Endophyte Ergot Alkaloid Synthetic Compounds, Compounds Which Encode Therefor and Related Methods

Christopher L. Schardl
University of Kentucky, schardl@uky.edu

Jinhung Wang

Click here to let us know how access to this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/plantpath_patents

Part of the Plant Pathology Commons

Recommended Citation
Schardl, Christopher L. and Wang, Jinhung, "Endophyte Ergot Alkaloid Synthetic Compounds, Compounds Which Encode Therefor and Related Methods" (2002). Plant Pathology Faculty Patents. 3.
https://uknowledge.uky.edu/plantpath_patents/3

This Patent is brought to you for free and open access by the Plant Pathology at UKnowledge. It has been accepted for inclusion in Plant Pathology Faculty Patents by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
ENDOPHYTE ERGOT ALKALOID
SYNTHETIC COMPOUNDS, COMPOUNDS
WHICH ENCODE THEREFOR AND
RELATED METHODS

Christopher L. Scharald, Jinghui
Wang, both of Lexington, KY (US)

University of Kentucky Research
Foundation, Lexington, KY (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Filed: Mar. 3, 2000

Primary Examiner—Rebecca E. Prouty
Assistant Examiner—Manjunath N. Rao
Attorney, Agent, or Firm—McDermott, Will & Emery

The present invention provides, inter alia, dmaW nucleic
cacid sequences and the proteins for which they encode. Also
provided are methods for the utilization of knockout mutants
of the sequences which are useful for engineering ergot
alkaloid-deficient fungal symbions (endophytes) of plants.
Other methods and materials related to these sequences are
also provided.

19 Claims, 4 Drawing Sheets
Indirect gene replacement, step 1
Indirect gene replacement, step 2
Homologous gene replacement
Alternative life cycles of *Epichloe* and *Neotyphodium* species in host grasses. The *Neotyphodium* (formerly *Acremonium*) endophytes have only the asexual/vertical transmission life cycle. Thus, unlike *Epichloe* species, the *Neotyphodium* species cannot transmit contagiously; that is, they cannot transmit from an infected plant of one maternal lineage to an uninfected plant of a different maternal lineage. However, the *Neotyphodium* species and some *Epichloe* species transmit vertically at extremely high frequency, such that 98%-100% of seeds produced on an endophyte-containing mother plant also contain endophyte and, upon germination, give rise to endophyte-containing plants. Also, there are standard methods whereby seedlings or other plant material that lacks endophyte can be inoculated with mycelium of wild type or transformed endophyte to give rise to endophyte-containing plants; and such plants will pass on the endophyte in the normal fashions shown here depending on whether the endophyte is compatible with that host grass and what is (are) its normal transmission mode(s) [Latch *et al.*, 107 Annals of Applied Biology 17 (1985)][Tsai *et al.*, 22 Current Genet 399 (1992)].
ENOPHYTE ERGOT ALKALOID SYNTHETIC COMPOUNDS, COMPOUNDS WHICH ENCODE THEREFOR AND RELATED METHODS

This application claims priority to U.S. Provisional Patent Application Serial No. 60/125,490, which was filed on Mar. 22, 1999.

The present invention was funded in part by USDA NRI grant 95-37303-1678; the U.S. Government may have certain rights in this invention.

FIELD OF THE INVENTION

The present invention relates to sequences that encode dimethylallyl-diphosphate:L-tryptophan dimethylallyltransferase (“DmaW” or “dimethylallyltryptophan synthase”), an enzyme present in some grass endophytes, and that catalyzes the formation of 4,7,12-dimethylallyltryptophan. This enzyme activity is the first committed step in the production of ergot alkaloids, including those with clavine and ergoline ring structures. Such alkaloids include clavines, lysergic acid, lysergic acid amides, and ergopeptides. The sequences encode a DmaW from fungi that are symbionts of commercially significant grasses.

BACKGROUND OF THE INVENTION

Certain fungal species exist as symbiotic and integral parts of grasses and are passed from generation to generation of plants, but many are not passed from plant to plant except by transmitting in seeds of maternal plant lineages. Representatives of these fungi are the Neotyphodium species (“Neotyphodium” and sometimes “Acremonium”, for example, N. coenophialum) and Epichloë species (e.g. E. festucae and E. ryphina), which are symbionts and integral parts of many grass cultivars. These fungi, termed “endophytes”, are seed-transmissible at extremely high efficiency. Their symbioses with host grasses are characterized by mutual benefits to the hosts and symbionts. Benefits to the grass hosts include protection from insects and vertebrates, and resistance to water stress (drought). Anti-insect activities are mainly due to pyrrolizidine and pyrrolizidine alkaloids produced by the endophytes. Anti-vertebrate activities are mainly due to indole alkaloids, including the ergot alkaloids (clavines, lysergic acid and its derivatives, and ergopeptides).

Tall fescue is grown on over 14 million hectares as an important forage, turf and conservation grass; most of the tall fescue grown in the U.S. contains ergot-alkaloid-producing endophytes. The anti-vertebrate activity of the ergot alkaloids, which manifests as “tall fescue toxicosis” in cattle and other livestock, causes losses estimated at more than $500 million per year.

In 1992, Gebler and Poultner purified the DmaW enzyme from Clavicipes sp. ATCC 26245 to a single protein band observable by SDS-PAGE electrophoresis, and fragmented the protein with CNBr. Gebler et al., 114 Journal of the American Chemical Society 7354 (1992). The three resulting fragments were purified and their N-termini sequenced. In research by one of the inventors of the present invention, there was disclosed a sequence of a dmaW gene (herein dmaW) from C. fusiformis ATCC 26245 organism from which the sequence was identified was mis-named C. purpurea by the supplier to the ATCC, and was actually C. fusiformis.) Tsai et al., 216 Biochem & Biophys Res Comm 119 (1995). The C. fusiformis sequence from that research is 58% identical to the present sequences at the DNA level.

More recently, a C. purpurea dmaW sequence was disclosed in Tuzdyski et al., 261 Molec Gen Genet 133 (1999), and is 62% identical at the DNA level to the present sequence.

