</td>
<td>Leu</td>
<td>Thr</td>
<td>Am</td>
<td>Ile</td>
</tr>
<tr>
<td>110</td>
<td>Leu</td>
<td>Lys</td>
<td>Tyr</td>
<td>Asn</td>
<td>Val</td>
<td>Ile</td>
<td>Val</td>
<td>Ile</td>
<td>Thr</td>
<td>Ala</td>
<td>Asp</td>
<td>Leu</td>
<td>Phe</td>
<td>Tyr</td>
</tr>
<tr>
<td>125</td>
<td>Leu</td>
<td>Ala</td>
<td>Arg</td>
<td>Gly</td>
<td>Phe</td>
<td>Leu</td>
<td>Ser</td>
<td>Ile</td>
<td>Asp</td>
<td>Leu</td>
<td>Asn</td>
<td>Asp</td>
<td>Leu</td>
<td>Ile</td>
</tr>
<tr>
<td>140</td>
<td>Aasp</td>
<td>Glu</td>
<td>Cys</td>
<td>His</td>
<td>His</td>
<td>Ala</td>
<td>Ile</td>
<td>Gln</td>
<td>Asp</td>
<td>Ala</td>
<td>Tyr</td>
<td>Arg</td>
<td>Ala</td>
<td>Ile</td>
</tr>
<tr>
<td>160</td>
<td>Aasp</td>
<td>Aasp</td>
<td>Phe</td>
<td>Tyr</td>
<td>His</td>
<td>Arg</td>
<td>Ala</td>
<td>Val</td>
<td>Leu</td>
<td>Ser</td>
<td>Lys</td>
<td>Lys</td>
<td>Lys</td>
<td>His</td>
</tr>
<tr>
<td>175</td>
<td>Thr</td>
<td>Leu</td>
<td>Pro</td>
<td>Arg</td>
<td>Ile</td>
<td>Phe</td>
<td>Gly</td>
<td>Met</td>
<td>Thr</td>
<td>Ala</td>
<td>Ser</td>
<td>Pro</td>
<td>Phe</td>
<td>Thr</td>
</tr>
<tr>
<td>190</td>
<td>Lys</td>
<td>Gly</td>
<td>Asn</td>
<td>Leu</td>
<td>Tyr</td>
<td>His</td>
<td>Arg</td>
<td>Leu</td>
<td>Tyr</td>
<td>Gin</td>
<td>Trp</td>
<td>Glu</td>
<td>Gln</td>
<td>Leu</td>
</tr>
<tr>
<td>205</td>
<td>Ser</td>
<td>Lys</td>
<td>Ala</td>
<td>His</td>
<td>Val</td>
<td>Ser</td>
<td>Glu</td>
<td>Asn</td>
<td>Glu</td>
<td>Leu</td>
<td>Ala</td>
<td>Asp</td>
<td>Tyr</td>
<td>Phe</td>
</tr>
<tr>
<td>220</td>
<td>Leu</td>
<td>Pro</td>
<td>Glu</td>
<td>Ser</td>
<td>Tyr</td>
<td>Val</td>
<td>Met</td>
<td>Tyr</td>
<td>Ser</td>
<td>Asn</td>
<td>Lys</td>
<td>Leu</td>
<td>Val</td>
<td>Val</td>
</tr>
<tr>
<td>240</td>
<td>Pro</td>
<td>Ser</td>
<td>Asp</td>
<td>Ser</td>
<td>Ile</td>
<td>Lys</td>
<td>Cys</td>
<td>Gln</td>
<td>Glu</td>
<td>Thr</td>
<td>Leu</td>
<td>Gin</td>
<td>Gly</td>
<td>Cys</td>
</tr>
<tr>
<td>255</td>
<td>Lys</td>
<td>Leu</td>
<td>Ile</td>
<td>Ser</td>
<td>Arg</td>
<td>Ala</td>
<td>Val</td>
<td>Thr</td>
<td>Ala</td>
<td>Leu</td>
<td>Ala</td>
<td>Glu</td>
<td>Thr</td>
<td>Ile</td>
</tr>
<tr>
<td>270</td>
<td>Met</td>
<td>Gly</td>
<td>Leu</td>
<td>Trp</td>
<td>Phe</td>
<td>Gly</td>
<td>Glu</td>
<td>Gin</td>
<td>Val</td>
<td>Trp</td>
<td>Leu</td>
<td>Tyr</td>
<td>Leu</td>
<td>Val</td>
</tr>
</tbody>
</table>
Val Glu Thr Lys Arg Leu Lys Lys Ala Leu Gly Lys Gin Leu Ser
290 295 300
Asp Asp Glu Leu Ala Ile Asp Arg Leu Lys Ile Phe Val Glu Asp
305 310 315 320
Trp Lys Asn Asn Lys Tyr Ser Asp Asn Gly Pro Arg Ile Pro Val Phe
325 330 335
