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ABSTRACT OF DISSERTATION 

 

 

ROLE OF LIPIDS IN TOMBUSVIRUS REPLICATION 

 

Positive-strand RNA virus group are the most abundant among viruses affecting 
plants and animals. To successfully achieve replication, these viruses usurp or co-opt host 
proteins. To facilitate the discovery of host factors involved in Tomato bushy stunt virus 
(TBSV), yeast has been developed as a surrogate model host.  Genome-wide approaches 
covering 95% of yeast genes, has revealed approximately hundred factors that could 
affect virus replication. Among the identified host factors, there are fourteen yeast genes, 
which affect/regulate lipid metabolism of the host.  

 
One of the identified host gene is ERG25, which is an important factor for sterol 

biosynthesis pathway, affecting viral replication. Sterols present in eukaryotes affect the 
lipid composition of membranes, where tombusviruses, similar to other plus-strand 
viruses of tobacco, replicate. Since potent inhibitors of sterol synthesis are known, I have 
tested their effects on tombusvirus replication. We demonstrated that these sterol-
synthesis inhibitors reduced virus replication in tobacco protoplasts. Virus replication is 
resumed to the wild type level by providing phytosterols in tobacco protoplasts 
confirming the role of sterols in RNA virus replication in tobacco.  

 
We have also identified INO2, a transcription factor for many phospholipid 

biosynthetic genes, reduces virus replication in its deletion background. When we 
provided this gene product in the mutant background, viral replication was back to 
normal, confirming the role of Ino2p in tombusvirus replication. Further biochemical 
assays showed that the viral inhibition is because of alteration in the formation of the 
viral replicase complex. Using confocal microscopy, we showed that the viral replication 
protein, termed p33, is forming large and few punctate structures rather than the small 
and many by overexpressing Ino2p in the wild type yeast cells. Over-expression of Opi1, 
an inhibitor of Ino2p led to greatly reduced viral replication, further supporting the roles 
of the phospholipid pathway in tombusvirus replication.  



	
  

 
 
One of the phospholipid, which is regulated by this pathway, is cardiolipin an 

important component of the mitochondrial as well as peroxisomal membranes. We 
further characterized how cardiolipin is playing an important role for tombusvirus 
replication by using different biochemical approaches. 
 

Key Words: Plant virus, RNA replication, lipid metabolism, phospholipids, cardiolipin 
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Chapter 1 Introduction 

Viruses represent a major threat faced to plant, human and veterinary health. The 

heightened awareness and importance of the epidemiological potential of viruses, both in 

natural and man-caused outbreaks, has stimulated the search for both prophylactic and 

curative treatments. More than 800 million people do not have adequate food; 1.3 billion 

live on less than $1 a day and at least 10% of global food production is lost to plant 

diseases (Strange and Scott, 2005). Plant pathologists cannot ignore the juxtaposition of 

these figures for food shortage and the damage to food production caused by plant 

pathogens. Apart from cultural practice and resistant varieties scientists have nothing left 

in their arsenal to fight against plant viruses. Medical professionals have vaccines to 

prevent viral diseases. They even have few antiviral agents to use in therapy for viral 

insults; but so far neither vaccines nor antivirals have been reported to be effective 

against plant viruses. Classical targets for antiviral drugs are viral specific enzymes and 

metabolic pathways. But there is an increasing necessity to find novel targets for 

antivirals because many viruses evolve to escape the antivirals targeted against them. 

There are increasing number of evidences that viruses multiply by co-opting several 

cellular factors [reviewed by (Nagy, 2008)]. These usurped host factors can be excellent 

novel targets for antivirals (Schwegmann and Brombacher, 2008). Therefore, one of the 

research areas is to characterize host–virus interactions in order to invent new antiviral 

strategies and develop highly effective and specific antiviral agents. For this to happen, 

pioneering research is needed to characterize the intimate interaction of viruses with their 

hosts at the molecular level. Accordingly, the central theme of my research is to decipher 

the mechanisms how viruses co-opt and utilize the host factors, in particularly cellular 



	
   2 

membranes and lipids for their own multiplication. I expect that this research about host 

and virus interaction will improve the approaches towards antiviral therapy. My research 

also opens up a vista in which virus infections can be understood in the context of the 

biology of their hosts. 