Citation of the above documents is not intended as an admission that any of the foregoing is pertinent prior art. For example, in some instances above, the publication was less than one year before the filing date of this patent application. All statements as to the date or representation as to the contents of these documents is based on subjective characterization of information available to the applicant at the time of filing, and does not constitute an admission as to the accuracy of the dates or contents of these documents.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide sequences useful to engineer ergot alkaloid-deficient symbionts, thus ergot-alkaloid-deficient plants.

It is a further object to provide methods to engineer ergot alkaloid-deficient endophytes.

It is yet another object to provide ergot alkaloid-deficient seeds.

It is yet another object to provide plants with ergot alkaloid-deficient endophytes.

It is also an object of the invention to provide materials such as vectors for engineering ergot alkaloid-deficient endophytes.

It is also an object of the invention to provide enzymes useful in ergot alkaloid synthesis.

Also, it is an object to use the present nucleic acid compounds to determine the potential or lack of potential of symbiont strains to produce ergot alkaloids.

Other objects will be apparent from the present disclosure.

Definitions:

For the purposes of the present application, the following terms have the following meanings. All other terms have the meaning as specifically recognized in the art.

“Allelic variant” is meant to refer to a full length gene or partial sequence of a full length gene that occurs at essentially the same locus (or loci) as the referent sequence, but which, due to natural variations caused by, for example, mutation or recombination, has a similar but not identical sequence. Allelic variants typically encode proteins having similar activity to that of the protein encoded by the gene to which they are being compared. Allelic variants may also comprise alterations in the 5 or 3 untranslated regions of the gene (e.g., in regulatory control regions).

“Fragment” is meant to refer to any subset of the referent nucleic acid sequence.

“Knockout construct” means a DNA sequence which has been altered via any known means, for example, deletion, insertion, point mutation or rearrangement, so as to alter or eliminate the function of the naturally-occurring sequence product, but not so as to alter the ability of the DNA sequence to recombine with the naturally-occurring sequence.

“Knockout mutants” are cells, embryos, fungi or plants in which a naturally-occurring dmaW sequence has been replaced through genetic engineering with a knockout construct, so as to result in a ergot alkaloid-deficient phenotype, especially a dimethylallyl-diphosphate:L-tryptophan dimethylallyltransferase-deficient phenotype.

“Proteins” means any compounds which comprise amino acids, including peptides, polypeptides, fusion proteins, etc. Moreover, for the purposes of the present invention, the term “a” or “an” entity refers to one or more of that entity;
for example, “a protein” or “a nucleic acid molecule” refers to one or more of those compounds or at least one compound. As such, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. It is also to be noted that the terms “comprising”, “including”, and “having” can be used interchangeably. Furthermore, a compound “selected from the group consisting of” refers to one or more of the compounds in the list that follows, including mixtures (i.e., combinations) of two or more of the compounds. According to the present invention, an isolated, or biologically pure, protein or nucleic acid molecule is a compound that has been removed from its natural milieu. As such, “isolated” and “biologically pure” do not necessarily reflect the extent to which the compound has been purified. An isolated compound of the present invention can be obtained from its natural source, can be produced using molecular biology techniques or can be produced by chemical synthesis.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 schematically depicts the first step of the herein-described indirect gene replacement.

FIG. 2 schematically depicts the second step of the herein-described indirect gene replacement.

FIG. 3 schematically depicts the herein-described homologous gene replacement.

FIG. 4 schematically depicts the alternative life cycles of Epichloe and Neotyphodium species in host grasses.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides, inter alia, isolated nucleic acid molecule encoding a DmA sequence, wherein said nucleic acid molecule comprises a nucleic acid sequence selected from the group consisting of:

(a) a nucleic acid sequence which has more than 63% identity to a sequence selected from the group consisting of SEQ ID NO 1 and SEQ ID NO 3, and wherein said identity can be determined using the DNAsis computer program and default parameters;

(b) a nucleic acid molecule selected from the group consisting of: a nucleic acid molecule which encodes a DmA amino acid sequence selected from the group consisting of: SEQ ID NO 2; SEQ ID NO 4; a protein encoded by an allelic variant of SEQ ID NO 1; and a protein encoded by an allelic variant of SEQ ID NO 3.

Allelic variants, fragments (including a portion of a molecule) and homologues are, by definition of “nucleic acid molecule”, included within this and other embodiments. Included within the scope of the present invention, with particular regard to the nucleic acids above, are allelic variants, degenerate sequences and homologues. Allelic variants are expected to be found in nature. The present invention also includes variants due to laboratory manipulation, such as, but not limited to, variants produced during polymerase chain reaction amplification or site-directed mutagenesis. It is also well known that there is a substantial amount of redundancy in the various codons which code for specific amino acids. Therefore, this invention is also directed to those nucleic acid sequences which contain alternative codons which code for the eventual translation of the identical amino acid. Also included within the scope of this invention are mutations either in the nucleic acid sequence or the translated protein which do not substantially alter the ultimate physical properties of the expressed protein. For example, substitution of valine for leucine, arginine for lysine, or asparagine for glutamine may not cause a change in functionality of the polypeptide. Lastly, a nucleic acid sequence homologous to the exemplified nucleic acid molecules (or allelic variants or degenerates thereof) can have approximately 85%, preferably approximately 90%, and most preferably approximately 95% sequence identity with a nucleic acid molecule in the sequence listing.

Stringent hybridization conditions are determined based on defined physical properties of the gene to which the nucleic acid molecule is being hybridized, and can be defined mathematically. Stringent hybridization conditions are those experimental parameters that allow an individual skilled in the art to identify significant similarities between heterologous nucleic acid molecules. These conditions are well known to those skilled in the art. See, for example, Sambrook, et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Labs Press, and Meinkoth, et al., 1984, Anal. Biochem. 138, 267-284.

It is known in the art that there are commercially available computer programs for determining the degree of similarity between two nucleic acid sequences. These computer programs include various known methods to determine the percentage identity and the number and length of gaps between hybrid nucleic acid molecules. Preferred methods to determine the percent identity among amino acid sequences and also among nucleic acid sequences include analysis using one or more of the commercially available computer programs designed to compare and analyze nucleic acid or amino acid sequences. These computer programs include, but are not limited to, GCG™ (available from Genetics Computer Group, Madison, Wis.), DNAsis™ (available from Hitachi Software, San Bruno, Calif.) and MacVector™ (available from the Eastman Kodak Company, New Haven, Conn.). A preferred method to determine percent identity among amino acid sequences and also among nucleic acid sequences includes using the Compare function by maximum matching within the program DNAsis Version 2.1 using default parameters.