Asp Ser Thr Asp Val Thr Lys Val Phe Lys Leu Leu Glu Leu Leu
340 345 350
Lys Ala Thr Tyr Arg Lys Ser Ser Ser Val Arg Thr Val Ile Phe Val
355 360 365
Glu Arg Lys Ala Thr Ala Phe Thr Leu Ser Leu Phe Met Lys Thr Leu
370 375 380
Asn Leu Pro Asn Ile Arg Ala His Ser Phe Ile Gly His Gly Pro Ser
385 390 395 400
Asp Gin Gly Glu Phe Ser Met Thr Phe Arg Arg Gin Lys Asp Thr Leu
405 410 415
His Lys Phe Lys Thr Gly Lys Tyr Asn Val Leu Ile Ala Thr Ala Val
420 425 430
Ala Glu Glu Gly Ile Asp Val Pro Ser Cys Asn Leu Val Ile Arg Phe
435 440 445
Asn Ile Cys Arg Thr Val Thr Gin Tyr Val Gin Ser Arg Gly Arg Ala
450 455 460
Arg Ala Met Ala Ser Lys Phe Leu Ile Phe Leu Asn Thr Glu Glu Leu
465 470 475 480
Leu Ile His Glu Arg Ile Leu His Glu Lys Asn Leu Lys Phe Ala
485 490 495
Leu Ser Glu Leu Ser Asn Ser Asn Ile Phe Asp Ser Leu Val Cys Glu
500 505 510
Glu Arg Glu Arg Val Thr Asp Arg Ile Val Tyr Glu Val Gly Glu Thr
515 520 525
Gly Ala Leu Leu Thr Gly Leu Tyr Ala Val Ser Leu Leu Tyr Asn Phe
530 535 540
Cys Asn Thr Leu Ser Arg Asp Val Tyr Thr Arg Tyr Tyr Pro Thr Phe
545 550 555 560
Thr Ala Gin Pro Cys Leu Ser Gly Trp Tyr Cys Phe Glu Val Glu Leu
565 570 575
Pro Lys Ala Cys Lys Val Pro Ala Ala Gin Gly Ser Pro Ala Lys Ser
580 585 590
Ile Arg Lys Ala Lys Gin Asn Ala Ala Phe Ile Met Cys Leu Asp Leu
595 600 605
Ile Arg Met Gly Leu Ile Asp Lys His Leu Lys Pro Leu Asp Phe Arg
610 615 620
Arg Lys Ile Ala Asp Leu Thr Leu Glu Gly Asp Glu Leu Lys Asp
625 630 635 640
Glu Gly Tyr Ile Glu Thr Tyr Glu Arg Tyr Val Pro Lys Ser Thr Met
645 650 655
Lys Val Pro Glu Asp Ile Thr Arg Cys Phe Val Ser Leu Leu Tyr Thr
660 665 670
Asp Ala Asn Glu Gly Asp Asn His Ile Phe His Pro Leu Val Phe Val
675 680 685
Gln Ala His Ser Phe Pro Lys Ile Asp Ser Phe Ile Leu Asn Ser Thr
690 695 700
Val Gly Pro Arg Val Lys Ile Val Leu Glu Thr Ile Glu Asp Ser Phe
705 710 715 720
Lys Ile Asp Ser His Leu Leu Glu Leu Leu Lys Ser Thr Arg Tyr
725 730 735
Leu Leu Gln Phe Gly Leu Ser Thr Ser Leu Glu Gln Gln Ile Pro Thr
740 745 750
Pro Tyr Trp Leu Ala Pro Leu Asn Leu Ser Cys Thr Asp Tyr Arg Phe
755 760 765
Leu Gln Asn Leu Ile Asp Val Asp Thr Ile Gln Asn Phe Phe Lys Leu
770 775 780
Pro Glu Pro Val Gln Asn Val Thr Asp Leu Gln Ser Asp Thr Val Leu
785 790 795 800
Leu Val Asn Pro Gln Ser Ile Tyr Gln Tyr Ala Phe Glu Gly Phe
805 810 815
Val Asn Ser Glu Phe Met Ile Pro Ala Lys Lys Asp Lys Ala Pro
820 825 830
Ser Ala Leu Cys Lys Leu Pro Leu Arg Leu Asn Tyr Ser Leu Trp
835 840 845
Gly Asn Arg Ala Lys Ser Ile Pro Lys Ser Gln Gln Val Arg Ser Phe
850 855 860
Tyr Ile Asn Arg Leu Tyr Ile Leu Pro Val Ser Arg His Leu Lys Asn
865 870 875 880
