2-26-2008

Method for Treating a Viral Infection Related or a Chemical Toxin Related Hepatic Injury with Deltorphin D

Peter R. Oeltgen
University of Kentucky, peter.oeltgen@uky.edu

Paul D. Bishop

Craig J. McClain
University of Kentucky

Shirish Barve
University of Kentucky

Click here to let us know how access to this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/pathology_patents

Part of the [Medical Pathology Commons](https://uknowledge.uky.edu PATHOLOGY_PATENTS)

Recommended Citation

Oeltgen, Peter R.; Bishop, Paul D.; McClain, Craig J.; and Barve, Shirish, "Method for Treating a Viral Infection Related or a Chemical Toxin Related Hepatic Injury with Deltorphin D" (2008). *Pathology and Laboratory Medicine Faculty Patents*. 2.

https://uknowledge.uky.edu/pathology_patents/2
(54) METHOD FOR TREATING A VIRAL INFECTION RELATED OR A CHEMICAL TOXIN RELATED HEPATIC INJURY WITH DELTORPHIN D

(75) Inventors: Peter R. Oeltgen, Winchester, KY (US); Paul D. Bishop, Fall City, WA (US); Craig J. McCain, Lexington, KY (US); Shirish Barve, Lexington, KY (US)

(73) Assignee: University of Kentucky Research Foundation, Lexington, NY (US)

(21) Appl. No.: 11/085,919
(22) Filed: Mar. 22, 2005

(65) Prior Publication Data
US 2005/0164942 A1 Jul. 28, 2005

(60) Provisional application No. 60/238,991, filed on Oct. 10, 2000.

(51) Int. Cl.
A61K 38/10 (2006.01) C07K 14/435 (2006.01)

(52) U.S. Cl. 514/13; 514/2; 514/893; 514/894; 514/937; 530/300; 530/302

(58) Field of Classification Search

(56) References Cited
U.S. PATENT DOCUMENTS
5,656,420 A 8/1997 Chien 435/1.2
6,103,722 A 8/2000 Schultz et al. 514/249
6,380,164 B1 4/2002 Oeltgen et al. 514/16
6,875,742 B2 4/2005 Oeltgen et al. 514/13

FOREIGN PATENT DOCUMENTS
WO WO99/56766 11/1999

OTHER PUBLICATIONS
Lazarus, LH, et al., Environmental Health Perspectives, 102, 648-654, 1994.*
Okamoto, H, et al., Intervirology, 42, 196-204, 1999.*

Barnes et al., Deltorphin, a 17 amino acid opioid peptide from the skin of the Brazilian hyliid frog, Phylomedusa burmeisteri, Peptides (Tarrytown), vol. 15, No. 2, 1994, 199-202.
Bolling et al., Delta opioid agonist/antagonist activity and ischemic tolerance, American Heart Association Meeting, Atlanta, GA, Nov. 1999.
Leist et al., Activation of the 55 KDA TNF receptor is necessary and sufficient for TNF-induced liver failure, hepatocyte apoptosis, and nitrite release, The Journal of Immunology 154: 1307-1316, 1995.
Lishmanov et al., Activation of the α-opioid receptors as a factor increasing heart resistance against ischemic and reperfusion damage, Russian J. Physiol., 84 (11) (Russian w/ attached English translation).

(Continued)

Primary Examiner—Lorraine Spector
Assistant Examiner—Elly-Gerald Stoica
(74) Attorney, Agent, or Firm—Sites & Harbison PLLC; Richard S. Myers, Jr.; James Daly, IV

ABSTRACT

A method of modulating cytokine mediated hepatic injury by administering compound-D SEQ ID NO:1 to a mammal. A concentration of the compound in the range of about 0.5 mg/kg to about 20 mg/kg in a physiologically acceptable formulation blocks a cytokine cascade. A therapeutic method of modulating cytokine mediated acute inflammatory, trauma induced and toxin induced hepatic injury, particularly via tumor necrosis factor modulation, is thus disclosed.

11 Claims, No Drawings
OTHER PUBLICATIONS

Maslov and Lishmanov, Effects of \(\mu \)- and delta opioid receptor ligands on rhythm and contractility disorders of isolated rat heart in posts ischemic period, Kardiologiya 1998; 12: 25-30 (Russian w/ English translation).

Schultz et al., Ischemic preconditioning in the intact rat heart is mediated by \(\delta \)-but not \(\mu \) or \(\kappa \)-opioid receptors, Circ 97: 1282-1289, 1998.

