Organic Cation Transporter Preferentially Expressed in Hematopoietic Cells and Leukemias and Uses Thereof

Jeffrey A. Moscow
University of Kentucky, jmoscow@uky.edu

Xin Lu
University of Kentucky, xin.lu@uky.edu

Craig Jordan
University of Kentucky, jordan.craig@uky.edu

Follow this and additional works at: https://uknowledge.uky.edu/markey_patents

Part of the Oncology Commons

Recommended Citation
Moscow, Jeffrey A.; Lu, Xin; and Jordan, Craig, "Organic Cation Transporter Preferentially Expressed in Hematopoietic Cells and Leukemias and Uses Thereof" (2010). Markey Cancer Center Faculty Patents. 1.
https://uknowledge.uky.edu/markey_patents/1

This Patent is brought to you for free and open access by the Cancer at UKnowledge. It has been accepted for inclusion in Markey Cancer Center Faculty Patents by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
(54) ORGANIC CATION TRANSPORTER PREFERENTIALLY EXPRESSED IN HEMATOPOIETIC CELLS AND LEUKEMIAS AND USES THEREOF

(75) Inventors: Jeffrey Moscou, Lexington, KY (US); Xin Lu, Shanghai (CN); Craig Jordan, Rochester, NY (US)

(73) Assignee: University of Kentucky Research Foundation, Lexington, KY (US)

(12) United States Patent

Moscou et al.

(10) Patent No.: US 7,723,019 B2

(45) Date of Patent: May 25, 2010

(51) Int. Cl.

C12Q 1/00 (2006.01)
G01N 33/53 (2006.01)
C07K 14/435 (2006.01)

(55) References Cited

U.S. PATENT DOCUMENTS

FOREIGN PATENT DOCUMENTS

WO 02/46415 A2* 6/2002

OTHER PUBLICATIONS

(74) Attorney, Agent, or Firm—McDermott Will & Emery LLP

ABSTRACT

A novel organic cation transporter (OCT) gene, OCT 6, and use thereof is described. The OCT6 gene is preferentially expressed in human hematopoietic tissues, including CD34+ cells and leukemia cells. Its narrow tissue distribution, substrate specificity, and close homology to other cell membrane transporters make OCT6 an attractive target for the treatment of myeloid diseases.

7 Claims, 10 Drawing Sheets
FIG. 2B
FIG. 4

OCT6 RNA level (relative to MOLT4)

- WBC (unsorted)
- T cells
- B cells
- Monocytes
- Granulocytes
- CD34+ MPB1
- CD34+ MPB2
- CD34+ MPB3
- CD34+ BM
- U937
- THP-1
- KG-1
- MV4-11
- MOLT4
FIG. 5

OCT6 RNA levels (relative to MOLT4)
ORGANIC CATION TRANSPORTER PREFERENTIALLY EXPRESSED IN HEMATOPOIETIC CELLS AND LEUKEMIAS AND USES THEREOF

FIELD OF THE INVENTION

The invention relates to a gene encoding an organic cation transporter, OCT6, and its use as a target for the treatment of hematological malignancies, and in particular, leukemia. The invention further relates to screening methods for identifying agonists and antagonists/binding partners of OCT6 transport activity.

BACKGROUND OF THE INVENTION

The lipid bilayer of the cellular membrane insulates the intracellular milieu from exposure to hydrophilic compounds. Unlike lipophilic compounds that can diffuse through cellular membranes, water-soluble compounds usually require specific transport mechanisms to gain access to the intracellular space. The regulation of the traffic of polar compounds in both directions across the cellular membrane is a complex process involving several large families of transport proteins.

Most often in cancer research, drug transport is thought of as a mechanism of cellular drug resistance, as drug efflux pumps such as the products of the MDR1 and MRP genes have been shown to be mechanisms of resistance to lipid-soluble anticancer drugs. However, drug transport is a two-way street, and mechanisms also exist for pumping drugs into cells. For polar, water-soluble anticancer agents, drug uptake, and not drug efflux, is the critical determinant of cellular drug accumulation.

Most cancer chemotherapy employs drugs that are lipid-soluble that can easily penetrate the cell membrane of cancer cells. One advantage of using lipid-soluble drugs is that they easily gain intracellular access to different types of cancer cells, so many cancer cells appear to be initially sensitive to these drugs. The disadvantage is that cancer cells learn to increase the activity of drug efflux pumps in the cell membrane to pump lipid-soluble drugs out of the cell, resulting in drug resistance.

In contrast, potential water-soluble anticancer drugs may not survive the preclinical screening process since there is a great deal of variability in the expression of drug transport genes in different types of cancer cells. Variability in transport gene expression may result in variability in accumulation of polar, water-soluble drugs. One approach to more effectively utilize water-soluble anticancer drugs is to identify which of the dozens of transport genes are actually expressed in tumors.

The importance of carrier-mediated anticancer drug uptake is exemplified in reduced folate carrier (RFC) mediated uptake of methotrexate (MTX). Methotrexate (MTX), a reduced folate analogue, is scavenged and retained in cells by mechanisms designed to secure folates from the environment. The major mechanism of MTX uptake at pharmacologic concentrations is the reduced folate carrier (RFC), an OAT transporter with a Km for MTX between approximately 0.8-26 μM. Decreased RFC activity has been observed in several in vitro models of transport-mediated MTX resistance (Biochem. Pharmacol. 11: 1233-1234, 1960). Once rodent and human genes encoding proteins with RFC activity were isolated, the molecular explanations for decreased RFC activity emerged. RFC1 transfection into the transport-deficient MTX-resistant ZR75 cell line resulted in a 20-fold increase in 6-hour MTX uptake and a concomitant 250-fold increase in sensitivity to MTX relative to control cell clones, showing that the RFC1 gene reconstitutes RFC activity and has a significant impact on MTX cytotoxicity (Moscow, et al., Cancer Res. 55: 3790-3794, 1995).

In different cell lines, MTX transport deficiency has been ascribed either to mutations in the RFC gene or in decreased expression of the RFC gene product. Several studies have demonstrated that RFC1 gene expression is an important determinant of sensitivity to MTX. In vitro studies, we have found that RFC1 RNA levels correlate with MTX sensitivity in a panel of non-selected cell lines, including breast cancer cell lines (Moscow et al., Int J Cancer. 72: 184-190, 1997).

A plethora of genes with the ability to transport MTX out of the cell have been reported, including MRPL1, MRPL2, MRPL3, MRPL4, the organic anion transporters hOAT1 and hOAT3, and the mitoxantrone-resistance protein (BCRP/MXR). However, despite the multitude of MTX export genes, clinical studies have shown a relationship between the expression of RFC1, the mechanism of MTX uptake, and prognosis in Acute Lymphoid Leukemia (ALL) and osteosarcoma. As a result, RFC1 expression and MTX uptake are now implicated as determinants of clinical sensitivity in several types of tumors. Thus, the role of RFC1 in mediating sensitivity of its cytotoxic drug substrates has become a prototype that illustrates the potential role of transporters, like OAT and OCT genes, in determination of anticancer drug selectivity and toxicity.

However, there is a need to identify additional channels, or transporters, that are found in specific cancers, to enable the targeting of different cancers with anticancer agents that are substrates for those transporters.

SUMMARY OF THE INVENTION

The present invention is directed towards a membrane protein that functions to transport hydrophilic substances across cellular membranes. The protein, OCT6, is a new member of the organic cation transporter (OCT) family (SLC22 gene family). Tissue distribution of this protein is distinct from other OCT protein family members; being detected in leukemia, leukemia blast cells and CD34+ cells.

In one aspect, the present invention provides a novel target for hematological malignancies such as leukemia, an OCT6 transporter.

In another aspect of the present invention there is a method for screening potential substrates that selectively bind the OCT6 transporter. The method involves contacting a cell which overexpresses an OCT6 transporter gene with a test compound and determining whether the test compound is a substrate for the OCT6 transporter.

In another aspect, there is a method for screening potential anti-cancer agents in a cell overexpressing an OCT6 transporter gene. The method comprises determining viability of a cell which expresses OCT6 transporter gene incubated in the presence and absence of a test compound and identifying the test compound as a potential anti-cancer agent if there is cellular influx of the test compound and cell death.
In another aspect of the invention, a test kit is provided for screening candidate drugs for hematologic malignancies comprising a mammalian cell line or cells which overexpress OCT6, a control substrate and a detectable substance.

In still another aspect of the invention, there are immunogenic compositions for treating hematological malignancies. In a preferred embodiment, immunogenic compositions for treating leukemia comprise a substrate that binds selectively to a leukemia cell expressing the OCT6 transporter gene. In another preferred embodiment of the invention, the substrate comprises an antibody that selectively binds to the OCT6 transporter protein. Preferably, the OCT6 transporter protein allows cellular uptake of the substrate which then causes cell death. In one embodiment the substrate is cytotoxic and in another preferred embodiment the substrate is coupled with a cytotoxic agent.

In still another aspect, the present invention provides a method for impairing a leukemia cell comprising contacting the cell with a cytotoxic OCT6 transporter protein. In one embodiment the substrate is a cytotoxic and in another embodiment the substrate is coupled to a cytotoxic agent.

In yet another aspect, the present invention provides a method for treating hematologic malignancies comprising administering to a subject in need thereof an immunogenic composition comprising a substrate that binds selectively to a cell expressing the OCT6 transporter gene. In a preferred embodiment the OCT6 transporter protein allows cellular uptake of the substrate which then causes cell death. In another preferred embodiment the substrate is cytotoxic. In another preferred embodiment, the substrate is coupled with a cytotoxic agent.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1. A shows the predicted hydropathy profile of OCT6.

FIG. 1. B is a dendrogram showing phylogenetic relationship between OCT6 (SEQ ID NO:2) and other OCT and OAT proteins, including, OCTN1 (SEQ ID NO:4), OCT3 (SEQ ID NO:5), OCTN2 (SEQ ID NO:6), OCT2 (SEQ ID NO:7), OCT1 (SEQ ID NO:8), OCT5 (SEQ ID NO:9), OCT4 (SEQ ID NO:10), OCT3 (SEQ ID NO:11), and OAT1 (SEQ ID NO:12).

FIG. 2A-F. is the CLUSTALW alignment of OCT6 and other OCT and OAT proteins. The bottom row represents areas of consensus.

FIG. 3. shows the normal tissue distribution of OCT6 RNA determined by RT-PCR using a cDNA panel. Only 1000x (highest) cDNA concentration is shown. Panel A. 1. salivary gland; 2. thyroid; 3. adrenal; 4. pancreas; 5. ovary; 6. uterus; 7. prostate; 8. skin; 9. peripheral blood leukocytes; 10. bone marrow; 11. fetal brain; 12. fetal liver. Panel B. 1. brain; 2. heart; 3. kidney; 4. spleen; 5. liver; 6. colon; 7. lung; 8. small intestine; 9. muscle; 10. stomach; 11. testis; 12. placenta.

FIG. 4. shows quantitative RT-PCR for the transporter gene OCT6 performed with RNA extracted from peripheral blood leukocytes, CD34+ cells and additional hematopoietic cell lines. Fresh discarded buffy coats that were twice separated by FACS using CD14 (monocytes), CD15 (granulocytes), CD3 (T-cells) and CD20 (B-cells). Purities of 99% or better were obtained. For peripheral WBC and sorted subsets, the average ±SD represent pooled results from samples from 2 individuals performed in triplicate or quadruplicate. For CD34-selected mobilized peripheral blood (MPB), the results from each of 3 individuals are shown. For CD34-selected bone marrow (CD34+ BM), the results are from one individual. OCT6 levels were normalized to the expression of actin RNA, as a control for equivalence of mRNA template. The units, in log scale, are arbitrary and based on a standard curve of OCT6 RT-PCR in serially diluted HL60 RNA. Unity is defined as the level of OCT6 RNA found in MOLT4 cells.

FIG. 5. shows quantitative RT-PCR for the gene OCT6 using RNA extracted from leukemia blasts obtained from patients at the time of initial diagnosis. OCT6 levels were normalized to the expression of actin RNA, as a control for equivalence of mRNA template. The OCT6 RNA levels in placenta, liver, kidney and MOLT-4 cell line were determined concurrently and shown for comparison. The units, in log scale, are arbitrary and based on a standard curve of OCT6 RT-PCR in serially diluted HL60 RNA. Unity is defined as the level of OCT6 RNA found in MOLT4 cells.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is based on the discovery and isolation of a new member of the SLC22 gene family (the OCT family of proteins) that is unusual for its distinct pattern of tissue distribution. Rather than the typical high levels of expression in liver, kidney or placenta, high levels of RNA for this transporter were found in some leukemia cell lines, in CD34+ cells, and in circulating leukemia blasts cells.

All patents, patent applications and literature cited in this description are incorporated herein by reference in their entirety. In the case of inconsistencies, the present disclosure, including definitions, will prevail.

OCT Family

Two families of proteins involved in maintaining homoeostasis of charged organic compounds are the organic anion transporters (OATs) which carry the SLC21 designation and the organic cation transporters (OCTs), which carry the SLC22 designation (see Table 1). OATs and OCTs each have characteristic patterns of tissue expression, with predominant expression in a tissue involved in the transport of xenobiotics, i.e., liver, kidney or placenta.

TABLE 1

<table>
<thead>
<tr>
<th>Gene Family</th>
<th>Gene Name</th>
<th>Locus Link</th>
<th>Alternative Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLC21</td>
<td>SLC21A1</td>
<td>6577</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SLC21A2</td>
<td>6578</td>
<td>GT</td>
</tr>
<tr>
<td></td>
<td>SLC21A3</td>
<td>6579</td>
<td>OATP, OATP1, OATP10, OATP-A</td>
</tr>
<tr>
<td></td>
<td>SLC21A4</td>
<td>28237</td>
<td>OAT-K1, OAT-K2</td>
</tr>
<tr>
<td></td>
<td>SLC21A5</td>
<td>28236</td>
<td>OATP2, OATP-2</td>
</tr>
<tr>
<td></td>
<td>SLC21A6</td>
<td>10599</td>
<td>LST-1, OATP-C</td>
</tr>
<tr>
<td></td>
<td>SLC21A7</td>
<td>28235</td>
<td>OATP3, OATP-3</td>
</tr>
<tr>
<td></td>
<td>SLC21A8</td>
<td>28234</td>
<td>LST2, OATP8, SLC21A8, OATP-8</td>
</tr>
<tr>
<td></td>
<td>SLC21A9</td>
<td>11309</td>
<td>OATP-B</td>
</tr>
<tr>
<td></td>
<td>SLC21A10</td>
<td>28233</td>
<td>OATP1, OATP5, OATP-5</td>
</tr>
<tr>
<td></td>
<td>SLC21A11</td>
<td>28232</td>
<td>OATP-D</td>
</tr>
<tr>
<td></td>
<td>SLC21A12</td>
<td>28231</td>
<td>LOC51737, OATP-E, POAT</td>
</tr>
<tr>
<td></td>
<td>SLC21A13</td>
<td>28230</td>
<td>OATP5, OATP-3</td>
</tr>
<tr>
<td></td>
<td>SLC21A14</td>
<td>53019</td>
<td>OATP-P</td>
</tr>
<tr>
<td></td>
<td>SLC21A1</td>
<td>6580</td>
<td>OCT1</td>
</tr>
<tr>
<td></td>
<td>SLC22A2</td>
<td>6582</td>
<td>OCT2</td>
</tr>
<tr>
<td></td>
<td>SLC22A3</td>
<td>6581</td>
<td>OCT3</td>
</tr>
<tr>
<td></td>
<td>SLC22A4</td>
<td>6583</td>
<td>OCTN1</td>
</tr>
<tr>
<td></td>
<td>SLC22A5</td>
<td>6584</td>
<td>OCTN2, CDSP, SCD</td>
</tr>
<tr>
<td></td>
<td>SLC22A6</td>
<td>9356</td>
<td>NKT, OAT1, OAT-1</td>
</tr>
<tr>
<td></td>
<td>SLC22A7</td>
<td>10864</td>
<td>NLT, OAT2, OAT-2</td>
</tr>
<tr>
<td></td>
<td>SLC22A8</td>
<td>9376</td>
<td>OAT3, OAT-3</td>
</tr>
<tr>
<td></td>
<td>SLC22A9</td>
<td>6548</td>
<td>OAT4, OAT-4</td>
</tr>
</tbody>
</table>

The OAT and OCT carriers result in increased cellular accumulation of their respective substrates, despite the fact
that they are carriers that mediate facilitative diffusion. For carriers, the degree of intracellular accumulation may not exceed the extracellular concentration. However, the presence of the carrier allows uptake in comparison to no uptake in the absence of the carrier, and drugs that bind an intracellular target or which are chemically modified in the cells, e.g., by phosphorylation or polyglutamylation, may be eliminated from the substrate pool and not available for transport back across the cellular membrane.

The first five members of the SLC22 family of transporters, OCT1, OCT2, OCT3, OCTN1, and OCTN2, have been characterized as organic cation transporters. The uptake of many cations, such as tetraethylammonium (TEA), N-1-methyl-Nicotinamide (NMN), choline, procainamide, amantadine and morfine are mediated by these polyspecific transporters. In general, these transporters are potential-dependent, but independent of sodium and proton gradients. These genes are all characterized by the presence of 11 or 12 transmembrane domains, as predicted by hydrophobicity analysis, and all have a large hydrophilic loop between transmembrane domain (TMD) 1 and TMD2.

OCT substrates are shown below in Table 2. Tetraethyl ammonium (TEA) is the classic substrate for OCT transporters. In addition, OCT1, OCT2 and OCT3 transport 1-methyl-4-phenylpyridinium (MPP). Compared to OCT2, OCT1 has a higher affinity for some cations (for example mapiperperidinol and procainamide), a similar affinity for others (for example, decynium 22 and quinidine), and a lower affinity for corticosterone (See Keespall et al., Ann. Rev. Physiol. 60: 243-266, 1998). OCT3 is an electrotransporter for TEA and guanidine. Other physiologic substrates for OCT transporters include dopamine, histamine, epinephrine and norepinephrine, acetylcholine and 5-hydroxytryptamine (Burchardt, et al., Am J Physiol Renal Physiol 278: F853-66, 2000), suggesting an important role for these transporters in the central nervous system, in addition to their role in hepatic and renal clearance. Interestingly, despite its cationic nature, recent studies have identified cimetidine as a selective inhibitor, but not a substrate for several organic cation transporters, including rOCT1, rOCT2, rOCT3, hOCTN1, and hOCTN2.

OCT1 and OCT2 are predominantly expressed in the kidney and liver. These transporters are located on the basolateral surface of renal tubules and, therefore, play a role in the removal of organic cations from the blood. OCT3 is most abundantly expressed in placenta. In addition, other tissue-specific roles have been implicated for these transporters. As noted above, OCTs may play a role in transport of endogenous neurodepletes substances, and OCT3 has been implicated in the disposition of cationic neurotoxins and neurotransmitters in the brain (Wu, et al., J Biol Chem. 273: 32776-86, 1998). Dhillon et al. (Clin Pharmacol Ther. 65: 205, 1999) used RT-PCR followed by functional transport studies (TEA) to identify OCT1 expression in a human mammary epithelial cell line (MCF12A). Further, the OCT1 gene has been shown to be up regulated in lactating mammary epithelial cells.

The OCTN1 gene, cloned from a cDNA, shows sequence similarity to organic cation transporter genes, which is highly expressed in kidney as well as trachea, bone marrow and fetal liver. Recombinant OCTN1 expressed in mammalian cells exhibited saturable uptake of TEA that was pH sensitive. Several others suggest that OCTN1 is a renal proton/organic cation antiporter functioning at the epithelial apical membrane. The uptake of pyrillamine, quinidine, verapamil and L-carnitine were increased by expression of OCTN1 in Xenopus oocytes.

Another OCT protein family member, OCTN2, cloned from a human placent al trophoblast cell line, is expressed widely in human tissues including kidney, placenta and heart. OCTN2 is more closely related to OCTN1 than to OCT1, OCT2 and OCT3 (Biochem Biophys Res Commun. 246: 589-95, 1998). Transection of OCTN2 has demonstrated its role in the transport of TEA and carnitine. OCTN2-mediated transport of TEA is sodium independent, whereas transport of carnitine is sodium-dependent. The role of sodium in OCTN2-mediated carnitine transport not only involves the electrogenic gradient, but the presence of sodium also alters the affinity of OCTN2 for carnitine. Germline mutations of OCTN2 result in primary carnitine deficiency, a syndrome of progressive cardiomyopathy and skeletal myopathy. The symptoms associated with this syndrome are thought to result not from generalized carnitine deficiency from decreased renal carnitine reabsorption, but also from inability of cardiac and skeletal myocytes, which ordinarily express OCTN2, to accumulate carnitine. This syndrome demonstrates that tissue-specific OCT-mediated transport is essential for accumulation of required cations in specific tissues.

The present invention identifies a new transport protein in the OCT family, OCT6, preferentially expressed in leukemia cell lines, leukemia blast cells and CD34+ cells. The cell surface localization and the transporter function of the OCT6 gene product suggest its usefulness as a target in the diagnosis and treatment of hematologic malignancies.

As used herein, the term "antibody" refers to an immunoglobulin molecule with a specific amino acid sequence evoked in by an antigen, and characterized by reacting specifically with the antigen in some demonstrable way.

As used herein, the term "carrier" refers to a diluent, adjuvant, excipient, or vehicle with which the compositions of the present invention are administered.

As used herein, "compound" refers to any agent, chemical, substance, or substrate, whether organic or inorganic, or any protein including antibodies, peptides, polypeptides, polypeptides, and the like.

As used herein, the term "cytotoxin" or cytotoxic agent includes any specific substance, which may or may not be antibody, that inhibits or prevents the functions of cells, causes destruction of cells, or both.

Table 2

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Gene Name</th>
<th>Cell Type</th>
<th>Substrate</th>
<th>KT (uM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCT1</td>
<td>SLC22A1</td>
<td>HeLa</td>
<td>TEA</td>
<td>229</td>
</tr>
<tr>
<td>OCT1</td>
<td>SLC22A1</td>
<td>Xenopus</td>
<td>MPP</td>
<td>14.6</td>
</tr>
<tr>
<td>OCT2</td>
<td>SLC22A2</td>
<td>Xenopus</td>
<td>Norpinephrine</td>
<td>1900</td>
</tr>
<tr>
<td>OCT2</td>
<td>SLC22A2</td>
<td>Xenopus</td>
<td>Histamine</td>
<td>1300</td>
</tr>
<tr>
<td>OCT2</td>
<td>SLC22A2</td>
<td>Xenopus</td>
<td>Dopamine</td>
<td>390</td>
</tr>
<tr>
<td>OCT2</td>
<td>SLC22A2</td>
<td>Xenopus</td>
<td>Serotonin</td>
<td>80</td>
</tr>
<tr>
<td>OCT2</td>
<td>SLC22A2</td>
<td>HEK293</td>
<td>MPP</td>
<td>16</td>
</tr>
<tr>
<td>OCT2</td>
<td>SLC22A2</td>
<td>HEK293</td>
<td>Dopamine</td>
<td>330</td>
</tr>
<tr>
<td>OCT2</td>
<td>SLC22A2</td>
<td>Xenopus</td>
<td>Amantadine</td>
<td>27</td>
</tr>
<tr>
<td>OCT2</td>
<td>SLC22A2</td>
<td>Xenopus</td>
<td>Memantine</td>
<td>34</td>
</tr>
<tr>
<td>OCT3</td>
<td>SLC22A3</td>
<td>HeLa</td>
<td>TEA</td>
<td>2500</td>
</tr>
<tr>
<td>OCT3</td>
<td>SLC22A3</td>
<td>HEKPE</td>
<td>MPP</td>
<td>47</td>
</tr>
<tr>
<td>OCTN1</td>
<td>SLC22A4</td>
<td>Fibroblasts</td>
<td>L-Carnitine</td>
<td>6.6</td>
</tr>
<tr>
<td>OCTN2</td>
<td>SLC22A5</td>
<td>HEK293</td>
<td>L-Carnitine</td>
<td>4.34</td>
</tr>
<tr>
<td>OCTN2</td>
<td>SLC22A5</td>
<td>HEK293</td>
<td>L-Carnitine</td>
<td>4.3</td>
</tr>
<tr>
<td>OCTN2</td>
<td>SLC22A5</td>
<td>HEK293</td>
<td>D-Carnitine</td>
<td>10.9</td>
</tr>
<tr>
<td>OCTN2</td>
<td>SLC22A5</td>
<td>HEK293</td>
<td>Acetyl-L-carnitine</td>
<td>8.5</td>
</tr>
<tr>
<td>OCTN2</td>
<td>SLC22A5</td>
<td>Xenopus</td>
<td>L-Carnitine</td>
<td>4.8</td>
</tr>
<tr>
<td>OCTN2</td>
<td>SLC22A5</td>
<td>Xenopus</td>
<td>D-Carnitine</td>
<td>98</td>
</tr>
<tr>
<td>OCTN2</td>
<td>SLC22A5</td>
<td>JAR</td>
<td>L-Carnitine</td>
<td>3.5</td>
</tr>
</tbody>
</table>
As used herein, the term “derivative” refers to something produced by modification of something pre-existing; for example, a substance or chemical compound that may be produced from another substance or compound of similar structure in one or more steps.

As used herein, the term “fragment” refers to a part of a larger entity, said larger entity comprising by non-limiting example, an antibody, compound or substance.

As used herein, the term “leukemia blast” or “leukemic blast” refers to lymphoblasts, the abnormal immature white blood cells associated with leukemia.

As used herein, the term “monoclonal antibody” is not limited to antibodies produced through hybridoma technology. The term “monoclonal antibody” refers to an antibody that is derived from a single clone, including any eukaryotic, prokaryotic, or phage clone, and not the method by which it is produced.

As used herein, the term “pharmacologically acceptable carrier” refers to a carrier that may be administered to a subject, together with one or more liver protecting agents and one or more mushroom powder or extract of the present invention, and which does not destroy the pharmacological activity thereof and is nontoxic when administered in doses sufficient to deliver a therapeutic amount of the compound.

As used herein, the term “substrate” refers to a substance, compound, agent, antibody or derivatives and/or fragment thereof, acted upon by the OCT6 transporter protein (e.g., a substance that is taken across the cellular membrane by action of the OCT6 transporter protein).

OCT6 (SEQ ID NO:1) was first identified as a potential OCT gene by assembling and sequencing ESTs as described in Example 1 (amino acid sequence of OCT6 is SEQ ID NO:2). The gene sequence proved to be identical to the recently submitted cDNA OR1B1 (GenBank AF268892) submitted by M. Okabe and T. Imai, incorporated herein in its entirety. It is also contained within the submitted BAC clone CTA-331P3 (SEQ ID NO: 3) (GenBank AC002464) located at chromosome 6q21, incorporated herein in its entirety. The gene has a predicted protein structure typical of transport proteins with two groups of six transmembrane domains separated by a hydrophilic region (FIG. 1A). CLUSTALW alignment produced a dendrogram showing the phylogenetic relationship between OCT6 and other OCT genes (FIG. 1B). This dendrogram suggests that the distinction between OCT genes is shown in FIG. 2 and demonstrates multiple regions of conservation among all of these genes.

Next, according to the methods described in Example 3, quantitative RT PCR analysis of the expression of OCT6 was performed, along with the expression of other OCT genes, in 50 cell lines. The results are shown in Table 3. The two highest expressing cell lines for OCT6 in this panel were two leukemia cell lines, HL60, a human promyelocytic leukemia cell line, and MOLT4, a human acute lymphoblastic leukemia (T-cell) cell line. There was only a low level of expression detected in most of the other cell lines.

Table 3

<table>
<thead>
<tr>
<th>No.</th>
<th>Cell Line</th>
<th>source</th>
<th>OCT1</th>
<th>OCT2</th>
<th>OCT3</th>
<th>OCTN 2</th>
<th>OCT6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CCRF-CEM</td>
<td>Leukemia</td>
<td>0.7</td>
<td>0.7</td>
<td>0.2</td>
<td>0.1</td>
<td>5.7</td>
</tr>
<tr>
<td>2</td>
<td>HL-60</td>
<td>Leukemia</td>
<td>0.5</td>
<td>1.3</td>
<td>0.0</td>
<td>0.4</td>
<td>7.6</td>
</tr>
<tr>
<td>3</td>
<td>K-562</td>
<td>Leukemia</td>
<td>1.4</td>
<td>1.2</td>
<td>0.2</td>
<td>1.4</td>
<td>5.2</td>
</tr>
<tr>
<td>4</td>
<td>MOLT-4</td>
<td>Leukemia</td>
<td>0.1</td>
<td>1.1</td>
<td>0.5</td>
<td>0.6</td>
<td>46.8</td>
</tr>
<tr>
<td>5</td>
<td>RPMI-8226</td>
<td>Leukemia</td>
<td>2.8</td>
<td>2.0</td>
<td>0.1</td>
<td>3.7</td>
<td>6.02</td>
</tr>
<tr>
<td>6</td>
<td>SR</td>
<td>Leukemia</td>
<td>1.9</td>
<td>1.1</td>
<td>0.0</td>
<td>0.5</td>
<td>2.6</td>
</tr>
<tr>
<td>7</td>
<td>AS49-A5CC</td>
<td>Lung cancer</td>
<td>1.7</td>
<td>1.2</td>
<td>161</td>
<td>4.3</td>
<td>1.2</td>
</tr>
<tr>
<td>8</td>
<td>HOP-62</td>
<td>Lung cancer</td>
<td>0.8</td>
<td>4.8</td>
<td>0.6</td>
<td>2.4</td>
<td>4.1</td>
</tr>
<tr>
<td>9</td>
<td>NCi-H226</td>
<td>Lung cancer</td>
<td>4.8</td>
<td>0.5</td>
<td>0.1</td>
<td>21.1</td>
<td>4.8</td>
</tr>
<tr>
<td>10</td>
<td>NCi-H23</td>
<td>Lung cancer</td>
<td>0.5</td>
<td>0.7</td>
<td>0.0</td>
<td>0.3</td>
<td>5.2</td>
</tr>
<tr>
<td>11</td>
<td>NCi-H460</td>
<td>Lung cancer</td>
<td>0.7</td>
<td>1.0</td>
<td>0.0</td>
<td>1.7</td>
<td>1.8</td>
</tr>
<tr>
<td>12</td>
<td>COLO205</td>
<td>Colon Ca.</td>
<td>4.9</td>
<td>5.3</td>
<td>30.9</td>
<td>2.2</td>
<td>3.6</td>
</tr>
<tr>
<td>13</td>
<td>HCC-2998</td>
<td>Colon Ca.</td>
<td>1.5</td>
<td>1.0</td>
<td>0.0</td>
<td>2.6</td>
<td>5.4</td>
</tr>
<tr>
<td>14</td>
<td>HCT-116</td>
<td>Colon Ca.</td>
<td>1.7</td>
<td>2.1</td>
<td>0.1</td>
<td>2.8</td>
<td>9.7</td>
</tr>
<tr>
<td>15</td>
<td>HCT-137</td>
<td>Colon Ca.</td>
<td>0.9</td>
<td>1.7</td>
<td>0.1</td>
<td>3.5</td>
<td>4.2</td>
</tr>
<tr>
<td>16</td>
<td>HT-29</td>
<td>Colon Ca.</td>
<td>1.9</td>
<td>1.2</td>
<td>18.1</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>17</td>
<td>KM-12</td>
<td>Colon Ca.</td>
<td>0.6</td>
<td>1.0</td>
<td>12.2</td>
<td>0.7</td>
<td>2.1</td>
</tr>
<tr>
<td>18</td>
<td>SW-620</td>
<td>Colon Ca.</td>
<td>1.0</td>
<td>2.6</td>
<td>40.4</td>
<td>1.9</td>
<td>3.7</td>
</tr>
<tr>
<td>19</td>
<td>SF-268</td>
<td>CNS Tumor</td>
<td>0.4</td>
<td>0.8</td>
<td>0.0</td>
<td>0.9</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>SF-295</td>
<td>CNS Tumor</td>
<td>0.5</td>
<td>1.2</td>
<td>0.2</td>
<td>1.1</td>
<td>2.5</td>
</tr>
<tr>
<td>21</td>
<td>SF-539</td>
<td>CNS Tumor</td>
<td>0.5</td>
<td>0.6</td>
<td>2.3</td>
<td>0.2</td>
<td>5.3</td>
</tr>
<tr>
<td>22</td>
<td>SNB-75</td>
<td>CNS Tumor</td>
<td>0.8</td>
<td>1.8</td>
<td>0.0</td>
<td>0.6</td>
<td>2.3</td>
</tr>
<tr>
<td>23</td>
<td>U251</td>
<td>CNS Tumor</td>
<td>0.8</td>
<td>0.9</td>
<td>0.0</td>
<td>0.6</td>
<td>7.4</td>
</tr>
<tr>
<td>24</td>
<td>LOC13MV1</td>
<td>Melanoma</td>
<td>2.9</td>
<td>2.1</td>
<td>0.1</td>
<td>0.4</td>
<td>3.6</td>
</tr>
<tr>
<td>25</td>
<td>MALME-3M</td>
<td>Melanoma</td>
<td>1.5</td>
<td>1.5</td>
<td>0.0</td>
<td>2.3</td>
<td>3</td>
</tr>
<tr>
<td>26</td>
<td>M14</td>
<td>Melanoma</td>
<td>1.9</td>
<td>1.4</td>
<td>0.0</td>
<td>1.9</td>
<td>4.7</td>
</tr>
<tr>
<td>27</td>
<td>SK-MEL-2</td>
<td>Melanoma</td>
<td>2.1</td>
<td>1.9</td>
<td>0.0</td>
<td>2.2</td>
<td>3.9</td>
</tr>
<tr>
<td>28</td>
<td>SK-MEL-5</td>
<td>Melanoma</td>
<td>2.6</td>
<td>1.5</td>
<td>0.0</td>
<td>1.9</td>
<td>2.7</td>
</tr>
<tr>
<td>29</td>
<td>UACC-257</td>
<td>Melanoma</td>
<td>3.2</td>
<td>3.6</td>
<td>0.0</td>
<td>1.1</td>
<td>5.4</td>
</tr>
<tr>
<td>30</td>
<td>IGROV1</td>
<td>Ovarian Ca.</td>
<td>4.9</td>
<td>50.1</td>
<td>17.9</td>
<td>18.8</td>
<td>25</td>
</tr>
<tr>
<td>31</td>
<td>OVCAR-3</td>
<td>Ovarian Ca.</td>
<td>1.4</td>
<td>0.1</td>
<td>0.0</td>
<td>2.2</td>
<td>1.4</td>
</tr>
<tr>
<td>32</td>
<td>OVCAR-4</td>
<td>Ovarian Ca.</td>
<td>2.6</td>
<td>1.4</td>
<td>0.0</td>
<td>8.9</td>
<td>3.4</td>
</tr>
<tr>
<td>33</td>
<td>OVCAR-5</td>
<td>Ovarian Ca.</td>
<td>3.5</td>
<td>2.7</td>
<td>105</td>
<td>10.0</td>
<td>4.8</td>
</tr>
<tr>
<td>34</td>
<td>OVCAR-8</td>
<td>Ovarian Ca.</td>
<td>1.1</td>
<td>1.0</td>
<td>0.0</td>
<td>0.8</td>
<td>1.6</td>
</tr>
<tr>
<td>35</td>
<td>SK-OV-3</td>
<td>Ovarian Ca.</td>
<td>3.9</td>
<td>1995</td>
<td>9.2</td>
<td>8.5</td>
<td>9.8</td>
</tr>
<tr>
<td>36</td>
<td>A498</td>
<td>Renal Ca.</td>
<td>2.2</td>
<td>13.4</td>
<td>180</td>
<td>4.7</td>
<td>1.3</td>
</tr>
<tr>
<td>37</td>
<td>ACHN</td>
<td>Renal Ca.</td>
<td>1.1</td>
<td>1.1</td>
<td>0.7</td>
<td>1.2</td>
<td>1.1</td>
</tr>
<tr>
<td>38</td>
<td>Caki-1</td>
<td>Renal Ca.</td>
<td>3.5</td>
<td>2.5</td>
<td>4.8</td>
<td>1.8</td>
<td>2.8</td>
</tr>
</tbody>
</table>
TABLE 3-continued

<table>
<thead>
<tr>
<th>No.</th>
<th>Cell Line</th>
<th>source</th>
<th>OCT1</th>
<th>OCT2</th>
<th>OCT3</th>
<th>OCTN 2</th>
<th>OCT6</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>RXF-393</td>
<td>Renal Ca.</td>
<td>1.7</td>
<td>1.2</td>
<td>3.0</td>
<td>0.6</td>
<td>1.2</td>
</tr>
<tr>
<td>40</td>
<td>TK-10</td>
<td>Renal Ca.</td>
<td>3.6</td>
<td>5.0</td>
<td>16.8</td>
<td>2.5</td>
<td>8.4</td>
</tr>
<tr>
<td>41</td>
<td>UO-31</td>
<td>Renal Ca.</td>
<td>4.4</td>
<td>1.6</td>
<td>31.2</td>
<td>1.2</td>
<td>2.3</td>
</tr>
<tr>
<td>42</td>
<td>PC-3</td>
<td>Prostate Ca.</td>
<td>2.1</td>
<td>0.8</td>
<td>9.6</td>
<td>3.3</td>
<td>4.7</td>
</tr>
<tr>
<td>43</td>
<td>DU-145</td>
<td>Prostate Ca.</td>
<td>1.1</td>
<td>1.1</td>
<td>3.4</td>
<td>1.6</td>
<td>3.1</td>
</tr>
<tr>
<td>44</td>
<td>MCF-7</td>
<td>Breast Ca.</td>
<td>0.8</td>
<td>1.8</td>
<td>0.0</td>
<td>10.4</td>
<td>3.5</td>
</tr>
<tr>
<td>45</td>
<td>NCI/ADR-RES</td>
<td>Breast Ca.</td>
<td>1.4</td>
<td>1.3</td>
<td>1.1</td>
<td>2.0</td>
<td>2.1</td>
</tr>
<tr>
<td>46</td>
<td>MDA-MB-231</td>
<td>Breast Ca.</td>
<td>1.2</td>
<td>0.4</td>
<td>3.9</td>
<td>4.8</td>
<td>1.8</td>
</tr>
<tr>
<td>47</td>
<td>HS578T</td>
<td>Breast Ca.</td>
<td>1.0</td>
<td>1.5</td>
<td>0.0</td>
<td>1.2</td>
<td>8.3</td>
</tr>
<tr>
<td>48</td>
<td>MDA-MB-435</td>
<td>Breast Ca.</td>
<td>1.9</td>
<td>0.6</td>
<td>0.1</td>
<td>0.7</td>
<td>2.7</td>
</tr>
<tr>
<td>49</td>
<td>BT-20</td>
<td>Breast Ca.</td>
<td>1.2</td>
<td>0.8</td>
<td>0.1</td>
<td>0.3</td>
<td>2.6</td>
</tr>
<tr>
<td>50</td>
<td>T-47D</td>
<td>Breast Ca.</td>
<td>0.7</td>
<td>1.1</td>
<td>0.1</td>
<td>4.2</td>
<td>8.7</td>
</tr>
</tbody>
</table>

OCT6 is unique among the known members of OCT and OAT genes because of its pattern of tissue distribution. The pattern of expression of the OCT6 gene in the 50 cell lines suggested that its expression might be restricted to hematopoietic tissues. The restricted pattern of expression observed for OCT6 also suggests that therapies using OCT6-specific substrates are unlikely to have widespread toxicity to normal tissues. Therefore, we examined OCT6 expression in a cDNA panel representing a wide cross-section of normal tissues according to the methods of Example 4 (FIG. 3). This study revealed that OCT6 RNA levels are highest in testis and fetal liver, with lower but detectable levels in peripheral blood leukocytes and bone marrow. Since fetal hematopoiesis occurs in the liver, it is possible that the fetal liver sample may have included both hepatocytes and hematopoietic cells. OCT6 RNA levels were also barely detectable in pancreatic and adrenal tissue. Unlike other OCT genes, expression was not detectable in liver, kidney or placenta.