In one embodiment of the present invention, a preferred DmA nucleic acid molecule includes an isolated nucleic acid molecule which is at least about 50 nucleotides, or at least about 150 nucleotides, and which hybridizes under conditions which preferably allow about 25% base pair mismatch, more preferably under conditions which allow about 20% base pair mismatch, more preferably under conditions which allow about 15% base pair mismatch, more preferably under conditions which allow about 10% base pair mismatch and even more preferably under conditions which allow about 5% base pair mismatch with a nucleic acid molecule selected from the group consisting of SEQ ID NO 1 and SEQ ID NO 3.

Another embodiment of the present invention includes a nucleic acid molecule comprising at least about 150 base-pairs, wherein the nucleic acid molecule hybridizes, in a solution comprising 1X SSC and 0% formamide, at a temperature of about 50° C., to a nucleic acid sequence selected from the group consisting of: SEQ ID NO 1 and SEQ ID NO 3. Also preferred are fragments of any of such nucleic acid molecules.

Additional preferred DmA nucleic acid molecules of the present invention include an isolated nucleic acid molecule which is at least about 50 nucleotides, or at least about 150 nucleotides, comprising a nucleic acid sequence that is preferably at least about 65% identical, more preferably about 70% identical, more preferably about 75% identical,
more preferably about 90% identical, more preferably about 85% identical, more preferably about 90% identical and even more preferably about 95% identical to a nucleic acid sequence selected from the group consisting of SEQ ID NO 1 and SEQ ID NO 3. Also preferred are fragments of any of such nucleic acid molecules. Percent identity may be determined using the Compare function by maximum matching within the program DNAsis Version 2.1 using default parameters.

Vectors which comprise the above molecules are within the scope of the present invention, as are endophytes and other fungal transformed with the above sequences as are plants having endophytes transformed with the above sequences. Vectors may be obtained from various commercial sources, including Clontech Laboratories, Inc. (Palo Alto, Cali.), Stratagene (La Jolla, Cali.), Invitrogen (Carlsbad, Calif.), New England Biolabs (Beverly, Mass.) and Promega (Madison, Wis.).

Preferred vectors are those which are capable of transferring the molecules disclosed herein into fungal cells. A vector which provided for either an early or late promoter in conjunction with the present sequences would be useful in certain circumstances. For instance, the following promoters would be useful in early expression of the present sequences:

glyceroldehyde-3-phosphate dehydrogenase gene promoter [Junghulsing et al., 25 Current Genetics 101 (1994)]

trpC promoter [Yellon et al., 82 Proceedings of the National Academy of Sciences of the United States of America 834 (1985)].

beta-tubulin gene promoter [Tsai et al., 22 Current Genetics 399 (1992)].

These are fungal promoters that are known to work in endophytes or (for the glyceroldehyde-3-phosphate dehydrogenase gene promoter) the related fungus Claviceps purpurea.

In order to then constitutively express the sequences described above, the construct optionally contains, for example, a beta-tubulin promoter according to the procedures in Tsai et al., 22 Current Genetics 399 (1992).

Moreover, the most commercially significant use of the present invention is in the construction of "knockout mutants" using the above sequences, or known sequences, for design and construction of Dmaw-deficient mutants. In other words, the present invention is informative to those skilled in the art as to their usefulness in making the naturally-occurring sequence inactive. For example, the above sequences can be mutated by any means, i.e., deletion, insertion, point mutation, rearrangement, etc. so long as the mutated version or sequences nearby in replicatable DNA of the fungus (e.g. chromosome) retains the ability to recombine. The mutated version of the sequence is then introduced into cells of a preferred line via routine methods (i.e. biolistic processes, electroporation, treatment of wall-less cells with vector, Agrobacterium-mediated transformation, etc.). Dmaw-deficient mutants of the preferred line would then be selected and propagated. These "knockout" mutant embryos, seeds and plants are within the scope of the present invention, as are the knockout constructs, i.e. sequences and vectors.

In particular, sequences near the active site of enzyme function, and the site itself, would be preferred targets. Moreover, sequences which are conserved among related organisms are also preferred targets. It is contemplated that a modification of the present invention such that the start codon has been eliminated, or replaced with a stop codon, would be a useful knockout construct. Moreover, excision of the coding region or replacing the coding region with an antibiotic (i.e. hygromycin) resistance gene would be useful.

FIGS. 1 through 3 describe examples of such manipulations.

For example, the following seeds, embryos or plants with endophytes transformed with knockout constructs are considered within the present invention. Particularly preferred are: forage, turf and conservation grasses. These include, for example, tall fescue (Festuca arundinacea), meadow fescue (Festuca pratensis), and red fescue (Festuca rubra), which are common turf, conservation (to hold soil and reclaim strip mines) and forage grasses in the U.S. and worldwide. Also used for these purposes, are the ryegrasses such as perennial ryegrass (Lolium perenne). All these have endophytes and most such endophytes produce ergot alkaloids. In particular, tall fescues are most preferred. However, any seed, embryo or plant which comprise endophytes which produce ergot alkaloid is within the scope of the present invention. Of course, those in the art recognize that any seed, embryo or plant with endophytes transformed with knockout constructs which are useful for producing plants for biomass are within the scope of the present invention.

Transformation of cells with the nucleic acid molecules of the present invention can be accomplished according to known procedures. The following procedures are well known: electroporation [Tsai et al., 22 Current Genetics 399 (1992)], treatment of wall-less fungal cells with vector DNA plus CaCl2 and polyethylene glycol [Yellon et al., 81 Proceedings of the National Academy of Sciences of the United States of America 1470 (1984)], and biolistics [Armao et al., 17 Current Genetics 97 (1990)]. In addition, fungi have been transformed using vector-containing bacterial strains, namely Agrobacterium tumefaciens [Gouka et al., 17 Nature Biotechnology 598 (1999)]. The transformed cells are also within the scope of this invention.

