Increasing Feed Conversion Efficiency in Automatic Milking Systems: The Impact of Grain-Based Concentrate Allocation and Kikuyu (*Pennisetum clandestinum*) Pasture State on Kikuyu Pasture Digestibility

Cameron E. F. Clark
University of Sydney, Australia

Mohammed R. Islam
University of Sydney, Australia

Ajantha Horadagoda
University of Sydney, Australia

Ravneet Kaur
University of Sydney, Australia

Helen Golder
University of Sydney, Australia

See next page for additional authors
Follow this and additional works at: https://uknowledge.uky.edu/igc

Part of the Plant Sciences Commons, and the Soil Science Commons

This document is available at https://uknowledge.uky.edu/igc/22/2-16/4

The 22nd International Grassland Congress (Revitalising Grasslands to Sustain Our Communities) took place in Sydney, Australia from September 15 through September 19, 2013. Proceedings Editors: David L. Michalk, Geoffrey D. Millar, Warwick B. Badger, and Kim M. Broadfoot

Publisher: New South Wales Department of Primary Industry, Kite St., Orange New South Wales, Australia

This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lvuky.edu.
Presenter Information
Cameron E. F. Clark, Mohammed R. Islam, Ajantha Horadagoda, Ravneet Kaur, Helen Golder, Sergio C. Garcia, and Kendra L. Kerrisk

This event is available at UKnowledge: https://uknowledge.uky.edu/igc/22/2-16/4
Increasing feed conversion efficiency in automatic milking systems: The impact of grain-based concentrate allocation and kikuyu (*Pennisetum clandestinum*) pasture state on kikuyu pasture digestibility

Cameron EF Clark, Mohammed R Islam, Ajantha Horadagoda, Ravneet Kaur, Helen Golder, Sergio C Garcia and Kendra L Kerrisk

Faculty of Veterinary Science, The University of Sydney, Camden, NSW 2570 Australia

Contact email: cameron.clark@sydney.edu.au

Keywords: Automatic milking system, kikuyu, grain, pasture digestibility.

Introduction

Automatic milking system (AMS) farms, rely upon voluntary cow traffic (the voluntary movement of cattle around a farm) for milk harvesting and feed consumption. Dairy cows on a pasture-based AMS farm typically move from depleted to fresh allocations of pasture in small groups, or individually, at differing times. The first cows moving to an allocation of fresh pasture get access to rapidly fermentable, *ad libitum*, high quality pasture in contrast to those cows accessing the same allocation towards the end of the access period. At the same time, grain-based concentrate (GBC) is allocated independent of the pasture state that cows access. Inclusion of a high level of GBC in the diet with high or low nutritive value forage, or variable states of forage, may create dramatic variations in rumen fluid pH, which may induce subacute ruminal acidosis (Bramley 2004), reduce feed conversion efficiency and negatively impact animal health. The aim of the current study was to determine the impact of pasture state and GBC allocation on the digestibility of kikuyu pasture.

Methods

Ninety mixed-age dairy cows in mid-lactation grazed kikuyu grass (*Pennisetum clandestinum*), and were offered GBC, as two allocations per day as per Table 1. After 6 days of adaptation, 50mL of rumen fluid was pumped from 3 matched, pre-selected cows out of each treatment (n=12 treatments) after the morning (AM) milking on Day 1 and 7 of the experimental period (n=2 periods). Kikuyu pasture samples were taken on day 1 of the experimental period from three blocks of the Day 2 pasture allocation and split into 5 to 10, 10 to 15 and >15cm fractions measured above ground level. These fractions were then dried at 60°C for 48 h, weighed and ground (1 mm) for *in vitro* ruminal incubation (Wang et al., 1999) to determine *in vitro* dry matter digestibility (IVDMD). Rumen fluid samples for each cow were pooled by treatment (3 rumen fluid samples combined) before the commencement of two incubations on Day 1 and 7. Data were fitted with linear mixed models and parameters were estimated using the restricted maximum likelihood procedure. Pasture state group, pasture fraction, GBC allocation and period were fixed effects and block was a random effect.

Results

There was no interaction between kikuyu fraction and treatment for IVDMD. The IVDMD of kikuyu grass increased as GBC allocation increased from 2.7 to 8.1 kg
DM/cow/day (Fig. 1). The IVDMD was similar for a consistent diet of fresh or stale kikuyu pasture. There was a difference in IVDMD between variable pasture state, and consistent pasture state treatments, particularly at reduced levels of when 2.7 kg DM/cow/day GBC was offered.

Conclusions

These findings highlight an opportunity to increase FCE on AMS farms by differentially feeding GBC to cows based on the pasture states that they will imminently access. If a limited amount of GBC were available, GBC could be targeted at those cows consistently accessing fresh or stale pasture to significantly increase kikuyu grass digestibility and potentially milk production. Work is underway to determine the causes of the difference in IVDMD between treatments to enable FCE to be increased on pasture-based AMS farms.

Acknowledgements

We acknowledge funding from Dairy Australia, NSW Department of Primary Industries, The University of Sydney, and DeLaval. We also thank the staff of Corstorphine dairy for their work during this experiment.

References