To determine whether OCT6 RNA expression in hematopoietic cells was lineage-specific, leukocytes were sorted from discarded buffy coat specimens by flow cytometry, and purified subpopulations were examined for OCT6 RNA expression according to the methods described in Example 5. OCT6 expression was also examined in a population of CD34+ cells. As can be seen in FIG. 4, the expression of OCT6 was highly enriched in CD34+ cells in comparison to the other cell populations. Also, significant levels of OCT6 expression (relative to MOLT4) were found in other hematopoietic cell lines: U937, a human histiocytic lymphoma cell line; THP-1, a human acute monocytic leukemia cell line; KG-1, a human erythroleukemia cell line; and MV-4-11, a human biphenotypic (B-cell and myelomonocytic) leukemia cell line.

The high levels of OCT6 RNA in some leukemia cell lines and CD34+ cells also raised the question as to whether this gene was highly expressed in actual leukemias. To address this issue, the RNA levels of OCT6 in 25 samples of peripheral leukemic cells were measured according to the methods set out in Example 6. The FAB classification of these samples are shown in Table 4. These results are shown in FIG. 8, and demonstrate that the majority of specimens contained RNA levels for OCT6 that exceeded the level found in MOLT4 cell line, the second highest expressing cell line among those examined, and exceed by orders of magnitude the levels found in placenta, kidney and liver.

TABLE 4

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CML, blast crisis</td>
</tr>
<tr>
<td>2</td>
<td>CML, blast crisis</td>
</tr>
<tr>
<td>3</td>
<td>CML, stable phase</td>
</tr>
<tr>
<td>4</td>
<td>CML, probably stable phase</td>
</tr>
<tr>
<td>5</td>
<td>CML, accelerated phase</td>
</tr>
<tr>
<td>6</td>
<td>ALL</td>
</tr>
<tr>
<td>7</td>
<td>ALL</td>
</tr>
<tr>
<td>8</td>
<td>ALL</td>
</tr>
<tr>
<td>9</td>
<td>ALL</td>
</tr>
<tr>
<td>10</td>
<td>ALL</td>
</tr>
<tr>
<td>11</td>
<td>ALL</td>
</tr>
<tr>
<td>12</td>
<td>ALL</td>
</tr>
<tr>
<td>13</td>
<td>ALL</td>
</tr>
<tr>
<td>14</td>
<td>ALL</td>
</tr>
<tr>
<td>15</td>
<td>ALL</td>
</tr>
<tr>
<td>16</td>
<td>ALL, biphenotypic</td>
</tr>
<tr>
<td>17</td>
<td>ALL, biphenotypic</td>
</tr>
<tr>
<td>18</td>
<td>ALL</td>
</tr>
<tr>
<td>19</td>
<td>AML, M2</td>
</tr>
<tr>
<td>20</td>
<td>AML, M2</td>
</tr>
<tr>
<td>21</td>
<td>AML, M4</td>
</tr>
<tr>
<td>22</td>
<td>AML, M4</td>
</tr>
<tr>
<td>23</td>
<td>AML, M1</td>
</tr>
<tr>
<td>24</td>
<td>AML</td>
</tr>
<tr>
<td>25</td>
<td>AML, M4</td>
</tr>
</tbody>
</table>

Due to the OCT6 protein's location on the cellular membrane and its function as an intracellular transporter, the OCT6 transporter protein has been identified as a therapeutic target. Basic principles of cellular pharmacology suggest that increase in intracellular accumulation will lead to increased intracellular effect. For anticancer drugs, this principle has been studied extensively in the context of lipophilic drugs, which require no specific mechanism for cellular uptake, and export pumps such as the product of the multidrug resistance gene, MDR1, whose overexpression of MDR1 leads to increased cellular resistance by decreasing intracellular concentrations of drug (Moscow, J. A., Schneider, E. S., Ivy, S. P., and Cowan, K. H. Multidrug resistance. In: H. M. Pinedo, D. L. Longo, and B. A. Chabner (eds.), Cancer chemotherapy and biological response modifiers. Annual 17, New York: Elsevier, 1997). The same principle applies to charged, hydrophilic drugs of the present invention, except that the determinants of sensitivity depend on uptake as opposed to efflux. As such, cells expressing an OCT6 transporter are likely to be highly sensitive to cytotoxic OCT6 substrates.
Drug Screening

Accordingly, the present invention provides methods for screening potential substrates of, and potential therapeutic agents against hematological malignancies like leukemia that overexpress, the OCT6 transporter. In particular, potential therapeutic agents are screened for the ability to be a substrate recognized by an OCT6 transporter protein. Preferably, potential substrates are screened for the ability to confer cytotoxic effects on a cell overexpressing OCT6 transporter protein. More preferably, agents are screened for the ability to preferentially cause cellular uptake into, and cell death of, cells overexpressing the OCT6 transporter. Most preferably, the agents are screened for the ability to cause cell death of cancer cells such as leukemia overexpressing the OCT6 transporter as compared to normal cells.

A method for screening potential substrates of the OCT6 transporter protein comprises providing a cell or cell line which expresses OCT6 and a test compound, incubating the test compound and cell line and analyzing the cell or cell line to determine if there was a cellular influx of the test compound. Analysis of the cell line to determine whether cellular uptake of the test compound occurred can be accomplished by any means known in the art. For example, a test compound can be tagged with a detectable label prior to contact with a cell and then observed under microscopy or by other means for its location. Non-limiting examples of labels include green fluorescent protein, alkaline phosphatase, horseradish peroxidase, rease, f3-galactosidase, CAT, luciferase, an immunogenic tag peptide sequence, an extrinsically activatable enzyme, an extrinsically activatable toxin, an extrinsically activatable fluor, an extrinsically activatable quenching agent, a radioactive element or an antibody.

A method for screening candidate anti-cancer agents comprises determining the viability of a mammalian cell which expresses OCT6 incubated in the presence and absence of a test compound and identifying the test compound as a potential anti-leukemia agent if there is a cellular uptake of the test compound and cell death. Analysis of cell viability can be accomplished by any means known in the art. It is well known in the art that viability of a cell can be determined by contacting the cell with a dye and viewing it under a microscope. Viable cells can be observed to have an intact membrane and do not stain, whereas dying or dead cells having “leaky” membranes do stain. Incorporation of the dye by the cell indicates the death of the cell. The most common dye used in the art for determining viability is trypan blue. Viability of cells can also be determined by detecting DNA synthesis. Cells can be cultured in cell medium with labeled nucleotides (e.g., [3H] thymidine). The uptake or incorporation of the labeled nucleotides indicates DNA synthesis and cell viability. In addition, colonies formed by cells cultured in medium indicate cell growth and is another means to test viability of the cells.

Identification and/or observation of cells undergoing apoptosis can be another method of determining cell viability. Apoptosis is a specific mode of cell death recognized by a characteristic pattern of morphological, biochemical, and molecular changes. Cells going through apoptosis appear shrunken, and rounded; they also can be observed to become detached from culture dish. Thermophological changes involve a characteristic pattern of condensation of chromatin and cytoplasm which can be readily identified by microscopy. When stained with a DNA binding dye, such as H33258, apoptotic cells display classic condensed and punctate nuclei instead of homogeneous and round nuclei.

The hallmark of apoptosis is the endonucleolysis, a molecular change in which nuclear DNA is initially degraded at the linker sections of nucleosomes to give rise to fragments equivalent to single and multiple nucleosomes. When these DNA fragments are subjected to gel electrophoresis, they reveal a series of DNA bands which are positioned approximately equally distant from each other on the gel. The size difference between the two bands next to each other is about the length of one nucleosome (i.e., 20 base pairs). This characteristic display of the DNA bands is called a DNA ladder and it indicates apoptosis of the cell. Apoptotic cells can be identified by flow cytometric methods based on measurement of cellular DNA content, increased sensitivity of DNA to denaturation, or altered light scattering properties. These methods are well known in the art and are within the contemplation of the invention.

Abnormal DNA breaks are also characteristic of apoptosis and can be detected by any means known in the art. In one embodiment, DNA breaks are labeled with biotinylated dUTP (b-dUTP). Cells are fixed and incubated in the presence of biotinylated dUTP with either exogenous terminal transferase (terminal DNA transferase assay, TdT assay) or DNA polymerase (nick translation assay; NT assay). The biotinylated dUTP is incorporated into the chromosome at the places where abnormal DNA breaks are repaired, and are detected with fluorescein conjugated to avidin under fluorescence microscopy.

Kits

The present invention provides kits that can be used in the above described methods. In one embodiment, a kit comprises a substantially isolated polypeptide comprising an OCT6 epitope which is specifically immunoreactive with only test compound(s) that are substrates of the OCT6 transporter protein. Binding of a test compound to the OCT6 epitope is indicative that the test compound is an OCT6 substrate. In another embodiment, a kit comprises a cell line that overexpresses an OCT6 transporter protein. Binding and/or cellular uptake of a test compound via the OCT6 protein is indicative that the test compound is a OCT6 substrate. Preferably, the kits of the present invention further comprise a control compound or antibody which does not react with the OCT6 transporter protein. In another specific embodiment, the kits of the present invention contain a means for detecting the binding of a test compound to an OCT6 epitope and/or cellular uptake of a test compound. For example, the test compound may be conjugated to a detectable substrate such as a fluorescent compound, an enzymatic substrate, a radioactive compound or a luminescent compound, or a second antibody which recognizes the first antibody may be conjugated to a detectable substrate.

The detectable substrate may be coupled or conjugated either directly to the test compound (or fragment thereof) or indirectly, through an intermediate (such as, for example, a linker known in the art) using techniques known in the art. See, for example, U.S. Pat. No. 4,741,900 for metal ions which can be conjugated to antibodies for use as diagnostics according to the present invention. Further non-limiting examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, radioactive materials, positron emitting metals using various positron emission tomographies, nonradioactive paramagnetic metal ions, immunogenic tag peptide sequences, extrinsically activatable toxins, extrinsically activatable quenching agents, or antibodies.

Non-limiting examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/bi-
examples of suitable fluorescent materials include umbellifereone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrins; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin; and examples of suitable radioactive material include 125I, 131I, 111In or 99Tc.

Immunogenic Compositions

The present invention also provides immunogenic compositions for the treatment of hematological malignancies. Non-limiting exemplary hematological malignancies include, but are not limited to, Hodgkin’s disease, leukemia such as, acute lymphoid (lymphocytic or lymphoblastic) leukemia (ALL), acute myeloid (myelogenous or myeloblastic) leukemia (AML), acute lymphoid leukemia, biphenotypic (ALL, biphenotypic), acute undifferentiated leukemia (AUL), chronic myeloid (myelogenous or granulocytic) leukemia (CML), erythroleukemia, granulocytic leukemia, lymphoma, monocytes, myeloma, myelomonocytic leukemia, myelodysplastic syndromes, non-Hodgkin lymphoma, progranulocytic leukemia.

According to the invention immunogenic compositions for the treatment of hematological malignancies comprise a substrate recognized by an OCT6 transporter protein. Preferably, the substrate is a compound that binds selectively or specifically to a OCT6 transporter protein. In a preferred embodiment, the compound binds selectively to the OCT6 transporter protein encoded by a nucleotide sequence of SEQ ID NO:1. The compound may be a cytoxin or coupled or conjugated with a cytotoxic agent. Preferably the cytoxin or cytotoxic agent is a chemotherapeutic agent.

The present invention also provides pharmaceutical compositions. Such compositions comprise a therapeutically effective amount of a compound, and a pharmaceutically acceptable carrier.

Cell surface proteins like the OCT6 transporter can be utilized in antibody-based targeting strategies. In still another aspect of the invention, antibodies can be developed by known methods in the art for the external epitope of OCT6 transporter protein. In a preferred embodiment, antibodies are substrates of the OCT6 protein. The antibodies may be polyclonal antibodies or monoclonal antibodies.

Polyclonal antibodies to an antigen-of-interest can be produced by various procedures well known in the art. For example, a polypeptide of the invention can be administered to various host animals including, but not limited to, rabbits, mice, rats, etc. to induce the production of sera containing polyclonal antibodies specific for the antigen. Various adjuvants may be used to increase the immunological response, depending on the host species, and include but are not limited to, Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecinith, pluronics polyols, polyoxyyn, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guérin) and Corynebacterium parvum. Such adjuvants are also well known in the art.

Monoclonal antibodies can be prepared using a wide variety of techniques known in the art including the use of hybridoma, recombinant, and phage display technologies, or a combination thereof. For example, monoclonal antibodies can be produced using hybridoma techniques including those known in the art and taught, for example, in Harlow et al., Antibodies: a Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); Hammerling, et al., in: Monoclonal Antibodies and T-Cell Hybridomas 563-681 (Elsevier, N.Y., 1981) (said references incorporated by reference in their entirety).

The present invention further encompasses antibodies or fragments thereof conjugated to a diagnostic or therapeutic agent. The antibodies can be used diagnostically to, for example, monitor the development or progression of a tumor as part of a clinical testing procedure to, e.g., determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, radioactive materials, positron emitting metals using various positron emission tomographies, and nonradioactive paramagnetic metal ions. The detectable substance may be coupled or conjugated either directly to the antibody (or fragment thereof) or indirectly, through an intermediate, such as, for example, a linker known in the art, using techniques known in the art. (See, for example, U.S. Pat. No. 4,741,900 for metal ions which can be conjugated to antibodies for use as diagnostics according to the present invention.) Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbellifereone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrins; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin; and examples of suitable radioactive material include 125I, 131I, 111In or 99Tc.

Further, an antibody or fragment thereof may be conjugated to a therapeutic moiety such as a cytoxin, e.g., a cytostatic or cytotoxic agent, a therapeutic agent or a radioactive metal ion, e.g., alpha-emitters such as, for example, 211Bi. Non-limiting examples include paclitaxol, cytchalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dillihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and purnomycin and analogs or homologs thereof. Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., melphalan, thiopea chlorambucil, melphalan, carmustine (BCNU) and lomustine (CCNU), cyclophosphamide, busulan, dibromomannitol, streptozocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DOP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincriistine and vinblastine).

The conjugates of the invention can be used for modifying a given biological response such as inducing cell death for the treatment and prevention of hematological malignancies like leukemia. The therapeutic agent or drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity for inducing cell death. Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomones exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor, alpha-interferon, beta-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator, an apoptotic agent, e.g.,
15 TNF-alpha, TNF-beta, AIM I (See, International Publication No. WO 97/33899), AIM II (See, International Publication No. WO 97/34911), Fas Ligand (Takahashi et al., Int. Immunol., 6:1567-1574 (1994)), VEGF (See, International Publication No. WO 99/23105), a thrombotic agent or an anti-angiogenic agent, e.g., angiostatin or endostatin, or, biological response modifiers such as, for example, lymphokines, interleukin-1 ("IL-1"), interleukin-2 ("IL-2"), interleukin-6 ("IL-6"), granulocyte macrophage colony stimulating factor ("GM-CSF"), granulocyte colony stimulating factor ("G-CSF"), or other growth factors.

Therapeutic Treatment

The present invention is further directed to methods for preventing and treating hematological malignancies such as leukemia. According to the invention, hematological malignancies comprise without limitation, Hodgkin's disease, leukemia such as, acute lymphoid (lymphocytic or lymphoblastic) leukemia (ALL), acute myeloid (myelogenous or myeloblastic) leukemia (AML), acute lymphoid leukemia, biphenotypic (ALL, biphenotypic), acute undifferentiated leukemia (AUL), chronic myeloid (myelogenous or granulocytic) leukemia (CML), erythroleukemia, granulocytic leukemia, lymphocytic leukemia, myeloma, myelomonocytic leukemia, myelodysplastic syndromes, non-Hodgkin lymphoma, progranulocytic leukemia.

Methods of treatment of the present invention comprise administering to a subject in need thereof an immunogenic composition of the present invention. The compositions may be administered with a pharmaceutically acceptable carrier. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene glycol, water, ethanol and the like. The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulation can include standard carriers such as pharmaceutical grades of mannoit, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc. Examples of suitable pharmaceutical carriers are described in “Remington’s Pharmaceutical Sciences” by E.W. Martin. Such compositions will contain in a therapeutically effective amount of the compound, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient. The formulation should suit the mode of administration.

In a preferred embodiment, the composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to human beings. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anesthetic such as lidocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is to be administered by injection, an ampule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.

The compounds of the invention can be formulated as neutral or salt forms. Pharmaceutically acceptable salts include those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferrous hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, propranol, etc.

The amount of the compound of the invention which will be effective in the treatment, inhibition and prevention of hematological malignancies can be determined by standard clinical techniques. In addition, in vitro assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each patient’s circumstances. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.

Various other delivery systems are known and can be used to administer a composition of the invention, e.g., encapsulation in liposomes, microspheres, microcapsules, recombinant cells capable of expressing the compound, receptor-mediated endocytosis (See, e.g., Wu and Wu, J. Biol. Chem. 262:4429-4432 (1987)), formation of a nucleic acid as part of a retroviral or other vector, etc. Methods of introduction include but are not limited to intracranial, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. The compounds or compositions may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucous membranes (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local. In addition, it may be desirable to introduce the pharmaceutical compounds or compositions of the invention into the central nervous system by any suitable route, including intraventricular and intrathecal injection; intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Omnunay reservoir. Pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent.

In a specific embodiment, it may be desirable to administer the pharmaceutical compounds or compositions of the invention locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion during surgery, topical application, e.g., in conjunction with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers. Preferably, when administering a protein, including an antibody, of the invention, care must be taken to use materials to which the protein does not absorb.

In another embodiment, the compound or composition can be delivered in a vesicle, in particular a liposome (See Langer, Science 249:1527-1533 (1990); Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Beresteanu and Fidler (eds.), Liss, New York, pp. 353-365 (1989); Lopez-Beresteanu, ibid., pp. 317-327; see generally ibid.)

In yet another embodiment, the compound or composition can be delivered in a controlled release system. In one

In a specific embodiment where the compound of the invention is a nucleic acid encoding a protein, the nucleic acid can be administered in vivo to promote expression of its encoded protein, by constructing it as part of an appropriate nucleic acid expression vector and administering it so that it becomes intracellular, e.g., by use of a retroviral vector (see U.S. Pat. No. 4,980,286), or by direct injection, or by use of microparticle bombardment (e.g., a gene gun; Biologic, Dupont), or coating with lipids or cell-surface receptors or transfecting agents, or by administering it in linkage to a homeobox-like peptide which is known to enter the nucleus (see, e.g., Joliot et al., Proc. Natl. Acad. Sci. USA 88:1864-1868 (1991)), etc. Alternatively, a nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression, by homologous recombination.

EXAMPLES

The following examples are presented for the illustrative purposes and it is to be understood that the present invention is not limited to those precise embodiments, and that various changes and modifications can be effected therein by one skilled in the art without departing from the scope and spirit of the invention as defined by the appended claims.

Example 1

OCT6 Nucleotide Sequence Identification and Analysis

OCT6 was first identified as a potential OCT gene by assembling and sequencing ESTs. BLAST searches of human ESTs in GenBank database identified A040384 (654 bp), AA033971 (714 bp) and H70190 (474 bp) sequences from three fetal liver IMAGE clones, 1656502, 429904 and 212935 respectively. IMAGE clone 1656502 (3', insert 1337 bp) ended the predicted stop codon, whereas IMAGE clone 429904 (3', insert 966 bp) and IMAGE clone 212935 (3', insert 966 bp) aligned with the 5'-coding region. All clones were obtained from the IMAGE Consortium through the American Type Culture Collection (Manassas, Va.). Each clone was sequenced in both directions. The sequences were determined using ABI Prism™ 377 DNA sequencer (Perkin-Elmer). Our assemblage proved to be identical to the recently submitted cDNA OKB1 (AF268892) submitted by M. Okabe and T. Abe. We have dubbed this gene OCT6 as OCTN1 and OCTN2 may be considered as OCT4 and OCT5 respectively.

The OCT6 gene (SEQ ID NO:1) is also contained within BAC clone CTA-331P3 (SEQ ID NO:3) (GenBank AC002464) located at chromosome 6q21. It is divided into 6 exons that span 42 kb on the human genome, from nucleotide 79,570 to nucleotide 120490 on CTA-331P3.

Example 2

Molecular Cloning of OCT6

BLAST searches of human ESTs in GenBank database identified A040384 (654 bp), AA033971 (714 bp) and H70190 (474 bp) sequences from three fetal liver IMAGE clones, 1656502, 429904 and 212935 respectively. IMAGE clone 1656502 (3', insert 1337 bp) ended the predicted stop codon, whereas IMAGE clone 429904 (3', insert 966 bp) and IMAGE clone 212935 (3', insert 966 bp) aligned with the 5'-coding region. All clones were obtained from the IMAGE Consortium through the American Type Culture Collection (Manassas, Va.). Each clone was sequenced in both directions. The sequences were determined using ABI Prism™ 377 DNA sequencer (Perkin-Elmer).

Example 3

Quantitative RT-PCR of OCT6 RNA Levels in Cancer Cell Lines

Total RNA isolated from 50 cell lines used in the NCI drug screen program was provided by the Developmental Therapeutics Program, NCI. Quantitative RT-PCR for detecting OCT-X transporter gene expression was performed by using a Roche LightCycler, which uses real-time fluorescence detection for quantitative measurement of PCR products. A gene-specific primer pair was designed with Oligo 4.0 software and purchased from Integrated DNA Technologies, Inc. (Coralville, Iowa) (F: 5'-GGCACATTATTCACAAAGCCAAG-3'; (SEQ ID NO: 13) and (F: 5'-TGTGACCTCAAGCAGCATTTGGAT-3') (SEQ ID NO:14). The specificity of the PCR reaction was confirmed by directly determining the DNA sequence of the PCR product. First, cDNA was synthesized from total RNA using SuperScript First-Strand Synthesis System (GIBCO/BRL) in a 20 μl volume following the instructions supplied by the manufacturer. The cDNA treated with RNase H for 20 minutes at 37°C and stored at -20°C. Then, 2 μl of cDNA reaction was amplified in a standard PCR reaction condition, using 0.3 μM primer concentration, with the addition of SYBR Green I Dye. After 30 seconds denaturation at 95°C, the amplification reaction proceeded through 45-50 cycles of 95°C (denaturation for 5 seconds, 62-65°C annealing
for 10 seconds and a 72°C extension for 40 seconds, with slopes of 20°C/s, 20°C/s and 2°C/s, respectively.

Fluorescence was acquired during each cycle after heating to a temperature just below the product melting temperature. Quantification was performed using the LightCycler analysis software. The log-linear portion of the standard amplification curve was identified, and the 'crossing point', a threshold of relative fluorescence, was determined as the best fit through the log-linear region above the background fluorescence (noise) band. The quantification of PCR product was then derived from plotting fluorescence data in the log-linear region of each sample to determine a calculated number of cycles needed to reach the fluorescence crossing point. The calculated number of cycles required to reach the crossing point is proportional to the amount of target RNA in the sample. The relative amount of product was described in arbitrary units by interpolation of the data using a standard curve of a series of dilutions of a standard calibrator RNA. The quantitative measurement of each gene in each cell line was normalized to the relative amount of actin RNA in each cell line, as a control for equivalent cDNA loading in each sample. The results represent the average of 3 independent determinations performed in duplicate.

A melting curve analysis was performed with positive control RNA prior analysis of the cell lines to enhance sensitivity and the specificity of the data. Amplified products usually melt quickly at a temperature characteristic for the products. The fluorescence signal was acquired at a temperature just below the Tm of the specific PCR product and above the Tm of the primer dimers. All specific PCR products displayed a single sharp melting curve with a narrow peak. In addition, PCR products were confirmed for specificity and correct size by visualization of the LightCycler products on a 1% agarose gel.

Example 4

Tissue Distribution

First strand cDNAs derived from 24 adult and fetal tissues (RAPID-SCAN gene expression panel, OriGene Technologies, Rockville, Md.). The PCR primers used in this study were the same as used in the quantitative RT-PCR studies. The PCR reaction samples were denatured at 94°C for 30 seconds, annealed and extended at 64°C for 30 sec for 35 cycles. The PCR products were then visualized on 1% agarose gels.

Example 5

Cell Sorting

All human specimens were obtained in accordance with institutional IRB guidelines. Leukocytes from fresh discarded buffy coats were isolated after RBC lysis with ammonium chloride and labeled with lineage specific antibodies (CD14, monocytes; CD15, granulocytes; CD3, T-cells; and CD20, B-cells), and isolated using a FACSVantage flow cytometer. Each population was sorted twice to ensure purities of at least 99%. CD34 cells were obtained from discarded aliquots of G-CSF-mobilized peripheral blood stem cell collections from cancer patients. For each sample, the PCR results represent the pooled average of cells from 2 individuals performed in triplicate or quadruplicate.

Example 6

OCT6 RNA Levels in Leukemic Blasts

Total RNA was extracted from leukemia specimens using Qiagen RNeasy midi kit. 150 ng of total RNA were used as a template for the first strand cDNA synthesis with the Oligo (dT) primer using the super script system (GIBCO BRL) according to the manufacturer’s protocol. Quantitative real-time RT-PCR was performed using an iCycler thermal cycler with methods similar to those described above for the Roche LightCycler. The results represent the average of 3 independent determinations performed in duplicate.

Although illustrative embodiments of the present invention have been described in detail, it is to be understood that the present invention is not limited to those precise embodiments, and that various changes and modifications can be effected therein by one skilled in the art without departing from the scope and spirit of the invention as defined by the appended claims.

SEQUENCE LISTING

| SEQ ID NO 1 |
| LENGTH: 1734 |
| ORGANISM: Homo sapiens |

<400> SEQUENCE: 1

atggggtccc gccaattcgc ggggattatat gacacagtgg gcacattcgg cagattcag 60
agagctctct attcactatg tgcttccag aacatcttt gcggatttca ctacttggct 120
tctgtttcga ttgggaagac ccctctcatat gtctgcagcc cccaccggcag attgctttcag 180
gtggggagag atatgtttcg gtgtgagctt agaagtttgag ggttcggcgg ccggggccct gttgtttcag 240
ggaggccagg attatgtttcg ggtgtgagctt aagtttgag ggttcggcgg ccggggccct gttgtttcag 300
ttgagcagg atagggagga gacacatct gttgtgagctt cgcaattcgc gcggggccct gttgtttcag 360
amagactttc cttgctttcg ccggtgagctt gcggggccct gttgtttcag 420
gtgacccgag ggaacctcgtg ccgtgagccgg ccggtgagctt ccggggccct gttgtttcag 480
tttatgttgg gagtctact gggatcgggt aacctttgct acctttcttg aaggtcggga
540
cgcccggggg tcttggggcg cacaagcagt agcatgcttt ttgtttggaat agcagcgccg
600
tttgcagttt atatatcaca tctatatgct tccttgtagtt gttgacaaggtgcaagt
660
gggtatcttg tgttgtgttg aagtattatc tgtgcatgaa ggctcgccagca
720
tgggggcttg tcattttgca ttcttttttt ggctttggaa cccctgctgtt ggcttttgca
780
ggatatccttg tcggactcct gcgttcttac cagatgatcc ttcctcaccag gcactgcccc
840
ttatatctgt gttgttggtgt ggtccacagag acacottttt ggtttctcctag gggtgacga
900
tatgaaagc cacaaatatg gtgtgacatc atggccagct ggaacagggg aagctcttgtg
960
aaacgtgcag aaccttttac caaaccaacct caggtcttctg ttagatagc ccacacgtaa
1020
gtccagaaag acacacctac atatatcgttg tataactggga gctttcagaaaagacaccttt
1080
aacgttggcg taattctggtg cactggagatg ttggtatttt actctttttgg tttgattct
1140
gttaaccttag gcagggatgac atatctttaactccttcctc tgggtgtaagtt ggaatttccc
1200
gccacactgt ctgttgctcg cggccacgcg caggtgggga ggaacaagcact tgtgctcagtac
1260
tcctttttcttcgcgtcgact gccgcttttg gctgtgatactgt cgtccctcgg caacatcat
1320
atggcttgact ttgtctttaa cccctgctggg tccgggcacag attggcctca
1380
atttatcttt atacacgatgct gctgtatcaca accatgttaa gatcggctgac tggtggaaagc
1440
ggccagatcttg tgttggctgg cggccacatgt ctgggctggtt tcccttggtaa cctcagcagc
1500
atggtacgtct cttataaacc ctggtgttgact gggactcgtg ccctcctgtag tggagtttta
1560
acacacacgc ttcctgcaact cctttggaaga cggcagacac ccactctttg ggggtgcgca
1620
aaaccttgag cagagatgctc aagcaagctc agaaacttatc ttcctcacaac taaatagct
1680
gggtgggtga aacgcaagac gattaccccg agggattcttg gctttgtgtaa ataaa
1734

<210> SEQ ID NO 2
<211> LENGTH: 578
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (264)...(264)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (268)...(269)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (274)...(275)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (410)...(410)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<400> SEQUENCE: 2

Met Gly Ser Arg His Phe Glu Gly Ile Tyr Asp His Val Gly His Phe
1 5 10 15
Gly Arg Phe Glu Arg Val Leu Tyr Phe Ile Cys Ala Phe Glu Asn Ile
20 25 30
Ser Cys Gly Ile His Tyr Leu Ala Ser Val Phe Met Gly Val Thr Pro
35 40 45
His His Val Cys Arg Pro Pro Gly Asn Val Ser Gin Val Val Phe His
50 55 60
Asn His Ser Ser Trp Ser Leu Glu Asp Thr Gly Ala Leu Leu Ser Ser
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>Gly Gln Lys Asp Tyr Val Thr Val Gln Leu Gin Asn Gly Glu Ile Trp</td>
<td>95</td>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>Glu Leu Ser Arg Cys Ser Arg Asn Lys Arg Glu Asn Thr Ser Ser Leu</td>
<td>100</td>
<td>105</td>
<td>110</td>
</tr>
<tr>
<td>Gly Tyr Glu Tyr Thr Gly Ser Lys Lys Phe Pro Cys Val Asp Gly</td>
<td>115</td>
<td>120</td>
<td>125</td>
</tr>
<tr>
<td>Tyr Ile Tyr Asp Gin Thr Trp Gly Ser Thr Ala Val Thr Gln Trp</td>
<td>130</td>
<td>135</td>
<td>140</td>
</tr>
<tr>
<td>Asn Leu Val Cys Asp Arg Lys Trp Leu Ala Met Leu Ile Gin Pro Leu</td>
<td>145</td>
<td>150</td>
<td>155</td>
</tr>
<tr>
<td>Phe Met Phe Gly Val Leu Leu Gly Ser Val Thr Phe Gly Tyr Phe Ser</td>
<td>165</td>
<td>170</td>
<td>175</td>
</tr>
<tr>
<td>Asp Arg Leu Gly Arg Arg Val Leu Trp Ala Thr Ser Ser Ser Met</td>
<td>180</td>
<td>185</td>
<td>190</td>
</tr>
<tr>
<td>Phe Leu Phe Gly Ile Ala Ala Ala Phe Ala Val Asp Tyr Tyr Thr Phe</td>
<td>195</td>
<td>200</td>
<td>205</td>
</tr>
<tr>
<td>Met Ala Ala Arg Phe Leu Ala Met Val Ala Ser Gly Tyr Leu Val</td>
<td>210</td>
<td>215</td>
<td>220</td>
</tr>
<tr>
<td>Val Gly Phe Val Tyr Val Met Glu Phe Ile Gly Met Lys Ser Arg Thr</td>
<td>225</td>
<td>230</td>
<td>235</td>
</tr>
<tr>
<td>Trp Ala Ser Val His Leu His Ser Phe Phe Ala Val Gly Thr Leu Leu</td>
<td>245</td>
<td>250</td>
<td>255</td>
</tr>
<tr>
<td>Val Ala Leu Thr Gly Tyr Leu Xaa Arg Thr Trp Xaa Xaa Tyr Gln Met</td>
<td>260</td>
<td>265</td>
<td>270</td>
</tr>
<tr>
<td>Ile Xaa Xaa Ser Thr Val Thr Val Pro Phe Ile Leu Cys Cys Trp Val</td>
<td>275</td>
<td>280</td>
<td>285</td>
</tr>
<tr>
<td>Leu Pro Glu Thr Pro Phe Trp Leu Leu Ser Glu Gly Arg Tyr Glu Glu</td>
<td>290</td>
<td>295</td>
<td>300</td>
</tr>
<tr>
<td>Ala Gln Lys Ile Val Asp Ile Met Ala Lys Trp Asn Arg Ala Ser Ser</td>
<td>305</td>
<td>310</td>
<td>315</td>
</tr>
<tr>
<td>Cys Lys Leu Ser Glu Leu Leu Ser Leu Asp Leu Gin Gly Pro Val Ser</td>
<td>325</td>
<td>330</td>
<td>335</td>
</tr>
<tr>
<td>Asn Ser Pro Thr Glu Val Gin Lys His Asn Leu Ser Tyr Leu Phe Tyr</td>
<td>340</td>
<td>345</td>
<td>350</td>
</tr>
<tr>
<td>Asn Trp Ser Ile Thr Lys Arg Thr Leu Thr Val Trp Leu Ile Trp Phe</td>
<td>355</td>
<td>360</td>
<td>365</td>
</tr>
<tr>
<td>Thr Gly Ser Leu Gly Phe Tyr Ser Ser Leu Asn Ser Val Asn Leu</td>
<td>370</td>
<td>375</td>
<td>380</td>
</tr>
<tr>
<td>Gly Gly Asn Glu Tyr Leu Asn Leu Phe Leu Gly Val Val Glu Ile</td>
<td>385</td>
<td>390</td>
<td>395</td>
</tr>
<tr>
<td>Pro Ala Tyr Thr Phe Val Cys Ile Ala Xaa Asp Lys Val Gly Arg Arg</td>
<td>405</td>
<td>410</td>
<td>415</td>
</tr>
<tr>
<td>Thr Val Leu Ala Tyr Ser Leu Phe Cys Ser Ala Leu Ala Cys Gly Val</td>
<td>420</td>
<td>425</td>
<td>430</td>
</tr>
<tr>
<td>Val Met Val Ile Pro Gin Lys His Tyr Ile Leu Gly Val Val Thr Ala</td>
<td>435</td>
<td>440</td>
<td>445</td>
</tr>
<tr>
<td>Met Val Gly Lys Phe Ala Ile Gly Ala Ala Phe Gly Leu Ile Tyr Leu</td>
<td>450</td>
<td>455</td>
<td>460</td>
</tr>
<tr>
<td>Tyr Thr Ala Glu Leu Tyr Pro Thr Ile Val Arg Ser Leu Ala Val Gly</td>
<td>465</td>
<td>470</td>
<td>475</td>
</tr>
<tr>
<td>Ser Gly Ser Met Val Cys Arg Leu Ala Ser Ile Leu Ala Pro Phe Ser</td>
<td>485</td>
<td>490</td>
<td>495</td>
</tr>
</tbody>
</table>
Val Asp Leu Ser Ser Ile Trp Ile Phe Ile Pro Gln Leu Phe Val Gly
500 505 510
Thr Met Ala Leu Leu Ser Gly Val Leu Thr Leu Lys Leu Pro Gly Thr
515 520 525
Leu Gly Lys Arg Leu Ala Thr Thr Trp Glu Glu Ala Ala Lys Leu Glu
530 535 540
Ser Glu Asn Glu Ser Ser Ser Leu Leu Leu Leu Thr Thr Asn Asn
545 550 555 560
Ser Gly Leu Gly Leu Gly Thr Gly Ala Ile Thr Pro Arg Ser Gly Leu
565 570 575
Gly Glu