 

INTRODUCTION TO THE RESEARCH SYSTEM 

Tombusviruses, belong to RNA virus group (Russo et al., 1994) that are the most 

abundant among viruses affecting humans, animals and plants. RNA viruses encompass 

over one-third of all virus genera and include numerous pathogens, such as the severe 

acute respiratory syndrome coronavirus SARS, hepatitis C virus (HCV), Dengue virus, 

and many of the viruses on the U.S. Health and Human Services Department Select List 

of potential bioterrorism agents (Ahlquist, 2006). To facilitate the identification of host 

factors facilitating viral replication, our lab has developed yeast as a model host (Panavas 

and Nagy, 2003). Using genome-wide approaches covering 95% of yeast genes, we have 

reported approximately hundred host factors that could affect virus replication in yeast 

(Jiang et al., 2006; Panavas et al., 2005b). We confirmed that several of these host genes 

also facilitate tombusvirus replication in their host plants, validating our approach (Huang 

and Nagy, 2011; Sharma et al., 2010; Wang and Nagy, 2008; Wang et al., 2009). 

Altogether, tombusviruses have emerged as a one of the best characterized RNA viruses 

and a superior system to advance our understanding of virus – host interactions. 

Among the identified host factors, there are fourteen yeast genes, which 

affect/regulate lipid metabolism of the host (Jiang et al., 2006; Panavas et al., 2005b). I 

used in-vitro assays, biochemical and genetics tools, confocal microscopy, plant 
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protoplast systems and whole plants, and I tried to find out the role of the critical host 

lipid metabolism genes affecting virus replication, including dissecting the mechanism(s) 

by which these factors affect virus replication.  

 

OBJECTIVES AND HYPOTHESES 

Viruses modify the host’s normal physiological and metabolic pathways for their 

own benefit so that they can multiply at enormous rates. For e.g. many viruses in order to 

facilitate their own protein production, turn off the host protein machinery so that all the 

cellular resources are diverted for their multiplication (Kaariainen and Ranki, 1984). Like 

wise, when viruses multiply, they require continuous supply of lipids, which are the 

crucial components of cell membranes (Lazarow, 2011; Lorizate and Krausslich, 2011). 

The cell membranes are site of multiplication for many important RNA viruses (Laliberte 

and Sanfacon, 2010; Miller and Krijnse-Locker, 2008a). We know little about how 

viruses force the cells to make so much of lipids and thus membranes. Gaining insight 

into the role of lipids/membranes in the virus replication was objective of my projects. 

Sterols and phospholipids are the two major components of cellular membranes (Osman 

et al., 2011). With this knowledge, I started with simple hypothesis:  

“Knock down of genes involved in lipid biosynthesis in host should inhibit virus 

replication.” 

Objectives: 

1. To characterize the lipid metabolic factors involved in TBSV replication 

in yeast and plants. 
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2. To find out the mechanism by which a particular lipid affects the TBSV 

replication. 

 

POSITIVE STRAND RNA VIRUS REPLICATION 

Replication of positive stranded RNA viruses is a complex process that needs an 

interaction between viral replication proteins, viral genome and host factors (Ahlquist et 

al., 2003).  Plant viruses start their multiplication cycle after entering the plant cells. 

Their entry is facilitated by mechanical damage to the cell wall, or by insects, fungi and 

nematodes. Immediately after entry the genomic RNA disassembles of the coat proteins. 

Co-translational disassembly is the most accepted model for the same. Briefly, ribosome 

during translation helps to disassemble the coat proteins from the 5ʹ′ end of the RNA 

molecule. Early proteins translated are most critical for replication of the viral genome. 

Then the RNA is recruited to the site of replication, generally specialized structures 

derived from organellar membranes. Plus strand RNA is used to synthesize minus strand 

or complementary strand of RNA, which in turn acts as template for production of 

multiple copies of plus strand RNA. The newly synthesized plus RNAs have different 

fates. Some go back to translate new viral proteins. Some are again recruited for another 

round of replication. The movement proteins might grab another group of RNAs for 

transportation to neighboring cells and distant tissues. Remaining lot is assembled into 

new virion particles after encapsidation by the coat proteins. To achieve high levels of 

daughter RNAs, viruses use cellular proteins at each of above-mentioned steps.  
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TBSV REPLICATION COMPONENTS 

Tombusviruses belong to one of the most studied positive strand RNA viruses of 

plants. TBSV the type species of Tombusviridae family within Tombusvirus genus has 

become a model virus to study replication. TBSV was one of the earliest model for which 

the structure was deduced (Harrison, 1969).  

