Integrated Evaluation of Soil Carbon Budget by Manure Application on Forage Production

Mikinori Tsuiki
Iwate University, Japan

Ryo Sato
Iwate University, Japan

Shoji Matsuura
NARO, Japan

Mariko Shimizu
Hokkaido University, Japan

Ryusuke Hatano
Hokkaido University, Japan

See next page for additional authors

Follow this and additional works at: https://uknowledge.uky.edu/igc

Part of the Plant Sciences Commons, and the Soil Science Commons

This document is available at https://uknowledge.uky.edu/igc/23/5-1-1/2

The 23rd International Grassland Congress (Sustainable use of Grassland Resources for Forage Production, Biodiversity and Environmental Protection) took place in New Delhi, India from November 20 through November 24, 2015.

Published by Range Management Society of India

This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Presenter Information
Mikinori Tsuiki, Ryo Sato, Shoji Matsuura, Mariko Shimizu, Ryusuke Hatano, Takatoshi Arita, Akinori Mori, Akira Miyata, Masayuki Hojito, and Mitsuhiro Niimi

This event is available at UKnowledge: https://uknowledge.uky.edu/igc/23/5-1-1/2
Integrated evaluation of soil carbon budget by manure application on forage production

Mikinori Tsuiki1*, Ryo Sato1, Shoji Matsuura2, Mariko Shimizu3, Ryusuke Hatano3, Takatoshi Arita4, Akinori Mori5, Akira Miyata5, Masayuki Hojito6, Mitsuhiro Niimi7

1Iwate University, Morioka, Japan
2NARO Institute ofLivestock and Grassland Science, Nasushiobara, Japan
3Hokkaido University, Sapporo, Japan
4Konsen Agricultural Experiment Station, Nakashibetsu, Japan
5National Institute of Agro-Environmental Sciences, Tsukuba, Japan
6Kitasato University, Towada, Japan
7Miyazaki University, Miyazaki, Japan
*Corresponding author e-mail: tsuiki@iwate-u.ac.jp

Introduction
Grasslands and forage crop fields produce forages and also have many services and functions such as reservoirs of biodiversity, climate regulation and soil conservation (Sala and Paruelo, 1997). Carbon budget is one of these important ecosystem services by high levels of carbon sequestration below ground (Hungate et al., 1997). Manure application increases carbon budget and also affects forage production, NO-\textsubscript{3} leaching to underground water and N\textsubscript{2}O emission to atmosphere. Integrated evaluation of these various environmental impacts is important to find optimum condition for forage production and environmental impacts. LIME2 (Life-cycle Impact assessment Method based on Endpoint modeling 2, Itsubo and Inaba, 2010) is one of the methods to evaluate environmental impacts and to integrate them into a single index of environmental damages with the unit of Japanese yen. By comparing this index to economic benefit of forage production, integrated evaluation of environmental damages and profit of farmers is achieved. In this study, the effects of manure application to forage production, carbon budget, NO\textsubscript{3} leaching and N\textsubscript{2}O emission were evaluated and optimum level of manure application level was estimated with LIME2 integration factors.

Materials and Methods
The evaluation flow of manure and chemical fertilizer application and environmental impacts was shown in Fig. 1. The relationships between the amount of nitrogen application (chemical fertilizer: F\textsubscript{N}, manure: M\textsubscript{N}, kgN ha-1 y-1) and dry matter yield on artificial grassland (GY\textsubscript{DM}, kgDM ha-1 y-1) and forage corn (CY\textsubscript{DM}, kgDM ha-1 y-1) were estimated by following equations.

\begin{align*}
GY_{\text{DM}} &= (1896.3 \ln (F_N + 0.3417 M_N) + 180.80) * (0.02721 T + 0.7234) \quad (1) \\
CY_{\text{DM}} &= 1330.1 \ln (F_N + 0.3417 M_N) + 8471.4 \quad (2)
\end{align*}