<210> SEQ ID NO 3
<211> LENGTH: 123805
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 3

aagcttggcc aaccatgggc ccaacgggcc catgtggcct aagatggttc tgaatgcagc 60
ccacacacaa tttgtaacat tctttaaagc attgagatat tttttcaat tctcttcctta 120
gctctacgc tattgtgatc gttgactgtc tttatatgtg gttgaagaca atttgctctcc 180
ttcagatgtg ggcagaggg aacaataag tgcgaacaacc attgagatcct ctaggcaact 240
ggcacacgt gaaatgttgt cgccgagacc tagttagac gctcagattc aggctgagac 300
tgttcacacaa actctcaagat atcatcaaccag tttggggga ctgcagacact gttggcaaca 360
tctgaaacc tgttagggctt cggagacac taaacactc acatgtgatc ttaagagatc 420
cagacagct ttccttgcttgt ggtgtgccc gcgcactctc tctcactaac atcgagacc 480
tttcagctgc atttctatgg tgaagttttg caggcaacc tctggtcgt gcctcagac 540
tggtggaacc cttttaagat cttaggttgg gcaagttgg caagttgcttg 600
tcctctataa cttatgtcag cggataacgg aagtagctggtg tctggtg ttcatttttg 660
ggtgccctc aagctatata cttgattcag acctgttcct gcagcggagc gcacacaccct 720
gccagtctc tctcttcgct ctttcttact cggagtactt gcagcggac gcagcggacg 780
ttcgagatt tataacgctt gctgcatctag tatttttttt cttctcttctttctt 840
ggagcagaca ttttttttttttt ttgataatgag ttgttgtaata ttaagttgg 900
cccgccctt ttcctttttttct cggagactgct gcagcggctg ctcagacttct cggagctgctc 960
ggtaggagg taagagagag cagttgatgc gcggctcttg ctcagcttctg ctcgggctg 1020
gacagcaata cggataatcc cagcagcttg gctcgggctg gctgcatctt cttgtgtgg 1080
cagcttgcc ctttttctgct gcgggctgctg ctcgactgtc cttctttgttctctctttttct 1140
gtcagctgc ctcatcttctctg ctctcagcttg gctgattata aagttgctt ggagtggcctg 1200
gcagaatttc ctctcagctctt cttgtgctgctc ttcagcgcctt cggagactgct 1260
gtcagctgc ccagcggcctg ctcctctctctt attgtgtctc cttgtgctgctc 1320
gcagcggcctg ctcctctctctt attgtgtctc cttgtgctgctc 1380
gcagaatttc ctctcagctctt cttgtgctgctc ttcagcgcctt cggagactgct 1440
gcagcggcctg ctcctctctctt attgtgtctc cttgtgctgctc 1500
acccgctgt cggataatat tttgaagaga agacagcggctg ctcagacttct cttctttctt 1560
aagagagag ttttctgtc cggagactgct gcagcggctg ctcagacttct cttctttctt 1620
agtacagt gacgtgaca tacatataaa atacaaccccc ttaagacctg actggttaag 1680
acttaagccc agtatcttcc agagatgagt gttcagggtc atacccacga tcttacgcct 1740
cctgtagtga ccaagcaaac ggcgacaggt ttgatctcctt ttctcatatca catgatgcc 1800
gtgccagag tcatctcagcg tccctctggga ggtctcctgag gctcctagcc aaaccctaga 1860	
tctcgcattc ataattctctt ggtgctcagga tttgatctcat tgcctcaatt tctggtggac 1920
tgactctgta cagggcatac gaggagatgg aagcctctta ctacctcaag cagaaattga 1980
ggcagccgc cagcactatt gccaaacaac cgggagatgt tggagatgaag aagcagcgtg 2040
gacacagcgc gcaacagagc ctctatttaac tctgaccccaaa aagagctcttg aacctgaagt 2100
cccacagctc ctctctctct ccacagcact cactgcttttc aagacgacct caactctcaag 2160
ctggagagtg tgccgtcgat gaggtgctgc cacgcagactc gcgcaccatcct ctctctctat 2220
tctacgttct tccactgcca atggagagta tacaattagc tgttttttaa agcgagcgtc 2280
agagctaaac tccacaaatc caggaattcc aagaaatgtca cactaaaact aaggtttctga 2340
aaccgcattt aacacagaccc aaaaacctga ccaacagacct tccagacact gcggccaggg 2400
tgacccagaa aacagttgag ggtgactcttg tgaattccag cagcagcttg gcctagagac 2460
ctgccaggcc atgagccagc gacatggaat aagcttgtag gacagcccaat tccctgtgga 2520
gaagcttgag ggtaggtgctc cagcgcaact tgtgcacact taaactcagac gagagaatac 2580
tgcagagag aacagccgac acggcagagc cctctgggctgc tcaagaggtct cacattgctgg 2640
tcctcagcga agtatggctct aagacgctgca gcccagagaa gaaatgagc cgagagaaaa 2700
aaccgcatta aagagtagca gggcagacct tctgacagct cccagccgca gagaatacgcc 2760
cctgtgccc acacacacag tgtgaactct tcataaactct ctgggttctca gttgggtccc 2820
tcgtgatttg tctcagata gcaagccgaat tcatgctcct ccacagtctc cgtgtcccctt 2880
tctgacacgc gtttaaagac gacctttggt gcacagctggg gctgctgctc gcagcctccc 2940
catccagaa gggtgagccc tggagacgag tgaagcgattg ctgacgcagc acgtcaaagct 3000
cagctgtggg ccaagcgatt gatttgtttg tttttttttttt tttaaaaaaa 3060
aagggcggcc aaggggggttc aacccaggg cctccagcct cggggagcct gcgggtgtgta 3120
gatcactctg ggctgggatt tgtgagaccaag cttgacacacg tgtgagagac ctgctctcct 3180
taaaaaac caaattgtgc gggtgggtgt gcagaccggca tcaattccag ctaatcgcga 3240
ggcgctgca gcagacagacgct tggagacctag gaggcaaggg tgtcgagtgaa tggagatgcg 3300
gcattcgtct ccacgtggtg gaaacaagagg gaaatcccaat ctaaaaaaaaa aacaaaaaa 3360
aaacatcaca aaacagccat gaaagatcg gaaattttttt cagtaatatta actgttttgtt 3420
agacacaccc tcaacattttttt ttctctgtgt tgtctggttt ttttaaaaaa tttccgggca 3480
ggcattcgtg tctcatcata taattcaccag accttggggag accggggag gttggatctct 3540
tgacagttag atttttgtaac cagactgccc tcaacattag tgaacactctg tgtttttttta 3600
aataacaaaa atacccccag tttggggttgg gttgctgtgt tctcaggttc aatcgaaagg 3660
cctagagcgg cagactgtgtt gaaactctgg ggaagaggtt ataccagctgg gaggatagcc 3720
cacctgctc cagccttgga gaaacaagtt gacctcctct cttaaaaaa ataaaaaaa 3780
gaatcctcc cactcagaca gataaaattt aagccagagc aacactgaag gaaatttatac 3840
aagacacatc ataataaatg tgcctcaact cagttgataaa gagaataatt taaaaatttac 3900
aacagaaaaa aaatattgtt ggaacaaggt gacgaagcag tgcgaatttc gcagagttca 3960
-continued

tgcagaagc aagcaagtga gaagacagag aacataataat ctttaaagta atcaagagaas 4020
aatattgtca acctagaat ctagegttctt gggttggtttt ttggtttttt gtttcacatg 4080
aattgccccac taatctcata cccagcagaata attggttcgca aacaattaagc caaaatactt 4140
cttccaaact ccaaaagtct aaaaataagc cctctgacgga ccttatactat aagaaatgtt 4200
agggagatgc cttcagcagc aagcacaatg aatacagataa ataatctggcc ttcacaaaaa 4260
gaatgaagaag tcctggagat gaaacctcga actctctgaa acacagcaca gctatgaatg 4320
ggagaagcatc ctgtggagcc ttcacagggc ccaaaaagag gcacagagag taacatttgc 4380
catacgctag ccccccaacag gctgagaaacc agagatctcc aagaggtgac atacgtggtt 4440
gtggattcgc caacactgcac ctctacccag taaaacctggg aagagggagc agagagaaat 4500
aagtctcaag ggctcctggag cacaagacgt gcctagaggg gggctcctcct gccttcctcg 4560
tggttaagg gaaaaggttgt gtcgcttccct ccttcgaatg aaggttctaa taaaatgttt 4620
ccaacaaat tggatgctaa aagttgcccct cttgattgag ggaaggtttttt 4680
getgctattct tctacatact aaaggtatag ggagaggtct tggagaagag acaaaagcgaa 4740
cacagagagct ctgcagagcccc cagcagctgg ggggagctagc aagagagcaat 4800
ttcctggagt tcaagatact gacagtctgag atatggttcc ctcctacccc 4860
aacaggggttc ctctctctct ttactgggga gccacacagag ctcgtagatg acatatacag 4920
tcattgagtg gggaggtttt ggcagcgggt gcctagtcgaa tccacatata ctgctgctcg 4980
aagtcttcct ccaaaagccca agatgttgtct tccacaggaag aagctctcagct gcagctgcct 5040
tctacgcagc gcctacagttc gcaccggtta gagaagggc cttcgccttga gaaaggtcct 5100
cacatggaga agaggtcatact gtctgctgtg tagtttaagag cccctccggt tttttgtcgc 5160
tctctctcct gccacagcgc ctaagaagct atatatccca acgggaagcc gagaaggttg 5220
gaggtctcca gaatagtacg ccctctctcc aaggtcagcg cctgacgcttc ggcagagtgg 5280
ggaggagggc gttgctgctgg gagataggtt ggaagagaaa tctgttggaa ttaaatgttt 5340
aaagtaggact gggtgtaaat acctggaaac agtggtaaaa tttggcaccc gccaagatgg 5400
taatctcagc atctgctacc cccctgtataa ggggtgcacca atttgaaagg gotcagaaaa 5460
atgaaaaagc ttttctctgt ttttgaagac cccaaacaac aaaaaaaca ccaaaaaaaga 5520
acaaaaacc ctttctctcc ctacagcagc aeattacactt gtaaagattg ttcctcagcg 5580
atgattgagc gcataagtct cccaggaggg gcctagaggag aatacctac gtcatacctt 5640
getctcttgc actctcagcaca cccagctgcac gcctgcttgc ttttttctgttg 5700
atgcctgcc ttcctgagag ccaacctgga gacgctagcc tcgacccagg acacaaggtc 5760
ctgtgctcc tgcctgccttt ttcagcagct ttcgaggggt gggagcttgg gcacacctcc 5820
aggttggggg gcatacagtc gcctgccagc ctgctgctca gcctgctggc gcctaggcccc 5880
acaggcggtc gccacacagct gcagaggagt gcgcagctgg gacccaccccg ctcctctgcc 5940
ggaaggcccc tggagccactt ccagagccac cccaggccgc gcctactgct gcctaggac 6000
tgtgattctt tcaatatct ctgctcagc aataacacat gtctgtttcata ccaaccaaga 6060
aaatagctaa aataagcatct aataactcc caactctact ctaaacccgc aacccacagc 6120
cactgtttaa aacccctctg ttcaggatcct ccagacagct gtaagaaaaa tttataata 6180
ratatatata tataatataa caaacaataa gtatattttt ttcctccgcag cctcagcaaat 6240
ataattatat ttttaacctt tctgtttctt taataaaggttg gigaagacca cctttactt 6300
ataaaaagtg cgcataattt tataacattt caataaactt cccaaagag agctataacc 6360
gggaatgttc aagtttttaa actctatagt ctagatttcet acgtatgtg ggtggaggag 6420
gagacaccttg aagagaaggtt gaagcagctgg gagagaacctgg gctcaggggg aggcctggga 6480
ggggatctcc tctgctggtt ctctgtgctca ctctgtgctcag cctcagctctcag 6540
gctgcctcttc cccggctcttc tctcctcttc cttataatcct tctcaacctt ggtctccttcag 6600
cattataac cttctcagct gctcaacatt atctctgcct gcattgccttgctcag 6660
cctcgtgact gggctctcct cggcctggct cggcctggct cggcctggct 6720
tgatgtgagc acgctctctct cttcctgtct gcattgccttgctcag 6780
agggagtcaac ggtctttttt cagatgtcct cccacatgcc cagagattct ctgatgtgct 6840
tgatgtgagc ccagctgcca tctctgcaac aatgatattc cccgtatatc acgctctctct 6900
cacctgggcc acctgcctgac tccctgggaat tggagatgaa cctcaccacg ccacacagga 6960
gtacacacg ccacgatgagc agggctctcc aagatgtgcag tggcctttttc 7020
agggaatatcc tggagccat cccacatgcc aacagctgaa actctatagt ctagatgtgct 7080
getatcaca aacagctgaa tttctctttaa aatagtaagaa tttctcttttaa 7140
aatagagga aatataattt aaaaaattttaa gatggtagct ataagatcact ctgcaaacagttg 7200
tgatgtgagc acagcatgcc cagagatcact cagagatcact cagagatcact cagagatcact 7260
aatagagga aatataattt aaaaaattttaa gatggtagct ataagatcact ctgcaaacagttg 7320
tctctttttaa cccccacatgcc aatagtaagaa tttctcttttaa 7380
tccacatcgt cttcacagc cttcagcagc cttcagcagc cttcagcagc cttcagcagc 7440
agtatcaca aacagctgaa tttctctttaa aatagtaagaa tttctcttttaa 7500
acatgtgagc acatgtgagc acatgtgagc acatgtgagc acatgtgagc acatgtgagc 7560
agtatcaca aacagctgaa tttctctttaa aatagtaagaa tttctcttttaa 7620
agtatcaca aacagctgaa tttctctttaa aatagtaagaa tttctcttttaa 7680
agggagacgc tggacgactg ccagccaggg cttctcctgc cagagatcact cagagatcact 7740
agtatcaca aacagctgaa tttctctttaa aatagtaagaa tttctcttttaa 7800
tctcagcactc cttcagcactc cttcagcactc cttcagcactc cttcagcactc cttcagcactc 7860
tgatgtgagc acatgtgagc acatgtgagc acatgtgagc acatgtgagc acatgtgagc 7920
agtatcaca aacagctgaa tttctctttaa aatagtaagaa tttctcttttaa 7980
agggagacgc tggacgactg ccagccaggg cttctcctgc cagagatcact cagagatcact 8040
agtatcaca aacagctgaa tttctctttaa aatagtaagaa tttctcttttaa 8100
agggagacgc tggacgactg ccagccaggg cttctcctgc cagagatcact cagagatcact 8160
agtatcaca aacagctgaa tttctctttaa aatagtaagaa tttctcttttaa 8220
agggagacgc tggacgactg ccagccaggg cttctcctgc cagagatcact cagagatcact 8280
agtatcaca aacagctgaa tttctctttaa aatagtaagaa tttctcttttaa 8340
agggagacgc tggacgactg ccagccaggg cttctcctgc cagagatcact cagagatcact 8400
agggagacgc tggacgactg ccagccaggg cttctcctgc cagagatcact cagagatcact 8460
agggagacgc tggacgactg ccagccaggg cttctcctgc cagagatcact cagagatcact 8520
agggagacgc tggacgactg ccagccaggg cttctcctgc cagagatcact cagagatcact 8580
agggagacgc tggacgactg ccagccaggg cttctcctgc cagagatcact cagagatcact 8640
agggagacgc tggacgactg ccagccaggg cttctcctgc cagagatcact cagagatcact 8700
ccaaaaagctg gaaagggacag gaaggatttct cccctagagc cttgtaggga agcatggcac 11160
agctgacgcc ttgatccccg acctctgccc ttctcaaaac gttggagagt gtattttcgt 11220
ggctcttgaa ccacattttc ttggttggaa tttggtaaag ccacccctag aatctaaacg 11280
gggtagggag cttggccacca gctctgagtc ctgacagagt ggctgtgtgc tcaggtctct 11340
cattttcccc aacccccacgg ggggcaaaac aatctatttt tatgatgtta ttcactttgg 11400
gotaaatct acaggacagtt attctcttca tagtgataaa tttgtcctca tttttttcct 11460
gctctgcttc cagtgttggt taaataaatct agaataaatc attttttttt taaaattttttt 11520
ttcacacctt ttaccccaagaa gataaaaaag tcaacaaata ttcttcgact gatacttttc 11580
ttttttcct ttatttttta agctgggaca ttggccgcaag ggctttgcag 11640
gggagctctt ccctgtagcte ccactctctg cctggccacac agacaggtttg aacggggggcc 11700
tgtcgacagc caggccagca tggggagagag ggacaggttc cagggagacc tccctcttgat 11760
aatgtgttg cattttgagt gctgaggggg attgtccccaa cctctctcaa ggtctagtgg 11820
tgctcagctt cagccacccag ggaagacgta ctgcacaggg gacccagcct ccaaggccct 11880
gaggaatrggc gacccctgc tttcccttctg gttcctgctgg gtggagatatg gttgttgtct 11940
ggctctgctc ccctccctcaag ccacagctga gttctttattt ttgaggacca aaggaaggtga 12000
gggatcttttt taggggagcc gtctgataag ttgctctcctc ttgctgttct gggaacacat 12060
tttctctttggg gacctccagac gttgtaaagac tctcaggagc ctgctccagct gtctggtgct 12120
tctgtgtgctg ggacagctag gggagacgct tgggagaggt ggccotgaga gagaactcag 12180
cagggtctct cggccctcag acctgcacct cccacccacgg cagacccacgc cttacactgctc 12240
tgctgtgctt ccctctcttctt ccacccgctgag aggccctagg ctgctggctt ctctctttct 12300
tctttcaacct ctgagcact ctgctgcttct ttctgagct gttgtgccccaga agatgcttta 12360	
tctgggacact cttgtgtgctg ccccttgggg ccctgccaagt gttgtgctgt tggcgttgctg 12420
tccggttgctg cccaccaattac tccggggacc ttcttggaact cttggccaccc aacccagccc 12480
tttgctattc ttgctcctct attacactcc ggtctgtgca tgaactctcct actotgaca 12540
cagctgacagt tgtgtctctag gacacccagg acaccaacct gctctccagct tccctgcctc 12600
tccacccgga atggccctttcc tggctacact ctgggctggaga gatggaggg gttatactct 12660
ttcccccccc tagagcact tccaaattgct ccagccgcaag gtcctttcto tcccgtgacaa 12720
gctctttccct cttgtcaagag tattgcctct ggaactctcc ccccttgccac ctggctggctg 12780	
tacagtctga cgtagcttatt tagggctttca ttctctttttct cttctctaaaca tttgttctga 12840
aaaaataatca tcatggacca ttatgctgaca ggtcttt gagataagag gatggaggg 12900
aggttgctgg cttctgagct cttggcagttg gttgtgtgatg gctcttgctct cccctctggtt 12960
tccaggatc cagccctctgc tctgtggctg cttgctgacac aatgacccaa agccaaaaaacc 13020
agcgaacagct ttcacccatata aacaaaccag acacggtcgg gctctgcaag gcccaggggag 13080
agctggcatgc agcgccccag agctgcacct gatagccgcc atccacagcc cccattccc 13140
tctggctctct ggtggttggcc ggtctaggag cccccccccag gagacgagatg gtggagactg 13200
cagggtctgg atccctctgc accctggtctg ggctgtgacct gtcagagttcc 13260
tctgttagtctg ccccttgcctg gttctctggct cttctctctct ctttcagcc 13320
ggggtggcc cttccacccc gcocccacac cccatactcc ctgacccctg tggaaatagc 13380
gtcttgtatct acaccccaacc agctgcttaaa ttccctccgc ccagccctgg 13440
agtgaagtt ttggatacc ggagcgctg aaggccaga ggtggccgaag
acagagaga cttcactggc ttctgtagtt tctacaatac aagactcggt gcaacagagt
ctgcatctg cttacaagga acaactcat cttcatataa ctacactata caaacctctg
aggggtctctg ctgctactga ctgttgccgg agctgtgctcct tacgtaggtg
agagggact ttttcatctt ttcatttggt aagagcctag ccattattgg tctattcgtg
tcagagac ggttggttcg cccgaaccgg cgggtgcggg cttccgacgc
ctcataatgc atacggcag ccagcggttc gctgcgggtc acgctggtct
agaggttcgg cggggtgccg ctttgctgctt tctgaatggc tctcactggt
tgagagcgac ccggtgctgc gctgtggttg cttcagtgct cggatagctg
agaaatttgct caggactctg cttgctggtct tctcttggc ttttacattg
ttgtaatttt ggttggtcag cggactcact ctttgctgctt tctcttggc ttttacattg
ttattcag atcgtgagct ggttggtcag cggactcact ctttgctgctt tctcttggc ttttacattg
agaggttcgg cggggtgccg ctttgctgctt tctgaatggc tctcactggt
tgagagcgac ccggtgctgc gctgtggttg cttcagtgct cggatagctg
agaaatttgct caggactctg cttgctggtct tctcttggc ttttacattg
ttgtaatttt ggttggtcag cggactcact ctttgctgctt tctcttggc ttttacattg
ttattcag atcgtgagct ggttggtcag cggactcact ctttgctgctt tctcttggc ttttacattg
agaggttcgg cggggtgccg ctttgctgctt tctgaatggc tctcactggt
tgagagcgac ccggtgctgc gctgtggttg cttcagtgct cggatagctg
agaaatttgct caggactctg cttgctggtct tctcttggc ttttacattg
ttgtaatttt ggttggtcag cggactcact ctttgctgctt tctcttggc ttttacattg
ttattcag atcgtgagct ggttggtcag cggactcact ctttgctgctt tctcttggc ttttacattg
agaggttcgg cggggtgccg ctttgctgctt tctgaatggc tctcactggt
tgagagcgac ccggtgctgc gctgtggttg cttcagtgct cggatagctg
agaaatttgct caggactctg cttgctggtct tctcttggc ttttacattg
ttgtaatttt ggttggtcag cggactcact ctttgctgctt tctcttggc ttttacattg
ttattcag atcgtgagct ggttggtcag cggactcact ctttgctgctt tctcttggc ttttacattg
agaggttcgg cggggtgccg ctttgctgctt tctgaatggc tctcactggt
tgagagcgac ccggtgctgc gctgtggttg cttcagtgct cggatagctg
agaaatttgct caggactctg cttgctggtct tctcttggc ttttacattg
ttgtaatttt ggttggtcag cggactcact ctttgctgctt tctcttggc ttttacattg
ttattcag atcgtgagct ggttggtcag cggactcact ctttgctgctt tctcttggc ttttacattg
agaggttcgg cggggtgccg ctttgctgctt tctgaatggc tctcactggt
tgagagcgac ccggtgctgc gctgtggttg cttcagtgct cggatagctg
agaaatttgct caggactctg cttgctggtct tctcttggc ttttacattg
ttgtaatttt ggttggtcag cggactcact ctttgctgctt tctcttggc ttttacattg
ttattcag atcgtgagct ggttggtcag cggactcact ctttgctgctt tctcttggc ttttacattg
agaggttcgg cggggtgccg ctttgctgctt tctgaatggc tctcactggt
tgagagcgac ccggtgctgc gctgtggttg cttcagtgct cggatagctg
agaaatttgct caggactctg cttgctggtct tctcttggc ttttacattg

ccagcacaag aaacagacaag tagaccaagtg gaacagaataa gaagcctcag aaacaaagct 15900
gtgtgcctac aaccatctga tcaacaaggc tgacccaaga aaaaaaaaaa gacattttca 15960
cttcaaatatg gtagtgcttat gcaatattgca gaagaaatgaa aatagccctcc 16020
tacttttccg ctgatacaaa agttttttcga agatggatata aagtttttaaa tataagacct 16080
cacggttataa aaatctcagta agaacaacct ggaaatcacc tctcaaacat gacgctttgc 16140
aaataaatttg tgacataaggc cttaaaaagca attgcaacaa aacaaacaaa ttggcaagtgc 16200
ggagcctaatg aaatggaagag gctggtcagaa agcaaaagag cccatcaaca gatctaaaaca 16260
ggacagcctac agaatgggttt gcacaatattt ctcaaatctat gcaatgtgaca aagtgctaat 16320
atccagaaattc ttaaaagaaaccttggtaccc aagaaaaacc caataatact cattaaaaat 16380
gggcagctagc cgcgagcagc ctcagttggtca aagagacagct acacagcagc cacaacaata 16440
tggaaaggtg tcctcttcac gcggatctcag agaatagcagaa atcacaaccg cagttgaaata 16500
cctcctcagc cccgctagaa tgggctctgt aacagactaa aaacacaagct atgtggtgag 16560
ggttgtggag aagagagagtt gtttataccag tgtgttgagat aatgtgtaaagt gtcgagccca 16620
cgtgggaagaag ctggtggagat atttctctaa gaatttttaacagatgctccag attgagcoca 16680
ggctgcattata ctacccaaagaa gaaaaacagat caattaccca aaaaagacca 16740
tgtgactgtagc tgggcttgctca acagctcttc aacatgcgaa acaacatggc aatgattgag 16800
tgcccctcagcg aagggctact gataaagaa gtaagtagca tatacagcttg ggttagatct 16860
aactgaccataa aacagaaatg acactagcct tggcgaacat gtgttggagga tgggagagca 16920
tacgtctcagcg tgggacaaag aaaaacaaata cccggtctcc caacttataag 16980
tggagcgaataa acactgagca cacttgctga taaactctggtg caacagacag acctgtggaact 17040
aactagacgggc gaggaggggag aacgaggatgt ggggtgaaag aactaacacttc aagcactag 17100
cctcacaacat ggtgcagcta tggcagcagta aacaacagctgc agtgctccag cctgacttca 17160
aaataaactg ttgtaatctttta aaaaagataat atatatataat tatatatattat gtagtaagtt 17220
atatatatttt tagggccctgg cactcgataca ttaatactgaa ttaaatgaaag cagcagacct 17280
tctataagtaa ctgagcacaag gaaaaatga aacgagcttt gctgtgctgtgt ctgcatacct 17340
gctgggctct cccgctcagag attggctcgtc cttgagatcgc cttgagcctgg 17400
aactgaaataa tgtatgcggctg aagctgacaca acagcaggtta aacatgctga caataacttaa 17460
tggttgtcag ctcctcagctc aatcactcct ctatcagctcg ctttcagaga atgtgagagg 17520
 ttgggtgttgcct tggaggggagag atgagtcgag acagctgtaga gaaaatggc gtgtgttctc 17580
tagttccgcc gggctgttttg tctactagcct tttcgagccggacacgctctcct ctgcaagcccc 17640
cagggggtcact gctgtgtagtg atcgctctct gcacagctct cttctcgggct ctgccctctg 17700
aataacgttttgcacactctat ccttttacagata ggggtcgcataa aatgggggtaa aatgggggtaa 17760
cgggctcctggag tgggtgctctgc gacgccagcagt cttgggctcagtg tagggctagtttct 17820
agcacgctccag cagcagcttg gcacggagcat gccgtgctgctgagtaatgct tggcagctgcc 17880
ccccctctgtga aggctggtcc gaacagctcctt ctcgatgctttg ctcgatgctttg 17940
gaagtttcacat ccagctccagcctt atctatcttcag agatgtgctgcttgtagct cagagttaagg 18000
tcctgactct ccttttacgcg gttacagccgc agctttttcgcttgcctttct ccctgcttact 18060
aatgttgttattgcattttttt ctttgtagaaat taatggtattg gtctgctgctt cagaggttag 18120
tacattcaccatatatttttc gcggccaaat ttaaaaaataa aatgtaaactcc cctcttcatag 18180
aaasactg caaagaca tgggaagca aaaaacaatt ggaaacacct tcaactttaa 19240
tttactaagt tagaaacctc tatattctct ttcagttctt ggctacttgt ctgatttttc 19300
cagatattga actctgcgag ataaggtatg ctgcaacctt aagttctttag tgaacagtta 19360
cctcactgaga cagttgataa ggcctactg ccccaagtag caacctgttca catatgcttt 19420
gcattttgca taagccaggg caatattata ttcctatttt ttcgaagttc caaattttgt 19480
aacgtacctcc gcggctgagc gatagcaggg gcttgcttca ttcctctatta ttacaaaaag 19540
cacagacca aatatattct ttcagtgctg atcacaocca octaatttttt tctotgtgttt 19600
cctctctttct cagactcttca acacgagggc tccataatatt ttcocaggat agacaagaga 19660
ctgcaagaaa aggaggagaa atacacagaga gaaagttgca ataagaggg aaggtggagat 19720
tatcttactga acttaagacct gcataaactt gctgcaagat tattctcttc gcctttctgc 19780
cagagacac caaagctctca gagggtgagg cagagggggaa tcaagttggg gagaagagga 19840
atattaatgtt gcagacaaag gctcttgctag agatcagagc tgccttttct tcaagtcttc 19900
ataagtgtaac cttgtgaacta tgcattagtc atacgagca ctggagaaacct cacaataata 19960
cactagaaaa acattcctagt ttcocagaat aggctcaca ttcgcaaatag ccaggaatga 20020
ttgagaggtgg gacagacattgt cttgcgaagttc ttcatcttac cccacoccaaa 20080
taactcaatt tttctctgaa ttcocagcag atcgagaaac agaagaaaaac ctctctttgct 20140
actctgagga tgaatgtgta atctctactac ttaatcttttt ttttttttaca ataaaggttt 20200
tcctgtata aagccagaa agaagcctaa gcatacgcce cccgtgtattg tctctttttct 20260
ctgctata acattttttct cttggacact cttatatcttts aaactaatct 20320
tggctagtc tccaaacaac ctgtctctaa attttccttc attttctgtg cttgggaatca 20380
tgattaaaa aacactgctgg ttcttaaaag ccctataaag tcgaagctag acctttaacc 20440
tggggagaaa ctaataaaac atatgaatt atatatata tatataacaat ttttgtgctt 20500
gcttgatgtat gcagttggctt ctcagaaaggt ttcgtgacac acctgatctc agccacaactc 20560
cagaaaaatc ttccaggtgg ctaacgccac tctagatgc tggagacact ctagaaaaac 20620	tagtatcaca accctgcaag gcacatcaac cttgtttttc tttccttttt cttggaaagt 20680
cctctatata agactgttct gcctgcaata tatataagtg ccacocctgt gcgtgaatgac 20740
acctctgaga tgcagacaca gcctgttata ttcgcccttc cagactagct cagagctact 20800
aaagacagata cggagatgtat atatttaaat ttgctctttt cttgtcttctt ccatttgttt 20860
ttcctctttct tttgtctactc ttaacaagct ctaaaacaaaa ttctctcacaat gccactctgt 19920
ttgcctcttttt tattgtaatttttcaagttt ctaacagttgt gacgtgaataa ttcoccccaaa 19980
aatataggtt ccctgtgtatct gcagagttag tgaatctcaac acccttagag atcacaacgc 20040
actagaaagag gcttttcccc cctatataaa gataggaagt atcccagcag gagaacaaat 20100
gtctttgttct ctcctgcttttc gacatccttc cctgcttttt cttgcaaatat 20160
caacocctgaa cgggaaacttt tccagataaat gcgtgcttct aaggtcaatt tacatccaa 20220
gaatcactttc aacaacattgt ttgcttacctt gatcaocccca ttttcccctg tgaacatatta 20280
tggcccttttc atacaatttttttttt cttccccccc cctacatcata aagcactcttc acggagactt 20340
gcccccttcgt ttgctgaaag ttcagcttctt ccaacactaaataa taaccttttctt ccaggttcca 20400
tcctttttatt atattatttt tggagacccag gctcctctatgt gtagtttgggt tgtggagac 20460
atggtgcagtt cttgccagct ctgcctgctc tgggtcctgtt ctcctgtgtc ctcctcttttt 20520
atgggtgcagtt cttgccagct actcctcctcc ctcacccactt ctgactcacttt ggtgttgagaa 20580