TBSV genome codes for five ORFs. ORF2 is translated as a read-through of 

ORF1 (encoding p33 a replication auxillary protein) resulting into p92 that has RdRp 

domains [reviewed by (White and Nagy, 2004)]. Only these two proteins are sufficient to 

support RNA replication in plants and yeast (a model host). P33 is emerging as master-

regulator of TBSV replication owing to its multi-functionality. For e.g. (i) Selects viral 

RNA template via binding through Arginine-Proline-Arginine rich (RPR) domain 

(Panaviene et al., 2003), (ii) Contains transmembrane domain for membrane localization 

(Panavas et al., 2005a), (iii) Dimerizes/oligomerizes with other p33/p92 molecules, which 

is necessary for RNA binding and RNA replication (Rajendran and Nagy, 2004, 2006) 

(iv) targets replication complex to peroxisomal membranes by interacting with 

peroxisomal transporter pex19p via peroxisomal targeting signals on its NH2-terminal 

half (Pathak et al., 2008). (v) P33 also interact to many host-factors to either recruit them 

for replication (Li et al., 2008; Li et al., 2009b; Mendu et al., 2010; Serva and Nagy, 

2006) or to get modified (Barajas and Nagy, 2010). (vi) Recently it has been shown that 

p33 possesses RNA chaperone activity to facilitate replication via improving accessibility 

of the p92 to the template RNA (Stork et al., 2011).  
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Overall, the emerging picture is: TBSV utilizes various host factors, host 

membranes, viral RNA and its versatile p33 apart from p92 to accomplish high level of 

multiplication rate that enables it to accumulate up to million progenies in a single day. 

 

TBSV REPLICATION IN YEAST AND IN VITRO 

Panavas and co-workers developed yeast as a surrogate host to rapidly to facilitate 

the studies of host factors utilized by TBSV for its replication (Panavas and Nagy 2003). 

Easy access to the commercial gene knock-out and knock down libraries combined with 

the high levels of accumulation of TBSV replicon RNA in yeast lead to discoveries of 

host factors involved in TBSV replication. To launch RNA replication in yeast, two 

replication indispensable viral proteins p33 and p92 were expressed via separate plasmids 

under constitutive ADH1 promoters. RNA replicon was expressed under GAL1 promoter, 

which is galactose inducible and is suppressed under glucose. Auxotrophic markers were 

utilized for selection of the transformed yeast strains. Replication was checked by 

visualizing the replicon RNAs on agarose gels stained with ethidium bromide followed 

by Northern blotting. 

To check the efficiency of replicase complex assembly, in vitro reconstitution 

assays were used based on Panaviene and co-workers methods (Panaviene et al., 2005). 

As the membrane fractions contained the assembled replicase of TBSV, it was isolated 

and normalized for the presence of similar quantities of p33 and p92 followed by an in 

vitro RNA dependent RNA polymerase (RdRp) assay.  
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CELLULAR FACTORS FOR RNA VIRUS REPLICATION  

Different Subcellular membranous sites for replication 

All positive strand RNA viruses replicate their genome on cytoplasmic surface of 

different subcellular organellar membranes. Among many studied RNA viruses, Brome 

mosaic virus (BMV) replicates on the membranes of endoplasmic reticulum associated 

complexes in plants as well as yeast Saccharomyces cerevisiae (Lee et al., 2001). 

Similarly Tobacco etch virus, Cow pea mosaic virus and polio virus induce proliferation 

and rearrangement of ER membranes where replicase complex are formed (Carette et al., 

2000; Gosert et al., 2000; Rust et al., 2001; Schaad et al., 1997). Replication of Flock 

house virus is associated with the outer mitochondrial membranes (Miller et al., 2001). 