Ser Ala Leu Leu Ile Pro Ser Ile Leu Tyr His Ile Glu Asn Leu Leu
885 890 895
Val Ala Ser Ser Phe Ile Glu His Phe Arg Leu Asp Cys Lys Ile Asp
900 905 910
Thr Ala Cys Glu Ala Leu Thr Ser Ala Glu Ser Gln Leu Asn Phe Asp
915 920 925
Tyr Asp Arg Leu Glu Phe Tyr Gly Asp Cys Phe Leu Lys Leu Gly Ala
930 935 940
Ser Ile Thr Val Phe Leu Lys Phe Pro Asp Thr Gln Glu Tyr Gln Leu
945 950 955 960
His Phe Asn Arg Lys Ile Ile Ser Asn Cys Asn Leu Tyr Lys Val
965 970 975
 Ala Ile Asp Cys Glu Leu Pro Lys Tyr Ala Leu Ser Thr Pro Leu Glu
980 985 990
Ile Arg His Thr Cys Pro Tyr Gly Phe Glu Lys Ser Thr Ser Asp Lys
995 1000 1005
Cys Arg Tyr Ala Val Leu Glu Lys Leu Ser Val Lys Arg Ile Ala
1010 1015 1020
Asp Met Val Glu Ala Ser Ile Gly Ala Cys Leu Leu Asp Ser Gly
1025 1030 1035
Leu Asp Ser Ala Leu Lys Ile Cys Lys Ser Leu Ser Val Gly Leu
1040 1045 1050
Leu Asp Ile Ser Asn Trp Asp Glu Trp Asn Asn Tyr Phe Asp Leu
1055 1060 1065
Asn Thr Tyr Ala Asp Ser Leu Arg Asn Val Gln Phe Pro Tyr Ser
1070 1075 1080
Ser Tyr Ile Glu Glu Thr Ile Gly Tyr Ser Phe Lys Asn Lys Lys
1095 1099 1100
Leu Leu His Leu Ala Phe Ile His Pro Ser Met Met Ser Gln Gln
1100 1105 1110
<table>
<thead>
<tr>
<th>Gly</th>
<th>Ile</th>
<th>Tyr</th>
<th>Glu</th>
<th>Asn</th>
<th>Tyr</th>
<th>Gln</th>
<th>Gln</th>
<th>Leu</th>
<th>Glu</th>
<th>Phe</th>
<th>Leu</th>
<th>Gly</th>
<th>Asp</th>
<th>Ala</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1115</td>
</tr>
<tr>
<td>Val</td>
<td>Leu</td>
<td>Asp</td>
<td>Tyr</td>
<td>Ile</td>
<td>Ile</td>
<td>Val</td>
<td>Gln</td>
<td>Tyr</td>
<td>Leu</td>
<td>Tyr</td>
<td>Lys</td>
<td>Lys</td>
<td>Tyr</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
<td>1130</td>
</tr>
<tr>
<td>Asn</td>
<td>Ala</td>
<td>Thr</td>
<td>Ser</td>
<td>Gly</td>
<td>Glu</td>
<td>Leu</td>
<td>Thr</td>
<td>Asp</td>
<td>Tyr</td>
<td>Lys</td>
<td>Ser</td>
<td>Phe</td>
<td>Tyr</td>
<td>Val</td>
</tr>
<tr>
<td></td>
<td>1145</td>
</tr>
<tr>
<td>Cys</td>
<td>Ser</td>
<td>Lys</td>
<td>Ser</td>
<td>Leu</td>
<td>Leu</td>
<td>Ser</td>
<td>Tyr</td>
<td>Ile</td>
<td>Gly</td>
<td>Phe</td>
<td>Val</td>
<td>Leu</td>
<td>Asn</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Tyr</td>
<td>Ile</td>
<td>Gln</td>
<td>His</td>
<td>Glu</td>
<td>Ser</td>
<td>Ala</td>
<td>Ala</td>
<td>Met</td>
<td>Cys</td>
<td>Asp</td>
<td>Ala</td>
<td>Ile</td>
<td>Phe</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Tyr</td>
<td>Gln</td>
<td>Glu</td>
<td>Leu</td>
<td>Ile</td>
<td>Glu</td>
<td>Ala</td>
<td>Phe</td>
<td>Arg</td>
<td>Glu</td>
<td>Thr</td>
<td>Ala</td>
<td>Ser</td>
<td>Glu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>Pro</td>