US 7,723,019 B2
cagcctcctg agtagtgcttg attacagggg ccacccaaac cttgtgaaatt tgtatatatty 20640
tagtagagat ggctttccac caagttggcc aggtgattat cgaactcctt aacctaaatgg 20700
atocactgto ctcagacttc cattacgtgc ggattacaggg gacagccaaac cgtggtctggc 20760
catcctatat cctcttcttt tttttaagaat gtttttgtgc acatgcnaatt ctcatttatt 20820
ttcgcttactc aacticgtaaa ctattgcta cttttggttgg ctgctttaaag 20880
gtattcgctt aataactcctt gtagatgacg tgcctatctt ttcttttaag agttctctga 20940
gtttagactt ctcgtatattt attacatctct tttgctagat ggtggtgtagc tttaaaagct 21000
tttcttccga tgtatattgg tgtgcatctg taaaagcccc tgaaggcttt cttgctgctt 21060
gccagagtac agcagtattta cacagacagg gaaactgcaa tggagaaaga gtttaaatccg 21120
tgcagattg cggttagatga aaggtttaaat acacatagag caggctaaat ggagacgtca 21180
agcttttattc ttacagcttt tagcctcccct gagacacagtg cttgcagagc gggggttagg 21240
gaatggggag tggtaggggttgtggtggag cattaaatcca caggagtccg aaggttgctt 21300
ccttccgtgca gtcgctctct ggtggttgagc ccagagccga aggagccagc tttaactgctc 21360
tggtggtgccc cacgggttccc atcgagttgag acagttgagg aataacatcc aaccacatcc 21420
tttagattttc ttcgcaaaag ctaataaag gtagaatacg ttggcctcttc tgggtgtata 21480
actccataac caatacttctggt aatactcggg aggtagttgg agggggttgg 21540
gttgccacac aagggaggag tgtttgttgcag gggagtctgtgcttgtgctt ttgctttactac 21600
tataaactaa atctccgtca aagattttgg acgctagctc gggagagagaa gggggttagg 21660
ttgaggttata acccgattag cgagctcaggg ttcctctagtttcagagttt cattctcttt 21720
tcactctttgc caagggttttat ttaattcctat tattcggggaa ctctctcttt 21790
atacgctttgc gaatttcctt ttattctcttt ttatatatatag tttttttttttta 21840
cttacctcttt ctcgcactcatt catattaatac atcccttttt cttccccctcttttt 21900
cctttttgag tctttttctt ctcgctcttt ctggatttaatt ccaggttaatt ccgcttttcct 21960	tatttagttaa atatactcctt ttcgattggt ttcggctatatt tggcacttga 22020
tttttttaag tccacaaaactattttctt cttaaatatttttttttttttttttttttt 22080
actctcgtcg tacttttttaa tagcgtctgg gttcttccca taatttttag atctctcttt 22140
ggattttttt aataatttttct tataacacaa ttactttgtcg aatgatggtaa atttttttt 22200
actatttttgc atttttaaat ttcgctacaca aagttttggg agtgttaattt tatgttttatt 22260	tatttttttgt ttcttttcaat tagtttggat tagttttttttt cttttggtgttg 22320
atctctgtaa cgttctttctt catcactgagg agtctttgggt tocttaagttt aagttgtaaa 22380
cctcgaagaaga ggtgctcact tgtcttttcttt atggcgcagaga ggtggttgttgtgctctttt 22440
aggggtctcgt gttcagcgag aagacgctttt gtcgccccctt aatggggtttgg 22500
ggggttttgactc tcaagtttttg ttccacactct acgttttagg tttttttctttttttttttttt 22560
actgcttttcct tttttttctt ctttttttggttt cttt
-continued

tgactacacaa gggagagatt ggtgtaagaagc tgtacacacaa cagtaaggtc aggattttcct 22980
taaggcccct aacgctgtct gcctcaggtct gggagacaagc atgaacagag gcatacagagc 23040
ggataaaagct tggagacatg tctggtctctt tatttttaac accggaccttg ccctactgctt 23100
aatcctctctct cttcataat cagtaagtcct tgtataacac atacctcttt 23160
tgagagcccc tataatttct cttataacac atatggagtgc caacttaagaag cctoactagtc 23220
ctatcagccgtg ccttttcacat ggtgacaaagtc taaggctgtgct atatattctact cctctgtatg 23280
tcagctgtagc tagggctcgta aaaaatataac aacaacagca tatanagagag atagacatctg 23340
ttccccctccc tttgctgcataa cagttcctgt ttttcttttt atgtcgcctac tatgtcagctg 23400
agggttgcataa gccttctcctct ctggtttatcat cgggagagagc agggttgttg 23460
agtggccctt aactagctgtg aagctttttgctt ccttttcttac cttcttttttttca aacactaaat 23520
agtggctattc ggtgcttttg ttttagagttg tattaaatctg gggctgctgaac cccacaaac 23580
atttttaaaac attgagtttcc tggagaatgtt attttctctctt tttttctcttttctc aactttaac 23640
agcagctctta agacagtttct ttttaccttt ttttcgtcttttattggtt gttttttggcctgtt 23700
agcgagcttta aggcttttata ggttatattt ctattataggg atacatgttctt gttcttctcttttccccc gctccgtctctct gcctctgctt 23820
ccctggttttctgctgct ggtggttcgct ctttttcctctctctgct gggagagttgcctgtt 23880
ctttttctctctt cttctttctct cgggagagagc atgttcttttctt cgggagagagc agggttgttg 23940
agcagctctta agacagtttct ttttctctctttct ctggttctttctctc aacttttttttttttactagctgtg aagcttttttttg 24000
agcagctctta agacagtttct ttttctctctttct ctggttctttctctc aacttttttttttttactagctgtg aagcttttttttg 24060
agcagctctta agacagtttct ttttctctctttct ctggttctttctctc aacttttttttttttactagctgtg aagcttttttttg 24120
agcagctctta agacagtttct ttttctctctttct ctggttctttctctc aacttttttttttttactagctgtg aagcttttttttg 24180
agcagctctta agacagtttct ttttctctctttct ctggttctttctctc aacttttttttttttactagctgtg aagcttttttttg 24240
agcagctctta agacagtttct ttttctctctttct ctggttctttctctc aacttttttttttttactagctgtg aagcttttttttg 24300
agcagctctta agacagtttct ttttctctctttct ctggttctttctctc aacttttttttttttactagctgtg aagcttttttttg 24360
agcagctctta agacagtttct ttttctctctttct ctggttctttctctc aacttttttttttttactagctgtg aagcttttttttg 24420
agcagctctta agacagtttct ttttctctctttct ctggttctttctctc aacttttttttttttactagctgtg aagcttttttttg 24480
agcagctctta agacagtttct ttttctctctttct ctggttctttctctc aacttttttttttttactagctgtg aagcttttttttg 24540
agcagctctta agacagtttct ttttctctctttct ctggttctttctctc aacttttttttttttactagctgtg aagcttttttttg 24600
agcagctctta agacagtttct ttttctctctttct ctggttctttctctc aacttttttttttttactagctgtg aagcttttttttg 24660
agcagctctta agacagtttct ttttctctctttct ctggttctttctctc aacttttttttttttactagctgtg aagcttttttttg 24720
agcagctctta agacagtttct ttttctctctttct ctggttctttctctc aacttttttttttttactagctgtg aagcttttttttg 24780
agcagctctta agacagtttct ttttctctctttct ctggttctttctctc aacttttttttttttactagctgtg aagcttttttttg 24840
agcagctctta agacagtttct ttttctctctttct ctggttctttctctc aacttttttttttttactagctgtg aagcttttttttg 24900
agcagctctta agacagtttct ttttctctctttct ctggttctttctctc aacttttttttttttactagctgtg aagcttttttttg 24960
agcagctctta agacagtttct ttttctctctttct ctggttctttctctc aacttttttttttttactagctgtg aagcttttttttg 25020
agcagctctta agacagtttct ttttctctctttct ctggttctttctctc aacttttttttttttactagctgtg aagcttttttttg 25080
agcagctctta agacagtttct ttttctctctttct ctggttctttctctc aacttttttttttttactagctgtg aagcttttttttg 25140
agcagctctta agacagtttct ttttctctctttct ctggttctttctctc aacttttttttttttactagctgtg aagcttttttttg 25200
agcagctctta agacagtttct ttttctctctttct ctggttctttctctc aacttttttttttttactagctgtg aagcttttttttg 25260
agcagctctta agacagtttct ttttctctctttct ctggttctttctctc aacttttttttttttactagctgtg aagcttttttttg 25320
catcattcaca gaggtcaccga gattttacca ttcocccaaatt atctcctataaa ataacoctcaca 25380
tattgtgacc ctttttgagtt gttttttccag acttttggtat tcttgatgcag tggatgaccc 25440
cacotguggaco eqagctgtact gacctccaa cactcctgagc cctaggccaaag atgttgatgct 25500
gacgaagaggg acctttttcccc acaccccaatt gaggctatcc ocacaccaact agcagcaccct 25560
gttctcagc ccctggatgac ccacacctcct cttgaaagcc cgtgacccct ccaatttttctg 25620
gagaggtcgt tttgtaata ataaatctttt ggtctcctat gtagctgtgcc ctagttgctat 25680
taaacctctct ccttattgca atctccctgct cttgctgtaat cgggtttttact tcggccagttg 25740
gcagagagaa ttctctggtt gttatcattg ggaaataataata taatactggaa taacagacaa 25800
gttttgtaac cttcagacag acotctgagga ttggcnaatac tataagacaa actgcacctcc 25860
caatcccccac acaccccttc ccacaaagtct ccctcgtctct atctgctcaat acatacataa 25920
aacaacatcatt tggctctatt taataagggaa aacaacactt gtgtgtagttt cttttaaggt 25980
agttgtctca aatttagataa tttagaaaaat agttocccata gatgtgaactc aaaacacagtag 26040
gttttgatgc cttacttacca aacaagactt ccgagcgtac gcgtggatgg cccctggga 26100
gataaggttt tggagcaatct aaaggctcga agaagtccttg tggcnaacac atttgtggaa 26160
actttgcttcc cacagagatt ctttataacct cttcagatgac atgcagtcagc acacactgctc 26220
cagaaaaatcg tttgggaactt ctaaatcttc gaaataattca gcatacctcgc gcatacctaac ccacggggaa 26280
tccttgcttct acotccttccc accotcctatc acctacgtcc accgcacctcc 26340
ctctggttttt gggagcagggc tcaataatgg ggaagactcag gacctccaaac acctttctcag 26400
agctaaactc aagggggagc ggagctgacg tgtggagac ccagcagctct cttctctcag 26460
attgctctca ccacccctcct gcgtacaggg ggggtgtctctc ctttgggttg ccccttattg 26520
ttcactatta ataactctctg agtttatattt cctactctatt ctagtggtg ccacagtttga 26580
ggaggggcata gcacataaggg ggtgagccct gtcagagcagc acgtggtccct tccgacaa 26640
agggagggcacc ccacccacgtg caagggggag gcagccttccc cttacaggg tgtgggtgtg 26700
catgggacag ctaatactgaa ttaggaatgag aaccagcagc aacggaaac acgtagctccctc 26760
gcaagagagag caagagactg agtgacccagt ctaatactcc acaccaagag gcacacaagc 26820
tctcgaggg ccaacccacct cactcctcag ccagctgatag aaatttggtgc aacacagttgct 26880
aacaagattg cagcagttggt ccacactaggg agttgggtgtgt gaggagtaaa 26940
gagagaggag agggagcagg agggcggttc ctggctgtaga ttttctcttaaa gggtagctgtg 27000
atttttgcca gcaggtacct tcacaaggaag gtatottagt ctagcggcttc aataacacat 27060
gccataaggag aqggggcttc ccaaaaaaca aattttattta cttacagttgct gaggagccttg 27120
taccccaagtcc atcaaggggttc cagcggggtgc gtttggctttg ctttgggtctg 27180
tggcagacaag cttcctcctcg gcaaggccgct ggtggtgtc cccccgcttcttg 27240
agtttgatgg gcacactaat ccacttcctag gggtttttta cgacaaatacc acctccaaac 27300
gggaggctct gttaaaatccg ctttgctgtg gttgtgaggatt tcaataatacg ataaattgaggg 27360
ggcacacatgct ctaagagctgc tggcttccttg tgaagtcattg aaccagactatc 27420
tgtactgtatc actacgtagaac cttgggaggt ctagcgcctttg ccacaggtttttttg 27480
atgtggccgct cttccatgac aacatccaact gcaagaggg ggtgagggag acaacccacca 27540
aaaaagctgctaa aatactgggtt atgtaaccat cattattttt atagcggatt aagttagtga 27600
tataatgct gcacagctct gttacctccct cttcgcctcc ggagcagat gaaagtggta 27660
-continued

aattattatat gggtttagtta atatatata ttttcttca ttaattgca ggtgctaat attatctagt 27720
aatctgtacc cctcggacca aacactcaag aactctgaat ttgaagttta ttgggctagt 27780
aagctctctcc agggcttac gagaatgtac ccaaaagag tctaggtaaattttttgtaa 27840
aatgagaaaa tatagtgttttt ttaaacacgtt atagctgtga aacatcttct 27900
cacaagggaa tttggtgatatttctgctat ccctattat tggcactaaaga ataataattta 27960
attcaagtct atataaccaat atatatcctat ataaacctat tttgtggacag agttggcttt 28020
gttattgata tgaacattttta gattatatt ttgaagaaa atcacttata caagatcaca 28080
ttttctgctct ttgctgctagtt aatagttgtgc tggctgaggg acacagccctgt gttgacattta 28140
ttcagtaaat aacagtattttt gtgggggggag cagctgcttca agtgaaaggt ttgggctcag 28200
aaggagtaatg gcaagaagttt gtttcggggcg cctcttagag ggtgacaccc tggagaagggc 28260
cgtttctagccagggggaacgtctacaaatt gtttcttgaatttttata caatgtagaag 28320
aaataacctac aacagattgtt gctctcaatttg tctgtctaat gttacagtcttg ctaatttaaa 28380
attatatata actagttcatc tctactttata ataactacgtta attgtattat ttataagaa 28440
cagagcattcag gtaacagta ttcctctatttt ttaacaaacct ataaggtttaa ataagaaggaca 28500
tgtaagtacgtg cagatatttac taattgtcttattttttt aagttgaggt tggagagctggt 28560
gatgtgtattg aacctattctt gttaattcttta gctatgacac ttttcttccttgcagtgta 28620
cctcttggac aatattttttg gataattgtga cccttctttttttttttttttt gatggaggtc 28680
tggaattgcag agggtgtaag taataactact ttaacttttt gccaatttcgg gtttcaatag 28740
ggaattaaa atataacacgc gacacattgt gctcatcagc aagagattccc 28800
attgtaagact ttttttttttt tttttttttt ttgagaaggg aacccggctg ttcctctttt 28860
ggcggagcatg gcgagctgtc tggctcacttg cagggccctgc cttcgggattt cacgccttc 28920
ttcgcttca gtcacagcag tagttggagc taccagggcgc ggaacacacgc cccagcctagt 28980
ttttttgtatt ttaaagtaga gatggggggct cccattgtta gccaggttttg tctgtatctc 29040
tggaaccttgt gtcacacggc tctccgctcc ccacaaagttt gcgtttctgc ggttcaacttc 29100
cggcgggca cctgtgagac atatttttaa aaccatttac ccaaaagttct gtatagctat 29160
gtaacctttc ccccctctaagcagag ttcacaggaat ctcctctttttt gtagctcattt 29220
ctttttgatt gtagttggtc caggtgctgtt gcgtgccttc taagcattat gatagcctagc 29280
agcgttggggt atgctgttgt aataagttta atacagctatt gatgattcata agatattagtt 29340
accctatttt cttttccttc gtttgaggaaga ctgatttgatt tgaagttgggc 29400
aactgttgcc aagagactgtg tggctgtgtg tttcagagtc gaggccagttat tagtgaagtct 29460
tgtagcctgc aatctttatg ggttctctga gttgcctcgtt ctgcagctttg 29520
acactgttact tcaacatag atatacatgt cttttatttg ttaagttttt atatatatatttta 29580
atctgtaatcatt tattgttggtt atattttgggc gtagaggtttttttttttttttttttt 29640
gagacagagt gttgctggct caactctagg gggaggctgg ggaggagtcttg cagctcacttg 29700
caacctgcaat ccctggtggtg gaggattctt tggagcctgc gcgttggattttagttggggt 29760
tacagggcct gcggcactttt ttttctgtttattt aatactctgt agtgggtcttc 29820
aacacagggc tggcagctttttt ttcctttctttt tt
gttgcacata taaccttttgt ccaactgaaac gcctgagcgt ctgtattgaac ctttttcac 30120
gctgctataa aagacatcc cacgaactgg gaaagaataa ggtttagaat agtccacgtt 30180
caatgggtcat gggagacgtt cactcagtt agttgaaagtt aagagcactt ttctacagtgt 30240
ggtgcacaga gaagaaagaga gaagcagaaac cggagggccc taataacaac atagagacctc 30300
atagacactta ttcatccacaa ggaacacttt acggggtgtaa ctaggcctc gattcatactc 30360
tctccocacgc ggtctctccc acaacacttg ggaatttata ggaatgataat cacagatgag 30420
atattggggtc ggaaccacag aggaaacactt taacagcttt gtgcaaaaaga caattgacca 30480
tatatgctc tattctctgc acacccgacac ctcgaggtgt gcgaagactt ctggtgctca 30540
gctctcgag tagctttgctc tacagcaagc caccaccagtt tcacatatta ttttggatttt 30600
ttagtctaag tgtgttctca ccatgtttgctc gcagctttgct ctcacactcct gcgaaccacgc 30660
agttccacca ccttggttggcc ccaagttctc cggatttacag gcctggagcc gctgtgtctg 30720
cctcagatgtt ctaggtcttc tgctcagcttg cttatgcatt ttggtttcttt 30780
acgtttttcc ttatgtgace ttttatcataa ttcggctttact ctattgtcctta ccaattttta 30840
actctactgt ctttttcttc acaacagata ttgggtcttt ctttagcttt ccaacattttca 30900
taaatatctt aagtcgcaact ttcatggcacc gcgaagacat cccctttttc gtcccctggtt 30960
ccagggccaa gacgcatagc ctttttgttgct tattttcctc aacccctgggt aaacctttgc 31020
gtggcctaca aittcagggg aagtctggtc acaacggcag ggaaggcttt tgaacgtcttctt 31080
ctccagacct tgtgtgagaa agttgatcaca cccctccagc gtacagcagc gctctcaccag 31140
ggaactttc ccttgacagc acctccagtt ggtttccagc cggaggggca ccgaagactgt 31200
ttgtgttctc tattggtctg gttatttcggt caactcgact tgaatgcttt cattctgtcct 31260
tgctctcaaa ttttcttggt gtccaaatct tatacgcttt gtgtgatcct ctcacactctt 31320
ccaaactcaatt gttttttgttc ctcacacttat tttatgtattt ccaacggatc taactttcatc 31380
tgaatatttt aagtgcctttta tagaggaagg gattgctgcagg gattgagtt gcctaatcgcc 31440
ccagaaaccg aagttggcaca ttattttgctt aaccaatttctt gctttttggctt 31500
acccatatag ttctgcctata atcatagaga attggaaata tttttctcctct tagttcaactc 31560
tttgctcagc aacgcaacttt atccctttttt cggaggggag aacaaagagga taatactttg 31620
ccttttgact atattgggaa gagaaagaag gctcagacct cagtaaatac tagaatccactc 31680
taggtctttt ttcatcaactta gatgtagcttc tgtggatcag taagttaataat aacccgccact 31740
tgggagaaagt ctattgagct cattaaatgg ggaagaagaaa aatctcaacc acatggtcg 31800
tcccgagcac cttccaggag aagactataa taatccagcag tgtgtgtctac taaagccactc 31860
aattacaccct caacccagcttg gactggaaagc acagtggctgg cgaagtgaagc cagtttaataa 31920	taggtatata aaggaataac agaatctcttt cagatatttt tatttatagga aagggcacttt 31980
atttagtcct atagtgtttgg acacattttt tatataaataa aattaactataa 32040
taatgtgaa gcctttgattta cattagattt tatattatagg ccataaatag ccataaatagc 32100
tgttctttta aacccagggga aaattttttaa aectgtgaat ttctttagcat ttaaaaaccc 32160
tgatagtgag ggaataaatatatctagacta ccataaatag ccataaatag ctaaagggcac 32220
cattgcaatc atccgaggaa aaatagtttt caattgcctgg ccaactttgg gcaacttggc 32280
aatattttgg aagaatgtaaa tttatgttata ctattcttctt ttttttttttt tttttttttttt 32340
tagtcgatc tcaactcgttt acaccgggttg ggtagtgagg cgtcaactct gcagtttgcagcagttcagtgc 32400
agtcttgacc tcttggtgctc aagtgatctt ccagcctcag ttctcccaaa agtcggaatt 32460
acagagttgc gcccgtctcc cttgtgactc tcactttctt accaataaaa attgcagatt 32520
gtttagctct tttcctccacg tcgtattaaa acctactttg aagttggcttg tttcctttaa 32580
aatatgggtta atcctagtct caagtttca ggcgcacacg gagaattgcc ctaaagcctt 32640
caggaaactt cacacttgcat cagaggttcc aggaaatgatt gccacatctt acaatggccag 32700
agccgcgacct aggagccaga gggcgcagtt ggcagcactt tggacccaac gccgctcttg 32760
agagctcact gcagttatgc atcactgcctt gggagagtct gcgcctcttc atctaatcacc 32820
tcccatctgg cccccccctc gcacgcgtgg gtaacacat cagagttgatt ttggggccag 32880
gacacagac cacaacccat cagacagtaa gtttttatgc taaaacaaaa acgcacacca 32940
acacaaagac aagcagtaaa accaataact atgtatgtgc acatgatgac atggtcacc 33000
acatcatact ctatgtatac atgttaaacc tttgtgtgcc ccaaggtcgt aagaattaaa 33060
ataatgctcc cctcttcata ccaaccttcc tggctcttat ccagagcaga aacaagttat 33120
cagattcttg cggctctct cagagtatatt cgtgtatatt ttaagcatat atggttatata 33180
tttatattaa agacactcata tggctagacg agaattgatt ttaaactttt tggccaaaaa 33240
tatatattg ccagatctct ctcactcttgcat ttcatttgc gtttacactt cattgattat 33300
agtctgctag tattttctgt tttgagagct tccttatatt ttttaaacctt tccaaaattg 33360
caggctttct ttttttcttg ccaataagtc ccattggcct cccatttctct 33420
aggatatct ttggctctrat ccacactttt ccagctctgg ccaccactc cttaccatcc 33480
aacattctgt tccattttcca ggttggttct ttcctttactt ttaaccacta aagtttttct 33540
agttacatgtc ccattttgaa aattttcctta agcaacagctt tcctacatac tcacacactc 33600
acctggtcttg gcctagcctag cagagttcctgc gccggagtta ctcagacaaac atctgctgca 33660
agtggcaggct ctgtgcaaat agtocagata agtgcaacgg tggctttgac tagacagttg 33720
tggccacagg acctagttgca ggtggttggat atgggtgcca ttttgcaaatg aagttcatat 33780
gattttctga cctagttggt tagagttgta gcagaaaga gacactaatgt aagttttcct 33840
agttggccgcta ctaacacccc aagaaataaa agttaccaat tccaagaaag cgggacacgt 33900
ggagagagc agtatgtgctt cggagatcgc ttcacacacaa attgtttttg agcatttaag 33960
gtttccacat ccgtcgcttct gttgaatgctt accaactatg aacagcagtaa aaagttctgc 34020
gacaacgcct tgcagaaaaa cagcagctga gcagagggga aaccaagcga gacaagagtc 34080
cggtttcctc ggggaggaac cagagctaat ttcctaatgt ctgctgacag gtaaaattga 34140
agagatctca caaagcacta cagggctccg ccagctgtgg ttttcacattt tggccaaaag 34200
cctagctggt atgatgcttaa gggagatcag gagagtacga attagacata caatactgaa 34260
ttcataacct gggagagctt tcctttaaaaa aagaggacgg aggccggggg ccagctaca 34320
cgctgttaat ccagcagatct tggagggccc atggcgggac agtctctgctt ggcgttcttg 34380
agaccagctt gaccaacaatg tctggaaccac tttctctcta aaaaataaaca aatttaaggct 34440
gctgtgggtg cggctgtacct agtcagagct actggggagt tggagccagc aagaacactt 34500
sgacacgaa gcagaggaagtt gcaagtctct acagtagctg cagagtcctc caggtctggtc 34560
aacagactgt gctgtgctct caaacaacaaca aaaaaaagagc gagcagccca aaaaagggcg 34620
tgctcttgaga ggaagatacg aggagttgct aagttttttt cttacctgatc gcaagttgctg 34680
agatgttggga gattctgcct cggagacggg aaaaagccgg ggagacaagc ggctgggatt 34740
cacatcagaga ttgatgctct tgaagttgta agagaagctga ggttcgctcc gcagagttgtg 34800
tagggctggc ctaaacaggg agcacaaagag tttgtccttc atagcaatgtagaacaa 34860
tacgtaacca aaacgggaag aagaggggta aatttgaagtg ttgggaaccct tactaatctttc 34920
tactaccttc gatagcatttt cagttgattg cagttgtggtt ctatcgtatgctaatctc 34980
gttgttctaa cgcggcggag ttaaggttacta gtatcattatc acatgtgatgagc 35040
agttcttagc tgcggctcattct catagtcagctg gcaccacacgcc aatagtggcgctctattta 35100
gcgaaaaggt ggtggtataac ctgctgcaacacagca aacaaacagctgagtacactt tggggtttct 35160
ctggggtgcttg tgcgggtcgcagt ggggctccttat ctttctctcaacctactaactcagcct 35220
gagggcagag agggtttcagtc acatggtggt tgggggtgtggtt gcggggtcggc 35280
tgacgctgtg cactcatttc ctaacatacag gtgcaattcttc ctgtttgcttttttct 35340
gaaatgctg gggggggggg gtttcttttt tttttttaattctctttcattgtacacacagtggggg 35400
agagaggggt gcgaggtgcc gggagagactg cagcttctgtg gcgggggcagtttctttctctgct 35460
agcagtctgac accaggtgtc ctaggctggtttg cgcggatcctg tatttattt
gacatggt gtgctcattg tggccagcgt ggtctcataac tacctgggtc aagagatttg
37200
cocacocctg cccaaagaa tggcggatt aagggcattg tgtgtgtctc tgtgcctatt
37260
aatattttta attagcaata gatactgca ggttatttatt tgtgcatgatt gttttttgaa
37320
tattgccca tggctgctgc tgtgggtctca cgtctgtaat cccagcactt tggaggcttg
37380
agcggacag atggcagagg ogcagggatt oggagcggca cttggacagca tgggtgaaacc
37440
cggctcctc taaattataa aaatttact ggggtgtggtg gcacagggcct gtgctcctcag
37500
cctcctgga ggcgtaaggca acagacatgg tgtgtgtcttg ggggaggact tggagggtgag
37560
cgcagagtcg acacgtgcac tccagctctgg gccacagagtg gagactcctgct ctatagaaaaa
37620
aaaagaaaaa gaagaaaga aataaagcga tatttggtgaag ggtctgtaaat gagaattttg
37680
acatagtct tacttccat atgtatttct cagctttttta aataattgcga aatatttgag
37740
ctccttttct tacttaaat aacctgtgtaa ttataaatctt ataatatttta aaatggttacc
37800
cacaagttgt ataaacttta agtcctcacaact acctggattc tgcctctgtc gggactaagg
37860
tggagtgttgc cccagagggag aatattttgtc cccagcgggc cagaaagaaaaa cctaaattttg
37920
aaaagcgggg atggacagttt aatttttatttaaat cttttttttaa acttttttctg cttttgtacc
37980
tctacttcag caggtgtaaaaa attttttttta ttgctatttaa aatggagggatt
38040
atgtgtttaaa ctctctggtg tgcgacacca gtaaacagct gaaattcttg tattgaaagaa
38100
catattgata tattaacact ttctttcagtt acagttcttac aaggtatta tactagtcgctc
38160
cctggttata ccaacaggtat tggcttcaggg acctctcctcgc ctccccccaccc cctccccccac
38220	tatcacaact ccctctcactg tcaagagccg acctcccctgc aacctcgaca
38280	tagggaact ctgctgctgc taccagcttg ttccttatcc ctcagtaact gtaattttca
38340
tccctggttg ttgaaaaaaa atcccacagt aagggtctgt tgtcctctcct gacccctgttg
38400
gctccaggt gcaagcgtact ttttttact ctgaaacataa aattttttct gggaggttcg
38460
aacaactcta aaggaggtac atcataaatc ccaaaagcttg ttataagaaaa gattattaca
38520
acaatagcga acaagctgtt cagaaacaaaa caaactcta aagttttggc tggagccccc
38580	taatctcctca ttgtcctgtc tgtgtgtatt tgggtgaaacc aactgtcagttc
38640
acagtaagata aacatgcattt atgaaagatt atgattaatt taagattaag taaagtctaac
38700	tcaagtgttct ttaacctcct gtaggagcat atttttttt taaggttata tctggaaaaat
38760
gatgtttagg aacagttataa tgtctttttc tgggaggtta aatagttaaa ttagcttcttt
38820
ccectttggtc ttcctttgggg gctttgggtt catgttggtt gttcgtggtaa attgaatattct
38880
atttgcagtg agsaagcttg tgggagattg atttgggttg tttgtctcgt tggccagagag
38940
aecgttgtgca tgggtgtgtaa gagggaagga ttcacccc ctaagatcttt tgtcttctctct
39000
cagagatgcc ttacctggca gtaacctgtt acaactttgt acattattaa gtaactgtattt
39060	ttgtcatct tgtggttggg tgtgaaacaaaa acaataaaaaa tggctcttaa cttttttttttt
39120
gctcttggcg tgctttttttg ttttctaaaa ccgtctccct caaagatgtg ttttctcttttt
39180	tttttttttt tggctttttg cctgtagata aacacagggg tgggacctata atgaatgtcga
39240
gccccagttc atctgcaacat cttcttttcct cctgattttc tttttttagg aacagctctctt
39300
tctgaacaaaa tgttaaagaa ctttggttaa atcggaatca gttctcttaa acttagaggt
39360	taaagttacct tgtctttttttt ggatttaagg tctgtattt ttaaattttttt atgaaatttttt
39420
ggcgaaacct aagttttttt caaatctttt aacgagggaga gacccctctcct cccatccgac
39480
agctgctcca ctctttaga caaacatttt ggattaaagta tattattaag taggtgttattt
39540
-continued

tgcttcaga atacacctgggt tttattaac acaaggtgtat gcaattgcat attattgga 39600
catctttcca tgattaataa tatgcaacta ggcccaccatt ttaccttaaa tttttaaat 39660
atatattatt ggcgaogcag aagggctcaca accacatcag tcaagatattt gggaggccga 39720
ggccgttga tcaagtggc ccaagacctc acggccggcc cggcccacat ggtggaaact 39780
tggctctcact aaaaataataa aatagctcaa agtgggcctg tgcacaagttg tagttccagt 39840
tactcagagct gcgacagcgt gagaattgtct tgaacctggg aggacagacg ttcagttgacg 39900
cagaactgca tcctgtaacct cctgtcatggc caacaaaagac tctgctcctaa aaaaaaa 39960
aagagaaaaa tataattata ttaattaaga agtaataaca tccctgatata aaaaacctcag 40020
aagatctcaag gctgtatatatt cccctagcgc aaaaatataact tttcaaatagc gctatagc 40080
atatattatt agaaagccac aataataattc taaccagttgct cctgtaaaca tttggyccct 40140
aagttgtttct cttttgtgctt tcttttataa taatactata ctgaaaaatgc tgcacataga 40200
caatgcaaca tttctctgta tattttoctca tttttaatac cttgtgattata taggggttaat 40260
atagctgtata cattatatatat tagataaat acaaataaat aaaaataataact tttattttcg 40320
gcatttga aggctgtagata tggataatta tggaaaaagt ggtaaagccag aagaatctaa 40380
aaaaaagaat tattgaagaa accagagatga ccctaaagct ctggatgggt tttcaagacga 40440
taaaagaga aatcacaactt gttatttattt aggaagccaa gtaacatcagg aaaaacagtgt 40500
gcacaactct ttggcagagg aatctttact tattaatcact agtacaacaa 40560
tttaacataa aatatgagca accagactct accaggccgt ccaaggttaa aaaaaataac 40620
aattagattt tattaggtgag atcaagtctc cttttttttt tttttttttttt tttgagataa 40680
agatctcaatctt attcgctgtgct aaggtgtggtg gctagtggac aatactggtct cattgcaccc 40740
ttgctctct ggttctcctg gattttccttg ctattgcccctg ctggatgtcag gaggctacag 40800
gcactcaca ctccatcttgct cttatctttt ggtatatgagc cggctcactca 40860
tggtgttgtgt gcttgctctca aacctctgtact cattgatgac ccgctgtctca aacctctga 40920
gtgcctgttgta cacagatgtg accgaaacttg tttagccaat gccctttctt tttatggaca 40980	tctctctctct gccatgagtg aatatatatc tttctctctgt ccaggtctaa aagggcata 41040
tgatacaatt caacttattct ctttggtttgaa aacctttgtaa accggcagta ggtgtgatac 41100
ttctgtctag caaaaataat cttatatgct ctaacacata gctgtagac taatgagaa 41160
tgagaagaa cccattgagg ccattgaaat gcgaaggtgtg ccagggccac 41220
tgcaattttt tgcagatatc aatactgttta aataagataaa aagaaacttgg 41280
gcataaata aaaaaaggtttaa aaggtggccag gcttgtgtctg tcaagctcatt aatctggaa 41340
tctagttggt gggtaggtacct aacttgagcgc aggaggttcc gcggccagtt gcagaatctg 41400
caaaccaacat cttcacttaaa ctaaagaaaa cctagatggg aagatcaactt gacgcggggg 41460
agagttggc tagatcctagg cccgggtttaa cccagggatct cccagcgcac 41520
aaaaaaagc tatcataacat atcactgctgattatcata gttatatatt ggaacactta 41580
aagaatgcca tcgtaaaaatctatgctaa aatctgggaa atatctgggc tggatggaa 41640
ttaataaata cagtgagata gttctttctct ttttgacaga ttctcattctt gcgaacccag 41700
tgctggctggc gtggctgctctc tcgcacctct tcgctccagg ttcgctggctct 41760	tctctctctct gttcactgat ccatctgcctg gctctgccacg ctcgctggagct 41820
atrtttggtcat tttttgtagag tagattgtt caccatcttg gcaggctgctg tctccaacct 41880
ttgagagga caaacaagc tccacagatc caagtatttt gatacatgta gtgtgtgtgt 44340
ggccccagga agaaaagcaag atgtagagga atagaattgg aaggtgtatt tttcattgttt 44400
tgcttttctt actctctgaa ttctctactt gatacaccn caggtgtccaa caactcaatt 44660
ciaattgc acacatgtgc actgacacaa tggctgttggga ctctccataag aaagaaacat 44520
gaggtgaaa gactttttgc agataaacag tccattgagc ttatccggcc acaggaaggg 44590
agcatagagc agagagagag agagacactg gggtaggatta tgcaggttga aaggttaggg 44640
atgagacgtca gctattacgt ctatgagtttg ttactttctt taatgacca ccctgtaggtc 44700
tggccagacg caaacaagctg ttaaccattg ctctagacctt ctcctcagag tgggacactc 44760
cacaaccttg gttctctgtg ttagtttcttc aagggcctta attgaagtttc ttttaagttaa 44820
agggcatagct aacacacttg tagagaggagc cacaatcctt acctatttca cctatacatat 44880
acttgggtct actcctcagat tccataagttt taagaggtcga gcccaccaaa cccgctccaa 44940
cctcagatgc ttggtttaag tctatggtgcct ccctatacttt tcctttttttg gatttggaat 45000
cctcctgtcg ccgctggctcg atgcgtgcct cccgcgttca cctcgtctgc acctccccgt 45060
cccgggtctcg aagcgagtttg ctgtccgatcg tgcagatgtc gattggagcta caaagtctga 45120
cccacacgoc cagctcaattt ttcagtttcttg agtaagacaa ggggttcacc atattaagca 45180
gggcggtctg aagctcaagt gccctgtctc atcgcctgc gaagcgccttt tggcggga 45240
tgacocactg cggcttcggcc cctacccttg actatgatatgatatttgac tccctctgtaa 45300
tccctcctact tctgagatct tccgccagaa actcaagaaaactttttatcc 45360
tataccag cattctttttt aaagagacac aagtggaaggc tggagagaa cgggtctccaa 45420
gtgagaccg gcagggctcc aagcagagag gttctgtgtc ttggtgagtt gcgctaagga 45480
tccctcaggc gtgggttagga ttgtgcctcag aagccacagtt cctctcctattactgtgtta 45540
aggggttttt atgggtagtggc ttcacagcag agatggatgt aacatccttg ccataatgta 45600
tccgcatcaca ctcttccctt tccagtttt ggtgagaggt gttcttcacc 45660
atctcaacag cacttggcttc tccaggagaa gggcctctat cctcaagota tccagaggtc 45720
tccagggact cactatttca gctaaatcgc agtgagctgg gaaaggggtg tttatagaaa 45780
agttgcatag ctcctcaattt tccctaccaag aggagggaaactc cattagtttc ttaggtgcc 45840
tgtgctatgca acagcagcagc aaggtcgtgtc atatattttt tattattattt tacacagctg 45900
ttaggaanag gggtgtagcct ttctacccca aagggaggtt cttcatttct ctagaaagaa 45960
agataatcag tgtaatcact acagtagaagt aaaaaagatg ttatagaaag aagtaaaggg 46020
taagaagatg tctcattcct agcagaaaca accctggggt cttgtagttg coccatatttta 46080
tggttatattc tattattatc gataaaccag gaataaatcct tataagttt cttcggggga 46140
agaggttcca atctcctgcctc tttcaggtgg tgggcttcatt cggccactatat aggcaacctt 46200
tccgtcttttg ctatcctatc tataacccgt tggggactat 46260
gtcatatcat tataatagtt gcaaaagacg cactgaggtc aacacaggtct cacttcacct 46320
accattcttg gttctgaggg atgtcccttc ctcctcaca ttcctttttt tggcagccagttc 46380	tttagatgtc tccctgctgc aagcctttta tccacttcgat gatactatgaa 46440
cctctggagt cgcagctctag tggcttcagc ttttatcttc cagcttttatt ttgagatgga 46500
gttgctcttg gttggtatcgt tcgcaaacat gacctttttttt aatatttgcctctagatcata 46560
aaccacaacaca acacacaca caaacaagag atagattaata ctgagatgtg 46620
gagagtgtgct cagaaagact gaggccaca cagttcaccata atttgcacatg gtcagagatg 46680
gactctcaagt ttcctctact cttggttaag gtttccccca atatgcctgtg atactccctct 46740
catctcttttg aagatgttga cttgccctct cagttcagaa gttcgtgatg 46800
cataatcata agggagatct ttcaggattta gggccatgggg gcgccactgt gggagttcag 46860
tgtatattcct ccacacatata atggcacaatt ttcacattct atcaagcaagat atagcgtata 46920
tagagggcaca aacctgtgtaa tctgcaacag tggagacac gtcggaaactg tcccccacac 46980
aagattcctact tattataactct gtcgaaagaa atatgaagaga aacacttagaa gaaatccccc 47040
tatggtgttgt gattctctctaa cagaaatgca actattctta gggagaagttg tctcgaaatg 47100
ggagatcttcc ctgaccaacc ctaaagaggat gtcgaaaggg gcagatgctct tgggtttgtg 47160
cacccacaccc ctaaaccctct aacagggagtg ggaacacacag cgaggagcagg cgacaggtg 47220
ggggagagtg tttgcagggc tcaagacccag agagcagccat ggaagtggggt cgtgtcagct 47280
ccaacacaca tccaacccctt cggagaggg aagagtgtgta gggcctcactg tgggcctca 47340
gatggtgtgaa gttttggagct cttttctcgccttt ttcagcaggg gcagaggggcc 47400
agtgtgactct cttactctctct ccaaggaacct gttcaacatc ccagacagaaac aagcagcaca 47460
cattcagctgg aaggagagtg aagagagagag ttttactgggg gttgtagaggt ggtacccagct 47520
ggaggaggtag ggagaggtag tgggaggagag tgggtttggg gtttactgggg gttgtagaggt ggatcctcgag 47580
gatgtgttgtct ctttccctct cccacatctac cttgctgtct cttgctctct tttgatctccct 47640
tctctctctct cttcggtgcc gttggcctctg tcagggtaag ttcattattct atagcgtgac 47700
aagatgagggg ggtcagaaag cagctttttg ggcgtagaaa caggaagtgcc tgttccccat 47760
tagggcgagt agtataggct attgggattg gggggttgct tggggacacc cccctttctct 47820
ccctggtattt cttctctctcc gttccatatcct acctcttacac tggcagacac aactattttc 47880
tctagaaaa atgactttat cagattctta atttctaggtc atagcagcagc ttcagacagc 47940
tacaagatat ggacacagtgt tgtattgag tttcagata cttaccacat gtaaatattt ttaagagatt 48000	tattttgagc caacttttctag tcagccatgcc tttgtaagga ggtctttcagag tcggcccc 48060
acatgtctgt gcagttgatg gcagctccttc tttttttttttt tatttttttaag gcagccagtta 48120
cctcaatccaa atctatctga gaaatcactg ggggagcagg tgcgtgcctgct cattgctgta 48180
attccagacac ttgcaggagc tgggtttggg gttgtagaggt ggtacccagct ttctgggacaa 48240
geocgtgGCCa atggtgtaacc cccttctatc aaaatcata aataagggtg gggtttgtg 48300
tgtgctgtttc taactccttttc acctacgacctgcag gacagcagcag cccctcggtg 48360
tgggagggttg cttgacccgca gatggcgcctgtgcttttcc gctgtttttgt aacactgtga 48420
gaatgtctct cttttttttttttttttttttttt ttttttgcctt ggattttttttt 48480
ggtaggccca cttgagccag gggtttccag ctttaagcta gatttttaaaa ttttttttttct 48540
ggcagttggtg tgtgtttaatc taagacagcgg gagcataaag aatattatattg ttgggaattg 48600
atacagttct tcggaczggc agtttttttt tgggagcagga ggttctcagcct gtagggtctct 48660
cagagacaatt cttttttttt cttttttttt tttttttttta gaaacatctt gttggccagt 48720
cagagactgtt cttctctctct ctgagagaggt atgtgtttcag gatgtgctttc gatggg 48780
cagacacagc atcttttttttttttttttttttttttttttttgc aacactgtgaa 48840
cagagactgtt cttctctctct ctgagagaggt atgtgtttcag gatgtgctttc gatggg 48900
cagagactgtt cttctctctct ctgagagaggt atgtgtttcag gatgtgctttc gatggg 48960
cagagactgtt cttctctctct ctgagagaggt atgtgtttcag gatgtgctttc gatggg 49020
ccttgttctc acacaacaac acacaacac acacaacaac acacaacaac acacaacaac attgatcttgag
49080
gactccttgt ttctttctca aagacagggt ccctactatg tccaccagtt ggaatttgac
49140
cttgtgactt aagggcttt cctccccact aagtaatcgt atagaccgtg
49200
gcaacacac gcctctctct gcttttgctca tcctgtaaacc gagttgcagtc gaccaggtgc
49260
tctctagt tcctctcttc aagagctttg tcctgtctaa taatatttaca aacttcatat
49320
tccactcttcacctatgaa aacatgggaag ggcagggagag cacttctttcc
49380
ttaactgtgca ttaaaggaag ccaagattcag agagttctctg atgacaacct accatacct
49440
catttgactc gttatgcata aattgcaaac actggtggtcc tttataaaaa tacagattta
49500
ctttctacgt ttttctgagc taaaggaatc aatgatccag agtgctgtta ttagccatca
49560
gttcctctgc ttcaacgaag gcacccctggg gtctcttacct cagagagggta tgaatgctcg
49620
cctccatcat atctagagag actagaaacaa aaaaaaactg agtctgcttc cagagctctag
49680
gtctttaact ccatactacaa aaaaaataca cgtctttaat gccacaactc tcaataactat
49740
cagcaagacc atacttgttgc aacacacagg gttgggggga gctaccctcc cccccccgggc
49800
cagcagcaag gctgttttag cagggggctt ccataaaccct gttggtgccc tttcctctgt
49860
tctacataca ttcctggctc cttttactac aagttttttg cttgctgttc gggggtgcatg
49920
aacaacaaag aatacgcttc tcgctctcag ggtctgcaag gacgtggaga aatactggtgc
49980
ttacagacgc tcgctgttcc cccctctgtgc gacacagaga tggatgacag agaccaacac
50040
gctgtggggga cagagcaagt ttttctgtgaa aagggccatca tgaaggattc aagaggaagg
50100
atgacgggtt atttattgta aagagagggga agctgtgtgc tctccagagaa cattaattca
50160
tctcttaatcg gggtcttccttg ggtctttgctg tggtagaggc tggagaccagaa
50220
eaatttttggg agagggactt tccaaacctc ttttgggtaag atgtttgtgc aactgtggaga
50280
cagcagctac caggggagcat cctaacacgcct cggcagagaa gattatcacc agacacacac
50340
gacatacaca ggtcttgagct gggttaacct cgtaccctg tggattgccc cgagagctca
50400
agacacagaa tttccacaac tattatattaa cagcaacacca gctcagagaa ttgctttctc
50460
agatatttaa ttcacacaaaa gttcctctaa ttgggaacaa aaggtgtggc caaatattaaa
50520
taataggttt gcagtagttta ctgagccagg acgtcttcct taagcccagc atgcgtcctg
50580
cgtgtgggtttag ggtctttcag gatgtggctg tggtagaacg tggagcggcc
50640
ttcgctctcg tccaaacaccc cccaaactctt ccagggctggg tgttaggggcc attatggaaca
50700
ttggctactg tctgcagatag ttggggagtt ggcaagtgtt atggccagat
50760
tttcaggggcc ctgctcactaa catttccccct ttcttttagt tggtaattcaaaa taaattccaa
50820
ggggagtgtt gtcctttcag ctaatttttg cggagctgag tggacactac tggagactat
50880
aacaacacca acacaacacca ttaaagacac aatcctcatt gaaattcagc aagcttcaccag
50940
ttggtttttata attttagtcg tctttggaac acacagttctg cggcagttgcc ggtcaaggtg
51000
gctgggg tgtttttttatttttt ttttttatttc ttctacgtct aagcttcctg aagcttcctg
51060
gccttttttggtg ctttggctgc aagctgcctgc cagaggttcg tggctgcata gataattgaa
51120
acacttccag atatattcct tataattcag atctgatcgtt tttgttcaag acagtttgtc
51180
atgtgggtgc ctggggaaca aagatggagag gttctttttg agctataact catccctggc ctgccttggg
51240
gacacaacta taataggatatgc tattttgcagc ccctccccaggt tttgctcaag
51300
catctctccc acacatgatt gttccttttt tct tactccccct aacagttttg ttcacataa
51360
-continued