The transformed cells may be grown into a fungal mycelium (thallus), which in turn gives rise to spores. Fungal mycelium and spores are propagated indefinitely. In addition, transformed fungal endophyte can be introduced into grass plants. The current preferred method to introduce the fungus into plant is by inoculation of seedling meristems [Latch and Christensen, 107 Annals of Applied Biology 17 (1985)]. Another known method is inoculation and regeneration of plant tissue culture [Johnson et al., 70 Plant Disease 380 (1986)].

Once introduced into a plant the endophyte will remain indefinitely and propagate inside all plant propagules including tillers, stolons, and seeds (unless procedures are undertaken to eliminate live fungal mycelium in the grass, for example by long storage of seeds at ambient temperature). In any grass breeding where the female plant possesses the endophyte the seeds will almost all possess the identical endophyte, and those seeds will give rise to plants with that endophyte [Siegel et al., 74 Phytopathology 932 (1984)]. In this way a grass variety with transformed endophyte can be developed, propagated, and planted for forage, pasture, turf, revegetation, or soil conservation.

Therefore, also provided are methods for constructing sequences with the ability to knockout the above sequences, comprising one of the following techniques: inserting a foreign piece of DNA into one of the disclosed sequences; deleting a piece of DNA from one of the disclosed sequences; or creating a mutation such that the Dmaw activity is eliminated.

Also provided are antisense constructs and methods to inhibit translation or accumulation of mRNA transcripts of the disclosed sequences, so as to either eliminate or reduce
the amount of sequence product. The procedures for anti-
sense inhibition for mRNA are described in U.S. Pat. No.
5,554,743, which patent is expressly incorporated by refer-
ence into this application. Alternatively, the present inven-
tion could be used to design ribozymes which specifically
make damW mRNA.

Also provided in the present invention are methods to
express or overexpress the damW sequences described
herein, and using the DamW in pharmaceutical processes.
Ergot alkaloids produced in fungal fermentation or chemi-
cally modified ergot alkaloids from fungal fermentation are
well known pharmaceuticals. The DamW gene can be intro-
duced into an ergot alkaloid-producing fungal strain, for
example of C. purpura, thus increasing the copy number
and potentially the expression of the DamW protein.
Utilization of a constitutive promoter such as for beta-tubulin
[Tsiel et al., 22 Current Genetics 399 (1992)] may help
increase expression of the gene and, thus, of the protein.
Because DamW catalyzes the rate limiting step of ergot
alkaloid synthesis in C. purpura [Lee et al., 177 Archives of
Biochemistry & Biophysics 84 (1976)], its increased expres-
sion may increase ergot alkaloid production. The low level of
sequence identity between damW from different genomes
(for example between damW sequences of Neotyphodium
and Claviceps) will reduce the problem known as quenching
or cosuppression which limits production of gene products
in fungi and plants [Cogoni et al., 65 Antonie Van Leeu-
wenhoek International Journal of Microbiology 205 (1994)].
Overexpression can be as skill of the art, in particular,
according to the procedures described in U.S. Pat. No.
5,477,001.

Also provided in the present invention are methods to
identify Neotyphodium or Acremonium or Epichloë fungi
that lack damW and, therefore, are unlikely to produce ergot
alkaloids. The cloned Neotyphodium genes can be used for
standard Southern blot hybridization, by anyone skilled in
the art, to screen these related fungi for the presence of
homologous genes. In addition, degenerate primers can be
used for polymerase chain reaction under conditions
described to amplify segments of damW from fungi in
family Clavicipitaceae or from Neotyphodium or Acremo-
nium species. The amplified segments can be analyzed by
gel electrophoresis and sequence analysis by anyone skilled
in the art. Fungi that lack DamW can then be introduced into
glass plants and thereby incorporated into breeding lines as
described above.

Transformation of plant endophytes with these sequences
would be known according to procedures as described
above. Plants can be grown according to known procedures.
Lastly, the present sequences are useful to identify related
sequences, such as those from Balansia, Balansiospis,
Echinodothis, Atkinsonella, Myriogenospora,
Neotyphodium, and Parachlorella, or natural or induced
mutants. For example, screening could be by Southern
blot hybridization analysis of genomic DNA or by polymerase
chain reaction using DNA oligonucleotide primers targeted
to damW or the locus that contains it.

The present invention also provides isolated proteins
encoded by a DamW sequence, wherein said proteins com-
prise an amino acid sequence selected from the group
consisting of:

(a) an amino acid sequence which has more than 68% iden-
tity to an amino acid sequence selected from the group
consisting of SEQ ID NO 2 and SEQ ID NO 4
wherein said identity can be determined using the
DNASeS computer program and default parameters; and
(b) an amino acid sequence which is encoded by a nucleic
acid sequence of claim 1.

There are also provided recombinant cells comprising the
nucleic acid molecules and/or proteins herein described.
Proteins which would result from expression of the
nucleic acid molecules herein disclosed are preferred, with
the proteins which would result from expression of the
exemplified nucleic acid molecules being most preferred. It
is understood that proteins which would result from expres-
sion of allelic variants of the exemplified sequences, as well
as proteins which would result from the expression of
nucleic acid molecules which hybridize under stringent
hybridization conditions to the nucleic acid molecules exem-
plified are within the scope of the present invention as well.
Lastly, an amino acid sequence substantially homologous to
a referent damW-encoded protein will have at least 85%
sequence identity, preferably 90%, and most preferably 95%
sequence identity with the amino acid sequence of a referent
damW-encoded protein or a peptide thereof. For example, an
amino acid sequence is substantially homologous to damW-
encoded protein if, when aligned with damW-encoded
protein, at least 85% of its amino acid residues are the same.
SEQ ID NO 2 and SEQ ID NO 4 are the most preferred
proteins.

DamW homologs can be the result of natural allelic
variation or natural mutation. DamW homologs of the
present invention can also be produced using techniques
known in the art, including, but not limited to, direct modi-
fications to the protein or modifications to the gene encoding
the protein, for example, classic or recombinant
nucleic acid techniques to effect random or targeted
mutagenesis.