<td>Trp</td>
<td>Phe</td>
<td>Trp</td>
<td>Phe</td>
<td>Glu</td>
<td>Ile</td>
<td>Asp</td>
<td>Ser</td>
<td>Pro</td>
<td>Lys</td>
<td>Phe</td>
<td>Ile</td>
<td>Ser</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Thr</td>
<td>Leu</td>
<td>Glu</td>
<td>Ala</td>
<td>Met</td>
<td>Ile</td>
<td>Cys</td>
<td>Ala</td>
<td>Ile</td>
<td>Phe</td>
<td>Leu</td>
<td>Asp</td>
<td>Ser</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Ser</td>
<td>Leu</td>
<td>Gln</td>
<td>Ser</td>
<td>Leu</td>
<td>Gln</td>
<td>Phe</td>
<td>Val</td>
<td>Leu</td>
<td>Pro</td>
<td>Leu</td>
<td>Phe</td>
<td>Leu</td>
<td>Asn</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Leu</td>
<td>Gly</td>
<td>Asp</td>
<td>Ala</td>
<td>Thr</td>
<td>His</td>
<td>Thr</td>
<td>Lys</td>
<td>Ala</td>
<td>Lys</td>
<td>Gly</td>
<td>Aep</td>
<td>Ile</td>
<td>Glu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>His</td>
<td>Lys</td>
<td>Val</td>
<td>Tyr</td>
<td>Gln</td>
<td>Leu</td>
<td>Lys</td>
<td>Asp</td>
<td>Gln</td>
<td>Gly</td>
<td>Cys</td>
<td>Glu</td>
<td>Asp</td>
<td>Phe</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Thr</td>
<td>Lys</td>
<td>Cys</td>
<td>Val</td>
<td>Ile</td>
<td>Glu</td>
<td>Glu</td>
<td>Val</td>
<td>Lys</td>
<td>Ser</td>
<td>Ser</td>
<td>His</td>
<td>Lys</td>
<td>Thr</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Leu</td>
<td>Asn</td>
<td>Thr</td>
<td>Glu</td>
<td>Leu</td>
<td>His</td>
<td>Leu</td>
<td>Thr</td>
<td>Lys</td>
<td>Tyr</td>
<td>Gly</td>
<td>Phe</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Phe</td>
<td>Arg</td>
<td>His</td>
<td>Gly</td>
<td>Asn</td>
<td>Ile</td>
<td>Val</td>
<td>Ala</td>
<td>Tyr</td>
<td>Gly</td>
<td>Lys</td>
<td>Ser</td>
<td>Arg</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Ala</td>
<td>Aen</td>
<td>Ala</td>
<td>Lys</td>
<td>Tyr</td>
<td>Ile</td>
<td>Met</td>
<td>Lys</td>
<td>Gln</td>
<td>Arg</td>
<td>Leu</td>
<td>Leu</td>
<td>Lys</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Glu</td>
<td>Asp</td>
<td>Lys</td>
<td>Ser</td>
<td>Asn</td>
<td>Leu</td>
<td>Leu</td>
<td>Leu</td>
<td>Tyr</td>
<td>Ser</td>
<td>Cys</td>
<td>Asn</td>
<td>Cys</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Ser</td>
<td>Lys</td>
<td>Lys</td>
<td>Pro</td>
<td>Ser</td>
<td>Asp</td>
<td>Glu</td>
<td>Gln</td>
<td>Ile</td>
<td>Lys</td>
<td>Gly</td>
<td>Asp</td>
<td>Gly</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Val</td>
<td>Lys</td>
<td>Ser</td>
<td>Leu</td>
<td>Thr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 19
<211> LENGTH: 4125
<212> TYPE: DNA
<213> ORGANISM: Schizosaccharomyces pombe