ggtggtta ggcaggtatgc ctcaatatta ggcagcgatt gattatgtta aataactgaga $1420
tcgaaaagca tgcgtaaactg tgtcataaag tgtggctac tgcgcattat tcggcagcaca $1480
gattgataaa tagacccagg aatgtaaatg tgttcctgtg tccocctcta ttgcaagagat $1540
acctgacaga tgcgtgcttaa ccctactcat agctacccatt aataattaac tgtgcgcgcttg $1600
ctgctcgcgt tctcccaaggt tgtttccgctc catctggtgac agcttcttgga tctgtccccaa $1660
gggtggttcgc tgtcctcacg ggagttgtaac cttgtgacgt tgtggcttcct ctcacggctc $1720
gocccgtcgt ggcgtgatgc gggggtgcct tgggatcttc cggaaatctc ttcctccgca $1790
ttcgtgctac gataaggttt tgcgtgcctt gtgcgtatcc aaatggtgcgt ttgatattttg $1840
cctgtacccc aaggtatatc tttacctatg tcccaacctt tgtttatca agtcttcac $1900
caactcagct gtctgtgctc tgcgggataa gcgtgggttc tgcgtgcttgctgcagttgg $1960
gatgacatct gggccttgggg caaggtctaca aatattaaaa ttacctacgtag attgtcagat $2020
tggtatgttg ggggtgcctt attgtcgttc tccoccttc ttcggttgcct gcgtgtgtgtt $2080
tagggagaga ttcacctcttt cccactggcg tgtgtgcctgaaattgtata attggatcct $2140
aattgtttta atttccacac tagaaaataa tgtagctaga ggtggtgtgg tattggcctg $2200
ggtattatact tgtattttag taaaaaggttg gcctagcacc gagaaagcttgc $2260
acatctcaac cgcgggcgaac actctcttggt cgggtgttga gtcgagccaa aggagaaaa $2320
acatcgtgca acatacactgta catagactacg tcccoccaac gggagattgt ggtctgcac $2380
cattgcgaag acgtattgaac ggtctgttcct cgcgggttgccttgcctcagttgg $2440
gatgtatcrr atttgcagtttg ggcacggtttt cgggtgggttt tgtgtcccaggt $2500
aattgcgtat cttgtggtttg gccacagggc attaatactgattatgcgcgg aaaaaatagt $2560
agcattataat attgtccagtt cagctgcatgg atcagcccct tgtattccctt cggcttcaag $2620
tcctgaccga ggtgtagctg agctaataggt gatataaataa agaaggtatg ccctactct $2680
aattgtgttt tgtgaatcgg gaaatatagct cattgtgcttgc taaatctcaattt $2740
tcggacatct tcaaatattg tgtcgggttgct aactagtattag johnatcag aataccgatt $2800
aattgcgata tccacacagct cctcactccttactgtggt gtcgacgttattt $2860
tggaataata gagataggttc caagcttcct tgggtctcatt gaaataacattt $2920
agttagccca ctttcctgaac accccattg tgggtttataac gttattatgaa ttaaa $2980
acacacacac atattgattcc atattccaaa agtgaaccag cccttttatt cccccaaa $3040
atccacacta ccccaactgg cagcataaagtg ggtgcacatg gtaaagctaa tttaaaacc $3100
ctgccgttcatt gtcgggtttt ataatattaactagttgtt cggggataaat $3160
stacacactaa atctaccccc caacgtattag cctggttgatc gtcggtgctt $3220
tagatgcctgtt cattgatcagttgataagggac agaagcttgttgcaggtttggttc $3280
gaaacactga gttggtgtaaa ggtgttattatcttgcgcagagttgtggtggttg $3340
actattcct tattaatttgtagctttcacttggtctctagcttattgtaaactgtgcttc $3400
agcgtgggtg ctttaacctgac ggtggtgtgctt ggttcctctactagcttgg $3460
cgattactct gctgtgccctg cgggtggggttg ggtggtggggctt $3520
tgatgatcatc taaaaattgtagctttcacttggtctctagcttattgtaaactgtgcttc $3580
tgcaataagta ggtgtgcctt cgggtggtgtgctt ggttcctctactagcttgg $3640
aatttgggaca ggggtggcttt tttaaacccagc cggatgctata agttatg $3700
aatttgggagt aatatcctctt ggggttcgctg gacacaaaggt atatactatcataatag $3760
ataatattgg actgtagaaa ttttttatga tgatgttcga tttcctggcccc cacaataggcc 53820
tggccaatttg tggagctgttt taaactgcgcc tttgcaacca ctctccaaa ataacgttta 53880
gcaggctggc gggttgtcct gcctgtgtgca attaatgca acaaatcacoa gctttcgtgta 53940
gtacaagggc tagtaagga acaagtttttt aatactatga ctatataaag ccataatatctt 54000
ggaattatacg cagaaagcaac taacatctgg tgaattagca caatagtggta tataactgaa 54060
ttgatactgct taacactcctc acataactgtg aacttatagct attttttttt aattaacaaa 54120
cactagata tccagagggg aatagtttga ccctgccctaat ctttgtcagta 54180
actattcttt cttaagctcct cagttctctt ttaacttagca gcactggtctc tataccaatgt 54240
gcgattcttg ttaacactcat taaaggtata gattctggca gttacaaat ggcacaaccac 54300
aanaagtttt ttaattcattt tggcagggat tttggtttcctt cgcttgaagt ggtctcttaa 54360
aaccttgaac atttttttct agtccctatac aagggacata cccttacttca tccattgattc 54420
gttgacctca aaggtctatat aatgttcttg gaattataac tttgttgtcct ccattgtgta 54480
ataataacct ttccccacaaa tttttaggta cagaattttt aatgttgctga atagtccagcc 54540
gttgtccag tttgcaaccct aataccgaa aataactactg tggataattct ccagggggtt 54600	
ttcaacactct acacattgtta attagttgg ccggtaattcg caacgtaggc aagccagtgtg 54660
gcagagaaaa gatctggatt tacttcacttg tcatcactccact tccattttaaat gcttctcttct 54720
gatggtgcttg ttcacagcta ggatgtttat cagtaatttt atttacccca taagctgcttt 54780
tgctggtttt atttgggttg gcataactttt gcctgctgtt atttccacttt aacttcgctgca 54840
cctcataatgg cagatctgcta ggtctgctct ccggtctgtc tccggaaaga 54900
cagaagtaga tataacaactt tgaattttcc实例tataattt atgaatcaagt actttgctgtat 54960
gatgttgact cccctttaaaa ctaaactag accttccatt aagtaaroct attgtgccttg 55020
cctggaaggg tcccaacactt cctgtggttggg ccctttggtc cgggtctccta cgtgagaggc 55080
tttaaggtttc ggctgtcagat aataactatg tggcactactt gggtgtggag aggagcagac 55140
attgtaactgg gggtgtgcaaa tggctggagc tcgaaatgccc cagattttaga atggggccca 55200
gggagggcct ctcttggtggt ttcgccagaaat tgggctcctc ttttatttca aactctagttg 55260
aacagtgata gcccagatgt ttcacatctttt aacttctgagga cattttcagc gatgacagct 55320
ccccccctct cccctctgctg aagctgctgct tttggtttttt ttttattatgg 55380
ctgccagcttc tccctaccagc tttttttttt cgggtagattc cttttatatca 55440
ttctgtttct tcgccccactgt gcgtacagcag agtagcattta tgcagactac ctcttgaagtc 55500
atccaagcgg ctgatatattt caaacttaatgt cttttctcttt ctgataagctt gcacagccagc 55560
catggcaattg ggttagctcttg tggactaaga taataactctg acaagcactat ccgacagcagc 55620
caaatctgcg ataccccttc gaagacactc ctggaacccga gctataaaat taaatgtcttg 55680
ccccccctct cccctctttaa tggagagtta cggagcctctc cttctgcttcg ttcctcagttcgt 55740
ctgatcttccttc atacatctct ctctgttctttt atggctctct aaggtccatct tggccctgc 55800
cccatctgtgcctgtaaaccgcc cccacgcacc ccccccccaaa aagttgcttg cagttatattt 55860
aattatggcg tgggctctggc catttgagc acgctggatta taagtccttc cccatcagcagc 55920
agttatatgct tggatgtgatt atacaaagct taaagcatag ctgatcagct 55980
agtaggaact atctgtacttg aagaaagcaac atttttaaac agttctatttta aaaaaaggaga 56040
agcttgtcaca tagtgattta tagtcctttt aatactttttt aagttattaaa aagaaaaaggg 56100
ctcaaatgta cgtataatat ttccctgttg atctgggggc tgtattctaa cagggagaag 56160
ccaaagctct ataatcaccct cttcgcttcgc ttacctgatta cttgctgaa tagaactaag 56220
agtgggtgtct caagggcgct caagctcagct ctaaggggcc caatattttt gcccgctgta 56280
ccttcgaata gaaacatcgtg gaggtcatt ttcctcaaaa taataagag ggggtcaga 56340
agggtagga tgaacatcctc cttccctgtgc cacttattct ttagcttgta aataaacaat 56400
cctgtgtaaac tcttgccttc cttgcttata cctttacttc ttgctctccc tcaaacatc 56460
ttgtaaaaaag ttccaaagttg aaaaacacca gacccgccat ctggccccatt gttacccctg 56520
cgtttccctgg ctccctctct cttcaccacac gcgggtgtgc tttaagctac cggggttccc 56580
tecagcatgta ctccctccatc aactctgtct ctggtggcacc tttgacactag atttgagccc 56640
cacaagatgg tggcactctgc tgacacccgc ttgggtcgag agacccatac caaggtgcca 56700
tagagaatt aagacaacaa acacaatat agaggtgtgta agtgaggaat caggggttcc 56760
acagccttca gagctgtgag ccgaaacagc agatttatac acatatattat taacagcaca 56820
cccgatattc gcaattttttt ttagatttat aatagttatta ccaactcaca ttttagggga 56880
cgagggggag gggtgcatct ctgctgctgt agagagctgtc agggggtcctc 56940
ccttaaagcca gcaactgtgcg atggcattgg tttggtgctca aagatgacctt taagccgttt 57000
tecgccccttg gttggggcagg gttcctctgc cttacttcctc gtaaactcact aaccttccag 57060
tggtggcggtt aagggccattc taagactgtc agactggcgc agatttatttg ttttgaggca 57120
gttgggggcag cttttgggct ccaagattgg ggggggtcgc tccaaactgtc ctaactcaca 57180
nttaatcgtct tcatcgatgc ttgagctgtc agaggcccttct actttcctgc ttcgctccc 57240
ccctatgtgg ctttttgctca aagaggtatg tttgtaagaag tttgtaagcgg cagagaata 57300
ataggyctct ccctagcatc tttttggtgt gttttattgt gcgggtttcat tcctccattga 57360
tgaagggggc gattagcttt cctotctgaga ttgctmaaag actcagtaa acacccacag 57420
tccaaggagg aacacacaga gcacaaatcc actacgaccct taaaaatat tattggtggcc 57480
ctggcttggg ctggggtcct cttggagggag cagacgattg cttcaggaag tttcagctgc 57540
atcacaacctgc aacagcgcctg gcttcacacc ccagcccttc aagaaatataa cttggaaga 57600
agagcctgaa aatttttctt gtggctctct gacagcctgc cttatatttt tttgtaact 57660
tggtccactg ctgctcttgag aacagctagt ctctctgagaa ggtgtgtagc gtatctttcc 57720
agotacactc gacacgctg aacacacaca caacacacaca caacagagatc caacacacac 57780
tttcacactct taactgtcgcc tggagcacaat cattcttgag tacattttct gacatttca 57840
ctacaactgt ttatatcttta caggttcctc agggccaaat tttctatcact tttgattttt 57900
tggaagaca gtagtaagggg tatctcccttc gcttcaggct ctgctcctcct ggtggtttgt 57960
tttttttttttt tttgagctag ggggggaaaaa tttttctctc tggacaccct ctttatccac 58020
tgctatgtgg tagaggaacc aacagcttctt cttttccaaa acagcttcagtg agaagcgtt 58080
gcaagtggaa tacatcgag aagacgtgct ctgctgaaga taagagggaa acaaatcata 58140
ctttggaaga gtaggggag gggggagaga gggaaagaag ggaggaggaga aagagaaag 58200
cctgaaagtt ggagacacacct ctgggtcagc tcagcctggc tgaactctcc cttccctcc 58260
tcaggttttat gttgtgaacc cagggagtag gttcctatag ctttgtacatt tttctctaca 58320
tgagtctcag ccctttaccc tgctatccat atctcctctt aacgcttgagat gttgaatact 58380
aggtgccccg agaatcctttc tgcacaccgg ttttcccccc tctccctcctc tctgctcacc 58440
ccattctca gaccaacattc ctgcaaggac caacctgggca aaaaacttca gtaagctccc 58500
cactggtcat taactaaca tcgattgtct tggtctagaa ttcgaggctc ccctctccct 58560
tgtggccccca acttatattg caattacccaa gccaggta ctcttaaagg aatcaatagtat 58620
ttaaattgtgtg eactaatatt acctttccag gaattgctgtt tcctccocac ttcotctcc 58680
agctctctgaag tgttgtgtgc gcttatattg agagatgagc atatagatca ggcgagcagg 58740
tcagagatt tcagcctggcc gtacaggg cagcactcag aaocctggcc aagctggggc 58800
tggcacaagc aagagcgcag aatccagacc ggcacaactc cagaccattt 58860
acetctggcc gaccaactgc cacctccgcc tcctttcttc aatcccccc 58920
gagatggagt ctttgtctat ccgccagggct ggaagtgcagc ggtctactac ctggtctacgt 59960
aaacocctgc aaacctttgc cagagctgttc tccgtgtccca gcctccagga tagccgagat 59940
tacagggcag tcgaacccagct cctgtgatta ttctgcttga gacgatggtgc 59100
ccagatggtg cagccgctggcc tcagaacctc aacccgcagg gatctcttcgg ctcagaagctc 59160
tcataaggtct gggataacgc gcttgagccca ccgacccggg aggctcctct aggctttcgtg 59220
aatggatgtg gttggaggtcy tggaggagggt gtctctctct tgtctgggtta gatctctggc 59280
agagagcagc aagggagagact tgaagagagaa tcgagagag tggagaacagt 59340
tctccctgttc tcgcacgcca gcgagggtct gtcgggctcc ggtgctatct cgcagtgag 59400
tccaaaaagct ccctttgtct cccggccccct gttgctttgc gttgtgccct aactggccagct 59460
gagcagctgca agaaagagtc ggaggccagc gcggactatc tgcagaggtgc ggctggagat 59520
aaagaagctt accaaggccag ccgggctggg gttgctgatt cctgttcaac ccagacggtgtg 59580
ggaggctctg ggcggccggt cccgcaggtg cggaggctgg gcacacacgt gcacacagctg 59640
gagaaaaacct cttgcctttta aatctcataa ttcgagccgc aggtggcgcc agtctctttgaa 59700
tcagtcgac gcggaggtgc ggaccttccct aagcgggagag cggaggatgtc 59760
tctggagcga gggtggctgc cgcttcaccc gaagcggccaa cagggagctt actgggctcc 59820
aagaaaaaaa actaagccagc aggtgtggtt gaaagaagggc agatccttaa 59880
agagagagagtt gccagacttta ctcaggaagg cagctgctgag actgacggc 59940
actgcaagatg acaacacgtct gctggaggtg ttccttcggt gttctctgcgt ctggagctgtg 60000
tccatatccgg aactacttaaa ccgcaaggtt cggagagcct acctgctctc ttctgtattc 60060
aggtgaggtg cttggtagtag cttggcttag aagattgtggtg atgttgttgg tggaggagggc 60120
tgtgtgtcttt gggagctataa gaagggccaga ctggaggtctt atcggctctt tctttttgtct 60180
ttctctggct cccgagcccgc tgaacctct tccataattg ggcagccccag gagaagacct 60240
aagagggctt atgctccttg atcctcctga ccacagctag gcaagacttg tagtccacc 60300
atgttgtgggg gcggagccag atcggagata atcgagcagc ccaggccctca cagttttttaa 60360
gtggtagaga cagacagatg cagcagggcc ctggacgcagc gtcgctgctc ttcaaggtata 60420
gttcagggagctttccagtgc agatcctcag tgcgctgggc ctggagctctt 60480
ggccagagc tctctctctct cccaacacgcc aatgtacccg gactac ccagctct 60540
cacaacagcct cccgggtccc ccaacaccc ggcaatctcgct cttggccccc 60600
ccctctctgct ccaatcctact ttcricalgtgc aagcttcccc acaagcccct 60660
gaggttccac ataatcagag cagaaaactt cttcctggga gtttttgtgg gttttgttgg 60720
accoacggcc caagagcgggt ctttgaggcg ctgtaggcac aggaaactgtt atggattttt 60780
taggagaggt gggaggataa ccaggtggag ttcagcattg tagttcctag tttctttgtt 60840
<table>
<thead>
<tr>
<th>69000</th>
<th>ggcacacgctg gacatctccc taaactcata cacccttcagtc atctcagatgg</th>
</tr>
</thead>
<tbody>
<tr>
<td>69600</td>
<td>caggtgccttc gctgcagcagtc gcctgctggt tctgcagctc gcctgcagctc</td>
</tr>
<tr>
<td>70200</td>
<td>ggtcgctctcc tggcctcctct cactcctgcct cctgcacgcct cactcctgcct</td>
</tr>
<tr>
<td>70800</td>
<td>gactgcgcgtg cgcctgcagc ggcctgcagc ggcctgcagc ggcctgcagc</td>
</tr>
<tr>
<td>71400</td>
<td>gactgcgcgtg cgcctgcagc ggcctgcagc ggcctgcagc ggcctgcagc</td>
</tr>
<tr>
<td>72000</td>
<td>gactgcgcgtg cgcctgcagc ggcctgcagc ggcctgcagc ggcctgcagc</td>
</tr>
<tr>
<td>72600</td>
<td>gactgcgcgtg cgcctgcagc ggcctgcagc ggcctgcagc ggcctgcagc</td>
</tr>
<tr>
<td>73200</td>
<td>gactgcgcgtg cgcctgcagc ggcctgcagc ggcctgcagc ggcctgcagc</td>
</tr>
<tr>
<td>73800</td>
<td>gactgcgcgtg cgcctgcagc ggcctgcagc ggcctgcagc ggcctgcagc</td>
</tr>
<tr>
<td>74400</td>
<td>gactgcgcgtg cgcctgcagc ggcctgcagc ggcctgcagc ggcctgcagc</td>
</tr>
<tr>
<td>75000</td>
<td>gactgcgcgtg cgcctgcagc ggcctgcagc ggcctgcagc ggcctgcagc</td>
</tr>
<tr>
<td>75600</td>
<td>gactgcgcgtg cgcctgcagc ggcctgcagc ggcctgcagc ggcctgcagc</td>
</tr>
<tr>
<td>76200</td>
<td>gactgcgcgtg cgcctgcagc ggcctgcagc ggcctgcagc ggcctgcagc</td>
</tr>
<tr>
<td>76800</td>
<td>gactgcgcgtg cgcctgcagc ggcctgcagc ggcctgcagc ggcctgcagc</td>
</tr>
<tr>
<td>77400</td>
<td>gactgcgcgtg cgcctgcagc ggcctgcagc ggcctgcagc ggcctgcagc</td>
</tr>
<tr>
<td>78000</td>
<td>gactgcgcgtg cgcctgcagc ggcctgcagc ggcctgcagc ggcctgcagc</td>
</tr>
</tbody>
</table>
agttttgat tattttgat tcctcagaga cccacacacta agggtgcactg taactgcact
ctgaaagatg aatagatattt atcctagtag gtagggaggg atttctccgg tcagaggctg
aatggcaca gaagttgtgtgg tgtctggagt ggacacctga caatgagggac tggagagggc
cattcagttt cagagcagagg aagtagtggag gaaagagctact gcagagtgata cctgagggag
aggccagagta ctagctctgg gccctctcct cacgattgct gaggagatga cgcacaattcg
aagagccagg aggccatggga gtagattgga cagggtgacc tacactcgat ggaactcttag
agatgttacttc ataggctgg agagctgctgg cttatggtct aacgtgctag ggaagaggttg
ggttgagg gctgttagtt tgtgtgaga actgaaacca aatctctctca cacagctggc
tttctacatt gacatcatct tcatattccg ctggcttcct taacatgact tttactatcc
agggaaacct ttgccccagaa gataatagct acaatctcctt tgtctggctat ttcagaggatt
lccacactc attaaataagatatcacaatgt ttagtggaaa gcttgaaaca
acagtctgct tccgacagaat tcacaaccttt cctctctcct ctgtgctggc aatgttgata
ctaaagac cttggaacag tctcataacat atcagaattc ctaaaaccct tactttggac
atttagcct gtcctgttag gttgtattag cgagggctct gttgtcggct ttattttgttt
tttaaagctt ctttgtagtt tctctggttg gtttattgct aacttttaggtgtttttt tttattaatttttt
ctctggtat catcagttgt cagcagtttt cagctttcct caacatctct gcgttatttttt
agtattttcg ctctgcttgt tctttgactt ctagaaggc attttcctgc gtaatttttttt
agtattttcg ctttagctct ctagaagttt tacactgcat attttgcttt ctagaattt
ccaaatttttc ctgaagagcttg ttcctttttt cccaaatctttt acgtatcctt gcttccatcct ttt
agacacacta ggtagactgt ctagcatatt gataacgttc atgggcgttg €8040
tggagagtga gcagtggagga caacccaggg tcaagctcat ggcaggcttg gtttcagtgtg €8100
gtttagtctt cgcaatcttg ttatacagaa agggcttcat gacotgtatac €8160
tttagcctaac ctctactcct atctctgtaaa ttgagatgcc taacagcttg ggaatgaccgc €8220
tcagcagtgct cagccttttc ttggcaccgg tctacttcca aatgagatttg ttctgtgaca €8290
acaccccttg acaaatggttt ttatatcttg tagagatggag tgttccttttag gcgggccccgg €8340
tcggtctcaaat atcctcagcgg tcaaggtgatc ctctctcttt ggtctctctga agtctgtgagga €8400
ttctactgtg gacacactta ggcagcctaa ttaacctgttt tatgatctgc aaccacttacat €8460
gctctagtgt tgtgctgccttt tctggtcaggt ggcccagggc aaccacttag gtttgtacagc €8520
tttgggtggt attttctgggt atctgggaacc ggagatccctc tgaattacaga agaggggagc €8580
agcctagtgt ggcagcagcag cttgattcttc agcaagtggag caggaggagttc €8640
actgtgaccgc agaagttgtga gtctgagcttg ggcaaccctat tggagaccttg tctttaatttt €8700
tcagaaaaaga gagagagagg aatagggagga agaagagcgc gggataagaa tgcagcaggga €8760
cgctcgggttg tggcggtcctg ccctcgtactt ccccgtgatag tggaggggagc €8820
atcagagtct gaggagcttg ggcaacgcct ttgacgcagctt ataaatatcc gtcctcactata €8880
aaatctacaatgtgctggtgggtgtgtgc tgaatctgcc tgaattcccc gcctctcttttggg €8940
agacgtggcgc agaggagatct tctgaacccca ggccgagagat tgtggagttgc gcagaattgc €9000
cgccttccac cttgcagtgtg ggtgagcaggg tggagatcccc tctctaaaaa aaaaaaaat €9060
aaataaaaga aagagaaaga aaaaaaagaga atcgggggctc atacacactcc aagggcagttgc €9120
gggaggtccag ggtaattttttt ccggaagagaga tggtaatattttt aaccaggggtc €9180
cctcagttgg ctagagacca tgcagatcgtga atggctgcgct cggatgcgc gtttggactggga €9240
ccccagctgt gcgtcatgtgg ggcacagcag tgtgagttttg tggagaggtg €9300
tggagagtga aargvggggaggt cggctggagct cggagatggg ttaacggagggc €9360
tctgtggtg cctctctctg gagagcgttg gggcttgctatt cttgagcgcc €9420
caagggggag gacggcggttg gcaggacccatt tgagacagctg tggcagatctc tttggatctg $9480
aatcagagtcg tggcccaccc ccctcctcctt ccagaccaaa aatcctccctt ccagcactctg €9540
tgagagtacct ttagcggcctg atgctcaggg tccattttaa gtaacccctt cttatgatag $9600
catctctgtc atttatagag tagagctttc ggggttccttg tgcgtcatca ttaactctact $9660
tgaggtgtgtc tcctctcttc tcctttctctc ttcttctgata tctctgtatgg agctagatgt $9720
gggctcaggg cgctctcttg gtcggagagcc aggtggatat gggatgggttag $9780
cctggaccac ccggacacacca aacaccaatcatt tagtgaagca tggacacttca tctaccgccc $9840
tgagaaccacta acaccccttt attataaga aatgacatac atagttctct cttgagcccc $9900
tccttcccc ccctcctcctt tctccctcttc cttccccttc tgcgcagca aatatacc $10000
cctgatagtacttg cctaattgca tttactaaggg gcaagttgtct tgttggtgg $10060
cctctctcttta caggtgagcgc agggtggcctc tggcctggatgc gcacagcaccacc $10120
cgagtctggact cctttctttg tggggagg gacggagagat $10180
tatttccct tttcgctggga tctgctcttc tattcttttt caaattacta $10240
gcagcattata gattgcaaaa tttgctgctc ctgagggacct gtaattgat $10300
cagaagcagc aatattata tgtatacata atatatataa ttaggttgaa gaasaaacaa 70380
acaagagacg agttgtgagg gcataaaat gtagaqcact gataatcttag gaggacaga 70440
gaaacatgac ctagaatgga tcaggaataag acgacagggt gctcagtgaag ccagaagtt 70500
cagacagagc ataggacgca gaaatcctg cagactaggg acagtgggtgt tgtactgtctt 70560
tgctgtcttt ggacgaacgc aaggtgacca ggtggtggcc agtgtggcac gaggctgaca 70620
agaggagtagc ggtaggtctgg cagagacaca gcagagagct ggcgctggcc acccattccttt 70680
tttctgagcat gataagacgc acgtgacgaa ggaggggact tgaatctggat ttataatctcct 70740
gctatgtgggc tgttagggaggg aagcaagggag acagctggtc agagacagag tataacagaa 70800
tgagggtctca ttataatggag aagcagacac caaatctctta gtagggaaag aatgtaggtg 70860
tgaagacctg caagatgactc aataaagcag cagaggggtag ggctctgagc actcaagggc 70920
agggagagctt aacgacagcttg ccaggctggag gcgaagatag tggaggagag 70990
tgctaaaggtc ccgctgggtt gcggttgtgc gatggtggga aagttgggac aagtagaagtgt 71040
cagctagctg cccggtagagt cgttattgac aagtagaactt ggggattatc aagctgtgtt 71100
ttgagacacct ctaagatgcc ctagttaaag cagagatttag cttggtttac tagtgctcca 71160
accaaatcactc cttccattcata taatatgtgaa cccggtcattg ccaatatagg tctgtatag 71220
cagagacatag ccccaataaa actctatttt aagaaacagca tagttggtcga gattttggcc 71280
cagatgtatag agttgtgagca atctctgacc aggttgtatt cttgtaggtg actctctatataa 71340
gaaacagaga gacccactag cctgtgggga cccaaacactt aagaaatggg aagagggagag 71400
ggctactagca gatgagagata taacacgcag caagggagaca gcaaatattt gagatttgggg 71460
tagccgatgga gtagagatgt gttttcagga gcagcaacca atattatggt gccataaac 71520
gatttagga acatctgcaat ggacacaaaa attgtggttt ctgtctgata taccctccac 71580
ggcaatattt atatttctatt gatttttgac tatttttaca cttttttagt gtgaagaaaa 71640
tcgcaaatatt gccaaaatgt cttgctctag ataaaaaatc atctccagta caattcgcatt 71700
aattttcactg tggagaatcgg tattagctcc gaaataacag ttggtcattt 71760
ataacctcttg gatgctctac cccaaagata ttgtaagttg ttggtcaggc 71820
tttgcaagctc gctctgtcag gtagaaggtc cgctaagcagc ctacacacttcg acacattggt 71880	taacacctgc gctgtagaagc aagacaggtgt cttgctgggc tacaacactcg aacagacatgt 71940	tactgtacag aatttgtgag gcacagtggc ccaagattttg aatatttctgt catatataaca 72000	taactataa cttgataaggc acagtagaaa acagtttgcag aagtaggtttt aacatttttttt 72060
tactagagtc actctacttt aagagacttt aacagcagct gttgctcctg gggaggccca 72120
gtccttgagac gtagatgacg aagctgacag tggatttggga agttttggctt 72180
tataacaccgt tacacagtagg ctacatataaa tatatatattt gtttttttttct ttctctcata 72240
ataaatataa ctgtgctatacg tctctatctt aatcttttttaa atatatattttaa 72300
catttgtcat gttttttttt tatttttttttttt ataatgttgcc taataacaccag acaatactga 72360
aagtagattt tattttttttattt
caatatggt gaatttccaa aacagatgtt caaggggaag aqcaagttgc acaatacagt
75120
tctatacct gtttcaggt tacagatctt gcacattttt gtcagatatta tccotaagta
75180
tatttttaag tttatgtaaa atctgtatttt gccttggtgtgct cgcgtgtacta
75240
cccagatcgg cttggagagc gttgagatgg agggatgtct ggtgctagga gtttaaagac
75300
agcgtgagga acataatgtg aocctcactt tacaaaaagaa ataaaataag ccagcgaatg
75360
tggtatatgc ctgaataattt ctatcttttg gaagcmaaggg tggggatatag tttaagccca
75420
ggagttgtag aocctcctgg gcacatattg cagacgtgtg tctctactaaca aagagggaaga
75480
aaagaaaaaa taataaaaaa ttacaacaat tggcttggcc tgggtgtgca tggctgaagt
75540
cacaatcact cagagggctg aagtggtgaggg atcacttttag cccacagggct gagggtgca
75600
gttggtctag atcacttccac tgctagcggg cctgagcacc acagtaaagcc ccctatatca
75660
aagaaaaaaaaaa aaaaaaaaga aagaaaaaag atttaaaaat tccaaatttc taacttgtcct
75720
ctagtccat atagaacatac agtagactgt tgtatattaac ttctataaccc tgtaactcttg
75780
cctaaactct ctatcttactg agctattaaca aaactattcc atacaagttt tctctatattt
75840
gccacgatca tgtctgaata aacacaggtt tattcttttc ttttcaacct tgaagctcrtt
75900
cttcacctct aatcggcttgct ttagaaaaac cctctacaaag cctgatcagaa gcagcttgaag
75960
ccagacattc tgtcctagtc ccaactctag ggaagaaca ctacagctctt caacagtaag
76020
atcacttgtag ctatgggggt ttctttggag atccctctta ttagagtgat gataatccct
76080
ttatctctta gttttgctctc ttttttttatt atggaaaaggt gttgctcttt cccaaatgtg
76140
ctctgtcttcag aatcagtttt tttctatagc tccgttagta tgttaaatta
76200
tattgttga ttcccagatt tttaactcact tttggcattct tgtgataaat ctcagctgtct
76260
catcagtttc tgtcttccttt aatataaaag acatcaccaaa tttgcataaa tttgggttagg
76320
aattattgca ttaatatcgc tattggtata ttgggtgatag tgttaaagct tgtgaaggtt
76380
tttctaaa gtttgggtctac tgtcagatct caaaattttc ctataaatgt
76440
ctctcctttc ctctccttga aacgtgagtt ccagaatcat atattttcata cttaaatgt
76500
tctgctctatt gggttctctt cttttctctt tttttttttt gacatgtggct cgtggctctc
76560
atgggtgtca ccagcttgga gttgagttgc ccagctgagcg ctacgctgag ccagctagtct
76620
ccagctgca ctacgcttc ctacgctgcc ccctcagtag tgtatataac aggggtgcaac
76680
catgactggt gaccaaaagtt ttgcctattt ttataagat ctggaaactc ccagatggtct
76740
aggtgtttac caaatccctt gcattcaggg atctcctctgct tccagccctcct aaaggtttaa
76800
ggacacagg tggataacac ccacagtttgg cttttcccttg ggagaacagt
76860
tctttagctaa tttttactagc tataaaagaa taccgcgac ggataataat ataaagaaga
76920
gagataatttt tgtctcattgc tttctgattt ccacagatgg gctaatggtc aacactcgtgt
76980
tatgttatttt cctctatgctt ccctagtgaa cacactgtgc acagctgatta ggtggagtac
77040
cagctgtaga gacaggaaaca gacaggaagga ggggaggttt ccagactctc tccaaacacc
77100
agatattttt tgaactcata actgagaatt cccactctac tggggagagat gacaccaaga
77160
cattcatga ggcatctgtc tccaaacccc tcccacccag ggccacccctt gacatgtagg
77220
acataacttta aacagatgtg tgtgagagga caaactataa aacactatac gaaaggtttt
77280
aattgcatc tcaattttct ttaattagttt aggctatttt tttgctcttcg tttctctctg
77340
aggttggtgt gattgttttt tttgtatatgt tgtctctttt attctaatgg tgtcattttt
77400
atcgggtgat atagaagtaag tggctcatatt aaagtctaatct tttttccact cttttccccg
77460
taacctccoc ttgtggtctt tgaagaacta tggcgcttctg actggtgtgcc atggccccca
77520
cctttcctcc tgggctcaga ccttgacata actaccttcte actacccctc ctacctccccc
77580
coaacttctga tcccttcgaacct tgaagaacct aagggtttctt aagctccttta
77640
agttagcaggg aactactctca atttttaaac cctotcccaag tggctaatat ttttaaggagat
77700
tagacccctc aagagaattt aagtttctcag aagagaactg tagatagaggt gtgcataacc
77760
aaaaataaagt caattttttta tgggtcttatt gtggctcttg tggacacttag ggaggaggaag
77820
cactttgggga aagatgacctt cctctctcctt caattatttt caagtcaagag ttttggtcctg
77880
ttacttctct cctttaagac tggctacagag gatttcctcct tggctctttgg taagaattaa
77940
atgatcaaca cagcttctcga agatctcctgcc gcttctgcga gccatcacag caacctttgga
78000
tgctctgctc tggtagagct ctgcctctggcc cctcacaactgt tggacctttc ctgagaaagc
78060
gataggcttg ccagagattt cagagacaggg gctagagaggg gccatgtctca
78120
tcggacactgg cgcactcata cttgcacagag cagacatccct tcggaccttag gaactcaagg
78180
cttacctgac gtaatagctt ctttgcgcac cttttgcgtct ggcgcagtgga ggccgcctggct
78240
actagagag gcgcctctca cttgcgattttag cctggagaaac cttgtcttttt gcttcagccg
78300
tgcggacgctc caattgacct tttctctctca aagtttcatcatt cttccagagtc tttccagagag
78360
aagtgcaacc cctgctgcttg cttgctatgg gcacacaccc cccgaccctt ccaagtgggc
78420
tggcgtggac acggctgtcct tatttaaat acagttccag gggccacaggg cttcgggctc
78480
aogagtcgag gaaatggagcca ttaatcgcttg taaatcgcttg aaaaacccctttttttttaaa
78540
atcactattttac ctaactacgag ttcgttacacac gctgaccttc actccgacctgct ctggataagag
78600
agagacaggg gtagagagcg gttgctgcaga cctccagccag cccgacccctc ggcgccatctc
78660
tcgacgctg cggacagcag gagacactcg cttacaaaaaaa aaaaaaaa aaaaaaaa
78720
cttcacaaaat ctaatcattt tatttatttt tattttgttaga tagagccggt cttgctatcac
78780
ggtgccacag ctggctctca aacccgactgc tcaagacact cttccagaggg cggcttttccct
78840
agcctgggaacttgg gctgtgcttt aagttctcttt cccagccagtt cttgagacagt cggccacgtc
78900
agaatgtgcttg gatcgtggaga caagcttctc gccgactctt cgggtctctacc cggggctttttt
78960
gagcgaggtt cccacctttt ccaccccactt ggtggtgctcg ggccagactct cgggtcggcag
79020
aatcactgtgc ctaagggttctt aacccgactgc tcaagacact cttccagaggg cggcttttccct
79080
acagaggcagt gcgcctcttc cccgcttaatt tttggttattt cagtggagacg gggggtttccct
79140
aatgtggctg gctgtgcttt aagttctcttt cccagccagtt cttgagacagt cggccacgtc
79200
aadagctcggt caagccagagag cttccgctcc gcgggcttttt cggggcttttt tttttaaaac
79260
aaggtgctca gtagagagct gctctccactg cggccgcgcct cttatgcttc cttttaaaac
79320
tggtgactc ctctccgctc ccactttccca ggggtcgagg ggtctccctga cgggtcggcag
79380
cccgcgcactg tgggctgaga gcgacctgggt gcggggctgg ggggtggagc gcggcgcgcct
79440
tgggtgtctct ctcagcagca actttttttt cgggtcgagg ggtctccctga cgggtcggcag
79500
ctgggacgga ggagccagac gcgcgcgcgc gcgggggcgc gcggcgcgcct gcggcgcgcct
79560
cggggggggc agagaaaaa gcagagaatac tggggggggc gcggggggca gcggcgcgcct
79620
agggagacag atacagcctg cggcggctct gcggcgcgcct gcggcgcgcct gcggcgcgcct
79680
aggggagacag atacagcctg cggcggctct gcggcgcgcct gcggcgcgcct gcggcgcgcct
79740
tccgggccc acgtggagac gcggcgcgcct gcggcgcgcct gcggcgcgcct gcggcgcgcct
79800
AGTGAGGGA CTCGGACCG TATAGGGGAG GGGCCCGGCG GGGCCCGGCG GGGCCCGGCG GGGCCCGGCG GGGCCCGGCG
CAGGAGGCGT TGGTTTCTTC CAGTTGGCGG GGGGTGTCCGG CAGTTGGCGG CAGTTGGCGG CAGTTGGCGG CAGTTGGCGG
ACATCTCAAC CCCGCGCGTG TGGCGCGTCC CTGCGCGTCC CTGCGCGTCC CTGCGCGTCC CTGCGCGTCC
TAGGCTCGT TGTCTCTCTCT CAGGCTCGT TGTCTCTCTCT CAGGCTCGT TGTCTCTCTCT CAGGCTCGT TGTCTCTCTCT
GGGCTGCTGG TGCTGCGGCG CTCGTCTCTT CTCGTCTCTT CTCGTCTCTT CTCGTCTCTT CTCGTCTCTT CTCGTCTCTT
GGGCTGCTGG TGCTGCGGCG CTCGTCTCTT CTCGTCTCTT CTCGTCTCTT CTCGTCTCTT CTCGTCTCTT CTCGTCTCTT
CTGCGCTGCTG CTGCGCTGCTG CTGCGCTGCTG CTGCGCTGCTG CTGCGCTGCTG CTGCGCTGCTG CTGCGCTGCTG CTGCGCTGCTG
AGGCGACACG TGAAGACACC GTGAG
atcaggcatct agatttcatc aagaggcact cagcctagat ccctcgcatg tgcagttcact 82260
aatgggggtc acgtttctat gagaactctaaa tgccgcgccgt gatctgacag gaggctggac 82320
ttaggaagta atggtagctg gcggctgtct actctctgct gttgggtcata gtttctaa 82380
ggccattgac ccgctggttc tatggtcctgg ggctttgagga ccctctcactg agagaaccc 82440
gatagcctact ccccttctct tggctttctcct tagaatagtg ccgctgact tcaagctctc 82500
ttaaaagggg aaaaaacgcc aagtggcgggt ggttcatgct gtaacccag caccttggga 82560
gtgtaagcca ggcgagatcc gaggctgggga gtcgagaccc atctctgcta atgtagtgaa 82620
aacaagctct cactaataaat acaaaaaaact gacgcctgga ca gtggtgcgag 82680
tccagctact tggagggcgt cagccagggga tggctgcagaa cccagaggggc aagagccttga 82740
gttggcgag atgcggcacc tgccactccac cccggggcag aagaaggagat ctcgttctcca 82800
aagaagaaaa aaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaag gaaaacaggag 82860
ataacctgaga agaactaaa taaccattcca ggcttttcctc tgaacccata tggctttcat 82920
aaacctctaca gcttaagctct catagaaaaa gaaactgga gagaactgaa atgagctcct 82980
gtgtctgagg gactctgaacc tgactaccttg agggtagttg cttgggtaaa gaggagagac 83040
gttggaaaag ttagggtgct gaggagacag cctgcgcagt acatcttcttc ataagcttgct 83100
tggaggtgcttt ttttgcttta atttcagatat ataggttttt tctgcgcttct ttggacctca 83160
aggtgtgtaat cactataacta tctactacat atataagcct accgttgtgcct atagagtgct 83220
ttcactgtgct taactcattt catccocaca aacgcctatag ttagagtaga gaaactgaggag 83280
cacagagagct ctagattctc tcgctctagt ccctgtggtt aatgtaacgc cccagatctca 83340
aactcttgcct gctggtgcctg aagttcctatg ctctttagcct ctagaaacct cacaoctat 83400
gttgttaatat ggaatgtgtat aatctaggac tgaacgctag tttttctccto cgtcactcag 83460
attgcctagg ttcctcctacc gggactcctct gcgggcctgtc ttcttctctcct ctctggtggtt 83520
ctctctgctgt tgctgcttgttg ttgatttttt tttcatattg tggctcatct ataagctgtg 83580
tgtgctgcttg gacccttaag ttgcgtcact gatgacaccct tctgggctg gagaattttct 83640
gttaaaggag gatggagttct tgtataagatc agacgcaataa ggaaatgggg gttgggtttt 83700	tttaagacg ttatttcttg aaaagctgagaaa gaaatttttg aattgagagaa gttgtagggg 83760
cctttgctacg aacagaggagaa tgtggttattg tgaactacga tgggtcattgc gggggcaact 83820
tagttgttta tttttttttgg gtttataaat atgagatgga gagagccaggg aagtaagctt 83880
acagttctct ctcataggtgt ttgggcatgg atgaagttgg gttttgcaagt 83940
gccaggggttg gagcttgagg gggcggaggt ggccgtgaag gggacatgtta 84000
agcacccagt ggagccggaaa gggcggtcagag aagttgggag agtgctgcaggg 84060
cagtttttacg aggagggagt gtttgggacgct cttgggcctga agggctcatgag gagaaggaaaaa 84120
tgggccctctg aacgccacct tcagccacttg agctgctact tctgggttgtagt 84180
tgggttgattg tagccttaac ctgagggatg ccgccatcgcc ggggcccaggg 84240
agctaggttg aggatggccactct cttttgctgg aatctccagtt gagaacataca 84300
agggagaatg tgggtagata cttgtgctgg caggggaaat ggccttttct catatatgctg 84360
cagctggccca cccggggcttg cagctcagct ggacagtgcc ctggggtcaca gattagcagtt 84420
gcgctgccac ccgggctcccagtggtgctc ctgcctggcagcag 84480
cctgctgccct tagataagaa acttttaaat tggataattc catataatgca gaaaggtgctc 84540
-continued