T was mean annual air temperature. A part of M\textsubscript{N} (34.17 %) was assumed to be released as inorganic nitrogen. The relationships between the amount of nitrogen application and nitrogen yield on artificial grassland (GY\textsubscript{N}, kgN ha-1 y-1) and forage corn (CY\textsubscript{N}, kgN ha-1 y-1) were estimated by following equations.

\begin{align*}
GY_{\text{N}} &= (63.653 \ln (F_N + 0.3417 M_N) - 88.704) * (0.02721 T + 0.7234) \quad (3) \\
CY_{\text{N}} &= 29.874 \ln (F_N + 0.3417 M_N) + 15.262 \quad (4)
\end{align*}

N\textsubscript{2}O emission factors (%) of chemical fertilizer nitrogen application on artificial grasslands (GEF\textsubscript{F}, Shimizu et al., unpublished) and forage corn fields (CEF\textsubscript{F}, Shimizu et al., 2013) were estimated by following equations.

\begin{align*}
\text{GEF}_{\text{F}} &= 0.0022 P - 1.3 \quad (5) \\
\text{CEF}_{\text{F}} &= - 0.23 S_{\text{TC}} + 18 \quad (6)
\end{align*}

P was annual precipitation (mm) and S\textsubscript{TC} was the amount of total carbon in soil (gC kg-1). N\textsubscript{2}O emission factors of manure nitrogen application on artificial grasslands (GEF\textsubscript{M}, Shimizu et al., unpublished) and forage corn fields (CEF\textsubscript{M}, Shimizu et al., 2013) were 0.36 % and 0.53%, respectively. The amount of leaching NO\textsubscript{3} was estimated by nitrogen balance. Integration factors of LIME2 (yen kg-1 of CO\textsubscript{2}, N\textsubscript{2}O and NO\textsubscript{3} were 2.3, 737.7 and 18.6, respectively (Itsubo and Inaba, 2010). The prices of grass and corn whole crop were defined as 44 and 26 yen kg-1 DM, respectively.
Fig. 1: The evaluation flow of manure and chemical fertilizer application and environmental impacts

Results and Discussion
The amount of yield, N_2O emission, carbon budget, NO_3^- reaching, environmental impacts and integrated evaluation on artificial grasslands and forage corn fields under various levels of chemical fertilizer and manure application was shown in Fig. 2. Chemical fertilizer and manure application raised yield. Chemical fertilizer application strongly affected N_2O emission compared with manure application. Manure application raised carbon budget in soil. On artificial grasslands, low levels of chemical fertilizer application raised root growth and carbon budget. Manure application strongly affected NO_3^- reaching compared with chemical fertilizer application. As the increase of carbon budget reduced environmental impact and the effect of carbon budget to environmental impact was more than N_2O emission and NO_3^- reaching, environmental impact was in inverse proportion to carbon budget. The result of integrated evaluation (= income - environmental impact) showed that manure application was better for integrated evaluation than chemical fertilizer application.

These results indicated that manure application raises carbon budget, environmental impact and integrated evaluation. It will be important to replace chemical fertilizer with manure for mitigation of global warming.
Fig. 2: Environmental impacts, yield and integrated evaluation on forage production
Conclusion
The effects of manure application to forage production, carbon budget, NO$_3^-$ leaching and N$_2$O emission were evaluated and optimum level of manure application level was estimated with LIME2 integration factors. Application of chemical fertilizer and manure raised yield, N$_2$O emission and NO$_3^-$ leaching. Manure application raised carbon budget and lowered environmental impact. The result of integrated evaluation showed that manure application was better than chemical fertilizer application. These results indicated that manure application raises carbon budget, environmental impact and integrated evaluation. It will be important to replace chemical fertilizer with manure for mitigation of global warming.

References

Acknowledgement
This study was supported by the Ministry of Agriculture, Forestry and Fisheries, Japan through a research project entitled “Development of technologies for mitigation and adaptation to climate change in agriculture, forestry and fisheries”.