<400> SEQUENCE: 19
atgatattt ccagttttct actttctcaa cttttacgta aataatcaaca agatgatgat 60
aatatcgga gcgaagaaaa tacttttactt gttatgaga cggggcgtgg taagacatta 120
cattgtgtag agttgatatg acaaaaaagct gccgagcaga ttttatccca agataatgaat 180
cattgacata aaaaaatctc aagccccctc gtcacaaag tcccttctgt atttcaacac 240
gcggagataa ttgcgctctg acctccgct gaggagcagct ogcctttatt gccattatatct 300
ataagaaagtg gggagaggtt gttggtatct attatatctg agataataagtt gattgttatct 360
actccgcat ttgctctct tttttctggcc atggattgtac acctggcatta 420
ttatactt tacgcaatgc ttcacatgca attgaaaagtg ctcgatcatgct 480
aagtttttttttttccgccgtaa cttgcttaaa aaccatccac cttcagaaga 540
<table>
<thead>
<tr>
<th>101</th>
<th>102</th>
</tr>
</thead>
<tbody>
<tr>
<td>cttttaatc gaagagaat tattagcaac tgtaatgtg ataagtagc aatagattgt 2940</td>
<td></td>
</tr>
<tr>
<td>gatttgcgcc aatagtccct ctctacccc ttgaaatcc gtcattgtg ccctatggt 3000</td>
<td></td>
</tr>
<tr>
<td>tttcagaaa gcacatacg taatgcggc taacgcgttt tacagaaatt atcgcttaag 3060</td>
<td></td>
</tr>
<tr>
<td>agatagactc atagtcgata acgtagcatc ggtcgactgc ttttgacag tggactggac 3120</td>
<td></td>
</tr>
<tr>
<td>tcaagactca agatctgtaa atcattaag ctgggctagc tggatatacg caatctggaat 3180</td>
<td></td>
</tr>
<tr>
<td>gatgtgacat atatatggca tttaatatac tgtcgcgatt cactgaaaa tgttccatcc 3240</td>
<td></td>
</tr>
<tr>
<td>cctatacct tgtataga ggaactatt ggtatcatc ttaaaacca gaaactactc 3300</td>
<td></td>
</tr>
<tr>
<td>cttttgcat tattcatcct cttccagatg tttcagcgaag gatttacga aacactctaa 3360</td>
<td></td>
</tr>
<tr>
<td>cagttggtgt tttgggtgta tgtctatgg gattacatta tctgacatg cttttataaa 3420</td>
<td></td>
</tr>
<tr>
<td>aagctatcct ccacgtcct cggcaatatt actgattcct aattcttaata tgtggttac 3480</td>
<td></td>
</tr>
<tr>
<td>aagatcctt cattacctgg cttttggatt aattggtacc caataatct cagatgaaac 3540</td>
<td></td>
</tr>
<tr>
<td>gccagacat tgtctgttct atttgtgcta aacagatagtc gatgtgcctt cagagagact 3600</td>
<td></td>
</tr>
<tr>
<td>gcttcagaga atcctgtggt ctggttggaa attgattcag ccaagctctct ttcgatgct 3660</td>
<td></td>
</tr>
<tr>
<td>ttgaggtct tgtatggctc cttttttttt ctgtttgctt ttgatttac atctctacaa 3720</td>
<td></td>
</tr>
<tr>
<td>ttcttttcac cttttttttc taattctgta ggggatgca cacatactaa ggttaaaagga 3780</td>
<td></td>
</tr>
<tr>
<td>ggttattgacc acaaggtata ccaattactg aatgattgaa gatgtaagaga cttgccacac 3840</td>
<td></td>
</tr>
<tr>
<td>gtagtggatcc tggagagtct gaaatccagt cacaaacat tgttaatatt cgaactcct 3900</td>
<td></td>
</tr>
<tr>
<td>ttcaaaagtt tattcctgtc cgcaagggga atattgtgct tacaagccaa 3960</td>
<td></td>
</tr>
<tr>
<td>tccgctaag ggctcacttc atgaaacct gacgtctgctt cttgcttgag 4020</td>
<td></td>
</tr>
<tr>
<td>gataagtcct attacatcct tttctgctt aatctgccat ttagaagaa aagaaccactt 4080</td>
<td></td>
</tr>
<tr>
<td>gttgagccaa aacagatggg tggaaatggt aaaaagtttgctttggttttga 4125</td>
<td></td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 20
<211> LENGTH: 754
<212> TYPE: PRT
<213> ORGANISM: Giardia lamblia virus