caccataac tacagcctga tgagttgctea tacagtgaac acacottgtgt taccccaccc 84600
caaatcttc ottctttgtcg cttcccccaaa gcgctacctc gtcctctccc ccacagctca 84660
ctactgtcct tacataaacc atacataaaat ttacataaggt ggggttaaaag gcacottgccc 84720
tttggctctt ttggtgctaa acctgttgttg tggagatccac ccataatttg tggtaaacag 84780
gttagtcgcc tttcagcatc acatagtaat taattggcaaca aatatctccag ggttccattca 84840
ttttctgctca acaagctgatt aagctggtgcc cagcttgggg ctataatgggt tgccttttttt 84900
gcattttctgt ttgagggctt ggttatattt ttgtaacagc cagagataacct tctcgaagat 84960
tocagcttag ggtgattttgt gttctgcaaa acatacagaa ctcttatttc acaagcctag 85020
atggtaacgct tggtaaccaca tttgaggtctg atgttgtagcc gcacottgcac tgaactacaa 85080
acctgcacag cagctttattgc tctgagtaac tctgagccaa tctgagggttg ggcatgtggtg 85140
ttgtgtactttt acacatgggag aagctgttggg gaaaaatgga tattaaatat ataaatcatt 85200
gggaacactgg tggatatttct ggtgctccct tgcgggagcc ctgctgatacg aaggttgggca 85260
tctatccttc gtcctgcccg ctggtgctttg ggtgcttcag ggtggttgact acggcgccgg 85320
tgtggtgcttcc ttgccaaggtttt gttataaca aataatgccct cctcaacagtt 85380
ttatagtttt ttcctgtggtt tttccccacca aagctcgtgctt atttttaaat gtaaaaaatgt 85440
taccagctaca tagtcttaacc agaagactag atacccctgg gcataatgtttt catcogtaacc 85500
agacatccct aagacatggtt ttaagctgttt aagggcttgg acocccacctt agaactctgtc 85560
aatccagcat getaagaggg ggacagaaaa gacaatctct acgcttccagc gctgctgaggag 85620
gtgtggtgctgc tgtgtgctgct tgtgtgctgct tgtgtgccaggg aagaagacagc ttcgctggtgag 85680
ggagagggga agatgaagagc agaatagctg tgtgatgtgt tgtgagacotg tgtggtgctgc 85740
tgtgtgggctt gggggccagc aagcttgtttg gcgtgtgtggtt tttttcaaatc 85800
gatctgagaag tggcttgctg ctgccttttt ggtgctgctgc tgccttttttt ggtgctggctga 85860
agtaagaggg tggagcaagcagt gctgcttttt ggtgctgctgc tgccttttttt ggtgctggctga 85920
gtagagacta gctggaggaacc aaccccaaat gctgctctag aaccccaaat gctgctctag aaccccaaat 85980
tgtgtggctgt tttgagggcc ggtgtgtgcct gttgatgttg tgaattttcaac ggtggtggccag 86040
tcaaatatttt ataatagttg gctacaatcc tactgatttt atttttttttt tactcaatac 86100
ttcataatgg tcaaatagttg gctacaatcc tactgatttt atttttttttt tactcaatac 86160
agacagctgct tacatctctg cttggtgtgctg ctgctgtttttt cccacatatttt gctcttttttt 86220
acagacacaca cctgttgtat cttggtgtgctg ctgctgtttttt cccacatatttt gctcttttttt 86280
taaaactact atatgtctct tttctctgtag gctgttgtat cttggtgtgctg ctgctgtttttt 86340
tactcctact tactaatcctt tacaacagtct ctgctgtttttt cccacatatttt gctcttttttt 86400
tttgcagttg ccagacagcct gtaaaaaaaa aatattataat taaccttgggg agatgtgata 86460
ctttttgtgt gttgagtact gtttctctttt ggggagacagt atgtttatttt ttaacagacaag 86520
cagacacacta ccctcttttctg tgaatagctc tttccagcaag cagacacacta agatgtgata 86580
atttttaaaa aatattatatag taatgaaatct tttcctttttt cccacatatttt gctcttttttt 86640
attatacata ggttctactgttta ggggagacagt atgtttatttt ttaacagacaag 86700
tttctggtgat gttgagtact gtttctctttt ggggagacagt atgtttatttt ttaacagacaag 86760
tcaaatatttt ggtggtgtgctg ctgctgtttttt cccacatatttt gctcttttttt 86820
gctgtgtgat gttgagtact gtttctctttt ggggagacagt atgtttatttt ttaacagacaag 86880
tttctggtgat gttgagtact gtttctctttt ggggagacagt atgtttatttt ttaacagacaag 86940
tttaaaaacctctcattttctctcattactagagttttccagaggttagagtctctcattacaccctcattagtttaattttcattcattttttcttcttcattttattcttttttttatttttcatctatttattt
tctggttgtt accatatct cagattctg cattcattg accgttgtt gccgtgttca 91740
gaattcttat tctcttgag ggtggtgtat cttcggagaa ttattatcag tactctttgtg 91800
ttcctactgt ggctactag tcgactaatg agatgcctat agataattctg gatgactcctg 91860
tgattatcag ttgtaagttta ctttctctat tctctgtattg gttatactgta atctctctctt 91920
tctctgtgtt agctcgagta gcccggcaac aatatttttc acctttttcag aacgcctaac 91990
ttggtttttcag tggatcttctt tttttgttca atattaatgta gatcaaatctt 92040	tctctgtact tttttttttt ttcggatttctt ggttttggct tttcctgtct 92100
tttctagtctc cttggagttg gcacctaatg gttgtaaatt gtagatcgttg cttttttgat 92160	tgagaactt actacataag cttcccccttt gctgtatctg tctgaggttt 92220
tggtgagttg tgcctctgttt caccacatc cccaaaccccca gggacagagtt 92280	tatgtttaacc ccaacaggcca gttcgtttag ttcccatgtat cttcctgtgt 92340

ttggagggct cttccgtttcttg caggatgagtt gcccgtgctct ttggagcagtt 92400
tacaatgat attacaatgg tttgtgcaac agatgagagaa aatgtaatct cttgggtgtg 92460
tggtgaggtat cagattcctg ttcgagagtc tggatcagtt ggtcaggttt 92520
gacgcgtcct cagctagttg tttgtgcaac gttcagttgct gacggttcct 92580

tttcgatcgt ctttgtttg gaccacggcc gttcattttt ctttttttttttt 92640

ttttactgg gttgctagtt gtttgtctgtt tttgtaagtt tttgtgcttt 92700
ttttcctgcct tttggtctttg ctgtatattttc ttttttttttttttttttttttttttt 92760
tt
ttgaggtgct aacactatt tcttttttgt atagctggag cttttatgct gattctcttct
94080
cactctaaag agctgtagat agttggcttc tgtgttccac ccaaatctca tcttttaaact
94140
cccataatcc caagcttggag ggtggtggag atgtgtggaa catggagcga
94200
ggtattcccc ggttgcttct tgtgcaacag aagggctttc acgaagatcg atggttttat
94260
aaatgggagt tttcctgcc aagctttcct tttgcttgtg gcocatccatg taagatgtga
94320
cctgctctcc ctgctcctcc gcctatttgt tgggaccttc ccaagcttgg ygaaatgtga
94380
gttcaataaa cttctctctt ttgtaaatgt cccttgctttt gcagctttttg atcagcaga
94440
tgaaattgga caatacagaa ggtgctgccc cctacctggg aatgtggcaaa cattttgcta
g1500
aacaaatcc aagttctctgt ttcttttcaac tggagtttgt ggtgatgtgat tatttttct
94560
atgatgtgtt tcgttgtttt tccagggcc aagggctttc atggtttctc
94620
ctgtatggtc atattttctg tggctgtggct tgcaagatgaa agttgtggat
94680
aagggctgtg aagctgacaa ctatctctctg ttaggtctag aagttggaggt ctccagga
94740
cctttctcat acctgtaccg tttgccttctc ctgagcagag gttttttttt gatgtgacag
94800
tccagctctt gtcagctgaa gtcaagcttg agggtaaagaa ggtgagctcct acocctaggt
94860
catacaacaag tggaggttaa cccctctctcc ttgggtgtc tgcggct gccggagagg
94920
gccagcagg ggtgccgaac gctccctcct cttggccagag aaagacatga tgggacacat
94980
atcagccccct tttctacgca acctaatccct tcagcctttt taaaacgtct ctttggcctc
95040
cctggcactt ctcagctctg tgagagacct tcgattttgc tcaccacaata aattggccctg
95100
ggtcagagcc tttcttctca gttgcaagaca gtcgtcttgc tgggttgctct gcctctctgt
95160
goaggtcatg tgtcaacttg tggagggac ggtagatggg cttgctcttt tctgaaagcc
95220
cagggaagtac caaccttcat tccggtttggta gtagcctcctt gcgaaagttt ctgaaagcc
95280
tttcctcaat gttcagcaatg ccacgtctcc gccaaggaag cctctgctgct atgctgcaac
95340
tgtaatgggt ggagtggagaa atagcctccc cttcagttcc cttccagact acactacagc
95400
ccctttccag agatggttgtg tgtgtctgca tttcttctgt cccagggagae acctttggtgg
95460
gcgtgtctcc cctagagaaa accatcactt ggaggtgaga ttctctgtgt ttcgcagactt
95520
ccggacgggg tccttcgctgc ccctagtggtg cccaaactcag aaggttgtggt gggtttgttt
95580
tctgggggtc tctggtgact tcagtggtgag atggagctcttt gcacaccttc agggagcgtg
95600
cagaacagct gcacacaaacg taaggtgtcc accaatctag tccaggctgtg agggagatgc
95700
cacacacacct gctagtgggt gcacctgggc acctaatcctt gacagagtc acaaatcacc
95760
acgtgacaco ttgcggaggg ccacaggtgc agagggcttc tctcaacatt tgggtagttac
95820
cctgttgatt cagggttggag gtcagaaagg atgcaaacctt atccaccccct cctgtaaagcc
95880
tccagctgcc caaggggcaac gttctcgcctgat cttcctgctt gttttctctc tctcttcctc
95940
agctttctcc tggctctttcc tggctcagcc ttctctctct tttttccccct ctttccctcc
96000
ttatattctc aatataaaa aaggtgtataa tatgtatccc aataagaagaa ttttttttga
96060
atccacaaa tttttttaaaa tatagagcct cttgagaacca aaaaagtgtga gaaactgtgta
96120
gctggggtat ggtccagagg aatcctccaggt gtagagggcgt ctcagagcc gcagagggttg
96180
gcaggtgtga aagggagaaa ggagatggga gtcacagtgc tggattgggta caatttgacc
96240
tcgattttac cggcagacag ctatctcctct ccctcttttt tataaggtttt cataggaagtt
96300
tggtgtgatt ctttacaggt tccggctttca actacaaaatt ttaaatccac tttcgcaagg
96360
tgtgctatgc ctcttaattt caaggggttgg aattttgtgg gcgtaatccaa aattttatgtc
96420
ttctatcttg tttgctcttg ggccataatg tctttactgc gttattttttt ctctcagaaa 96480
atagtcact gttggtcttg gcctatataa ttggacagct ttttttttttt aatattattaa 96540
taatcttttt atttttttgt tattttcagta ttggacagta gacactagag 96600
tccctaatag acctctacaac agttctccttg atttgtaaaga tctttactta ccatatatgt 96660
cgaacaataa aacactatat ttaaatgtta ctttacttaa atactactatc tctattgt 96720
ttcaccagtct tttccttcctgc gttgctggagt ctctctctctgc gatgctcagag aagccacaca 96780
tgctatttaat ttagttcgttc agtttttctgattctctactc tttttttttgt caagcttcgcag 96840
cattgactat attggccagg taaccctgtag atgaaccacca atcgccgtgct ctttttttttttaa 96900
tattaatacaat aagttctttag ttttgggaaac gacacacaca gacagagcgtt gctctctctca 96960
tcgagtagtgg agggggatag acgctataac aacagctctgcagcagcagctgatttcat 97020
catctcgatg tttattgtttct cttgagccctc aacagcagcttgactataag atacatattccc 97080
tctctaattcctg gcttttgcag ttttaaagc ggaagttctttag gatgcttactaag 97140
taatgtggact gaaatgttcc ttacacttcgcttg ggaagagcag acctctcttcgctcag gaatagaatag 97200
tgaaatttcagt gaaagaagaag agttggtcctctcttctctcttattttatttctcactatt 97260	tagatgatagtttggtgctttctctctttttttctccacttttttttctcacttttttttttttttttctt
atatataa0 ccgtctata0 tcctataata0 tttagcataa0 ccotctgttat0 ttatatatt0 99820
ttatatatag0 gccagctcgg0 tgcctgcgtc0 cctgcctcgg0 caoctcggggt0 gctggccaco0 99880
cacactgagc 0 caactgggaa0 tttcccagg0 tgcctcaggg0 gcocctcctcc0 tgcocctta0 99840
tctttttgct0 tttagcagtt0 ttcttcaattc0 tgtagttatt0 taagatattc0 cagcggctatt0 99900

ttgtatatcct0 tttttcctgg0 ttcttagaacttc0 agcacatcttt0 tctgccttc0 tcactctggag0 99960
aacctggttt0 ccctctcttg0 cagatcctc00 agatgctttct0 attctcatatc0 tgcctccagc0 99990

catgatgag0 accctccacaa0 tttgctttat0 ttcttttcttc0 gcctatagac0 cagatataat0 99930
aacatcctcc0 gtcctctca0 tactgctttg00 tgtgcttca0 ggcggcgagaag0 attatgtactc0 gtcggcctg0 99940
gtgccaggg0 ccggcaggg0 ttgagccagag00 gttgcttcc0 ataactcaacttc0 taactggagt0 99940
ttgccagga0 ccggggctct0 gttgcttca0 ggccaggaag0 attatgtactc0 gtcggcctg0 99950
cagaattggct0 agatcctgag0 gccctcaggg0 ttgacgggata0 taagagagga0 gaacactcag0 99960
agttggtgct0 atagatcagag0 cgggctaatgt0 ctggtgtgct0 cgggtgcct0 cgggatacata0 99960
tatggcaca0 acacatggaa0 aagactctgg0 gtcacccactga0 gga4cctgttg0 ctgcgacccga0 99970
aattgccttg0 caacgctgtg0 cagacctccto tttgatttgg0 gactgctatt0 cgggatcggt0 99980
aacatcgctt0 actttcctga0 caggttaaat0 caaatatatt0 ggtgtgatct0 atatgtatag0 99980

gtttatatt0 cctctctcgt0 ttttggggga0 ccacagagat0 tatgatttaaa0 acttgcctg0 99990

tttatactc0 ctatctaaat0 accctccttt0 ttgctgatc0 attactttag0 gatgtatata0 99990

gataagata0 ggctgtggag0 acatgtaccc0 tggatccaa0 tctgtgcttc0 accctcattt0 10002

aoctgtggac0 ccagcgaaaa0 ttgctcact0 tacccctcttg0 tcgaactctt0 tttgtatagg0 10003

tgctgatatt0 aaaaaataat0 caatgcttc00 aaagatatt0 tcggaaaata0 atacagaaaa0 10014

gaattccttt0 gcagctataaa0 tcaatcact0 gatacggttt0 attacttttga0 atactttctt0 10020

tctttaaat0 agactgcgttt0 tttataaggg0 tgacgtctgtc0 octaactgat0 atactatgt0 10026

aatatttggg0 tttgatatcc0 acgocctttc0 agtctttttgg0 tgcggctga0 acaaaatacc0 10030
acagactgagg0 ttactccca0 acacagaaa0 ttttcctccc0 atatgtcctgg0 ccgctgggaa0 10030

gcggcataga0 aggcgcacag0 aggggctgct0 ctgcggtcctg0 tctggctgggg0 10040

gtgctccttt0 tgcggcttc0 ttggtgctgg0 ataactcag0 tggctcctca0 tggagaaaag0 10050

gtctggaaag0 ccagggagtct0 cctctctcaaa0 ccttgagca0 ttttctaga0 tgtgctaggg0 10060

tctgatgcc0 atgatccatt0 cacoccccaaa0 ggcacctcc0 cttaatagttg0 ttgactcggga0 10060

gattaaggttt0 caacatgtaaa0 ttgtggaggg0 atacacttcat0 tccaagcata0 aoccggtcct0 10060

atatatttc0 aaattataactt0 atataattctt0 tataaataagas0 acaatgtatt0 10070

tctgtgtag0 acagagacca0 taccacaagca0 cagagatcag0 cttattttggt0 ttcotatctgt0 10080

gttatattgc0 cagatctctgg0 gtcgacactgc0 agaacctaaa0 gacaataagtt0 tagcataagc0 10080

aatccctgc0 ctcggctgata0 cctagcctt00 ggccctgata0 acagatcaca0 aagaaaaat0 10090

aatgggtatttt0 gtatgagca0 ggccagacac0 ttttatagtag0 tgttcagaggt0 gettagtattt0 10090

agtcttttca0 tccagccacg0 tgcattacaa0 attactccttt0 ggcggctttc0 tgtggaaagt0 10100

tgctcactgct0 tgggctctgg0 aacocccaa0 ttgctgcacac0 tacctgtctg0 aataaatac0 10110

aatatacattt0 gctgtatgac0 aaaaaaggg0 tataaataa0 ccagtctggg0 10110
-continued

tacataagg aasagcattt gatgaatttc aaatoccat ttatcataaaa aataaaaaata 103560
gaggaatgc ttttaacttg ttaaaagtgg tctcaataaag gtttacctag aaatacttcac 103620
tttgtgaagtt taaatataa atttcttttt tttttcttct tttttatgct tagagacaggg 103680
gttttgcctag gttgccagag ctgctcctaa actcttgggg tcaagcaatt ctctgctcct 103740
agccctccaa agatggaggg tgttacagca tgcacacactg caagcacgctc ttaaactgta 103800
aattgtaaaa gtttcctcttt tgcgattagg aacagacgc gatgtatatg acatcttcctc 103860
tactcagcat tgggtctgatt ggtctagccca gttcgttaag ggaagagaga gagaagaggg 103920
tgaagaagaaa gggaagcaag ggaaaataat gagttggaag gagaataaaa aagccattat 103980
tttgtagttat taaatcttt ttagaaaaaa gtttcataca tgaattttaa gatttaataa 104040
gcatttaaaaa tatttttcttt atatcaccag aatcataata taaatattttat aatactcatt 104100
gcaagacacct aaaaataaga aataaaatgt gttaataata acaaaaaagtg aagagaccoc 104160
tccttgagaga catttaaaaa cttgagaaat ctaaccttaa aagtaataag atatacact 104220
agacaaacag attggagcct ccttagaggt ttccggtata aagcttgcga ttcaacaaca 104280
taagtaagaga cactagagca tttttatatta ggcaggaagag gacatcaacat taagttgggc 104340
tggagcagcat gtttcagact tataagagpaa atacacagagtt atttttttttt tataactttaa 104400
cagtaacaca gcgttcacag aagacactaa ctagctatag tggaaagcaaa aactatacga 104460
ttttagaaag ataatattttaa ggaagcttaa tttgagaaag aagttacttat 104520
ctaaacacata aaaaatttaag atcagtaaag aaaaaatagta taaattttcag ttcaggatac 104580
gaatgttgct gtccacagaa aagacagtaaa aagaggaag aagacaggtt gttgcacaca 104640
 gagagagagaa atattgtggt tacataataa taaatattttta tttgacagagaa 104700
atattttcctt ccatacttac gaaagaaaaac aatcataataa aaaaattggaa aagagattttg 104760
agtcacacca tagaaaaaaa aaaaataatgg gctaatggaa aagttgaaatg acatgtgcat 104820
ataacacacat catttttttt ttaccagttg caagttggtaa gataactaagt 104880
gtttgatgag atatggagta atatgcaatct ttctctgtgt ggtttgtaag taaaactgaga 104940
atocacattt gttgtaaccc gaaagcatgt ttgttctct ttaagctttg gataacttggc 105000
agcagagtcg ttggtgcaat atacocctag ctgctttcct ccaagggctg cagatgagtaa 105060
tgctataaag tgcttttccct gcatgcttcc taccagcctct gcaacctaaaa caagacagat 105120
gtctcttaat taacacagag acacaagttaa aataattatat ttactagtaa ggttactttgg 105180
accagaaaaa gatttgcgaca ccaagataag aaaaaataactcgc tatacataaa 105240
 tttggtgtaa aggggaagag catttctgggt ttcgactttg tttagttatg aaaaatgttaa 105300
 tttttttttt 105360
agcatttggct taaaagaatga taaaatggaa caaaaaaaac ccagattcat caaaaaattag 105420
 aaaaatgtt cccccctaaa agggcaagag attttgtgct acaaaaaagag gttctaaagag 105480
ctatcaagac gcgttcctctt aatctttctct tgtggggttt ggtatctttt acgcttttga 105540
atatcatttt tttttttttt tttttttttttt atatcatttttttataatcagat 105600
atatccaaaaa aagcaagaaaa ttatcggctg ctctcctcagt caagagagga 105660
atatagactt ttsgaatgtg aatttttaat cattgagtaa tt
-continued

ggggttccac catgggtggcc agggtggtct tgaactctctg acctcagctg atctgcctgc 105960
cattgcttcc ctaaagtcttg ggattacgag ctagtgccgc cattgccgcg cgttataatgc 106020
ttttataata atacatcactt ataattaatt ttaagaaggt ctattgagata cacactatgg 106140
tgcccctccc tcttcttttt ttaacagcta ggaaalggaag acgataagaa gttcactaggg 106200
aaatattaggg atggagctgg gattgtgacc cagggccgca ccccccacta ctgcatcaca 106260
cgttttctga attttttgtca tggacccccca agaagagctc atggagagct gcctagaggg 106320
gagggccccc agggaaaaggg atatgtttttg tgcataagaa caaccttgccga tggcagagag 106380
atttctgggaa agtcagttgtg gcgagagatag aagagcggag atttgaaaga caatgacaa 106440
гагацаггага гагаааггаг гатггтагаг агаттатттгг аттагтааг атгаггтаг 106500
gagtcaggg ctgagagagtg ggtggtgatgt ggaagagagtg ggtgagatag 106560
ttgaagcaggg cagggaaaag cagggagggaa aagrrgagaga catattttgg aggcattttt 106620
aacatcattat atctgagagc cgaatatgca gcggagagcg gagagttgcc ttaaagtttt 106680
gagccttat aggagagatgt ttgagctacc aataggaga ataccaggg aagagcagtt 106740
ltagagaga agggagcagaa tttgagata tttcagagagc tttgctctgg ccctctattg 106800
aaiiiaaagc tcccatcctt atattaaaga aacaaaggtg aagatgtttg cctaatattt 106860
accatcaca acagcacaac gagatgcag ctctgcgagga ctttaagaagc gagaagagca 106920
actgcggcga gtgtgggttt gcggggagttt tagcagcgat tggaggtcag cggcagagga 106980
agtttcgagaa atccataggg cagagatgac aagcagaggt gttgtcttgg 107040
gggagtttt tcagcaggg gttcagagac caaccaggtg agagggatgt ttatacagcc 107100
агагагага агагагатаг аттагаттаг тгатаагагагага 107160
agggacagg agggacagtg tcagcaggg ccgtagagct gcggagagcg 107220
ggttccactt ggtcactatt ggtgtagagga acaatgtgag aatgagcagag 107280
cattgtagat atctgtagagc agaagattag caaagtgtgct caagagcgaac tggggtcaag 107340
agaagtagagc tagtctggtaa taggagac gtaaatgaag aagaggaagt gaagagagag 107400
gaaaagagagg aataaagagaggtag ttgagaagtt tgggaagaggg cacaagccgg 107460
tgagaagagtag ttagttagag aagagacagtt tgggagaggt gttgagctag 107520
agaaaagagt gaagatgactg gcaaatgttg tagttagag tggagagagtt 107580
gtttctgtct ttgtagtctt ggtgcgtcag cggagatgag gttgcagctct 107640
aggttttggag aggtggcagag acatgttcag gtagaagttt ttgtagaggg 107700
atttgaggtt aatatttttag agggggagat gttgcgatac ttttattaacag 107760
acattgaggtggactgaagcgacatcattagact ctttttaaaggggtcgttgcgttaatgc 107820
actagacagc acacagcact tagtgacagc cagactatcct tttttctgataa chtcaataaa 107880
aatgaagttt tgaagttgag tttatatttt attagtgagatt cttacaatac 107940
gtttagtctt ccagctttat cagcgagcttc ctaactaccttgtttagaa atatgccagcc 108000
taatctcag aatgtatctttt gatttataa ctaaagagtt ctgagatggttc 108060
ccactacgg ctgagagctt tgcataatcct cttttaaatg aggagtattgtaa 108120
cgactacaag aatctaatctt cagacgagtt ggctgcctat gatgaaaagc gcaacgta 108180
actagagtct gggagagagat ggaagagcaca accctctgattat cttgctgttg gggaagagaa 108240
aaatggggcg gcacttttgg aaaaacagttt ggacagtctt ccaaaatgtta cacataagtt 108300
ttcattagta cccaggaatt tcactctaggg taatataaca agaaacattca aacacgtaag 108360
tcaccacaaa tctgtgctac aaagatgct cagccatcat ttcataatag ccaacagagg 108420
gagaatvggc cgactcaagtga gaatagcata aagtcttctat cggctgata atggtgcttc 108480
tgcaagagaa aaaaagataaatcgtaatt acaacgctaca acgagaagaa acggaaaaaa 108540
tttacaccttt ggagagaaag caacaggcaca aagggccaca taatttggga ccttattttat 108600
ggggaatgtc aagaaacaggc aatcataagg aagcagacaggt tagatgcaggt gttgctcagag 108660
actggagggga gcagggagaaga gggtgctggca gtttttgtttc acagagttttc ttctgggagt 108720
gatattcagta tcctggttact aagagaattgt gatggtgccg caacccctgca aatacactaa 108780
aaacacacca atgtgccact ttaaaaagttg gaaatttctg gcattctaat tataaccaaa 108840
atatattaact gttgttgtttt ttaaaacaaa agatgccctt ttcataattatg 108900
aaaaaaaaagcgcaagtaacaccttacct aagaaagagaattgacaca cctcccttttt 108960
tagacgccct agacagcagcacgctgctttt ggcagacggagacggagagag 109020
ccactccccag gtaaaggttg cctccgaggg gaacacagtatgtagatagttag 109140
cacactctggt aaaaacccctt ccacgacaac gctggctccttt taaagaagccc atggacacttaa 109200
ttgttagctgg caaaaattta aagaagaaaac atcaactaca taagctctttc aaggttatata 109260
agagttacgt actccctattg aatgagacgat gatgttagaata cttgccctctcc ttcacccctt 109320
tctcctcactctgtgcagacct tattttccag gatgagacgc cggtctgttgt tggcctggc 109380
aagcgagtac gattttttttttttttttt gtgaaatcagc aggugggggtactggatgtaat attacacccct 109440
cagagtgtctt cctgggtccttg gcaccctgaag cccgcctcctgcctagctgc gatgacagatg 109500
tggctagacactcccactactaattgctagactacgctgactctctgctgctgactcttttacatgttagttttgcagagtagaatagttctttgcgatgacagctt
aatactgttt tcaagtcttc gaaaataccac ggtggttgc tataactccaa ggaataacag 110700
cacacccact agaatacactc cgtagaaagt ggcotactt tctctgact tttcagcttg 110760
atgctcattg gagaattg tggagggaaa tttgctgagat tggagagtca ggcagacttc 110820
tttactcaac acattaatttg atctgtctac agatgtaaat gtaagaatgaa ccagaccctg 110880
tgtgtcaagt aagtctgtga ggaagaagccaa gcgtctgtag atgcctttc taaaataaat 110940
aaatggttcag ctaggagggca ataacactcg tgggtctcggga gcttttcacca gggctctggag 111000
ggcacaaggt tttctcaactg tgagggatcg gtagagagaag attatccacg caaaatgaga 111060
agtgagatgaag gggcctctga gatgagaaag aaaaagcggaa atgtcttgag aatagagag 111120
agggagagac cattgatgtag gctgagagga tcaagggcggt tagttgaggcc tttgtaggtat 111180
tgctaggttt ttgctctacg tctcaagggcc aatgagccat caaacaagggg atctccaggaa 111240
tttgctgctg tacagagggg tggattccga gaagatgtgaag tctattatatt cagctgggaa 111300
gatggggtgtg agtagaggttca cagagtggttt gaggattagtgt tgtatagtgg aaaaattctg 111360
ccaaatacccg agaagagtgtg agcagatcctca tggaaatatt aatacgattgaa cccgacgccc 111420
agggacaaaat cattacgttt aatattcaggt ggaattttat agatattgcag aaggattacc 111480
atttggtaa atgttaaacag gccgtgattcc aaaaagcact tctggtgttagtg tagattgtag 111540
gtctagatga tctaggtttttt gcatataaaagt ggaattggag ggaataaaaaa gttgtgtgca 111600
caaaaatttaa aacagttatt tagacatcatt gtcgcattc aagacactcc cttcgcctcctg 111660
ctaagtctgca cccctttttcca cccagaggaat agctcgctct tttgctgactg 111720
ccctagacgc gagaagacagg atgatttcacac agggacacag tttcataaaaa atgcttttaa 111780
agcagtgagag ccacgggagc aacgtgctgaaaatcggccc ccaacaccattc cgcagttgggg 111840
atcggccaga cagacgttgtt aacrttttgg gaaatccttc aatctcaggaa taaatc 111900
atagagcttt ggaagagatct gatttgccata tctagttgatt ggaagaagccc tttggggagt 111960
ggtgtcctctg aataattttta caaaggtttta ttgattgttag tgtgtgtgtag aaggttaaattg 112020
tgaaaaatttt tttgtaaaaaa aatcttttcc cttcctctct caaaaaaaccc atcaattgagc 112080
taatctttct ttattttctaa gaaaggttcc aatatttattt catttacat cagtttaattt 112140
aatttttaaat aagagagtcc atatttcttcc aacagagtttt ctcctcagtt ttttcctttg 112200
ttgttaatgta cattaccac aaaaattcctt accctttaca ttttaatagtg ctacggttaa 112260
tgtataataa cagcattcatt cggagagagcc ttttttcagtc ttttcccagttt 112320
ttttacattt gccaaaaactt acccttttccc attgaataatt aacggctgtt acgcacgcc 112380
actagccttc gacaagccacc atctcactac tcgtctctct gatgtggggcc atcttgagttc 112440
cctcagatgaa gaaagacatct attaggtgttg ttttttttttgatttgccttttattttc 112500
ataatatcctt cttttgtctcag tttttgctct tttttgcttcttctctttcttctttttc 112560
ctctcagttt ctccttttc gcttgacttct tgtttttttagt catctcggtttt gaccttttttt 112620
agctctcctt cccacccac acctcakcact ctcttttctgaa agaaatataa gggctctattc 112680
ggttcagttct tgtttattttt ttttgaagat ctcaactccttt tttttcctagt aggctttttgc 112740
attatatcat ttttttttttcatcactat cttccatcttt cctcagccataa 112800
ctgcagtttttttctcttttttcata gaccacacag catttttttag ctttttttttcagcttttttag 112860
cataagatgtg aatcttttttctagggctttgaa atcgttcttgtaa atcttctttttcactctcttt 112920
ggcgggaaaa ctggcacaagt cttcttcgcc atggcctttgcttgctttgtgcttggttttgattt 112980
-continued

