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Supplement A: Proof of Convergence. To prove that chains gener-
ated from Algorithm 2 from the manuscript converge to the correct distri-
bution, we need to satisfy three conditions: 1) that Step 1 produces chains
which converge to π(φ,p|z) for any z such that z = Bx for some x ∈ Fn, 2)
that Step 2 produces chains which converge to π(x|n,φ,p, α) for any φ and
p in the parameter space, and 3) that the joint posterior distribution satis-
fies the positivity condition of (Robert and Casella, 2010, pg. 345). Sampling
from π(φ,p|z) is equivalent to sampling from the posterior distribution for
a simple CJS model. This is now standard (Link et al., 2002, see e.g.), and
so we assume that Condition 1 is satisfied. It is also simple to show that the
positivity constraint is satisfied given that the prior distributions for φ and
p are positive over all of (0, 1)T × (0, 1)T−1, as assumed in Section 5 of the
original manuscript. It remains to show that Condition 2 holds.

We assume here that Fn contains at least two elements. The fibre always
contains at least one element with no errors which we denote by x∅. The
entries of this element are

x∅ν =

{
nν if ν is observable
0 otherwise

.

Cases in which Fn = {x∅} arise when no errors could have occurred, for
example, if no individuals were ever recaptured. These situations are easily
identified and there is no need to sample from the joint posterior of both x
and θ in such cases since x = x∅ with probability one.

Some useful results that are easy to prove are:

1. that any configuration of the latent error histories within the fibre has
positive probability under the conditional posterior for all values of
the parameters in the parameter space,

1



2 S. J. BONNER ET AL.

Lemma 1. If x ∈ Fn then π(x|n,φ,p, α) > 0 for all values of φ and
p in the parameter space.

2. that the local sets within the dynamic Markov basis are symmetric,

Lemma 2. Let x ∈ Fn. If b+ ∈M1(x) then −b+ ∈M2(x+b+) and
if b− ∈M2(x) then −b− ∈M1(x+ b−).

3. that all proposals remain inside Fn,

Lemma 3. Let x ∈ Fn. If b ∈M(x) =M1(x)
⋃
M2(x) then x+b ∈

Fn.

4. that there is a unique element x∅ in Fn with no errors.

Lemma 4. Suppose that x∅ ∈ Fn. Then et(x
∅) = 0 ∀t = 2, . . . , T if

and only if

x∅ν =

{
nν if ν is observable
0 otherwise

.

First we establish irreducibility. Proposition 1 implies that there is a path
connecting any two elements in the fibre while Proposition 2 implies that
each step, and hence the entire path, has positive probability under the
transition kernel. Together, these show that that the chains are irreducible.

Proposition 1. For any distinct x1,x2 ∈ Fn there exists a sequence of
moves b1, . . . , bL such that:

1. bL′ ∈M
(
x1 +

∑L′−1
l=1 bl

)
for all L′ = 1, . . . , L

2. x1 +
∑L′

l=1 bl ∈ Fn for all L′ = 1, . . . , L− 1, and

3. x2 = x1 +
∑L

l=1 bl,

where we take x1 +
∑0

l=1 bl = x1.

Proof. Our proof follows by (reverse) induction on the number of errors.
Suppose that et(x1) > 0 for some t. Then X2t(x1) and X3t(x1) are both non-
empty and ∃b−11 ∈M2(x1). Then et(x1+b−11) = et(x1)−1 and x1+b−11 ∈ Fn
by Lemma 3. Repeating this procedure L1 =

∑T
t=2 et(x1) times, we find

b−11, . . . , b
−
1L1

such that

1. b−1L′ ∈M2(x1 +
∑L′−1

l=1 b−1l) for L′ = 1, . . . , L1,

2. x1 +
∑L′

l=1 b
−
1l ∈ Fn for all L′ = 1, . . . , L1, and
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3. et(x1 +
∑L1

l=1 b
−
1l) = 0.

It follows from Lemma 4 that x1 +
∑L1

l=1 b
−
1l = x∅. By the same argument,

∃b−21, . . . , b
−
2L2

such that

1. b−2l ∈M2(x2 +
∑L′−1

l=1 b−2l) for L′ = 1, . . . , L2,,

2. x2 +
∑L′

l=1 b
−
2l ∈ Fn for all L′ = 1, . . . , L2, and

3. x2 +
∑L2

l=1 b
−
2l = x∅.

Moreover, −b−2,L2−l+1 ∈ M1(x∅ +
∑L′−1

l=0 −b
−
2,L2−l) for all L′ = 1, . . . , L2

by Lemma 2. Then the sequence b1, . . . , bL where L = L1 + L2, bl = b−1l
for l = 1, . . . , L1, and bL1+l = −b−2,L2−l+1 for l = 1, . . . , L2 satisfies the
conditions of the proposition. Note that half of this argument suffices if
either x1 = x∅ or x2 = x∅.