<400> SEQUENCE: 20

Met His Ala Leu Gly His Cys Cys Thr Val Val Thr Thr Arg Gly Pro
1 5 10 15
Ser His Thr Leu Leu Leu Leu Asp Thr His Leu Gly Thr Leu Pro Gly
20 25 30
Phe Lys Val Ser Ala Gly Arg Gly Leu Pro Ala Ala Glu Val Tyr Phe
35 40 45
Glu Ala Gly Pro Arg Val Ser Leu Ser Arg Thr Asp Ala Thr Ile Val
50 55 60
Ala Val Tyr Gln Ser Ile Leu Phe Gln Leu Leu Gly Pro Thr Phe Pro
65 70 75 80
Ala Ser Thr Trp Thr Glu Ile Gly Ala Thr Met Pro His Asn Glu Tyr Thr
85 90 95
Phe Pro Arg Phe Ile Ser Asn Pro Pro Glu Phe Ala Thr Leu Ala Phe
100 105 110
Leu Pro Leu Leu Ser Pro Thr Ser Pro Leu Asp Leu Arg Ala Leu Met
115 120 125
Val Thr Ala Glu Met Cys Asp Ala Lys Arg Leu Ser Asp Glu Tyr
130 135 140
Thr Asp Tyr Ser Thr Leu Ser Ala Ser Leu His Gly Arg Met Val Ala
145 150 155 160
01

Thr Pro Glu Ile Ser Trp Ser Leu Tyr Val Val Leu Gly Ile Asp Ser
 165 170 175
Thr Gln Thr Ser Leu Ser Tyr Phe Thr Arg Ala Asn Glu Ser Ile Thr
 180 185 190
Tyr Met Arg Tyr Tyr Ala Thr Ala His Asn Ile His Leu Arg Ala Ala
 195 200 205
Asp Leu Pro Leu Val Ala Val Arg Leu Asp Leu Lys Asp His
 210 215 220
Gln Ile Pro Ala Pro Gly Ser Trp Asp Ala Leu Ala Pro Lys Leu Arg
 225 230 235 240
Phe Leu Pro Pro Glu Leu Cys Leu Leu Leu Pro Asp Glu Phe Asp Leu
 245 250 255
Ile Arg Val Gln Ala Leu Gln Phe Leu Pro Glu Ile Ala Lys His Ile
 260 265 270
Cys Asp Ile Gln Asn Thr Ile Cys Ala Leu Asp Lys Ser Phe Pro Asp
 275 280 285
Cys Gly Arg Ile Gly Gly Glu Arg Phe Ala Ile Thr Ala Gly Leu
 290 295 300
Arg Leu Asp Gln Gly Arg Gly Arg Gly Leu Ala Gly Trp Arg Thr Pro
 305 310 315 320
Phe Gly Pro Phe Gly Val Ser His Thr Asp Val Phe Gln Arg Leu Glu
 325 330 335
Leu Leu Gly Asp Ala Val Leu Gly Phe Ile Val Thr Ala Arg Leu Leu
 340 345 350
Cys Leu Phe Pro Asp Ala Ser Val Gly Thr Leu Val Glu Leu Lys Met
 355 360 365
Glu Leu Val Arg Asn Glu Ala Leu Asn Tyr Leu Val Glu Thr Leu Gly
 370 375 380
Leu Pro Gln Leu Ala Gln Phe Ser Asn Asn Leu Val Ala Lys Ser Lys
 385 390 395 400
Thr Trp Ala Asp Met Tyr Glu Ile Val Gly Ser Ile Phe Thr Gly
 405 410 415
Pro Asn Gly Ile Tyr Gly Cys Glu Glu Phe Leu Ala Lys Thr Leu Met
 420 425 430
Ser Pro Glu His Ser Lys Thr Val Gly Ser Ala Cys Pro Asp Ala Val
 435 440 445
Thr Lys Ala Ser Lys Arg Val Cys Met Gly Glu Ala Gly Ala His Glu
 450 455 460
Phe Arg Ser Leu Val Asp Tyr Ala Cys Glu Gin Gly Ile Ser Val Phe
 465 470 475 480
Cys Ser Ser Arg Val Ser Thr Met Phe Leu Glu Arg Leu Arg Asp Ile
 485 490 495
Pro Ala Glu Asp Met Leu Asp Trp Tyr Arg Leu Gly Ile Gin Phe Ser
 500 505 510
His Arg Ser Gly Leu Ser Gly Pro Gly Gly Val Val Ser Val Ile Asp
 515 520 525
Ile Met Thr His Leu Ala Arg Gly Leu Trp Leu Gly Ser Pro Gly Phe
 530 535 540
Tyr Val Glu Gln Gln Thr Asp Lys Asn Glu Ser Ala Cys Pro Pro Thr
 545 550 555 560
Ile Pro Val Leu Tyr Ile Tyr His Arg Ser Val Gin Cys Pro Val Leu
 565 570 575
Tyr Gly Ser Leu Thr Glu Thr Pro Thr Gly Pro Val Ala Ser Lys Val
Leu Ala Leu Tyr Glu Lys Ile Leu Ala Tyr Glu Ser Ser Gly Gly Ser
Lys His Ile Ala Ala Gln Thr Val Ser Arg Ser Leu Ala Val Pro Ile
Pro Ser Gly Thr Ile Pro Phe Leu Ile Arg Leu Gln Ile Ala Leu
Thr Pro His Val Tyr Gln Lys Leu Glu Leu Gly Asp Ala Phe Leu
Lys Cys Ser Leu Ala Leu His Leu His Ala Leu His Pro Thr Leu Thr
Glu Gly Ala Leu Thr Arg Met Arg Gln Ser Ala Glu Thr Asn Ser Val
Leu Gly Arg Leu Thr Lys Arg Phe Pro Ser Val Ser Glu Val Ile
Ile Glu Ser His Pro Lys Ile Gln Pro Asp Ser Lys Val Tyr Gly Asp
Thr Phe Glu Ala Ile Leu Ala Ile Leu Ala Cys Gly Glu Glu
Ala Ala Gly Ala Phe Val Arg Glu His Val Leu Pro Gln Val Val Ala
Amp Ala