taggaggcttc cctctaatc cctatcga taattgatcc gcaaatattt tatccagttc 113040

tgacgtggaatt cttttccccc caatgatag tgccttgat gacaggtttt aatcttcag t 113100

aatctaacatt gtcttccttt gcagctcata atgaattttt aattaataca gttttttttat 113160

ccaatgtta gccataatc tttttcttccc atatatcgcgt tagggattaa ctaaagggc 113220

tctctggtata cagaatactc gatgtatcga tttcaagga atggagaatt aatcctcaag 113280

tatatgaata tactttagta acacaagaa aacaggtttaa ccttttatac ataataatcc 113340

tctctagtta tgccatttg ggtggtgagg atgagggaggg atgaaagggc ctataaaggaa 113400

aaagaataaga tggcatctgaattg cgtcattta ctacactgag aagctgcttca gaaagcaagt 113460

c tgtgttaacttt ttcttttaatt tctgctgcgtt acagggctttc 113520

tataaagttg cccctgaatc tcacatcctt ttcttttcttt cccagttgc acagcttcatat 113580

tgtgggtggtt ggttttgctt cgtgtagggaa ttccttgtagc taaaagttccg 113640

tctctctctct ccctctctct gagaocctgcgt ggtggtgctg ccctgagtagct 113700

tctctctgaga cctgtgctgcct taatctgatg atcctctgata cctctttctcttctgctgccttcc 113760

tgtggtctggtt ggtggtgcctg agagccacg tttttgcttc ctttcagggg agaatgatgaa 113820

gagacacaan aatggtata cattctgggca aagttggcaac ggcagggctt cttgctaacg 113880

tcagacacttt tactctgtaa cctctagagtt cctgttggta atagocccacg tgaagttccag 113940

aagaccaacaa tgcctgacatc tccttttaaacc tcaggtcata aagtaagagac cttcagcgtt 114000

tgctct tactttggtt aagttgggga ttctactgtt ttctctagtta ctctctcttt 114060

tagaggggcc gtaaatctct aacocctctcc cccctgggtta agtagttacta gtaatatttttaa 114120

atttggcagtt cagagagattt ttcttcatct cttctgtttgctg cttgctgttatt 114180

tgaaagggg aatgtttttg ccagcccttt ttnaaaggccc ccaaaaactct ctttaactatat 114240

tattagattac ttcctttgga ttagtagttta acaaatgtac atagaggggt aacctccacaac 114300

tgctcatgaa aatgttggatat aagttgcaac gtaaaggggctt cccctttttc 114360

tgccctcag tgcagccacgt cttttctgca tattttccact cttaaaaac 114420

tgagaggtcc cgaagtacat cctgtcattg gaacttttatt tctacatatt aacggagacc 114480

aataagttggc gcagctcaca cttttttgga ttagagagac gtaagagaacc aagagggcctt 114540

acatatagct tcttcagttt gctgcctctag ggtggtggttt ttttttttctt gaaaaatggg 114600

ccttgggtttt atagagagacg taatcagtctcg cttgttcagttt ttatatggctt ctttaacttt 114660

gatgtttttcttggcattt gttttttttct ttttttttt gtttttttttttt 114720

ataagagact attttttttt cttggtctctt cggagaagtc acaaatgagct aacagggctttgc 114780

aacatccacc aacagggcct ccccttttttttt gccaagtggg cttttttttct 114840

cctctctctct ctttttttttt ttctttttttt tttttttttttt 114900

taaagttgac gttcttctgtta cttaaagaggctttcccc ctaaagttgac 114960

caactggttta aaaaatccac ccagaggctt ccctctgctgtt acagctttttt cagttgggcttttttc 115020

ttttttttttttt tttttttttttt aatgtttttttttttt 115080

tagccgaaattc catttgagat aacactggtt cttttctcttt cttcttcttttttta 115140

tgtgtctacatg tattttttttttttttt tattttttttttttttttttt 115200

cctctctctct cttttttttttttt 115260

cctctctctct cttt
aattccagtgt ggtctcaggg gacgcttitttt ccaacttggta ttttaattctt ctttagctct 115440
caaactgtct ccttcctcagca cacgctcttaa gaaagttatcg caaactttctt ttagctgcagta 115500
aaaaaatota gaaacacatag tataaatincttct catatatcgtct acctattctcatt cttttaattttaa 115560
atgatggaaag ggtcttctctt ccctgctgcaca ggtgtgagagcgctggtgtctcagctgctct 115620
actcggataa actcggatcgtg ggtctgccagctgtttctctcttctcttcttctctctctctctctc 115680
atatattttt ccaactgtctta cctgctgttct cctgctgttct cctgctgttct cctgctgttct 115740
tccctccacagctattttttt gcgttattct ccctgctgttct cctgctgttct cccctgctgttct 115800
ggtctcctct ccctgctgttct cctgctgttct cccctgctgttct cccctgctgttct cccctgctgttct 115860
gccctgccctt ttttactttt cccctgctgttct cccctgctgttct cccctgctgttct cccctgctgttct 115920
ttcctccctct cccctgctgttct cccctgctgttct cccctgctgttct cccctgctgttct cccctgctgttct 115980
cgcctcctctcct cccctgctgttct cccctgctgttct cccctgctgttct cccctgctgttct cccctgctgttct 116040
agagacactt agggtggtgctg tggcatacactt cctgctgttct cccctgctgttct cccctgctgttct 116100
tggtgaaggct ggtctgctgtt ctgtctctggtg ccctgctgttct cccctgctgttct cccctgctgttct 116160
agagacactt agggtggtgctg tggcatacactt cctgctgttct cccctgctgttct cccctgctgttct 116220
tcagctgcct ctggacttttcttg ccctgctgttct cccctgctgttct cccctgctgttct cccctgctgttct 116280
ccctgctgttct cccctgctgttct cccctgctgttct cccctgctgttct cccctgctgttct cccctgctgttct 116340
agagacactt agggtggtgctg tggcatacactt cctgctgttct cccctgctgttct cccctgctgttct 116400
tgcctgctgttct cccctgctgttct cccctgctgttct cccctgctgttct cccctgctgttct cccctgctgttct 116460
ccctgctgttct cccctgctgttct cccctgctgttct cccctgctgttct cccctgctgttct cccctgctgttct 116520
ccctgctgttct cccctgctgttct cccctgctgttct cccctgctgttct cccctgctgttct cccctgctgttct 116580
ccctgctgttct cccctgctgttct cccctgctgttct cccctgctgttct cccctgctgttct cccctgctgttct 116640
agagacactt agggtggtgctg tggcatacactt cctgctgttct cccctgctgttct cccctgctgttct 116700
tgcctgctgttct cccctgctgttct cccctgctgttct cccctgctgttct cccctgctgttct cccctgctgttct 116760
agagacactt agggtggtgctg tggcatacactt cctgctgttct cccctgctgttct cccctgctgttct 116820
agagacactt agggtggtgctg tggcatacactt cctgctgttct cccctgctgttct cccctgctgttct 116880
agagacactt agggtggtgctg tggcatacactt cctgctgttct cccctgctgttct cccctgctgttct 116940
agagacactt agggtggtgctg tggcatacactt cctgctgttct cccctgctgttct cccctgctgttct 117000
agagacactt agggtggtgctg tggcatacactt cctgctgttct cccctgctgttct cccctgctgttct 117060
agagacactt agggtggtgctg tggcatacactt cctgctgttct cccctgctgttct cccctgctgttct 117120
agagacactt agggtggtgctg tggcatacactt cctgctgttct cccctgctgttct cccctgctgttct 117180
agagacactt agggtggtgctg tggcatacactt cctgctgttct cccctgctgttct cccctgctgttct 117240
agagacactt agggtggtgctg tggcatacactt cctgctgttct cccctgctgttct cccctgctgttct 117300
agagacactt agggtggtgctg tggcatacactt cctgctgttct cccctgctgttct cccctgctgttct 117360
agagacactt agggtggtgctg tggcatacactt cctgctgttct cccctgctgttct cccctgctgttct 117420
agagacactt agggtggtgctg tggcatacactt cctgctgttct cccctgctgttct cccctgctgttct 117480
agagacacttagggtggtgctg tggcatacactt cctgctgttct cccctgctgttct cccctgctgttct cccctgctgttct 117540
agagacactt agggtggtgctg tggcatacactt cctgctgttct cccctgctgttct cccctgctgttct 117600
agagacactt agggtggtgctg tggcatacactt cctgctgttct cccctgctgttct cccctgctgttct 117660
agagacactt agggtggtgctg tggcatacactt cctgctgttct cccctgctgttct cccctgctgttct 117720
<table>
<thead>
<tr>
<th>125</th>
<th>126</th>
</tr>
</thead>
<tbody>
<tr>
<td>tgatttgggc acagtataa atatataaa atccttttcc tttaaaacat tcctttcttg 117780</td>
<td></td>
</tr>
<tr>
<td>ttataataat aatatagtc cattttagaa aatttgaga gaaataatga aaaaaaaaag 117840</td>
<td></td>
</tr>
<tr>
<td>aaaagcctaa cctggggtca agcatctcca cttataate ccagcaactc aagagctgag 117900</td>
<td></td>
</tr>
<tr>
<td>gggagagagga tgtggttgtc tgtggagttc ggggtggaagctgagctga tcctgctgac 117960</td>
<td></td>
</tr>
<tr>
<td>tgtactctgag cctagtagac agagtgagaa ctcatctcaa aaatatatata atataaatata 118020</td>
<td></td>
</tr>
<tr>
<td>aaagatctat aacctctaat ccagctactg accagtttg tattttgtga acactacataa 118080</td>
<td></td>
</tr>
<tr>
<td>ctgttgtgag gaaacctgcc acacccctcgc agacatcaat cactcgtgct aactcctat 118140</td>
<td></td>
</tr>
<tr>
<td>atctatcctg cacacatctgc ccacactgct tttatgcctg agggctcctg gacacacag 118200</td>
<td></td>
</tr>
<tr>
<td>gctacgaatttc tctgtaaagct cgaacctgc cctggttgcag gctgagcctgata 118260</td>
<td></td>
</tr>
<tr>
<td>tggggtggtc gaggatgtgc cagcctccttg agggcggcag aagatctcag aacactatgt 118320</td>
<td></td>
</tr>
<tr>
<td>gaggcggcgca gcacatggaag cttgctgaaa agctgagata atagctaaagct ggtctgtgac 118380</td>
<td></td>
</tr>
<tr>
<td>ttctagtaca ctggttccca ttggagggaa ttgacagtt ccaatgtcgtg gtacgctaaa 118440</td>
<td></td>
</tr>
<tr>
<td>acacccagag gcgtcttttg ttaaaacacag ttcttgtagt gaaacataca cccgaaat 118500</td>
<td></td>
</tr>
<tr>
<td>cctggaatgt ctctccacat ccocatattt ggccaaacct gccctccaaa aatctccttg 118560</td>
<td></td>
</tr>
<tr>
<td>cattcagcaag gctcctccct cttcccaaaa aagagtttttt cagatctgta tttataactt 118620</td>
<td></td>
</tr>
<tr>
<td>tgatttgcag aagtagctca taaactagt taaatatatt tattttatttt tctctctgta 118680</td>
<td></td>
</tr>
<tr>
<td>ttataataat attaataatg aagttataaa gttctctctct tttataagct caaattcattt 118740</td>
<td></td>
</tr>
<tr>
<td>tatcgttggag aatttaggtt aagtaacaaag tggctttcct tttattagct cattttcattt 118800</td>
<td></td>
</tr>
<tr>
<td>aatggttggag atcgtgctagc caaatatttc cttaatttga atttccaggt gattgataca 118860</td>
<td></td>
</tr>
<tr>
<td>caactatttg aagtcgtaaga aacctctcgg gaacagggcg tttgctgccaa tttgagagaa 118920</td>
<td></td>
</tr>
<tr>
<td>ctctactgcc ccttttttta aagtagtttt tattgttggt ggttgagttt gttccagcttg 118980</td>
<td></td>
</tr>
<tr>
<td>cttttattg ggggaaagtt ttgggggaac ccaacccctt gggctctcaa ctatagggga 119040</td>
<td></td>
</tr>
<tr>
<td>agaagcaggg agggctgagat gaggacttttc aaataacgac aaacaataa aacactaat 119100</td>
<td></td>
</tr>
<tr>
<td>ctctccttgc ccaataaatgt tctccagagtt gattgataca caacacatca aataatttta 119160</td>
<td></td>
</tr>
<tr>
<td>taatcaacc tggataaac ccattaatctt ctaaggtcag taagccctttt atagaaaaattt 119220</td>
<td></td>
</tr>
<tr>
<td>aataagggcc tccagagata cctcgtgaat actaataagaa agttttgatttt cttgtgcatc 119280</td>
<td></td>
</tr>
<tr>
<td>gaagacttccca tattgattttt ctctggctgc caaagtggga tgggtgagtgt ggtttttgtg 119340</td>
<td></td>
</tr>
<tr>
<td>tccttaggagt ctctcagggga tgtgaggtca cggagccact gcggctcttt caacactgag 119400</td>
<td></td>
</tr>
<tr>
<td>cgcaagggcc eocctggctc tccagctcag ttgagcaatg gggggagagg gagattttttcg 119460</td>
<td></td>
</tr>
<tr>
<td>aattttaggtgt cttctttttg tttgcccttg gaattggcag aacataggg aaaaagacac 119520</td>
<td></td>
</tr>
<tr>
<td>cgtgtggtgc gatcaggttt tgcattccgt gaaaggtcag tgcacaccaca aacacaaaa 119580</td>
<td></td>
</tr>
<tr>
<td>tgaacaacaac agggctcaag tattaggtag acattccata atctttattag ttattttcga 119640</td>
<td></td>
</tr>
<tr>
<td>aagggggcga atatattttgt ttgggttttttt ttgaagaaat cacaaaggtt 119700</td>
<td></td>
</tr>
<tr>
<td>taatctaggt aataagggaa aggtttccac tctgtccccc agggctgaggt gcatgggttg 119760</td>
<td></td>
</tr>
<tr>
<td>gattatgcgc ctccgctaat tcggaccttc tggcctaaa gatctctcct ccctagcttc 119820</td>
<td></td>
</tr>
<tr>
<td>tcctatagct gcagaccccaag cgctgtacca tcaccccacag caaatattttt ttttttttttt 119880</td>
<td></td>
</tr>
<tr>
<td>tagaatagggt gttctcgtgt gcggctccttg tctgctcctat acctctgtgc cataagatgt 119940</td>
<td></td>
</tr>
<tr>
<td>ctctgcctcc aagctctctaa agggctcggg ttgacagttt gcagccttgc gctcctctaa 120000</td>
<td></td>
</tr>
<tr>
<td>caatttttgg gatgcttggg ttgctctatt cttgttgtctt acgcctccag gggctggggga 120060</td>
<td></td>
</tr>
<tr>
<td>aatttctggt gcacccacgca ctatccggcc gttctctcct ccacaaacagc ctctccaaat 120120</td>
<td></td>
</tr>
</tbody>
</table>
ggctttgctg acagcttcaaa ccctcacaag tggatgggga gaaagagcac acctgaaacct 120180
tcttcacat ttctgtaaaga tggaaagcttt tctctgacct tgagtagagt ttaataccatt 120240
cuaagaaaa aataggtgta ttcctgtgct tggaaaaata ctgaagggacct tagaaatgttt 120300
taagtaatgtct gttataataa cccatcaattt gatggatcat taggtctcat 120360	ctctgtacta ttttttacaag aacatattata ttgggttctg ttgacagctga tttggaggaa 120420	attgacoctc cgggcaacct ttggtcctcat tttctcttaat acagcttacg ttcatacaca 120480
cattgaaga taagctgtaga ttgttttcttg gtgttttctt ctattattctt caattttgtg 120540
tcattctcatgtatttgccct ttatatcttgta aagctttctct ttttatagaa gttaacctgga 120600
tctctgagat gggaaaaagta ctgagtttta cctctttttta gttgtaaatctg ttgatcccta 120660
tttagtggaattttagca aataaacttta tattatttca aaaaactcttt 120720
aagtttcaag taaccataaacc ttcacatgagtt tttggtacct ggctcaaaagc taatttca 120780
gggtgtctct ccagtgtgtc ttagcataat tgggttagtt caggtggcct ttcgaaacaag 120840
aatcaccacgc gctgygggctt tttcaacttaa gaaatatatttt ttctctcagat acggtgctg 120900
gagaagccca gacacagtgcc tcggcaggtg ttgattttctc tgaggctctg ctctgctgctc 120960
tcttgtctgg ctcctttctgct tatgttccca agggttttta cctctgtgcttg cagcgtgctg 121020
gtcctctacttctattata gacacagctga atagtgtagct aggcctcttcc ctaaacagc 121080
tcatattaa tttataaactcc ttttaaaagcc ctatttcatca aatccatta catctaaac 121140
tactaggtgt tcaagacctc aacagtaaag accttgagggg acaaaattcag ccataaactc 121200
tagtaaatctg tgggtcttctt gatacttta aagctttagtt cctcagagtg gcgagcgtgct 121260
agagctatcgc aggttatccca taaaaaattt cagtttttggt tccttacacgt cagcgtgctg 121320
gatcaatcc gagaagcaag ttgggttttt tttttttctt ttctgatagtt agtctatcct 121380
tgctgccag ctcagggagtct gcgtggttgg tttggttcttg cagcgaacctgc 121440
gttcagaaac tttcttctctgctc ttcagcttca gtaggtgctt cttacatcgt gcgagcgtc 121500
acacccgctcg aatttttttgttttttagtc aggcggcttt tcaacagcttt gtctaggtctg 121560
gtgctgaact gttctgaactg ttagcctcgg gctgctgctg cccaaagtggt tggattacaca 121620
gggtctggac accagccatc ccgacgacctt ggtattttta acaatgctgct gcgtgctgtc 121680
gagtgaagcc ggtctgctgctc ccagcgccttgc ccaacacgc accggaccc tttgccgtgaat cttgatgctg 121740
atcaacggat gttccgaaacct ctcaggagact tccaagcttt ctaaaagcttt tcctaaacac 121800
atattatact aacaactttt attgcttgagag cggagacgcttg cttacctgtgct 121860
tgagttactgc gaactccctgct gcgtctcttg cttcttctcttg ccaggggcttg gcgagcagac 121920
tttgacgggt tcaagtccaa cttcttttagtt ccacacatc tggctgacg cttctagttc 121980
agataagaac cttgctgacg gggagagcacc atctcttgggt gcagcagcacc agctgggacc 122040
cagcattaaag cgggactccct tctttttctatt gatctctcag tattatatttttt tttttttt 122100
tttgtgacg gttccctacgcgt ttgcggacct gcggagtcgag ctttcttgaga cttattttc 122160
tgacacatct cttttttttt tttatttact ttagagacag tttttttttttt 122220
ctctgctcg cggagctgctc ccgctcagctgg ctttttcttc cggctgacctc 122280
ccttttttctt gatcttttcct gcctcctttct gtcacccctg cctgctgctc 122340
cctttttttt ctctttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt 122400
gcacaggac acttgttcca cagatctccc tctgtgaaat tcgtaaatag ttctcatact 122520
gcagctctcc tctaatacct ccaagtggca ttttctcatc acctgccttta tcaatggaag 122580
tttcatattt ctaggagggaa aatgttggtta gattgggataa ttctctagacct aatattagc 122640
ccaatctttaa tgtgcaaaaca taaccaacca acatatggag gtttttcaca ggaaacttat 122700
taaaaaatct aacggttagg ctatggggtt catcccattt aggagtagatc tattttgtcat 122760
gttgatcag cggtgaaggg caggtgacctt ctatagagat aagtccctat aacacccggcc 122820
cagagagcgc toctccccct ttcocacacag agaggggagtg tagacccctag aaaaaccatt 122880
agcgaagaga tagcataaat ctttccctag gaatcttcga ctgccacaca cctgcctcggt 122940
gaaatgtgct gcagagcctg cctgtggaccc agagagggta agtagcatttg tggtagctgt 123000
agatagattt agagtagatcct agatgttgggtt agtttggttgg aagagatattt 123060
agatagatgt gtagacatct tatatacaaat aaaaaggttttt ctagactattc tatgtgacca 123120
agaggtatac attagagagag aatataactccc tattgaaatg tcacttaggcc cagctgccttg 123180
agagttaggt ttttttcattc ctocatattc tccctccattc gtcaccaga gttgatatct 123240
tagacctccct tcgactgttac atataacata ccctccctttc gctttccaggct 123300
tggatcttc cacaagactaat ggtctggtgg ccagggcacttg cggctggtcct gtagccctctc 123360
agaacatcagg tccacctcttc tttggccctat cttgcacacat ctaaagactaat 123420
tattgtgagc agttgtcttcct ttaagagccag ttagcatagga gcctttagtg 123480
cagaggggagtc cttggtgact ttgttggcctgtctctcactct acgatacttgct 123540
gagaggtgac ctctccactcag tgggttggcctgcagcactgc cagcaactgatagcttcctt 123600
tagccattcct aggtggtacag tttggtgctgt ttgtggaatgt ctagagtagga taaagttgca 123660
tattgtgctc tggctggt tgctgttgcct cttggtgctgtcgctg quotggcaggga gaaactgtgc 123720
tccatataggg agagactacct tttgctctgt cttgcctgggc ccctctctggcct ctcctaggtg 123780
atttctgtct acgagagggg agctt 123805

<210> SEQ ID NO 4
<211> LENGTH: 551
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 4

Met Arg Asp Tyr Asp Glu Val Ile Ala Phe Leu Gly Glu Trp Gly Pro
 1 5 10 15
Phe Gln Arg Leu Ile Phe Phe Leu Leu Ser Ala Ser Ile Ile Pro Ann
 20 25
Gly Phe Ann Gly Met Ser Val Val Phe Leu Ala Gly Thr Pro Glu His
 35 40 45
Arg Cys Arg Val Pro Asp Ala Ala Ann Leu Ser Ser Ala Trp Arg Ann
 50 55 60
Ann Ser Val Pro Leu Arg Leu Arg Asp Gly Arg Glu Val Pro His Ser
 65 70 75 80
Cys Ser Arg Tyr Arg Leu Ala Thr Ile Ala Ann Phe Ser Ala Leu Gly
 85 90 95
Leu Glu Pro Gly Arg Asp Val Asp Leu Gly Glu Leu Glu Glu Ser
 100 105
Cys Leu Asp Gly Trp Glu Phe Ser Glu Asp Val Tyr Leu Ser Thr Val
 115 120 125
Val Thr Glu Trp Ann Leu Val Cys Glu Asp Ann Trp Lys Val Pro Leu
<table>
<thead>
<tr>
<th>130</th>
<th>135</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thr</td>
<td>Thr</td>
<td>Ser</td>
</tr>
<tr>
<td>145</td>
<td>150</td>
<td>155</td>
</tr>
<tr>
<td>Gly</td>
<td>Cln</td>
<td>Leu</td>
</tr>
<tr>
<td>165</td>
<td>170</td>
<td>175</td>
</tr>
<tr>
<td>Met</td>
<td>Ala</td>
<td>Val</td>
</tr>
<tr>
<td>180</td>
<td>185</td>
<td>190</td>
</tr>
<tr>
<td>Trp</td>
<td>Glu</td>
<td>Met</td>
</tr>
<tr>
<td>195</td>
<td>200</td>
<td>205</td>
</tr>
<tr>
<td>Ser</td>
<td>Asn</td>
<td>Tyr</td>
</tr>
<tr>
<td>210</td>
<td>215</td>
<td>220</td>
</tr>
<tr>
<td>Ser</td>
<td>Val</td>
<td>Arg</td>
</tr>
<tr>
<td>225</td>
<td>230</td>
<td>235</td>
</tr>
<tr>
<td>Val</td>
<td>Gly</td>
<td>Tyr</td>
</tr>
<tr>
<td>245</td>
<td>250</td>
<td>255</td>
</tr>
<tr>
<td>Arg</td>
<td>Met</td>
<td>Leu</td>
</tr>
<tr>
<td>260</td>
<td>265</td>
<td>270</td>
</tr>
<tr>
<td>Leu</td>
<td>Trp</td>
<td>Trp</td>
</tr>
<tr>
<td>275</td>
<td>280</td>
<td>285</td>
</tr>
<tr>
<td>Arg</td>
<td>Phe</td>
<td>Arg</td>
</tr>
<tr>
<td>290</td>
<td>295</td>
<td>300</td>
</tr>
<tr>
<td>Asn</td>
<td>Ile</td>
<td>Ala</td>
</tr>
<tr>
<td>305</td>
<td>310</td>
<td>315</td>
</tr>
<tr>
<td>Pro</td>
<td>Leu</td>
<td>Lys</td>
</tr>
<tr>
<td>325</td>
<td>330</td>
<td>335</td>
</tr>
<tr>
<td>Asn</td>
<td>Ile</td>
<td>Ala</td>
</tr>
<tr>
<td>340</td>
<td>345</td>
<td>350</td>
</tr>
<tr>
<td>Ser</td>
<td>Val</td>
<td>Gly</td>
</tr>
<tr>
<td>355</td>
<td>360</td>
<td>365</td>
</tr>
<tr>
<td>Asp</td>
<td>Ala</td>
<td>Tyr</td>
</tr>
<tr>
<td>370</td>
<td>375</td>
<td>380</td>
</tr>
<tr>
<td>Tyr</td>
<td>Ile</td>
<td>Thr</td>
</tr>
<tr>
<td>385</td>
<td>390</td>
<td>395</td>
</tr>
<tr>
<td>Ile</td>
<td>Ala</td>
<td>Ala</td>
</tr>
<tr>
<td>405</td>
<td>410</td>
<td>415</td>
</tr>
<tr>
<td>Leu</td>
<td>Val</td>
<td>Pro</td>
</tr>
<tr>
<td>420</td>
<td>425</td>
<td>430</td>
</tr>
<tr>
<td>Gly</td>
<td>Lys</td>
<td>Phe</td>
</tr>
<tr>
<td>435</td>
<td>440</td>
<td>445</td>
</tr>
<tr>
<td>Ala</td>
<td>Glu</td>
<td>Leu</td>
</tr>
<tr>
<td>450</td>
<td>455</td>
<td>460</td>
</tr>
<tr>
<td>Ser</td>
<td>Thr</td>
<td>Ala</td>
</tr>
<tr>
<td>465</td>
<td>470</td>
<td>475</td>
</tr>
<tr>
<td>Leu</td>
<td>Gly</td>
<td>Ala</td>
</tr>
<tr>
<td>485</td>
<td>490</td>
<td>495</td>
</tr>
<tr>
<td>Thr</td>
<td>Val</td>
<td>Leu</td>
</tr>
<tr>
<td>500</td>
<td>505</td>
<td>510</td>
</tr>
<tr>
<td>Met</td>
<td>Thr</td>
<td>Leu</td>
</tr>
<tr>
<td>515</td>
<td>520</td>
<td>525</td>
</tr>
<tr>
<td>Arg</td>
<td>Ser</td>
<td>Gly</td>
</tr>
<tr>
<td>530</td>
<td>535</td>
<td>540</td>
</tr>
<tr>
<td>Lys</td>
<td>Val</td>
<td>Leu</td>
</tr>
<tr>
<td>545</td>
<td>550</td>
<td></td>
</tr>
<tr>
<td>Position</td>
<td>Amino Acid</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Met</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Gln</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Phe</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Gln</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Ile</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Met</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Lys</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Asn</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>His</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Met</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Glu</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Pro</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>Gly</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>Cys</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>Gly</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>Met</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>Gly</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>Asp</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>Ile</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>Phe</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>Gly</td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>Tyr</td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>Gln</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td>265</td>
<td>Pro</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>Gly</td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td>285</td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>Ile</td>
<td></td>
</tr>
<tr>
<td>295</td>
<td>Gln</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>Met</td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>315</td>
<td>Tyr</td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>325</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td>335</td>
<td>His</td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>Ile</td>
<td></td>
</tr>
<tr>
<td>345</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>Tyr</td>
<td></td>
</tr>
<tr>
<td>355</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>360</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>365</td>
<td>Phe</td>
<td></td>
</tr>
</tbody>
</table>
Gln Arg Phe Gly Arg Lys Trp Ser Gln Leu Gly Thr Leu Val Leu Gly
370 375 380
Gly Leu Met Cys Ile Ile Ile Phe Ile Pro Ala Asp Leu Pro Val
385 390 395 400
Val Val Thr Met Leu Ala Val Val Gly Lys Met Ala Thr Ala Ala Ala
405 410 415
Phe Thr Ile Ser Tyr Val Tyr Ser Ala Glu Leu Phe Pro Thr Ile Leu
420 425 430
Arg Gln Thr Gly Met Gly Leu Val Gly Ile Phe Ser Arg Ile Gly Gly
435 440 445 450
Ile Leu Thr Pro Leu Val Ile Leu Leu Gly Glu Tyr His Ala Ala Leu
455 460
Ile Met Leu Ile Tyr Gly Ser Leu Pro Ile Val Ala Gly Leu Cys
465 470 475 480
Thr Leu Leu Pro Glu Thr His Gly Glu Gly Leu Lys Asp Thr Leu Glu
485 490 495 500
Asp Leu Glu Leu Gly Pro His Pro Arg Ser Pro Gly Ser Val Pro Ser
505 510 515 520 525
Glu Lys Glu Thr Glu Ala Lys Gly Arg Thr Ser Ser Pro Gly Val Ala
530 535 540 545 550
Phe Val Ser Ser Thr Tyr Phe

<210> SEQ ID NO 6
<211> LENGTH: 557
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 6

Met Arg Asp Tyr Asp Glu Val Thr Ala Phe Leu Gly Glu Trp Gly Pro
1 5 10 15

Phe Gln Arg Leu Ile Phe Phe Leu Leu Ser Ala Ser Ile Ile Pro Asn
20 25 30

Gly Phe Thr Gly Leu Ser Ser Val Phe Leu Ile Ala Thr Pro Glu His
35 40 45

Arg Cys Arg Val Pro Asp Ala Ala Asn Leu Ser Ser Ala Thr Pro Asn
50 55 60

His Thr Val Pro Leu Arg Leu Arg Asp Gly Arg Gly Glu Val Pro His Ser
65 70 75 80

Cys Arg Arg Tyr Arg Leu Ala Thr Ala Asn Phe Ser Ala Leu Gly
85 90 95

Leu Glu Pro Gly Arg Asp Val Asp Leu Gly Gin Leu Glu Gin Glu Ser
100 105 110

Cys Leu Asp Gly Trp Glu Phe Ser Gin Asp Val Tyr Leu Ser Thr Ile
115 120 125

Val Thr Glu Trp Asn Leu Val Cys Glu Asp Asp Trp Lys Ala Pro Leu
130 135 140

Thr Ile Ser Leu Phe Phe Val Gly Val Leu Leu Gly Ser Phe Ile Ser
145 150 155 160

Gly Gin Leu Ser Asp Arg Phe Gly Arg Lys Asn Val Leu Phe Val Thr
165 170 175

Met Gly Met Gin Thr Gly Phe Ser Phe Leu Gin Ile Phe Ser Lys Asn
180 185 190
<table>
<thead>
<tr>
<th>Phe Glu Met Phe Val Val Leu Phe Val Leu Val Gly Met Gly Glu Ile</th>
<th>195</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser Asn Tyr Val Ala Ala Phe Val Leu Gly Thr Glu Ile Leu Gly Lys</td>
<td>210</td>
<td>215</td>
</tr>
<tr>
<td>Ser Val Arg Ile Ile Phe Ser Thr Leu Gly Val Cys Ile Phe Tyr Ala</td>
<td>225</td>
<td>230</td>
</tr>
<tr>
<td>Phe Gly Tyr Met Val Leu Pro Leu Phe Ala Tyr Phe Ile Arg Asp Trp</td>
<td>245</td>
<td>250</td>
</tr>
<tr>
<td>Arg Met Leu Leu Val Ala Leu Thr Met Pro Gly Val Leu Cys Val Ala</td>
<td>260</td>
<td>265</td>
</tr>
<tr>
<td>Leu Trp Trp Phe Ile Pro Glu Ser Pro Arg Trp Leu Ile Ser Glu Gly</td>
<td>275</td>
<td>280</td>
</tr>
<tr>
<td>Arg Phe Glu Glu Ala Glu Val Ile Ile Arg Lys Ala Ala Lys Ala Arg</td>
<td>290</td>
<td>295</td>
</tr>
<tr>
<td>Gly Ile Val Val Pro Ser Thr Ile Phe Asp Pro Ser Glu Leu Gln Asp</td>
<td>305</td>
<td>310</td>
</tr>
<tr>
<td>Leu Ser Ser Lys Gly Gln Gln Ser His Arg Ile Leu Arg Leu Arg</td>
<td>325</td>
<td>330</td>
</tr>
<tr>
<td>Thr Trp Arg Ile Arg Met Val Thr Ile Met Ser Ile Met Leu Trp Met</td>
<td>340</td>
<td>345</td>
</tr>
<tr>
<td>Thr Ile Ser Val Gly Tyr Phe Gly Leu Ser Leu Asp Thr Pro Asn Leu</td>
<td>355</td>
<td>360</td>
</tr>
<tr>
<td>His Gly Asp Ile Phe Val Asn Cys Phe Leu Ser Ala Met Val Glu Val</td>
<td>370</td>
<td>375</td>
</tr>
<tr>
<td>Pro Ala Tyr Val Leu Ala Trp Leu Leu Gln Tyr Leu Pro Arg Arg</td>
<td>385</td>
<td>390</td>
</tr>
<tr>
<td>Tyr Ser Met Ala Thr Ala Leu Phe Gly Gly Ser Val Leu Leu Phe</td>
<td>405</td>
<td>410</td>
</tr>
<tr>
<td>Met Gln Leu Val Pro Pro Asp Leu Tyr Leu Ala Thr Val Leu Val</td>
<td>420</td>
<td>425</td>
</tr>
<tr>
<td>Met Val Gly Lys Phe Gly Val Thr Ala Ala Phe Ser Met Val Tyr Val</td>
<td>435</td>
<td>440</td>
</tr>
<tr>
<td>Tyr Thr Ala Glu Leu Tyr Pro Thr Val Val Arg Asn Met Gly Val Gly</td>
<td>450</td>
<td>455</td>
</tr>
<tr>
<td>Val Ser Ser Thr Ala Ser Arg Leu Gly Ser Ile Leu Ser Pro Tyr Phe</td>
<td>465</td>
<td>470</td>
</tr>
<tr>
<td>Val Tyr Leu Gly Ala Tyr Asp Arg Phe Leu Pro Tyr Ile Leu Met Gly</td>
<td>485</td>
<td>490</td>
</tr>
<tr>
<td>Ser Leu Thr Ile Leu Thr Ala Ile Leu Thr Leu Phe Leu Pro Glu Ser</td>
<td>500</td>
<td>505</td>
</tr>
<tr>
<td>Phe Gly Thr Pro Leu Pro Asp Thr Ile Asp Gln Met Leu Arg Val Lys</td>
<td>515</td>
<td>520</td>
</tr>
<tr>
<td>Gly Met Lys His Arg Lys Thr Pro Ser His Thr Arg Met Leu Lys Asp</td>
<td>530</td>
<td>535</td>
</tr>
<tr>
<td>Gly Glu Glu Arg Pro Thr Ile Leu Lys Ser Thr Ala Phe</td>
<td>545</td>
<td>550</td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 7
<211> LENGTH: 555
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 7