EXAMPLE

Example 1

Obtaining damW sequence from N. coenophialum

The following degenerate primers were used to amplify
genomic DNA fragments from N. coenophialum by poly-
ermase chain reaction (PCR). A (+) means they correspond
in sequence to a portion of mRNA, thus read 5'-3' on the
gene, and a (-) indicates they are reverse complements of a
portion of the mRNA and read 3'-5' on the gene; thus, each
PCR involved a combination of a (+) and a (-) primer.

Example 1:

- damWdg(+): GAR CAR MGN YTN TGG TGG CA
damWdg(-): GGN ATH TTY AAR AAR CAY AT

- damWdg(+): AR NGT CCA NAR RTC YTC CAC
-damWdg(-): TA NAC YTG NGG YTC NGG CAT

N= A,G,C or T; Y= C or T; R=A or G; M=A or C; H=A,
T or C.

Four PCR reactions were performed to amplify fragments
from each fungus, using four different primer combinations.
damWdg(+1) and damWdg(-3), damWdg(+2) and
-damWdg(-4), damWdg(+2) and damWdg(-3),
damWdg(+2) and damWdg(-4). Each 50 microL reaction
mixture contained 200ng fungal genomic DNA template,
200 microM each deoxyribonucleotide triphosphate (dATP,
dGTP, dCTP, and dTTP), 25 mM each primer, 1 X PCR
buffer (Perkin-Elmer), and 2.5 units Taq DNA polymerase
(AmpliTaq Gold from Perkin-Elmer). Reactions were held at
93 °C for 9 min and 95°C for 3 min, then subjected to
35 cycles of the following profile: 94°C for 45 s, 53°C for
45 s, 72°C for 80 s in a Perkin-Elmer model 2400 Thermal
Cycler. After completing these temperature cycles the reac-
tions were incubated 5 min at 72°C, then analyzed by
agarose gel electrophoresis.

The resulting amplified genomic fragments were cloned
and used as probes of a cosmid library (and thus obtained

SEQ ID NO 1 of *N. coenophialum* dmaW), or the sequences were used as a basis for new primers for anchored single primer PCR (and thus obtained SEQ ID NO 3 of *N. coenophialum* dmaW).

Clones were sequenced using PE Biosystems Model 310 Genetic Analyzer. DNA sequence analysis was carried out with the DNAsis (Hitachi) and GCG (University of Wisconsin Genetics Computer Group, Madison) sequence analysis packages. Alignment of sequences was done using CLUSTAL W according to Thompson et al., *22 Nucl. Acids Res.* 4673 (1994).

Example 2

Construction of knockout mutants

Clones will be constructed containing DNA of each dmaW locus from which all or part of the gene has been deleted, or in which the dmaW has been mutated to a form expected to be inactive. These clones will be used in transformation experiments as described in Tsai et al., *22 Genetics* 399 (1992). Transformants will be screened by Southern blot hybridization and polymerase chain reaction to identify those that have had the wild type gene replaced by the mutant form. In endophytes with more than one dmaW copy, such as *N. coenophialum*, the procedure will be repeated until all active or potentially active copies are replaced with inactive forms. The endophyte, so altered, will be introduced into its natural host, and the loss of ergot alkaloid synthetic properties of the endophyte-grass symbiosis will be determined by standard chemical methods.

Example 3

Identity comparisons

The GAP program of the Wisconsin Genetics Group GCG package was used to compare the original sequence from ATCC 26245 (C. fusiformis) with SEQ ID NO 1 and SEQ ID NO 3, and likewise with the *C. parvus* ATCC 20102 dmaW gene (sequenced by the present lab, and identical to the sequence published by Tuzynski et al, cited in Background). Comparisons both with nucleic acid and with amino acid sequences were made, though for hybridization analysis only the nucleic acid identity is of importance. In each case the SEQ ID NO 1 gave slightly higher identity. In nucleotide sequence it was 62.29% identical to the ATCC 26245 and 62.416% to the ATCC 20102 gene. In amino acid sequence its inferred protein product was 61.745% identical to that of the ATCC 26245 and 67.040% to that of the ATCC 20102 gene.

Although the present invention has been fully described herein, it is to be noted that various changes and modifications are apparent to those skilled in the art. Such changes and modifications are to be understood as included within the scope of the present invention as defined by the appended claims.
<table>
<thead>
<tr>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>atcgaagac tttgggtct cctcaacatg tctcttggtt tgcgcgcation cctgagctt</td>
<td>960</td>
</tr>
<tr>
<td>tacttgccct tgggocct tgcgaactg caacntcctg ccatggoacaa ttcacacttta</td>
<td>1020</td>
</tr>
<tr>
<td>caccatactg atccatattc agacccgcaaa tgcattctca ctgattctgg caatcattgat</td>
<td>1080</td>
</tr>
<tr>
<td>atgagatggt ctaactgccct cgcagatcctt cgcagctgctt ctcgattggt ggatcgycctgc</td>
<td>1140</td>
</tr>
<tr>
<td>gtagaatgccgg aaggtactt cacggatct tgcagctgctt atgagattctga agcggatgagtt</td>
<td>1200</td>
</tr>
<tr>
<td>tatattcatgccttcttcctgct cgcagntcctt cgcagactgtt aagttctggtactcagatatctt</td>
<td>1260</td>
</tr>
<tr>
<td>cctccactcttttgcacgcgtg gatggtctgatgcttcctgc aaggtctgactgactgactg</td>
<td>1320</td>
</tr>
<tr>
<td>gctggtggcagatgtaacctttcgc</td>
<td>1347</td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 2
<211> LENGTH: 448
<212> TYPE: PRT
<213> ORGANISM: Neotyphodium coenophialum

