A Plant-Physiology Approach to a Fire-y Problem

Helen G. Daily
University of Tasmania, Australia

Shaun Lisson
CSIRO, Australia

Kerry L. Bridle
University of Tasmania, Australia

Peter A. Lane
University of Tasmania, Australia

Stuart Anderson
Ministry for Primary Industries, New Zealand

See next page for additional authors

Follow this and additional works at: https://uknowledge.uky.edu/igc

Part of the Plant Sciences Commons, and the Soil Science Commons

The 22nd International Grassland Congress (Revitalising Grasslands to Sustain Our Communities) took place in Sydney, Australia from September 15 through September 19, 2013. Proceedings Editors: David L. Michalk, Geoffrey D. Millar, Warwick B. Badgery, and Kim M. Broadfoot

Publisher: New South Wales Department of Primary Industry, Kite St., Orange New South Wales, Australia

This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
A plant-physiology approach to a fire-y problem

Helen G Daily, Shaun Lisson, Kerry Bridle, Peter Lane, Stuart Anderson and Ross Corkrey

Tools to aid uptake of new technology

A Tasmanian Institute of Agriculture, University of Tasmania, Pte Bag 98, Hobart, Tas. 7001, Australia.
B Bushfire Cooperative Research Centre, East Melbourne, Vic. 3002, Australia.
C CSIRO Ecosystem Sciences, Hobart, Tas. 7001, Australia.
D MPI Policy Ministry for Primary Industries, Rotorua, 3040, New Zealand.
E present address: High Resolution Plant Phenomics Centre, CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.

Contact email: helen.daily@csiro.au

Keywords: Pasture modelling, curing, fire danger rating.

Introduction

As vegetation dies, it dries and becomes more flammable. Fire agencies require accurate and timely assessments of curing (the percentage of dead material in the sward) to model grass fire behaviour and calculate fire danger ratings (Cheney and Sullivan 2008). Visual observation is commonplace and the more objective use of the Levy Rod is recommended, although both have drawbacks (Anderson et al. 2011). There is great potential for pasture growth models to provide curing estimates to assist with the management of wild grass fires (Gill et al. 2010). This PhD project focused on plant physiological characters to populate models that could be used to predict curing assessments for fire management purposes.

Existing pasture growth models

APSIM (McCown 1996), GrassGro (Moore et al. 1997) and the SGS Pasture Model (Johnson et al. 2003) were used to simulate curing in a number of pastures (e.g. Fig. 1) and a wheat crop in SE South Australia. Curing outputs were similar to estimates derived from the Levy Rod technique except in native pastures. However, no single pasture growth model was suited to all grassland situations.

The models varied in the species simulated, the underlying senescence assumptions, and management flexibility. Use of these models is predicated on accurate inputs and robust validation, which is often problematic. Calibration of curing outputs to management practice is also necessary.

Measurement and modelling of leaf turnover rates

Curing is a fire management term encompassing the senescence and death of plant material, which is not well represented in current plant growth models. Leaf growth rates (leaf appearance, elongation, length, and life span) and leaf senescence rates were measured to capture the whole life cycle to ascertain similarities and differences between four C3 grass species (Fig. 2). This study was unique in that it measured all growth and death stages, including an Australian native, and compared grass species of differing growth habits. Generally, the relationship between leaf rates and leaf position could be represented using non-linear models. This work will be useful to model developers who wish to strengthen the algorithms underpinning particularly the senescence routines in existing pasture growth models. In the interim, a standalone model was developed to incorporate the leaf rates into a prototype curing model.

Figure 1. Comparison of field curing assessments with estimates of curing from GrassGro™ and the SGS Pasture Model for phalaris at Struan, SA, during the 2008-2009 fire season.
Bayesian curing model

The models of individual leaf turnover rates were incorporated into a Bayesian model, to determine the accumulation of green leaf material, as could the progression of curing over time. The Bayesian model for phalaris sufficiently predicted curing in one region (SE of SA) over two fire seasons (Fig. 3).

Conclusion

This project has improved the prediction of curing by applying a plant physiology perspective to what is essentially a plant flammability problem arising from plant senescence and death. This knowledge can be applied to enhance existing tools, or to create new ones from the prototypes developed here.

References