Turnip yellow mosaic virus and Alfalfa mosaic virus replicates on chloroplast and 

vacuolar membranes respectively (Prod'homme et al., 2001; Van Der Heijden et al., 

2001). For tobamovirus RNA replication subcellular localization of viral and host 

proteins has been observed to be associated with the tonoplast membranes (Hagiwara et 

al., 2003).  

  TBSV is well known to replicate in the spherules formed on the cytoplasmic 

surface of peroxisomes (Burgyan et al., 1996; Weber-Lotfi et al., 2002). Surprisingly, in 

our lab, genome wide screening showed TBSV replicating perfectly in ∆PEX3 and 

∆PEX19 detletion strains, which is known to be extremely crucial for peroxisome 

biogenesis. (Jonczyk et al., 2007). The authors discovered that TBSV could also replicate 

on endoplasmic reticulum membranes in ∆PEX3 and ∆PEX19  deletion yeast strains 

where peroxisome biosynthesis is completely abolished (Jonczyk et al., 2007).  
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Importance of host membranes in for virus replication  

Many characterized RNA viruses are known to assemble a replicase complex on 

membranes. Importance of formation of such a replication complex has multiple 

purposes. First, a membrane provides a stable platform to localize and concentrate 

different components essential for replicase to assemble. It also provides a separate 

compartment for sequestering the genomic RNAs and replication factors  from processes 

like translation and competing with RNA templates (den Boon et al., 2001). Virus 

induced membrane vesicle also protects dsRNA replication intermediates induced host 

defense responses  (Ahlquist et al., 2003) 

 

Importance of host membranes for TBSV replication. 

An electron microscopic image of cells replicating tombusviruses shows 

extensive remodeling of membranes (Barajas et al., 2009). Genome wide screen of S. 

cerevisiae identified around fourteen host factors (INO2, ADA2, UME6, SIN3, SWI3, 

SNF6, CHO2, SPT3, ERG4, MCT1, POX1, TGL2, ERG25 and FAS2) involved in host 

lipid metabolism, suggested the role of different lipids for tombusvirus replication and 

recombination. (Jiang et al., 2006; Panavas et al., 2005b; Serviene et al., 2006; Serviene 

et al., 2005). Lipids play an important role in membranes fluidity, permeability and 

rigidity, which might be important to maintain the appropriate replicase complex for 

efficient viral replication.  
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Importance of lipids  

Lipid synthesis and lipid composition are important for positive RNA virus 

replication. Bromo Mosaic Virus 1a protein leads to both membrane proliferation and 

membrane lipid synthesis, which leads to total increase in lipids by 25%to 33% in yeast. 

(Lee and Ahlquist, 2003b). Ole1p is the ∆9 fatty acid desaturase; an integral ER 

membrane protein that converts saturated fatty acids into unsaturated fatty acids (Lee et 

al., 2001). Mutation in OLE1 led to reduced amount of unsaturated fatty acids and BMV 

replication gets severely compromised prior to minus strand synthesis. Supplementation 

of media with unsaturated fatty acids can rescue the defects (Lee et al., 2001).  

  Flock house virus (FHV) in Drosophila S2 cells showed transcriptional up 

regulation of the several genes involved in lipid metabolism (Castorena et al., 2010). 

Furthermore, genes involved in glycerophospholipid metabolism have been found to be 

important for FHV replication by using gene-silencing approach (Castorena et al., 2010). 

Down regulation of Cct1 or Cct2 which encodes the genes involved in 

phosphatidylcholine biosynthesis shows decrease in flock house virus replication 

(Castorena et al., 2010). Deletion of an important enzyme 3-hydroxy-methyglutaryl-CoA 

reductase involved in cholesterol biosynthesis pathway reduces the replication of West 

Nile virus (WNV) replication (Mackenzie et al., 2007) 

Norwalk virus (NV) infection is also affected by the genes involved in similar 

pathway. HMG-CoA reductase inhibitor statins increases the NV proteins and RNA 

accumulation, whereas acyl-CoA:cholesterol acyltransferase (ACAT) inhibitors reduces 

replication of Norovirus replication (Chang, 2009).  
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Subcellular membranes in response to virus infection 