<400> SEQUENCE: 2

Met Val Met Ala Lys Thr Leu His Gln Glu Val Tyr His Thr Leu Ser	1 5 10 15
Glu Thr Phe Asp Phe Ala Asn Asp Gin Arg Leu Trp Trp His Ser	20 25 30
Thr Ala Pro Met Phe Glu Lys Met Leu Gin Thr Ala Asn Tyr Ser Ile	35 40 45
Asp Ala Gin Tyr Arg His Leu Gly Ile Tyr Lys Ser His Val Ile Pro	50 55 60
Phe Leu Gly Val Tyr Pro Thr Arg Ser Gly Glu Arg Trp Leu Ser Ile	65 70 75 80
Leu Thr Arg Tyr Gly Thr Pro Phe Glu Leu Ser Leu Asn Cys Ser Asp	85 90 95
Ser Val Val Arg Tyr Thr Tyr Gly Pro Ile Asn Ala Ala Thr Gly Ser	100 105 110
His Leu Asp Pro Phe Asn Thr Phe Ala Ile Trp Glu Ala Leu Lys Lys	115 120 125
His Ile Glu Ser Gin Pro Gly Ile Asp Leu Glu Trp Phe Ser Tyr Phe	130 135 140
Lys Gin Glu Leu Thr Leu Asp Ala Asn Glu Ser Thr Tyr Leu His Ser	145 150 155 160
Gln Asn Leu Val Lys Gin Ile Lys Thr Gin Asn Lys Leu Ala Leu	165 170 175
Asp Leu Lys Gly Asp Lys Phe Val Leu Lys Thr Tyr Ile Tyr Pro Glu	180 185
Leu Lys Ser Val Ala Thr Gly Lys Ser Val Gin Glu Leu Val Phe Gly	190
Ser Val Arg Lys Leu Ala Gin Lys His Lys Ser Ile Arg Pro Ala Phe	195 200 205
Glu Met Leu Glu Asp Tyr Val Gin Ser Arg Asn Lys Phe Ser Thr Thr	210
Val Asp Ser His Thr Leu Ser Ser Arg Leu Leu Ser Ser Arg Leu	225 230 235 240
Leu Ile Ser Pro Thr Lys Ser Arg Val Lys Ile Tyr Leu Leu Glu Arg	245 250 255 260 265
Met Val Ser Leu Pro Ala Met Gin Leu Pro Thr Leu Gly Gly Arg	275 280 285
Arg Gin Asp Gin Ser Thr Ile Gin Gly Leu Met Gin Arg Leu	290 295 300
Met Thr Val Thr豆 Met Thr Val Thr	
Trp Gly Leu Leu Asn Met Ser Pro Gly Leu Arg Ala Tyr Pro Glu Pro
305 310 315 320
Tyr Leu Pro Leu Gly Ala Ile Pro Asn Glu Leu Pro Ser Met Ala
325 330 335
Asn Tyr Thr Leu His His Asn Asp Pro Ile Pro Glu Pro Gin Val Tyr
340 345 350
Phe Thr Val Phe Gly Met Asn Met Glu Val Thr Asn Ala Leu Thr
355 360 365
Thr Phe Phe Met Arg His Glu Trp Ser Asp Met Ala Ser Lys Tyr Lys
370 375 380
Ala Cys Leu Arg Glu Ser Phe Pro His His Asp Tyr Glu Ala Leu Asn
385 390 395 400
Tyr Ile His Ser Tyr Ile Ser Phe Ser Tyr Arg Lys Asn Pro Tyr
405 410 415
Leu Ser Val Tyr Leu His Ser Phe Gly Thr Gly Lys Trp Pro Val Phe
420 425 430
Pro Glu Gly Leu Ile Ala Phe Asp Ala Cys Arg Arg Asp Leu Thr Cys
435 440 445

<210> SEQ ID NO 3
<211> LENGTH: 1353
<212> TYPE: DNA
<213> ORGANISM: Neotyphodium coenophialum
<400> SEQUENCE: 3

ataagtctgc ccaagg caccaata tctcttcacca gttatatga cccatctctt gcccagca cagca 60
tcctgactc gcccgctc agcctgcc cgccgtttt ccaaacag 120
ttagtgcttc agccccct cacatgcctt tttgcctaga tctctttactt gcctctgt cattttg 180
cctacaacc gccgccag ctgagcttgtt agagttgctg cctctcta cctccgctt gctt 240
cattctaccta ctgagcttctc cttgtcagcct tttggaggtt tctctctct cccctctct 300
tagttgctc gccagaggtt ggtctctgctt ggtctctgctt cttctcttgctt cccctctct 360
tctctgttc gccagttgggt ggtctctgctt cttctctgctt ggtctctgctt ggtctctgctt 420
tctctgttc gccagttgggt ggtctctgctt cttctctgctt ggtctctgctt ggtctctgctt 480
tctctgttc gccagttgggt ggtctctgctt cttctctgctt ggtctctgctt ggtctctgctt 540
tctctgttc gccagttgggt ggtctctgctt cttctctgctt ggtctctgctt ggtctctgctt 600
tctctgttc gccagttgggt ggtctctgctt cttctctgctt ggtctctgctt ggtctctgctt 660
tctctgttc gccagttgggt ggtctctgctt cttctctgctt ggtctctgctt ggtctctgctt 720
tctctgttc gccagttgggt ggtctctgctt cttctctgctt ggtctctgctt ggtctctgctt 780
tctctgttc gccagttgggt ggtctctgctt cttctctgctt ggtctctgctt ggtctctgctt 840
tctctgttc gccagttgggt ggtctctgctt cttctctgctt ggtctctgctt ggtctctgctt 900
tctctgttc gccagttgggt ggtctctgctt cttctctgctt ggtctctgctt ggtctctgctt 960
tctctgttc gccagttgggt ggtctctgctt cttctctgctt ggtctctgctt ggtctctgctt 1020
tctctgttc gccagttgggt ggtctctgctt cttctctgctt ggtctctgctt ggtctctgctt 1080
tctctgttc gccagttgggt ggtctctgctt cttctctgctt ggtctctgctt ggtctctgctt 1140
tctctgttc gccagttgggt ggtctctgctt cttctctgctt ggtctctgctt ggtctctgctt 1200
tctctgttc gccagttgggt ggtctctgctt cttctctgctt ggtctctgctt ggtctctgctt 1260
ctcactcat ttgaaacctg tgaatgcccct tgtttcccgg aagggcctt gctttgagc

ggtgcgcgc gcgctctcct tctgttatac tag

<210> SEQ ID NO 4
<211> LENGTH: 450
<212> TYPE: PRT
<213> ORGANISM: Neotyphodium coenophialum