Schultz et al., Morphine mimics the cardioprotective effect of ischemic preconditioning via a glibenclamide-sensitive mechanism in the rat heart, Circ. Research, 78: 1100-1104, 1996.

Toombs et al., Limitation of infarct size in the rabbit by ischaemic preconditioning is reversible with glibenclamide, Cardio. Res. 27: 617-622, 1993.

Vanninkle et al., Cardioprotection provided by adenosine receptor activation is abolished by blockade of the K-ATP channel, Am. J. Physiol. 266: H829-H839, 1994.

Zhao and Bhargava, Effects of multiple intraventricular injections of [D-Pen2, D-Pen5] enkephalin and [D-Ala2, Glu4] deltorphin II on tolerance to their analgesic action and on brain \(\delta \)-opioid receptors, Brain Research; 745 (1997) 243-247.

* cited by examiner
METHOD FOR TREATING A VIRAL INFECTION RELATED OR A CHEMICAL TOXIN RELATED HEPATIC INJURY WITH DELTORPHIN D

This application is a divisional of U.S. application Ser. No. 09/971,902, filed Oct. 5, 2001 now U.S. Pat. No. 6,875,742, which claims the benefit of U.S. application Ser. No. 60/238,991, filed Oct. 10, 2000, the disclosures of which are hereby incorporated by reference herein in their entirety.

FIELD OF THE INVENTION

The invention relates to the use of compounds to attenuate or prevent cytokine mediated hepatic injury.

BACKGROUND

Hepatic injury can be caused by a number of different agents including viruses such as Hepatitis A, B, C, D and E, both gram positive and gram negative bacteria, chemical agents such as ethanol, carbon tetrachloride and lead, and by physical trauma resulting in ischemic (ischemic hepatitis) injuries as can occur in right-sided congestive heart failure. It is now believed that all of these types of hepatic injury are caused at least in part by the liver’s inflammatory or cytokine response to these agents. The inflammatory response of the liver results in the overexpression of a cascade of inflammatory/acute phase cytokines, such as interleukin-1 (IL-1), tumor necrosis factor (TNF), IL-6, IL-8 and transforming growth factor beta (TGFβ). It is now believed that it is the cascade of these cytokines which is the ultimate cause of much of the hepatic injury resulting from these agents. Thus, there is a need for a therapeutic agent which can be useful in alleviating or modulating the inflammatory response associated with liver disease or injury.

SUMMARY OF THE INVENTION

The present invention fills this need by providing a method of treating or preventing a cytokine mediated hepatic injury in a mammal comprised of administering a pharmacologically effective amount of a peptide having the sequence Tyr-D-Leu-Phe-Ala-Asp-Val-Ala-Ser-Thr-Ile-Gly-Asp-Phe-His-Ser-Ile-NH₂, SEQ ID NO: 1, herein after referred to as compound D, to said mammal. The hepatic injury can be an acute inflammatory reaction, as a result of a viral or bacterial infection or a chemical agent such as ethanol, lead, carbon tetrachloride or acetalaminophen, or from trauma resulting in ischemia or reperfusion injury in the liver.

The present invention is also directed to a method of treating a viral or bacterial infection-related hepatic damage in a mammal comprised of administering a pharmacologically effective amount of compound D SEQ ID NO: 1 to said mammal.

The present invention is also directed to a method of treating alcohol induced liver injury in a mammal comprised of administering a pharmacologically effective amount of compound D SEQ ID NO: 1 to said mammal.

Preferably, compound D SEQ ID NO:1 is administered in a pharmaceutical composition at a dosage of from about 0.5 mg/kg to about 20 mg/kg per body weight of the mammal.

Preferably, the mammal is a human.

DETAILED DESCRIPTION

A compound used to treat cytokine-mediated hepatic injury is a peptide having the sequence Tyr-D-Leu-Phe-Ala-Asp-Val-Ala-Ser-Thr-Ile-Gly-Asp-Phe-His-Ser-Ile-NH₂, SEQ ID NO:1, herein after referred to as compound-D. The peptide may be produced by a number of methods, such as using an automated peptide synthesizer, through recombinant molecular techniques, or isolated from a naturally occurring source, as is known to one skilled in the art. Compound-D SEQ ID NO:1 has a molecular weight of 1,902 daltons. Compound-D SEQ ID NO:1 is insoluble in water or saline, but may be solubilized by adding 100 μM of a solution comprised of ethanol, propylene glycol, and 1 N NaOH in a 1:1:1 ratio, with sterile physiological saline then used to obtain the appropriate concentration. The initial alkaline pH is adjusted to 7.4 with 1 N HCl.