  Positive RNA viruses induce changes in membranes and invaginate these 

membranes to a small membrane bound spherule like structures, which contains all the 

components essential for virus replication (Mackenzie et al., 2007). WNV requires a 

complex membranous structure. WNV modulates host cell cholesterol homeostasis by up 

regulating its synthesis and redirecting the already existing as well as newly made 

cholesterol to membranes where virus replication takes place (Mackenzie et al., 2007). 
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Chapter 2 Inhibition of sterol biosynthesis inhibits tombusvirus replication in yeast 

and plants 

(This chapter is published in J Virol. 2010 84(5):2270-81. Copyright © Monika Sharma 

2011 and American Society of Microbiology. [Z. Sasvari did the confocal microscopy 

and protoplast experiments]) 

 

INTRODUCTION 

Plus-stranded (+)RNA viruses usurp various intracellular/organellar membranes 

for their replication. These cellular membranes are thought to facilitate building of "viral 

factories", promote high concentration of membrane-bound viral proteins and provide 

protection against cellular nucleases and proteases (Ahlquist et al., 2003). The membrane 

lipids and proteins may serve as scaffolds for targeting the viral replication proteins or for 

the assembly of the viral replicase complex. The subcellular membrane may also provide 

critical lipid or protein cofactors to activate/modulate the function of the viral replicase. 

Indeed, formation of spherules, consisting of lipid membranes bended inward and viral 

replication proteins as well as recruited host proteins, has been demonstrated for several 

(+)RNA viruses (McCartney et al., 2005). These viral-induced spherules serve as sites of 

viral replication. Importantly, (+)RNA viruses also induce membrane proliferation that 

requires new lipid biosynthesis. Therefore, it is not surprising that several genome-wide 

screens for identification of host factors affecting (+)RNA virus replication unraveled 

lipid biosynthesis/metabolism genes (Cherry et al., 2005; Kushner et al., 2003; Panavas et 

al., 2005b; Serviene et al., 2006). Yet, in spite of the intensive efforts, understanding the  

Copyright © Monika Sharma 2011 
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roles of various lipids and lipid biosynthesis enzymes and pathways in (+)RNA virus 

replication is limited. 

 TBSV is among the most advanced model systems regarding identification of 

host factors affecting (+)RNA virus replication (Nagy, 2008). Among the five proteins 

encoded by the TBSV genome, only p33 replication co-factor and the p92pol RNA-

dependent RNA polymerase (RdRp) are essential for TBSV RNA replication (White and 

Nagy, 2004). p33 and p92pol are integral membrane proteins and they are present on the 

cytosolic surface of the peroxisomes, the site of replicase complex formation and viral 

RNA replication [(Mccartney et al., 2005) and (Pathak et al., 2008)]. Electron 

microscopic images of cells actively replicating tombusviruses have revealed extensive 

remodeling of membranes and indicated active lipid biosynthesis (Mccartney et al., 

2005). 

 Additional support for the critical roles of various lipids in TBSV replication is 

coming from a list of 14 host genes involved in lipid biosynthesis/metabolism, which 

affected tombusvirus replication and recombination based on systematic genome-wide 

screens in yeast, a model host. These screens covered 95% of the host genes (Jiang et al., 

2006; Panavas et al., 2005b; Serviene et al., 2006; Serviene et al., 2005). The 14 

identified host genes involved in lipid biosynthesis/metabolism included 8 genes 

affecting phospholipid biosynthesis, 4 genes affecting fatty acid biosynthesis/metabolism 

and 2 genes affecting ergosterol synthesis. These finding suggest that these lipids are 

likely involved, directly or indirectly, in TBSV replication in yeast.  

In order to further understand the roles of cellular membranes, lipids and host 

factors   in viral (+)RNA replication, we analyzed the importance of sterol biosynthesis in 
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tombusvirus replication. Sterols are ubiquitous and essential membrane components in all 

eukaryotes, affecting many membrane functions. Sterols regulate membrane rigidity, 

fluidity and permeability by interacting with other lipids and proteins within the 

membranes (Bloch, 1992; Bloch, 1983). They are also important for the organization of 

detergent-resistant microdomains, called lipid rafts (Roche et al., 2008). The sterol 

biosynthesis differs in several steps in animals, fungi and plants, but the removal of two 

methyl groups at C4 position is critical and rate limiting. The C4 demethylation steps are 

performed by SMO1 (sterol4alpha-methyl-oxidase) and SMO2 in plants and by the 

orthologous ERG25 gene in yeast (Darnet and Rahier, 2004). Accordingly, erg25 mutant 

yeast accumulates 4,4-dimethylzymosterol, an intermediate in the sterol biosynthesis 

pathway (Bard et al., 1996). However, sterol molecules become functional structural 

components of membranes only after the removal of the two methyl groups at C4. 