Met Pro Thr Thr Val Asp Asp Val Leu Glu His Gly Gly Glu Phe His
Phe Phe Gln Lys Gln Met Phe Phe Leu Leu Ala Leu Leu Ser Ala Thr
20 25 30
Phe Ala Pro Ile Tyr Val Gly Ile Val Phe Leu Gly Phe Thr Pro Asp
35 40 45
His Arg Cys Arg Ser Pro Gly Val Ala Glu Leu Ser Leu Arg Cys Gly
50 55 60
Trp Ser Pro Ala Glu Glu Leu Asn Tyr Thr Val Pro Gly Pro Gly Pro
65 70 75 80
Ala Gly Ala Ser Pro Pro Arg Gln Cys Arg Arg Tyr Glu Val Asp Trp
85 90 95
Asn Gln Ser Thr Phe Asp Cys Val Asp Pro Leu Ala Ser Leu Asp Thr
100 105 110
Asn Arg Ser Arg Leu Pro Leu Gly Pro Cys Arg Asp Gly Trp Val Tyr
115 120 125
Glu Thr Pro Gly Ser Ile Val Thr Glu Phe Asn Leu Val Cys Ala
130 135 140
Asn Ser Thr Met Leu Asp Leu Phe Gln Ser Ser Val Asn Val Gly Phe
145 150 155 160
Phe Ile Gly Ser Met Ile Gly Tyr Ile Ala Asp Arg Phe Gly Arg
165 170 175
Lys Leu Cys Leu Leu Thr Thr Val Leu Ile Asn Ala Ala Ala Gly Val
180 185 190
Leu Met Ala Ile Ser Pro Thr Tyr Thr Thr Thr Leu Leu Ile Phe Arg Leu
195 200 205
Ile Gln Gly Leu Val Ser Lys Ala Gly Trp Leu Ile Gly Tyr Ile Leu
210 215 220
Ile Thr Glu Phe Val Gly Arg Arg Tyr Arg Arg Thr Val Gly Ile Phe
225 230 235 240
Tyr Gln Val Ala Tyr Thr Val Gly Leu Leu Val Leu Ala Gly Val Ala
245 250 255
Tyr Ala Leu Pro His Thr Arg Trp Leu Gln Phe Thr Val Ala Leu Pro
260 265 270
Asn Phe Phe Phe Leu Leu Tyr Tyr Trp Cys Ile Pro Glu Ser Pro Arg
275 280 285
Trp Leu Ile Ser Gln Asn Lys Asn Ala Glu Ala Met Arg Ile Ile Lys
290 295 300
His Ile Ala Lys Lys Asn Gly Lys Ser Leu Pro Ala Ser Leu Gln Arg
305 310 315 320
Leu Arg Leu Glu Glu Thr Gly Lys Leu Asn Pro Ser Phe Leu
325 330
Asp Leu Val Arg Thr Pro Glu Ile Arg Lys His Thr Met Ile Leu Met
340 345 350
Tyr Asn Trp Phe Thr Ser Val Leu Tyr Glu Gly Leu Ile Met His
355 360 365
Met Gly Leu Ala Gly Asp Ile Tyr Leu Asp Phe Phe Tyr Ser Ala
370 375 380
Leu Val Glu Phe Pro Ala Ala Phe Met Ile Ile Leu Thr Ile Asp Arg
385 390 395 400
Ile Gly Arg Arg Tyr Pro Trp Ala Ala Ser Asn Met Val Ala Gly Ala
405 410 415
Ala Cys Leu Ala Ser Val Phe Ile Pro Gly Asp Leu Gln Trp Leu Lys
420 425 430
Ile Ile Ile Ser Cys Leu Gly Arg Gly Ile Thr Met Ala Tyr Glu
435 440 445
Ile Val Cys Leu Val Asn Ala Glu Tyr Thr Pro Phe Ile Arg Asn
450 455 460
Leu Gly Val His Ile Cys Ser Ser Met Cys Asp Ile Gly Gly Ile Ile
465 470 475 480
Thr Pro Phe Leu Val Tyr Arg Leu Thr Asn Ile Trp Leu Glu Leu Pro
485 490 495
Leu Met Val Phe Gly Val Leu Gly Leu Val Ala Gly Gly Leu Val Leu
500 505 510
Leu Leu Pro Glu Thr Lys Gly Ala Leu Pro Glu Thr Ile Glu Glu
515 520 525
Ala Glu Asn Met Gin Arg Pro Arg Asn Lys Lys Glu Lys Met Ile Tyr
530 535 540
Leu Gln Val Glu Lys Leu Asp Ile Pro Leu Asn
545 550 555

<210> SEQ ID NO 8
<211> LENGTH: 554
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 8
Met Pro Thr Val Asp Asp Ile Leu Glu Gln Val Gly Glu Ser Gly Trp
1 5 10 15
Phe Gln Lys Glu Glu Ala Phe Leu Ile Leu Cys Leu Leu Ser Ala Ala Phe
20 25 30
Ala Pro Ile Cys Val Gly Ile Val Phe Leu Gly Phe Thr Pro Asp His
35 40 45
His Cys Gln Ser Pro Gly Val Ala Glu Leu Ser Gin Arg Cys Gly Trp
50 55 60
Ser Pro Ala Glu Glu Leu Asn Tyr Thr Val Pro Gly Leu Gly Pro Ala
65 70 75 80
Gly Gln Ala Pro Leu Gly Gln Cys Arg Arg Tyr Gly Val Asp Trp Asn
85 90 95
Gln Ser Ala Leu Ser Cys Val Asp Pro Leu Ala Ser Leu Ala Thr Asn
100 105 110
Arg Ser His Leu Pro Leu Gly Pro Cys Gin Asp Gly Trp Val Tyr Asp
115 120 125
Thr Pro Gly Ser Ser Ile Val Thr Glu Phe Asn Leu Val Cys Ala Asp
130 135 140
Ser Trp Lys Leu Asp Leu Phe Gin Ser Cys Leu Asn Ala Gly Phe Leu
145 150 155 160
Phe Gly Ser Leu Gly Val Gly Tyr Phe Ala Asp Arg Phe Gly Arg Lys
165 170 175
Leu Cys Leu Leu Gly Thr Val Leu Val Asn Ala Val Ser Gly Val Leu
180 185 190
Met Ala Phe Ser Pro Asn Tyr Met Ser Met Leu Phe Arg Leu Leu
195 200 205
Gln Gly Leu Val Ser Lys Gly Asn Trp Met Ala Gly Tyr Thr Leu Ile
210 215 220
Thr Gly Phe Val Gly Ser Gly Ser Arg Arg Thr Val Ala Ile Met Tyr
225 230 235 240
Gln Met Ala Phe Thr Val Gly Leu Val Ala Leu Thr Gly Leu Ala Tyr
245 250 255
Ala Leu Pro His Trp Arg Trp Leu Gln Leu Ala Val Ser Leu Pro Thr
260 265 270
Phe Leu Phe Leu Leu Tyr Tyr Trp Cys Val Pro Glu Ser Pro Arg Trp
275 280 285
Leu Leu Ser Gln Lys Arg Asn Thr Glu Ala Ile Lys Ile Met Asp His
290 295 300
Ile Ala Gln Lys Asn Gly Lys Leu Pro Pro Ala Asp Leu Lys Met Leu
305 310 315 320
Ser Leu Glu Glu Asp Val Thr Glu Leu Ser Pro Ser Phe Ala Asp
325 330 335
Leu Phe Arg Thr Pro Arg Leu Arg Lys Arg Thr Phe Ile Leu Met Tyr
340 345 350
Leu Trp Phe Thr Asp Ser Val Leu Tyr Glu Leu Ile Leu His Met
355 360 365
Gly Ala Thr Ser Gly Asn Leu Tyr Leu Asp Phe Leu Tyr Ser Ala Leu
370 375 380
Val Glu Ile Pro Gly Ala Phe Ile Leu Ile Thr Ile Asp Arg Val
385 390 395 400
Gly Arg Ile Tyr Pro Met Ala Met Ser Asn Leu Leu Ala Gly Ala Ala
405 410 415
Cys Leu Val Met Ile Phe Ile Ser Pro Asp Leu His Trp Leu Asn Ile
420 425 430
Ile Ile Met Cys Val Gly Arg Met Gly Ile Thr Ile Ala Ile Gln Met
435 440 445
Ile Cys Leu Val Asn Ala Glu Leu Tyr Pro Thr Phe Val Arg Asn Leu
450 455 460
Gly Val Met Val Cys Ser Ser Leu Cys Asp Ile Gly Gly Ile Ile Thr
465 470 475 480
Pro Phe Ile Val Phe Arg Leu Arg Glu Val Trp Glu Ala Leu Pro Leu
485 490 495
Ile Leu Phe Ala Val Leu Gly Leu Ala Ala Gly Val Thr Leu Leu
500 505 510
Leu Pro Glu Thr Lys Gly Val Ala Leu Pro Glu Thr Met Lys Asp Ala
515 520 525
Glu Asn Leu Gly Arg Lys Ala Lys Pro Lys Glu Asn Thr Ile Tyr Leu
530 535 540
Lys Val Gln Thr Ser Glu Pro Ser Gly Thr
545 550

<210> SEQ ID NO 9
<211> LENGTH: 539
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 9

Met Ala Phe Glu Leu Leu Ser Gln Val Gly Leu Gly Arg Phe
1 5 10 15
Gln Met Leu His Leu Val Phe Ile Leu Pro Ser Leu Met Leu Leu Ile
20 25 30
Pro His Ile Leu Leu Glu Asn Phe Ala Ala Ala Pro Gly His Arg
35 40 45
Cys Trp Val His Met Leu Asp Asn Thr Gly Ser Gly Asn Gly Thr
50 55 60
Gly Ile Leu Ser Glu Asp Ala Leu Leu Arg Ile Ser Ile Pro Leu Asp
<table>
<thead>
<tr>
<th>Position</th>
<th>Amino Acid Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>Ser Asn Leu Arg Pro Glu Lys Cys Arg Phe Phe Val Val His Pro Glu Gln Trp</td>
</tr>
<tr>
<td>70</td>
<td>Gln Leu Leu His Leu Asn Gly Ile His Ser Thr Ser Glu Ala Asp Thr</td>
</tr>
<tr>
<td>75</td>
<td>Gly Pro Cys Val Asp Gly Trp Val Tyr Asp Gin Ser Tyr Phe Pro Ser</td>
</tr>
<tr>
<td>80</td>
<td>Thr Ile Val Thr Lys Trp Asp Leu Val Cys Asp Tyr Gin Ser Leu Lys</td>
</tr>
<tr>
<td>85</td>
<td>Ser Val Val Gin Phe Leu Leu Leu Thr Gly Met Leu Val Gly Gly Ile</td>
</tr>
<tr>
<td>90</td>
<td>Ile His His Gly Val Ser Asp Arg Phe Gly Arg Arg Phe Ile Leu Arg</td>
</tr>
<tr>
<td>95</td>
<td>Trp Cys Leu Leu Gin Leu Ala Ile Thr Asp Thr Cys Ala Ala Phe Ala</td>
</tr>
<tr>
<td>100</td>
<td>Pro Thr Phe Pro Val Tyr Cys Val Leu Arg Phe Leu Ala Gly Phe Ser</td>
</tr>
<tr>
<td>105</td>
<td>Ser Met Ile Ile Ile Ser Asn Asn Ser Leu Pro Ile Thr Glu Trp Ile</td>
</tr>
<tr>
<td>110</td>
<td>Arg Pro Asn Ser Lys Ala Leu Val Val Ile Leu Ser Ser Gly Ala Leu</td>
</tr>
<tr>
<td>115</td>
<td>Ser Ile Gly Gin Ile Ile Leu Gly Gly Leu Ala Tyr Val Phe Arg Asp</td>
</tr>
<tr>
<td>120</td>
<td>Trp Gin Thr Leu His Val Val Ala Ser Val Pro Phe Leu Gly Leu Leu</td>
</tr>
<tr>
<td>125</td>
<td>Leu Leu Gin Arg Trp Leu Val Gly Ser Ala Arg Trp Leu Ile Ile Thr</td>
</tr>
<tr>
<td>130</td>
<td>Asn Lys Leu Asp Glu Gly Leu Lys Ala Leu Arg Lys Val Ala Arg Thr</td>
</tr>
<tr>
<td>135</td>
<td>Asn Gly Ile Lys Asn Ala Glu Glu Thr Leu Asn Ile Glu Val Val Arg</td>
</tr>
<tr>
<td>140</td>
<td>Ser Thr Met Gin Glu Gly Leu Asp Ala Ala Gin Thr Lys Thr Thr Val</td>
</tr>
<tr>
<td>145</td>
<td>Cys Asp Leu Phe Arg Asn Pro Ser Met Arg Lys Arg Ile Cys Ile Leu</td>
</tr>
<tr>
<td>150</td>
<td>Val Phe Leu Arg Phe Ala Asn Thr Ile Pro Phe Tyr Gly Thr Met Val</td>
</tr>
<tr>
<td>155</td>
<td>Asn Leu Gin His Val Gly Ser Asn Ile Phe Leu Leu Gin Val Leu Tyr</td>
</tr>
<tr>
<td>160</td>
<td>Gly Ala Val Ala Leu Val Arg Cys Leu Ala Leu Leu Thr Leu Asn</td>
</tr>
<tr>
<td>165</td>
<td>His Met Gly Arg Gin Met Gin Ile Leu Phe Met Phe Leu Val Gly</td>
</tr>
<tr>
<td>170</td>
<td>Leu Ser Ile Leu Ala Asn Thr Phe Val Pro Lys Glu Met Gin Thr Leu</td>
</tr>
<tr>
<td>175</td>
<td>Arg Val Ala Leu Ala Cys Leu Gly Ile Gly Cys Ser Ala Ala Thr Phe</td>
</tr>
<tr>
<td>180</td>
<td>Ser Ser Val Ala Val Gin Phe Ile Glu Leu Ile Pro Thr Val Leu Arg</td>
</tr>
<tr>
<td>185</td>
<td>Ala Arg Ala Ser Gly Ile Asp Thr Ala Ser Arg Ile Gly Ala Ala</td>
</tr>
<tr>
<td>190</td>
<td>Leu Pro Leu Leu Met Thr Leu Thr Val Phe Phe Thr Thr Leu Pro Thr</td>
</tr>
</tbody>
</table>
-continued

Phe Cys Val Pro Val Leu Arg Trp Arg Ser Cys Ala Met Leu Val Val
325 330 335
Arg Ser Leu Leu Ile Ser Tyr Tyr Gly Leu Val Phe Asp Leu Gln
340 345 350
Ser Leu Gly Arg Asp Ile Phe Leu Leu Gln Ala Leu Phe Gly Ala Val
355 360 365
Asp Phe Leu Gly Arg Ala Thr Thr Ala Leu Leu Leu Ser Phe Leu Gly
370 375 380
Arg Arg Thr Ile Gln Ala Gly Ser Gln Ala Met Ala Gly Leu Ala Ile
385 390 395 400
Leu Ala Asn Met Leu Val Pro Gln Asp Leu Gln Thr Leu Arg Val Val
405 410 415
Phe Ala Val Leu Gly Lys Gly Cys Phe Gly Ile Ser Leu Thr Cys Leu
420 425 430
Thr Ile Tyr Lys Ala Glu Leu Phe Pro Thr Pro Val Arg Met Thr Ala
435 440 445
Arg Gly Ile Leu His Thr Val Gly Arg Leu Gly Ala Met Met Gly Pro
450 455 460
Leu Ile Leu Met Ser Arg Gln Ala Leu Pro Leu Leu Pro Pro Leu Leu
465 470 475 480
Tyr Gly Val Ile Ser Ile Ala Ser Ser Leu Val Leu Phe Phe Leu
485 490 495 500
Pro Glu Thr Gln Gly Leu Pro Leu Pro Asp Thr Ile Gln Asp Leu Glu
505 510 515
Ser Gln Lys Ser Thr Ala Ala Gln Gly Asn Arg Glu Glu Ala Val Thr
520 525 530 535
Val Glu Ser Thr Ser Leu
540 545 550

<210> SEQ ID NO 11
<211> LENGTH: 542
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 11
Met Thr Phe Ser Glu Ile Leu Asp Arg Val Gly Ser Met Gly His Phe
1 5 10 15
Gln Phe Leu His Val Ala Ile Leu Gly Leu Pro Ile Leu Asn Met Ala
20 25 30
Asn His Asn Leu Leu Gln Ile Phe Thr Ala Ala Thr Pro Val His His
35 40 45
Cys Arg Pro Pro His Asn Ala Ser Thr Gly Pro Trp Val Leu Pro Met
50 55 60
Gly Pro Asn Gly Lys Pro Glu Arg Cys Leu Arg Phe Val His Pro Pro
65 70 75 80
Asn Ala Ser Leu Pro Asn Asp Thr Glu Arg Ala Met Glu Pro Cys Leu
85 90 95 100
Asp Gly Trp Val Tyr Asn Ser Thr Lys Asp Ser Ile Val Thr Glu Trp
105 110
Asp Leu Val Cys Asn Ser Asn Lys Leu Lys Glu Met Ala Gln Ser Ile
120 125 130
Phe Met Ala Gly Ile Leu Ile Gly Gly Leu Val Leu Gly Asp Leu Ser
<table>
<thead>
<tr>
<th>AmP</th>
<th>Arg</th>
<th>Phe</th>
<th>Gly</th>
<th>Arg</th>
<th>Pro</th>
<th>Ile</th>
<th>Leu</th>
<th>Thr</th>
<th>Cys</th>
<th>Ser</th>
<th>Tyr</th>
<th>Leu</th>
<th>Leu</th>
<th>Leu</th>
<th>Leu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Ala</td>
<td>Ser</td>
<td>Gly</td>
<td>Ser</td>
<td>Gly</td>
<td>Ala</td>
<td>Phe</td>
<td>Ser</td>
<td>Pro</td>
<td>Thr</td>
<td>Phe</td>
<td>Pro</td>
<td>Ile</td>
<td>Tyr</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>165</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Met</td>
<td>Val</td>
<td>Phe</td>
<td>Arg</td>
<td>Phe</td>
<td>Leu</td>
<td>Cys</td>
<td>Gly</td>
<td>Phe</td>
<td>Gly</td>
<td>Ile</td>
<td>Ser</td>
<td>Gly</td>
<td>Ile</td>
<td>Thr</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Thr</td>
<td>Val</td>
<td>Ile</td>
<td>Leu</td>
<td>Asn</td>
<td>Val</td>
<td>Glu</td>
<td>Trp</td>
<td>Val</td>
<td>Pro</td>
<td>Thr</td>
<td>Arg</td>
<td>Met</td>
<td>Arg</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Met</td>
<td>Ser</td>
<td>Thr</td>
<td>Ala</td>
<td>Leu</td>
<td>Gly</td>
<td>Tyr</td>
<td>Cys</td>
<td>Tyr</td>
<td>Thr</td>
<td>Phe</td>
<td>Gly</td>
<td>Gln</td>
<td>Phe</td>
<td>Ile</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>210</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>Gly</td>
<td>Leu</td>
<td>Ala</td>
<td>Tyr</td>
<td>Ala</td>
<td>Ile</td>
<td>Pro</td>
<td>Gln</td>
<td>Trp</td>
<td>Arg</td>
<td>Trp</td>
<td>Leu</td>
<td>Gln</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Val</td>
<td>Ser</td>
<td>Ile</td>
<td>Pro</td>
<td>Phe</td>
<td>Phe</td>
<td>Val</td>
<td>Phe</td>
<td>Leu</td>
<td>Ser</td>
<td>Ser</td>
<td>Trp</td>
<td>Trp</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Glu</td>
<td>Ser</td>
<td>Ile</td>
<td>Arg</td>
<td>Trp</td>
<td>Leu</td>
<td>Val</td>
<td>Leu</td>
<td>Ser</td>
<td>Gly</td>
<td>Lys</td>
<td>Ser</td>
<td>Ser</td>
<td>Glu</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Lys</td>
<td>Ile</td>
<td>Leu</td>
<td>Arg</td>
<td>Val</td>
<td>Ala</td>
<td>Val</td>
<td>Phe</td>
<td>Aem</td>
<td>Gly</td>
<td>Lys</td>
<td>Lys</td>
<td>Glu</td>
<td>Glu</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Glu</td>
<td>Arg</td>
<td>Leu</td>
<td>Ser</td>
<td>Leu</td>
<td>Glu</td>
<td>Leu</td>
<td>Lys</td>
<td>Leu</td>
<td>Asn</td>
<td>Leu</td>
<td>Gln</td>
<td>Lys</td>
<td>Glu</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Ser</td>
<td>Leu</td>
<td>Ala</td>
<td>Lys</td>
<td>Ala</td>
<td>Lys</td>
<td>Tyr</td>
<td>Thr</td>
<td>Ala</td>
<td>Ser</td>
<td>Asp</td>
<td>Leu</td>
<td>Phe</td>
<td>Arg</td>
<td>Ile</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>305</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Met</td>
<td>Leu</td>
<td>Arg</td>
<td>Arg</td>
<td>Met</td>
<td>Thr</td>
<td>Phe</td>
<td>Cys</td>
<td>Leu</td>
<td>Ser</td>
<td>Leu</td>
<td>Ala</td>
<td>Trp</td>
<td>Phe</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>325</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Gly</td>
<td>Phe</td>
<td>Ala</td>
<td>Tyr</td>
<td>Tyr</td>
<td>Ser</td>
<td>Leu</td>
<td>Ala</td>
<td>Met</td>
<td>Gly</td>
<td>Val</td>
<td>Glu</td>
<td>Phe</td>
<td>Gly</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>340</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Aem</td>
<td>Leu</td>
<td>Tyr</td>
<td>Ile</td>
<td>Leu</td>
<td>Gln</td>
<td>Ile</td>
<td>Ile</td>
<td>Phe</td>
<td>Gly</td>
<td>Gly</td>
<td>Val</td>
<td>Asp</td>
<td>Val</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>355</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Lys</td>
<td>Phe</td>
<td>Ile</td>
<td>Thr</td>
<td>Ile</td>
<td>Leu</td>
<td>Ser</td>
<td>Leu</td>
<td>Ser</td>
<td>Tyr</td>
<td>Leu</td>
<td>Gly</td>
<td>Arg</td>
<td>His</td>
<td>Thr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>370</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Gln</td>
<td>Ala</td>
<td>Ala</td>
<td>Leu</td>
<td>Leu</td>
<td>Ala</td>
<td>Gly</td>
<td>Ala</td>
<td>Ala</td>
<td>Gly</td>
<td>Ala</td>
<td>Ile</td>
<td>Leu</td>
<td>Ala</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>385</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Phe</td>
<td>Val</td>
<td>Pro</td>
<td>Leu</td>
<td>Asp</td>
<td>Leu</td>
<td>Gln</td>
<td>Thr</td>
<td>Val</td>
<td>Arg</td>
<td>Thr</td>
<td>Val</td>
<td>Leu</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Gly</td>
<td>Lys</td>
<td>Gly</td>
<td>Cys</td>
<td>Leu</td>
<td>Ser</td>
<td>Ser</td>
<td>Ser</td>
<td>Phe</td>
<td>Ser</td>
<td>Cys</td>
<td>Leu</td>
<td>Phe</td>
<td>Leu</td>
<td>Tyr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>420</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Ser</td>
<td>Glu</td>
<td>Leu</td>
<td>Tyr</td>
<td>Pro</td>
<td>Thr</td>
<td>Val</td>
<td>Ile</td>
<td>Arg</td>
<td>Gln</td>
<td>Thr</td>
<td>Gly</td>
<td>Met</td>
<td>Gly</td>
<td>Val</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>435</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Aem</td>
<td>Leu</td>
<td>Trp</td>
<td>Thr</td>
<td>Arg</td>
<td>Val</td>
<td>Gly</td>
<td>Ser</td>
<td>Met</td>
<td>Val</td>
<td>Ser</td>
<td>Pro</td>
<td>Leu</td>
<td>Val</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Thr</td>
<td>Gly</td>
<td>Glu</td>
<td>Val</td>
<td>Gln</td>
<td>Phe</td>
<td>Phe</td>
<td>Pro</td>
<td>Aem</td>
<td>Ile</td>
<td>Ile</td>
<td>Tyr</td>
<td>Gly</td>
<td>Ile</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>465</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Ala</td>
<td>Leu</td>
<td>Leu</td>
<td>Gly</td>
<td>Gly</td>
<td>Ser</td>
<td>Ala</td>
<td>Ala</td>
<td>Leu</td>
<td>Phe</td>
<td>Leu</td>
<td>Pro</td>
<td>Glu</td>
<td>Thr</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>485</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>Gln</td>
<td>Pro</td>
<td>Leu</td>
<td>Pro</td>
<td>Glu</td>
<td>Thr</td>
<td>Ile</td>
<td>Glu</td>
<td>Asp</td>
<td>Leu</td>
<td>Gln</td>
<td>Aem</td>
<td>Trp</td>
<td>Ser</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Ala</td>
<td>Lys</td>
<td>Lys</td>
<td>Pro</td>
<td>Lys</td>
<td>Gln</td>
<td>Glu</td>
<td>Pro</td>
<td>Glu</td>
<td>Val</td>
<td>Glu</td>
<td>Lys</td>
<td>Ala</td>
<td>Ser</td>
<td>Gln</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Ile</td>
<td>Pro</td>
<td>Leu</td>
<td>Gln</td>
<td>Pro</td>
<td>His</td>
<td>Gly</td>
<td>Pro</td>
<td>Gly</td>
<td>Leu</td>
<td>Gly</td>
<td>Ser</td>
<td>Ser</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 12
<211> LENGTH: 550
<212> TYPE: PRT
<table>
<thead>
<tr>
<th>Residue</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met</td>
<td>Ala</td>
<td>Phe</td>
<td>Arg</td>
<td>Phe</td>
</tr>
<tr>
<td>Ser</td>
<td>Ala</td>
<td>Asp</td>
<td>Ala</td>
<td>Ser</td>
</tr>
<tr>
<td>Val</td>
<td>Gly</td>
<td>Val</td>
<td>Gly</td>
<td>Leu</td>
</tr>
<tr>
<td>Gly</td>
<td>Val</td>
<td>Gly</td>
<td>Arg</td>
<td>Leu</td>
</tr>
<tr>
<td>Thr</td>
<td>Leu</td>
<td>Gln</td>
<td>Met</td>
<td>Ala</td>
</tr>
<tr>
<td>Ser</td>
<td>Leu</td>
<td>Thr</td>
<td>Ala</td>
<td>Pro</td>
</tr>
<tr>
<td>Arg</td>
<td>Pro</td>
<td>Ala</td>
<td>Lys</td>
<td>Ala</td>
</tr>
<tr>
<td>Cys</td>
<td>Pro</td>
<td>Ala</td>
<td>Ser</td>
<td>Gln</td>
</tr>
<tr>
<td>Val</td>
<td>Trp</td>
<td>Leu</td>
<td>Arg</td>
<td>Gln</td>
</tr>
<tr>
<td>Gly</td>
<td>Asp</td>
<td>Arg</td>
<td>Gly</td>
<td>Pro</td>
</tr>
<tr>
<td>Glu</td>
<td>Ser</td>
<td>Cys</td>
<td>Leu</td>
<td>Arg</td>
</tr>
<tr>
<td>Phe</td>
<td>Thr</td>
<td>Ser</td>
<td>Pro</td>
<td>Gln</td>
</tr>
<tr>
<td>Gly</td>
<td>Leu</td>
<td>Pro</td>
<td>Phe</td>
<td>Ala</td>
</tr>
<tr>
<td>Asn</td>
<td>Gly</td>
<td>Thr</td>
<td>Ala</td>
<td>Thr</td>
</tr>
<tr>
<td>Glu</td>
<td>Pro</td>
<td>Cys</td>
<td>Thr</td>
<td>Asp</td>
</tr>
<tr>
<td>Gly</td>
<td>Trp</td>
<td>Ile</td>
<td>Tyr</td>
<td>Asp</td>
</tr>
<tr>
<td>Ser</td>
<td>Thr</td>
<td>Phe</td>
<td>Pro</td>
<td>Ser</td>
</tr>
<tr>
<td>Ile</td>
<td>Val</td>
<td>Thr</td>
<td>Glu</td>
<td>Pro</td>
</tr>
<tr>
<td>Asp</td>
<td>Leu</td>
<td>Val</td>
<td>Cys</td>
<td>Met</td>
</tr>
<tr>
<td>Ser</td>
<td>Arg</td>
<td>Ala</td>
<td>Leu</td>
<td>Gly</td>
</tr>
<tr>
<td>Gly</td>
<td>Ala</td>
<td>Met</td>
<td>Val</td>
<td>Tyr</td>
</tr>
<tr>
<td>Leu</td>
<td>Gly</td>
<td>Ala</td>
<td>Met</td>
<td>Val</td>
</tr>
<tr>
<td>Val</td>
<td>Phe</td>
<td>Gly</td>
<td>Tyr</td>
<td>Leu</td>
</tr>
<tr>
<td>Ala</td>
<td>Asp</td>
<td>Arg</td>
<td>Leu</td>
<td>Gly</td>
</tr>
<tr>
<td>Arg</td>
<td>Lys</td>
<td>Val</td>
<td>Leu</td>
<td>Ile</td>
</tr>
<tr>
<td>Leu</td>
<td>Asn</td>
<td>Tyr</td>
<td>Leu</td>
<td>Gln</td>
</tr>
<tr>
<td>Thr</td>
<td>Ala</td>
<td>Pro</td>
<td>Asp</td>
<td>Phe</td>
</tr>
<tr>
<td>Pro</td>
<td>Phe</td>
<td>Ala</td>
<td>Pro</td>
<td>Ile</td>
</tr>
<tr>
<td>Tyr</td>
<td>Cys</td>
<td>Ala</td>
<td>Phe</td>
<td>Arg</td>
</tr>
<tr>
<td>Thr</td>
<td>Leu</td>
<td>Ser</td>
<td>Gly</td>
<td>Met</td>
</tr>
<tr>
<td>Ala</td>
<td>Ala</td>
<td>Gly</td>
<td>Ile</td>
<td>Ser</td>
</tr>
<tr>
<td>Leu</td>
<td>Ala</td>
<td>Gly</td>
<td>Cys</td>
<td>Met</td>
</tr>
<tr>
<td>Thr</td>
<td>Ala</td>
<td>Val</td>
<td>Glu</td>
<td>Trp</td>
</tr>
<tr>
<td>Met</td>
<td>Pro</td>
<td>Ile</td>
<td>His</td>
<td>Thr</td>
</tr>
<tr>
<td>Arg</td>
<td>Ala</td>
<td>Arg</td>
<td>Cys</td>
<td>Val</td>
</tr>
<tr>
<td>Gly</td>
<td>Thr</td>
<td>Tyr</td>
<td>Val</td>
<td>Tyr</td>
</tr>
<tr>
<td>Ser</td>
<td>Leu</td>
<td>Gln</td>
<td>Phe</td>
<td>Leu</td>
</tr>
<tr>
<td>Ala</td>
<td>Val</td>
<td>Ala</td>
<td>Val</td>
<td>Pro</td>
</tr>
<tr>
<td>His</td>
<td>Thr</td>
<td>Arg</td>
<td>His</td>
<td>Leu</td>
</tr>
<tr>
<td>Ala</td>
<td>Pro</td>
<td>His</td>
<td>Trp</td>
<td>Arg</td>
</tr>
<tr>
<td>Phe</td>
<td>Phe</td>
<td>Ala</td>
<td>Pro</td>
<td>Phe</td>
</tr>
<tr>
<td>Ile</td>
<td>Tyr</td>
<td>Ser</td>
<td>Trp</td>
<td>Phe</td>
</tr>
<tr>
<td>Phe</td>
<td>Ala</td>
<td>Pro</td>
<td>Ile</td>
<td>Glu</td>
</tr>
<tr>
<td>Ser</td>
<td>Ala</td>
<td>Gly</td>
<td>Arg</td>
<td>Leu</td>
</tr>
<tr>
<td>Leu</td>
<td>Thr</td>
<td>Arg</td>
<td>Ala</td>
<td>Ala</td>
</tr>
<tr>
<td>Ser</td>
<td>Gly</td>
<td>Ala</td>
<td>Arg</td>
<td>Ala</td>
</tr>
<tr>
<td>Ile</td>
<td>Gly</td>
<td>Lys</td>
<td>Arg</td>
<td>Glu</td>
</tr>
<tr>
<td>Val</td>
<td>Leu</td>
<td>Ala</td>
<td>Gln</td>
<td>Met</td>
</tr>
<tr>
<td>Gly</td>
<td>Ala</td>
<td>Ser</td>
<td>Ala</td>
<td>Met</td>
</tr>
<tr>
<td>Leu</td>
<td>Leu</td>
<td>Arg</td>
<td>Leu</td>
<td>Arg</td>
</tr>
<tr>
<td>Cys</td>
<td>Pro</td>
<td>Thr</td>
<td>Leu</td>
<td>Arg</td>
</tr>
<tr>
<td>His</td>
<td>Leu</td>
<td>Phe</td>
<td>Leu</td>
<td>Cys</td>
</tr>
<tr>
<td>Leu</td>
<td>Ser</td>
<td>Met</td>
<td>Leu</td>
<td>Trp</td>
</tr>
<tr>
<td>Thr</td>
<td>Phe</td>
<td>Ala</td>
<td>Thr</td>
<td>Ser</td>
</tr>
<tr>
<td>Phe</td>
<td>Ala</td>
<td>Tyr</td>
<td>Gly</td>
<td>Leu</td>
</tr>
<tr>
<td>Val</td>
<td>Met</td>
<td>Asp</td>
<td>Leu</td>
<td>Gln</td>
</tr>
<tr>
<td>Gly</td>
<td>Phe</td>
<td>Gly</td>
<td>Val</td>
<td>Ser</td>
</tr>
<tr>
<td>Ile</td>
<td>Tyr</td>
<td>Leu</td>
<td>Val</td>
<td>Ala</td>
</tr>
<tr>
<td>Phe</td>
<td>Ala</td>
<td>Leu</td>
<td>Phe</td>
<td>Ala</td>
</tr>
<tr>
<td>Leu</td>
<td>Gly</td>
<td>Ala</td>
<td>Val</td>
<td>Ala</td>
</tr>
<tr>
<td>Lys</td>
<td>Leu</td>
<td>Val</td>
<td>Ile</td>
<td>Phe</td>
</tr>
<tr>
<td>Gly</td>
<td>Ala</td>
<td>Val</td>
<td>Asp</td>
<td>Leu</td>
</tr>
<tr>
<td>Ala</td>
<td>Lys</td>
<td>Val</td>
<td>385</td>
<td>390</td>
</tr>
</tbody>
</table>
What is claimed is:

1. A method of screening candidate substrates of the
 organic cation transporter 6 (OCT6) comprising:
 a. providing a test agent;
 b. providing mammalian cells or a mammalian cell line
 which express OCT6;
 c. incubating the test agent with the cells or cell line; and
 d. determining whether the test agent is a substrate for
 OCT6,
 wherein the mammalian cells or mammalian cell line
 provided in step b are leukemia cells or a leukemia cell line,
 respectively.

2. The method of claim 1 wherein the test agent is coupled
to a detectable substance.

3. The method of claim 2 wherein the detectable substance
 is selected from the group consisting of extrinsically activatable
 enzymes, prosthetic groups, fluorescent materials, luminescent
 materials, bioluminescent materials, radioactive materials,
 positron emitting metals using various positron emission
tomographies, nonradioactive paramagnetic metal ions,
immunogenic tag peptide sequences, extrinsically activatable
 toxins, extrinsically activatable quenching agents, and antibodies.

4. The method of claim 1 wherein the step of determining
 whether the test agent is a substrate for OCT6 comprises
 analyzing whether the test agent is located intracellularly.

5. The method of claim 1, wherein step (d) comprises
 determining the viability of the cells or cell line.

6. The method of claim 5, wherein the viability of the cells
 or cell line is determined by applying a dye to the cells or cell
 line, wherein incorporation of the dye by the cells is indicative
 of death of the cells or cell line.

7. The method of claim 6, wherein the dye is trypan blue.

* * * * *