Compound-D SEQ ID NO:1 that has been solubilized may be administered by parenteral means, for example, by intravenous injection. For administration into a mammal, a dose of about 1-20 milligrams per kilogram (mg/kg) is useful. For administration into a tissue or organ preservation solution, a concentration of about 100 μM is useful.

Compound-D SEQ ID NO:1 may be administered directly into a mammal, either alone or in combination with other substances.

The above agent is administered to a mammal to modulate cytokine activation by blocking one or more steps in the cytokine cascade. The agent may be formulated for administration in an aqueous based liquid such as phosphate buffered saline to form an emulsion, or may be formulated in an organic liquid such as dimethylsulfoxide to form a solution. The solution or emulsion may be administered by any route, but it is preferably administered parenterally such as by intravenous, intramuscular, intradermal or intraperitoneal injections. A preferred dose is in the range of about 0.5-20 mg of compound-D SEQ ID NO:1 per kg of body weight of the mammal. The time of administration of the agent is preferably prior to initiation of cytokine activation. However, the agent may be administered concurrently with another agent that induces cytokine activation or even subsequent to an agent that induces cytokine activation and still produce a protective effect.

Administration of compound-D SEQ ID NO:1 should be continued on a daily basis until hepatic function returns to normal and is maintained at normal levels, preferably for at least one to two days. Hepatic injury can be determined by elevated levels of hepatic enzymes, as well as by depressed albumin levels (less than about 35 g/liter). Hepatic function is routinely monitored by quantitating serum levels of hepatic enzymes such as alanine aminotransferase (ALT) (normal<35 U/L), aspartate aminotransferase (AST) (normal<30 U/L), alkaline phosphatase (ALP) (normal≤100
US 7,335,642 B2

3

U/L) and gamma glutamyltransferase (GGT) (normal ≤45 U/L for males, ≤30 U/L for females), as well as bilirubin, both conjugated (normal ≤0.2 mg/deciliter) and total (normal ≤1.0 mg/deciliter) bilirubin. Compound-D SEQ ID

Therefore various changes, modifications or alterations to these embodiments may be made or resorted to without departing from the spirit of the invention and the scope of the following claims.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOs: 1
<210> SEQ ID NO 1
<211> TYPE: PRT
<212> ORGANISM: Artificial Sequence
<220> FEATURE:
<221> NAME/KEY: MODiRES
<222> LOCATION: (1) . . . (17)
<223> OTHER INFORMATION: Xaa = D-Leu; artificial sequence is completely synthesized
<400> SEQUENCE: 1

Tyr Xaa Phe Ala Asp Val Ala Ser Thr Ile Gly Asp Phe Phe His Ser Ile

What is claimed is:

1. A method for treating a viral infection related hepatic injury in a mammal comprising administering a pharmaceutically effective concentration of the peptide shown in SEQ ID NO:1 for a duration sufficient to treat the hepatic injury related to the viral infection.

2. The method of claim 1 wherein the viral infection is caused by a hepatitis virus.

3. The method of claim 1 wherein said compound is administered prior to said hepatic injury related to the viral infection.

4. The method of claim 1 wherein said compound is administered subsequent to said hepatic injury related to the viral infection.

5. The method of claim 1 wherein said compound is administered substantially concurrently with said hepatic injury related to the viral infection.

6. The method of claim 1 wherein said compound is administered in the formulation selected from the group consisting of a solution, an emulsion and a suspension.

7. The method of claim 1 wherein said compound is administered parenterally.

8. The method of claim 1 wherein said compound is administered at a concentration in the range of about 0.5 mg/kg to about 20 mg/kg.

9. The method of claim 1 wherein said compound is administered at least until hepatic function normalizes.

10. A method for treating chemical toxin related hepatic injury in a mammal comprising administering a pharmaceutically effective concentration of the peptide shown in SEQ ID NO:1 for a duration sufficient to treat the hepatic injury caused by the chemical toxin.

11. The method of claim 10 wherein the chemical toxin is selected from the group consisting of ethanol, lead, cadmium, carbon tetrachloride, and acetaminophen, and combinations thereof.

* * * * *