Therefore, ERG25 is an essential gene for yeast growth.   

 Our previous genome-wide screens for factors affecting tombusvirus replication 

have identified two sterol synthesis genes, ERG25 and ERG4, which participate in 

different steps in the sterol biosynthesis pathway (Daum et al., 1998). In this work, we 

further characterized the importance of ERG25 in TBSV replication in yeast. Down 

regulation or pharmacological inhibition of ERG25 in yeast led to 4-to-5-fold decreased 

TBSV RNA accumulation. The in vitro activity of the tombusvirus replicase was reduced 

when isolated from the above yeast cells. We also found that the stability of p92pol viral 

replication protein decreased by 3-fold in yeast treated with a chemical inhibitor of 

ERG25. Inhibition of sterol biosynthesis in plant protoplasts or in plant leaves with a 

chemical inhibitor or silencing of SMO1/SMO2 genes also resulted in reduction in TBSV 
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RNA accumulation, supporting the roles of sterols in tombusvirus replication in plants as 

well.  

 

MATERIALS AND METHODS 

Yeast strains and expression plasmids. 

 Saccharomyces cerevisiae strain BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 

ura3Δ0) and single-gene deletion strain Δpex19 as well as ERG25/THC (BY4741; 

URA3::CMV-tTA) strain with the regulatable TET promoter from the Hughes collection, 

were obtained from Open Biosystems (Huntville, AL). The following yeast expression 

plasmids have been generated before: pGAD-His92 (Panaviene et al., 2004), pGBK-

His33/DI-72 (Jiang et al., 2006), pGBK-His33/CUP1(Jaag et al., 2007) pGAD-

His92CUP1 (Li et al., 2008), and pYC/DI72 (Panavas and Nagy, 2003). 

To generate pCM189-tetDI72, DI-72 sequence was PCR-amplified using the 

following primers: #1803 (GGCGAGATCTGGAAATTCTCCAGGATTTCTC) and 

#3176 (CGGTCAAGCTTTACCAGGTAATATACCACAACGTGTGT) and pYC/DI72 

as a template. The obtained PCR product was purified and digested with HindIII and 

BglII, followed by ligation into HindIII and BamHI digested vector pCM189.  

TBSV repRNA replication studies in yeast.  

The ERG25/THC strain transformed with pGAD-His92 and pGBKHis33/DI-72 

plasmids was pre-grown in a synthetic complete dropout medium lacking leucine and 

histidine (SC-LH- medium) containing 2% glucose and then cultured for 24 h at 29°C 

until OD600 of ~0.8 to 1.0 in  SC-LH- medium containing 2% galactose. For maximum 

level of ERG25 gene expression, yeast was grown in the absence of doxycycline, whereas 
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to reduce the expression level of the ERG25, yeast was grown in the same medium in the 

presence of 10 mg/liter doxycycline (Jiang et al., 2006).  

To study the effect of 6-amino-2-n-pentylthiobenzothiazole (APB) on TBSV 

repRNA accumulation, we used different APB concentrations to treat both BY4741 and 

ERG25/THC strains. Briefly, the above strains were transformed with pGAD-His92 and 

pGBK-His33/DI-72 plasmids and pre-grown overnight at 29°C with or without APB in 

SC-LH- medium containing 2% glucose. The replication of TBSV repRNA was induced 

by transferring the culture to SC-LH- media containing 2% galactose (Panavas and Nagy, 

2003) followed by growing at 29°C. After 24 h, cells were used to obtain total RNA 

extracts. 