<400> SEQUENCE: 4

Met Val Leu Ala Lys Thr Leu His Gin Glu Val Tyr Gln Thr Leu Ser
1 5 10 15
Glu Thr Phe Asp Phe Ala Asn Asp Gin Arg Leu Trp Trp His Ser
20 25 30
Thr Ala Pro Met Phe Gin Lys Ile Leu Gin Thr Ala Asn Tyr Ser Ile
35 40 45
Tyr Ala Gin Tyr Gin His Leu Ser Ile Tyr Lys Ser His Ile Ile Pro
50 55 60
Phe Leu Gly Val Tyr Pro Thr Arg Ser Gly Glu Arg Trp Leu Ser Ile
65 70 75 80
Leu Thr Arg Tyr Gly Thr Pro Phe Glu Leu Ser Leu Asn Cys Ser Asp
85 90 95
Ser Ile Val Arg Tyr Thr Tyr Glu Pro Ile Asn Ala Ala Thr Gly Ser
100 105 110
His Leu Asp Pro Phe Asn Thr Phe Ala Ile Trp Gin Ala Leu Lys Lys
115 120 125
Leu Ile Asp Ser Gin Pro Gly Ile Leu Gin Trp Phe Ser Tyr Phe
130 135 140
Lys Gin Glu Leu Thr Leu Asp Ala Asn Glu Ser Thr Tyr Leu His Ser
145 150 155 160
Gln Asn Leu Val Lys Gin Glu Gin Ile Lys Thr Gin Gin Asn Lys Leu Ala Leu
165 170 175
Asp Leu Lys Gly Asp Lys Phe Val Leu Lys Thr Tyr Ile Tyr Pro Glu
180 185 190
Leu Lys Ser Val Ala Thr Gly Lys Ser Val Gin Gin Glu Leu Val Phe Gly
195 200 205
Ser Val Arg Lys Leu Ala Gin Lys His Lys Ser Ile Arg Pro Ala Phe
210 215 220
Glu Met Leu Gin Asp Tyr Gin Ser Arg Gin Gin Gin Gin Gin Gin Gin
225 230 235 240
Asp Gin Pro His Gin Gin
245 250 255
Leu Val Ser Pro Thr Lys Ser Arg Val Gin Gin Gin Gin Gin Gin Gin Gin Gin
260 265 270
Met Gin Gin
275 280 285
Arg Gin Gin
290 295 300
Trp Gin Gin
305 310 315 320
Tyr Gin Gin
325 330 335
Asn Tyr Thr Leu His Gin Gin
340 345 350
Phe Thr Val Phe Gin Gin
355
<210> SEQ ID NO 5
<211> LENGTH: 1908
<212> TYPE: DNA
<213> ORGANISM: Neotyphodium coenophialum

<400> SEQUENCE: 5

gcattgcac ttgctgacag aatttcttt tgaattggt agggattatat tgtgatgaac
60
ttagtcgttgt gtcctaattaa tcttgaggccc ttaggaogac aacccttagtt cttaactatgctc
120
tactgttaa atagacttctc taagatattata attccaaacc atgttgacct gtttagttccttct
180
tttagogac aaggtgacct tgtaccaoctaa atttgttcct caactttagt tccaagaca
240
acoagacggt gtaagcgctct ttcacagttg ttaaggcctta gacactcactc
300
caggaacct ctatccagct tagcagacaa tttgactttgg caaaccatgga ocaagagctgta
360
tgtagctgca gacgggogc cagcgggoga caatctcggaa aagagctgct acaatgccta ctatgacattt
420
gagctgcaag atagacgctg ggcgatttat aagaccccag taacctctttc ttaaccttcgct
480
tacttcagaag aagtggtgga gacgagcaaaa cgcgtgtgtt catttgcattg acaagacccc
540
gacoagacgga attcccctctt gtagcttata ctcagagacc ttcagacggcc
600
gaoctgccga ggatcttggg caaagctctt cctctcatttac cttgagggcc octgaaaaag
660
cattttggtt cccagccccaa ctcagacctt gatcgtgtt ctctacatgca acaagagtctt
720
acatctgct aacaagcctgt cagctctctc ctcagagacca acttgctttaa ggcagagacatc
780
aaacacccaa aacaagctcg tttgacacctt aaggtgacca agtcgtactt gaaacacactc
840
atcagctcgg aatgagacg cacgctcggc cataaaggcct toagagacctc gattgtggctg
900
tctcgtgacag atagacgctg gacggcagag cactcgtttgta aagactctag aagactctag
960
gacttgtagc ctaggtgttc ttgcttgctg cgacagctgct ctgctttttgta aagactctag
1020
ttctgctctcac ctaggtgttcctt cgcagctgct gacgctttttgta aagactctag aagactctag
1080
ttctgcagga gctgtggtcttt cgcagctgct gacgctttttgta aagactctag aagactctag
1140
cgaggcttagc agtctacactt gggaggtggt gggaggtggtt ggaacctttgg ggtgtcctcttct
1200
aagagctctgctttggtt cgcgcttcctt cgcagctgct gacgctttttgta aagactctag aagactctag
1260
aatgagacctatcctctgct ggcagcagacta cactctttgc atctctctctt ctcagagacca
1320
cgagactcttgccagccagcc aagactctag aagactctag aagactctag aagactctag
1380
aatctctgctgagagctag ctagcagacta cactctttgc atctctctctt ctcagagacca
1440
gactctttgctgagctctgacta cactcgtctgta aagactctag aagactctag aagactctag
1500
aatctctgctgagctctgacta cactcgtctgta aagactctag aagactctag aagactctag
1560
cttcctctctc cgaagaaca aagcataatc aagagtcgtat ccctcaactt ttggaaactgg 1620
taattgccga gtggtagaat tccccatagta taattcaaatc gcaatgccag aaggaggtgg 1680
gtttctat tagtacatg tattcctgctg aggtctatata gatttgtagc caagatgagt 1740
agatataact gttgaaagtact tagttgctag caatgtagct tagtacacag 1800
taattgacat tagtacata cgaagaaca aagcgctagta ctaaccatac 1860
aateagtaga cgaagaaca aagcgctagta ttgggaatggtattgaa 1908