<210> SEQ ID NO 21
<211> LENGTH: 2265
<212> TYPE: DNA
<213> ORGANISM: Giardia lamblia virus
<400> SEQUENCE: 21
atgcatgctt tgggacactg ttgcatcacta gaggccatcc cactggtttg 60
tctacttacg acacactcg cgggacacttg ccaggtctta aggttaatgc aggccaggg 120
ttccccgag cagaggtgta ctttgaagcg gttgcaaggg tggccttcct tcgactactat 180
gcaatctag lagccgtgtg tcagctcatt cttctttcagc tcgctggacg cacacttctc 240
gctcaatag ctsagatgcttg agccacactc tctcagacttt ctctgctgat 300
atatatcaco acacacacttg cgcaaccccttg gaaattttttac cttcatca tctcagcc 360
cctctgtgacct tcgctgcact aatggtgcat gcacacactc ctgctgactgtc aaagcgcttg 420
tcagatgat atacacacta tttccactttta tcctgatcgc tcacggtggcg ctatgtgta 490
actcgcgaaas taagctgtctc attttagtgc gtctttgagta gttattctac ccacactgc 540	ctctctctta tttactgAGGGA aataactacta atacactaca tcggtactta tcgcaactcg 600
cacacttccc actcgctgctcg gacagtccct cgcctcgagc attagacagat 660
tcmacagcc acagggctcg cgcggtctga atgagggtcttc atttgtccagc ccagactgcc 720
tttcttgctg cggctgtctgc tgttaccttc ccagatgaaat attaggtcctg 780
gctggttcata tgcaggggtc gatacaggag gcagagggcg gatggagcccc 840
gctgccggtata gagcagtgctg cggaggtggt gcgaccgc ctttgcaatc 900
tgctgtgctgg tgaaggagc tcaggggcgt gacagggcg cgcgtggtggt gcgaacccccc 960
ttgggacacttg gtaagggcgg gcagcactcg gatggtcctg gagaaccccct 1020
gctggttgat gttttaaggt gactgccccct cttctttgcc ttttccagca tcactgtcacg 1080
ggaacacttg ttgagctaaa gatgagcctt gttgcgaatg aggctctaaat ctatctgtaa 1140
caaacgctt gactccctca gttcgcggag ttttccaaa accttggtgac gaaagcaaaa 1200
acatggcag actatgtatga gpgagactgttg gatcaactct ttaaggacc aceatggaac 1260
tatggtctgt aggatattctc tggcgaacag ccattgagtct cggacacacttc aagacaagta 1320
ggatatgctt gccagatgac agtacacagcg ctaatgaaagct ctggtgtgcgt ggcgagaggg 1380
ggggttcacag cactccagct cctgtgctgc ttagctgcgt cagcagagctt attggcctt 1440
tgtctttcgc ggggtcaacact tattttctct cagcctctca gacacacttc agcagacgac 1500
atgtagtag tgaatcgcact tggatcactgt tttcgatact gttcaggtgcct atcagaggct 1560
ggcgggtcgc tacaggttat agacataatg acaacatttgg ctcagagctct atggcctggc 1620
tttcaggtcttc gtaatgtaa acagcaaatg atcgaagcta agttagctgctt ccggcgaacct 1680
atactgtttt tatatatotata ctcgctgctg cggcagaata ttcggttttata tgggtgcgtc 1740
acagacacc ctccagaggc ctagctgttc aaggttctcg ctctctatga gaaaggctgcg 1800
gcaatgag gtattcagagc ttaataaatgct atacagatgc agacagtttag cagatcctcg 1860
gccccctcact cactacaccg cactcactcct cttcagcttttt tctttgtgatc cattgcaacta 1920
accccccag cggccgcccc aatcagcgccttt cttggagacgc ggtctctgtaa gttgcagccct 1980
getcctcagt ctcagctgctt ccaaccaacag ctccacaggg ggcctcttac aagcttagcgg 2040
caaatgctag aaaaaatctc tgtactggga agattgaca aaaaatctcc ttcagctgctt 2100
ttttagtgta cttattgcac ccactgtcggaa atacagcttg cacagagcct ttagctgcatg 2160
acatggagc cctttttggcc acaatcctttt cttgctgtggc gggagagggc agcaggtgct 2220	ttgtgctgag agcagttctt cccacaagta gtagtgcgtg ccag 2265