To do the time course study with APB, ERG25/THC strain carrying pGAD-His92 

and pGBK-His33/DI-72 plasmids was grown with 30 µM APB added at different time 

points. Briefly, yeast was pre-grown overnight at 29°C in 6 different batches (treatments 

#1-6) in SC-LH- medium containing 2% glucose. TBSV repRNA was expressed by 

transferring the culture to SC-LH- media containing 2% galactose at 29°C. The APB 

inhibitor was removed and the pellet was washed with the growth media at the beginning 

of repRNA induction or after 12-hour treatment (treatments #4 and #5, respectively), 

followed by culturing as described above.  

To study the effect of Lovastatin on TBSV DI-72 repRNA accumulation in yeast, 

we prepared a stock solution of Lovastatin (Sigma) according to (Lorenz and Parks, 

1990). In our studies, we used 20 µg/ml (final concentration) of the inhibitor or 0.1% of 

the solvent in mock treated samples. BY4741 yeast was co-transformed with plasmids 

pGBK-His33 and pGAD-His92, and pYC/DI72 and pre-grown overnight at 29°C with 20 
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µg/ml of Lovastatin or 0.1% of solvent in synthetic complete dropout medium lacking 

uracil, leucine and histidine (SC-ULH- medium) containing 2% glucose. TBSV repRNA 

replication was started by transferring the yeast culture to SC-ULH- media containing 2% 

galactose along with inhibitor. After 24 h culturing at 29°C, cells were collected and 

processed for RNA isolation to analyze repRNA accumulation as described below. 

In vitro replicase assay.  

To obtain the membrane enriched (ME) fraction, containing the assembled 

replicase complex with the repRNA template, from ERG25/THC strain, yeast 

transformed with pGAD-His92 and pGBK-His33/DI-72 plasmids was grown for 24 h at 

29°C in SC-LH- medium containing 2% galactose with or without doxycycline (10 mg/L) 

until reaching ~0.8 to 1.0 OD600. To collect the ME fraction from the APB treated yeast, 

BY4741 strain was transformed with plasmids pGBK-His33/CUP1 and pGAD-

His92/CUP1 expressing 6xHis-tagged CNV p33 and 6xHis-tagged p92, respectively, 

from the inducible CUP1 promoter, as well as pCM189tetDI72 expressing DI-72 

repRNA from the doxycycline-repressible TET promoter. Briefly, yeast cells BY4741 

were grown overnight with APB or without APB in SC-ULH- medium containing 2% 

glucose at 29°C. Then, repRNA replication was induced with 50 µM copper sulfate for 

24 h at 23 °C with shaking at 250 rpm. After 24 h growth, yeast samples were collected 

at ~0.8 OD600 by centrifugation at 1,100 x g for 5 min. The procedure used to obtain the 

ME fractions from the above strains was described earlier (Jaag et al., 2007; Panaviene et 

al., 2005; Panaviene et al., 2004). Briefly, the yeast pellet was washed with 20 mM Tris–

HCl, pH 8.0 and resuspended in 1 ml of 20 mM Tris–HCl, pH 8.0, followed by 

centrifugation at 21,000 x g for 1 min. Yeast cells were broken by glass beads in a 
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Genogrinder (Glen Mills Inc., Clifton NJ) for 2 min at 1,500 rpm. After mixing with 600 

µl chilled extraction buffer (200 mM sorbitol, 50 mM Tris–HCl [pH 7.5], 15 mM MgCl2, 

10 mM KCl, 10 mM β-mercaptoethanol, yeast protease inhibitor mix; Sigma), the 

samples were centrifuged at 100 x g for 5 min at 4°C. The supernatant was moved to a 

new microcentrifuge tube and centrifuged at 21,000 x g for 10 min at 4 °C. The pellet 

was resuspended in 0.7 ml extraction buffer, resulting in the ME fraction. The replicase 

assay with the ME fraction was performed in 100 µl volume containing RdRp buffer [40 

mM Tris pH 8.0, 10 mM MgCl2, 10 mM DTT, 100 mM potassium glutamate, 0.2 µl 

RNase inhibitor, 1 mM ATP, CTP, GTP, 0.3 µl radioactive 32P-UTP (800 mCi/mmol, 

ICN) and 50 µl ME fraction. Samples were incubated at 25 °C for 2 h. The reaction was 

terminated by adding 70 µl SDS/EDTA (1% SDS, 50 mM EDTA pH 8.0) and 100 µl 

phenol-chloroform (1:1). After isopropanol precipitation of the RNA products, the RNA 

samples were electrophoresed under denaturing conditions (5% PAGE containing 8 M 

urea) and analyzed by phosphoimaging using a Typhoon (GE) instrument as described 

(Jaag et al., 2007; Panaviene et al., 2005; Panaviene et al., 2004). 