<210> SEQ ID NO 6
<211> LENGTH: 1598
<212> TYPE: DNA
<213> ORGANISM: Neothyphodium coenophilicum
<400> SEQUENCE: 6
attcgctcag tccctctttct ccaattggaa tggcacaacag acaatcctgaa cccatttcc aacagtgcgg 60
ccaaacccca ggaacacag cgaattttttcc gaa gacaagcctg 120
cggcggcag ttcgctctag tcgggcttcccc atcctctcctg ggactgcttgc 180
caccaagcag taggattcata ggaatgttaattt gagatagggagtagtt 240
agctgtctg ttcgctctag tcgggcttcccc atcctctcctg ggactgcttgc 300
ctacatcctag ttcgctctag tcgggcttcccc atcctctcctg ggactgcttgc 360
catcgccag tgggcttcccc atcctctcctg ggactgcttgc 420
caagcggaa ctcgctctag tcgggcttcccc atcctctcctg ggactgcttgc 480
ccaaatcag tgggcttcccc atcctctcctg ggactgcttgc 540
acagctggcttt gttgcgcctc ttgagctctg ctaaccagcag ccacgttctc 600
taattgacat tagtacata cgaagaaca cttcgagcttgc 660
ttcctctttct ccaattggaa tggcacaacag acaatcctgaa cccatttcc aacagtgcgg 720
tccctctttct ccaattggaa tggcacaacag acaatcctgaa cccatttcc aacagtgcgg 780
ttttacagc cggctggcag cggagcctttt gttgcgcctc ttgagctctg ctaaccagcag ccacgttctc 840
agctgtctg ttcgctctag tcgggcttcccc atcctctcctg ggactgcttgc 900
tccctctttct ccaattggaa tggcacaacag acaatcctgaa cccatttcc aacagtgcgg 960
tccctctttct ccaattggaa tggcacaacag acaatcctgaa cccatttcc aacagtgcgg 1020
acagctggcttt gttgcgcctc ttgagctctg ctaaccagcag ccacgttctc 1080
acagctggcttt gttgcgcctc ttgagctctg ctaaccagcag ccacgttctc 1140
acagctggcttt gttgcgcctc ttgagctctg ctaaccagcag ccacgttctc 1200
acagctggcttt gttgcgcctc ttgagctctg ctaaccagcag ccacgttctc 1260
acagctggcttt gttgcgcctc ttgagctctg ctaaccagcag ccacgttctc 1320
acagctggcttt gttgcgcctc ttgagctctg ctaaccagcag ccacgttctc 1380
acagctggcttt gttgcgcctc ttgagctctg ctaaccagcag ccacgttctc 1440
acagctggcttt gttgcgcctc ttgagctctg ctaaccagcag ccacgttctc 1500
acagctggcttt gttgcgcctc ttgagctctg ctaaccagcag ccacgttctc 1560
acagctggcttt gttgcgcctc ttgagctctg ctaaccagcag ccacgttctc 1620
What is claimed is:

1. An isolated nucleic acid molecule, wherein said nucleic acid molecule comprises a nucleic acid sequence selected from the group consisting of:
 (a) a nucleic acid molecule encoding a dimethylallyltryptophan synthase (DmaW molecule) which has more than 70% identity to a molecule selected from the group consisting of SEQ ID NO 1 and SEQ ID NO 3, and wherein said identity can be determined using the DNAseq computer program and default parameters;
 (b) a nucleic acid molecule selected from the group consisting of: a nucleic acid molecule which encodes a DmaW amino acid molecule selected from the group consisting of: SEQ ID NO 2; and SEQ ID NO 4; and
 (c) a nucleic acid molecule fully complementary to a nucleic acid molecule selected from the group consisting of: a nucleic acid molecule of (a); and a nucleic acid molecule of (b).

2. A knockout construct of a DmaW molecule of claim 1.

3. A vector comprising a knockout construct of claim 2.

4. A fungus comprising a knockout construct of claim 2.

5. A seed comprising a fungus of claim 4.

8. A plant of claim 7, which is a forage grass.

9. A plant of claim 8, which is a fescue.

10. A plant of claim 9, which is a Festuca arundinacea.

11. A method to identify endophytes that contain or lack a DmaW gene, comprising contacting a nucleic acid molecule of claim 1 with DNA of a sample endophyte under LaSSC and 0% formamide at about 56°C, hybridization wash conditions, and determining if said endophyte contains or lacks the DmaW gene based on the results of the hybridization reaction.

12. A method of claim 11, wherein said sample endophyte is used in commercial plants selected from the group consisting of forage, pasture, turf, land reclamation, and soil conservation.

13. A method of claim 12, wherein said sample endophyte is used in commercial plants selected from the group consisting of forage, pasture, turf, land reclamation, and soil conservation.

14. A method for producing increased amount of ergot alkaloids, comprising expressing the nucleic acid molecule according to claim 1 in a host fungal cell, so the copy number of messenger RNA derived from transcription of said nucleic acid molecule is increased, and allowing said host fungal cell to grow under appropriate growth conditions, which causes increased production of ergot alkaloid.

15. The isolated nucleic acid molecule according to claim 1, wherein said nucleic acid molecule encoding a DmaW molecule has more than 75% identity to the nucleic acid molecule having the sequence set forth in SEQ ID NO: 1 or SEQ ID NO:3.

16. The isolated nucleic acid molecule according to claim 1, wherein said nucleic acid molecule encoding a DmaW molecule has more than 80% identity to the nucleic acid molecule having the sequence set forth in SEQ ID NO:1 or SEQ ID NO:3.

17. The isolated nucleic acid molecule according to claim 1, wherein said nucleic acid molecule encoding a DmaW molecule has more than 85% identity to the nucleic acid molecule having the sequence set forth in SEQ ID NO:1 or SEQ ID NO:3.

18. The isolated nucleic acid molecule according to claim 1, wherein said nucleic acid molecule encoding a DmaW molecule has more than 90% identity to the nucleic acid molecule having the sequence set forth in SEQ ID NO:1 or SEQ ID NO:3.

19. The isolated nucleic acid molecule according to claim 1, wherein said nucleic acid molecule encoding a DmaW molecule has more than 95% identity to the nucleic acid molecule having the sequence set forth in SEQ ID NO:1 or SEQ ID NO:3.

* * * * *