<210> SEQ ID NO 22
<211> LENGTH: 91
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> Feature:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 22
ccggggtcactg ctcgtcctgct tgtccagtca gctgcagctc ctatc cactgcctgaa ggtgcagccct 60
acccacctgg ccgctaa tttgtgttttt t

<210> SEQ ID NO 23
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> Feature:
<223> OTHER INFORMATION: Oligonucleotide

<400> SEQUENCE: 23
tgagtcagc agatcagagc cccagcgc ctc 29

<210> SEQ ID NO 24
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> Feature:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 24
tgagtcagc agatcagagc catcagcgc ctc 29
<210> SEQ ID NO 25
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 25

tgagtcagc agtctcgaac cactccggc 29

<210> SEQ ID NO 26
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide

<400> SEQUENCE: 26

tgagtcagc agtctcgaac cactccggc 29

<210> SEQ ID NO 27
<211> LENGTH: 291
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 27

ggcgcggcg gcgcggtctac ggcggttaatc ccaagagcttt ggagggccga ggccgggtgg 60
tcagctgag tcagggagtt gcagagcagc ggccgaacat ggtgaaaccc cgttctctact 120
aaaaataca aaatagcgg gcgggtctgtt gggggcctgt tattccccacc tattcgggag 180
gtcagcgac gagagctgtg tcaacoccgag aggcgcgagc tgcagtgagc cgagctgagc 240
cacaggcat ccacgctgag ccaagaagcg gaaactcgt ctctaaaaaa a 291

<210> SEQ ID NO 28
<211> LENGTH: 302
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 28

ggcgcggcgcc aatggtctcag aaccttaatc ccaagaccttt gcagggctga gcggggcgcg 60
tcagctgag tcagggagtt gcagagcagc ggccgaacat ggtgaaaccc cgttctctact 120
aaaaataca aaatagcgg gcgggtctgtt gggggcctgt tattccccacc tattcgggag 180
ggcagcgtgc gtcgacccgg ggcgcggggc gcggctggag ttcaggttgag cgcagttcgc gcagcttgcc 240
tcagctgag gcagctggag cgcacttggt ctctaaaaac aaaccgcgcc aaagaaaaaa 300
aa 302

<210> SEQ ID NO 29
<211> LENGTH: 221
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 29

tccctcagcact ccctccgagc gaggccgggt ggtgatctag gtcagggagc cgagagctcc 60
cgcgcaacac caggcgaacct caagctctaac taaaaaata cacaaagaaaaa aatgcaccag 120
gtctgtgggt gcggcgcgtct agtctcagct gtcgagggagc tgtcggggag aaggttgctt 180
ggcgcggggc gcgcggcagtt gcaggtgcagc ggagtttgag c 221
What is claimed is:

1. A method of protecting a retinal pigmented epithelium (RPE) cell, comprising: inhibiting Alu RNA associated with the RPE cell, wherein the inhibiting Alu RNA comprises administering an siRNA targeting Alu RNA.

2. The method of claim 1, wherein the siRNA includes a first strand having a sequence selected from SEQ ID NO: 1, 2, 3, 4, 5, and 6.

3. The method of claim 1, wherein the RPE cell is of a subject having age-related macular degeneration.

4. The method of claim 1, wherein the RPE cell is of a subject having geographic atrophy.