Proposition 2. Let x ∈ Fn. If b ∈M(x) then P (x(k+1) = x+b|x(k) =
x) > 0.

Proof. Suppose that b ∈M1(x) and let x′ = x+b. Then −b ∈M2(x′)
by Lemma 2. Direct calculation of equations (5) and (6) shows that both
q(x′|x) > 0 and q(x|x′) > 0. Combined with Lemma 1 it follows that
r(x,x′|φ(k),p(k), α) (defined in Step 2, Substep iii of Algorithm 2) is positive
and hence that P (x(k+1) = x′|x(k) = x) = q(x′|x) ·r(x,x′|φ(k),p(k), α) > 0.
A similar argument shows that P (x(k+1) = x + b|x(k) = x) > 0 for all
b ∈M2(x).

We establish aperiodicity by showing that there is positive probability of
holding at x∅.

Proposition 3. If x(k) = x∅ then P (x(k+1) = x0|x(k) = x0) ≥ .5.

Proof. The setM2(x∅) is empty since there are no errors to remove from
x∅. However, Algorithm 2 still proposes to draw a move from M2(x∅) with
probability .5. When this occurs we set x(k+1) = x(k) so that P (x(k+1) =
x∅|x(k) = x∅) ≥ .5.

This shows that x∅ is an aperiodic state and hence that the entire chain is
aperiodic (Cinlar, 1975, pg. 125)

Since the fibre is finite, irreducibility and aperiodicty are sufficient to en-
sure that the chains have a unique stationary distribution which is also the
limiting distribution (see Cinlar, 1975, Corollary 2.11). That this distribu-
tion is equal to the target distribution is guaranteed by the detailed balance
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condition of the MH algorithm which holds under Proposition 4 (Liu, 2004,
pg. 111).

Proposition 4. If q(x′|x) > 0 then q(x|x′) > 0 for all x,x′ ∈ Fn.

Proof. Suppose that q(x′|x) > 0. Then either x′ − x ∈ M1(x) or x′ −
x ∈ M2(x). If x′ − x ∈ M1(x) then x − x′ ∈ M2(x′) by Lemma 2 and
q(x|x′) > 0. Similarly, if x′ − x ∈ M2(x) then x − x′ ∈ M1(x′) and
q(x|x′) > 0.

This completes our proof that the Markov chains produced by Algorithm
2 have unique limiting distribution π(x,φ,p|n, α) so that realisations from
the tail of a converged chain can be used to approximate properties of the
joint posterior distribution of x, φ, and p.

Supplement B: Model Mtα. Here we show how the model described
by Link et al. (2010) can be fit into the extended model using a dynamic
Markov basis to sample from the posterior distribution. Model Mtα extends
the standard closed population model with time dependent capture prob-
abilities by allowing for individuals to be misidentified. Specifically, Mtα

assumes that individuals are identified correctly with probability α on each
capture and that errors do not duplicate observed marks in that one marked
individual cannot be identified as another marked individual and that the
same error can never occur twice. This means that each error creates a new
recorded history with a single non-zero entry. For example, suppose that
T = 3 and that individual i is captured on the first occasion, recaptured
and misidentified on the second occasion, and not captured on the third oc-
casion. The true capture history for this individual, including errors, is 120,
where the event 2 denotes that the individual was captured and misidenti-
fied. The individual would then contribute two recorded histories, 100 and
010, to the observed data set.

Extended Formulation. As with the CJS/BRE model, we cast model
Mtα into the new framework by 1) identifying the sets of observable capture
histories, latent error histories, and latent capture histories, 2) constructing
the linear constraints matrices for the corresponding count vectors, and 3)
identifying the components of the likelihood function. For an experiment
with T occasions, the set of observable capture histories contains all 2T−1

histories in {0, 1}T excluding the unobservable zero history, the set of latent
error histories includes all 3T histories in {0, 1, 2}T , and the set of latent
capture histories includes all 2T histories in {0, 1}T . The matrix A is defined
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exactly as in Link et al. (2010): Aij = 1 if the ith observable history is
observed from the jth latent error history and Aij = 0 otherwise. Similarly,
Bkj = 1 if the kth latent capture history has the same pattern of captures as
the jth latent error history. Mathematically, let ωi, νj , and ξk represent the
ith, jth, and kth observable history, latent error history, and latent capture
history for some implicit orderings. Then

Aij =


1 if ωit = I(νjt = 1) for all t = 1, . . . , T

or if ωi = δt and νjt = 2 for some t ∈ {1, . . . , T}

0 otherwise

and

Bkj =


1 ξkt = I(νjt = 1) + I(νjt = 2) for all t = 1, . . . , T

0 otherwise
.

Here δt represents tth column of the T × T identity matrix (i.e., the vector
with a single 1 in the tth entry). Finally, the two components of the likelihood
function are

π(z|p) =
N !∏
ξ∈Z zξ!

∏
ξ∈Z

[
K∏
k=1

p
I(ξk=1)
k (1− pk)I(ξk=0)

]zξ

and

π(x|z, α) =

∏
ξ∈Z zξ!∏
ν∈X xν !

∏
ν∈X

[
K∏
k=1

αI(νk=1)(1− α)I(νk=2)

]xν

Here N =
∑
ξ∈Z z

T
ξ represents the true population size. Note that the prod-

uct of these two contributions exactly reconstructs the single likelihood func-
tion for Mtα defined by Link et al. (2010, eqns 6 and 7).

Dynamic Moves. We can again generate a dynamic Markov basis by
selecting from a set of moves which add or remove errors from the current
configuration. An extra step is also needed on each iteration of the algorithm
to update the count of the unobserved individuals, ν0.

Let χνt(x) = {ν : νt = ν and xν > 0} be the set of latent error histories
with event ν on occasion t and positive counts in x. As with the CJS/BRE
model, we define M(x) as the union of two sets: M1(x) containing moves
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which add errors and M2(x) containing moves which remove errors. Each
move in the dynamic Markov basis modifies the counts of three latent error
histories. Moves in M1(x) are defined by sampling one history ν0 ∈ χ0t(x)
for some t and are denoted by b(ν0). The other two latent error histories,
ν1 and ν2, are defined by setting ν1 = δt and ν2 = ν0 + 2δt. The move b(ν0)
is then defined by setting

bν(ν0) =

{
−1 if ν = ν0 or ν = ν1

1 if ν = ν2
.

Similarly, moves in M2(x), denoted by b(ν2), are defined by sampling a
history ν2 ∈ χ2t(x) for some t, setting

ν1 = δt

and

ν0s =

{
0 s = t
ν2s otherwise

t = 1, . . . , T.

The move b(ν2) is then defined by setting

bν(ν2) =

{
−1 if ν = ν2

1 if ν = ν0 or ν = ν1
.

If we assume that the decision to add or remove an error are each chosen with
probability .5 and that histories are sampled uniformly from χ0· =

⋃T
t=1 χ0t

and χ2· =
⋃T
t=1 χ2t, when adding or removing an error respectively, then the

proposal densities for the moves x′ = x(k−1) +b(ν0) and x′ = x(k−1) +b(ν2)
are given by

q(x′|x(k−1)) =
.5

#χ0·(x(k−1)) ·#{t : ν0t = 1}

and

q(x′|x(k−1)) =
.5

#χ2·(x(k−1)) ·#{t : ν2t = 2}
.

As in the algorithm for the CJS/BRE, we retain x(k−1) with probability 1
if an empty set is encountered in one of these processes or if the selected
move reduces any of the counts in x below zero. Details of the full algo-
rithm for sampling from the posterior distribution of model Mtα are given
in Algorithm 3.
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Initialise p(0) and α.
Initialise x(0) so that n = Ax(0) and set z(0) = Bx(0).
Set k = 1.

1. Update p and α conditional on x(k−1) and z(k−1). Call the results p(k) and α(k).

2. Update x and z conditional on and p(k) and α(k) as follows.

i) With probability .5 sample b from M1(x(k−1)). If M1(x(k−1)) = ∅ then set
x(k) = x(k−1) and continue to step v).
Otherwise sample b from M2(x(k−1)). If M2(x(k−1)) = ∅ then set
x(k) = x(k−1) and continue to step v).

ii) Set xprop = x(k−1) + b. If x′j < 0 for any j = 1, . . . , J set x(k) = x(k−1) and
continue to step v).

iii) Calculate the Metropolis acceptance probability:

r(x,xprop|p(k), α) = min

{
1,

π(xprop|n,p(k), α)

π(x(k−1)|n,p(k), α)
· q(x

(k−1)|xprop)

q(xprop|x(k−1))

}
.

iv) Set x(k) = xprop with probability r(x,xprop|φ(k),p(k), α) and x(k) = x(k−1)

otherwise.

v) Set z(k) = Bx(k)

3. Increment k.

Algorithm 3: Proposed algorithm for sampling from the posterior distri-
bution of Model Mtα using the dynamic Markov basis.
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