Northern blot and Western blot analyses.  

Total RNA isolation from yeast and Northern blot analyses of the accumulation of 

TBSV repRNA were performed as described previously (Panavas and Nagy, 2003; 

Panaviene et al., 2004). Western blotting for measuring p33/p92 levels was performed 

using anti-His antibody whereas the secondary antibody was alkaline phosphatase 

conjugated anti-mouse immunoglobulin G (Sigma), as described previously (Serva and 

Nagy, 2006). 
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To test the level of ERG25 mRNA expression, ERG25/THC yeast strain was 

grown for 12 hrs in YPD media at 29°C with shaking at 250 rpm. Doxycycline was added 

and samples were collected at 0, 5, 11, 24 hrs time points. After the cells were pelleted, 

total RNA was extracted by using a modified hot-phenol method (see above). For the 

Northern blot analysis, the total RNA samples were diluted 100 times (except for the 

detection of ERG25 mRNA, for which undiluted samples were used) before 

electrophoresis, followed by transfer of RNA to membranes. The 32P-labeled RNA 

probes were prepared by in vitro transcription with T7 RNA polymerase from appropriate 

PCR products. The PCR product used to transcribe the labeled 18S rRNA probe was 

amplified from the yeast genome with primers #1251 

(GGTGGAGTGATTTGTCTGCTT) and #1252 

(TAATACGACTCACTATAGGTTTGTCCAAATTCTCCGCTCT). The template for 

the probe to detect ERG25 mRNA was obtained by PCR with primers #2793 

(GCCGGATCCATGTCTGCCGTTTTCAACAAC) and #2794 

(GTAATACGAGTCACTATAGGGAGATAGAAGAACGGATTTCAAAC) using yeast 

genomic DNA as template.  

Measuring p33/p92 stability in yeast treated with APB.  

Yeast strain BY4741 was transformed with either pGBK-His33/CUP1 or pGAD-

His92/CUP1 expressing 6xHis-tagged CNV p33 and 6xHis-tagged p92, respectively, 

from the inducible CUP1 promoter. Yeast transformants were cultured overnight in SC 

H- media (or SC L- media for p92 expression) containing 2% glucose with or without 30 

µM APB at 29 °C. To induce the expression of p33 or p92, 50 µM CuSO4 was added to 

the yeast cultures for 30 min at 29 °C, followed by the addition of cycloheximide to a 
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final concentration of 100 µg/ml to inhibit protein synthesis. Equal amounts of yeast cells 

were collected at given time points as indicated in figure legends after cycloheximide 

treatment (Li et al., 2009b), and cell lysates were prepared by NaOH method as described 

previously (Panavas and Nagy, 2003). The total protein samples were analyzed by 

SDS/PAGE and Western blotting with anti-His antibody using ECL (Amersham) as 

described (Jaag et al., 2007) 

In vitro translation assay.  

The in vitro translation reactions were based on a wheat germ extract containing 

of 1 mM amino acid mixture without methionine (Promega) and 35S methionine (10 

mCi/ml). We added 0.3 picomoles of p33 or p92 mRNAs to program the assay [modified 

from (Li et al., 2009b)], while APB was added at 30 µM final concentration. After 1 h 

incubation at room temperature, samples were mixed with SDS-PAGE loading dye and 

incubated at 100 °C for 2 min and electrophoresed in an SDS-PAGE gel followed by 

phosphoimaging as described (Li et al., 2009b).  

Plant and protoplast experiments. 

 Preparation of Nicotiana benthamiana protoplasts, electroporation with TBSV 

and CNV RNA as well as viral RNA analysis were performed as described previously 

(Panaviene et al., 2003). APB was dissolved in dimethyl sulfoxide (DMSO) and was 

added at a concentration of 60 µM (or as indicated in the figure legend) before or after 

electroporation to the N. benthamiana protoplasts. Campesterol (4 mg/ml) and 

stigmasterol (4 mg/ml) (from Steraloids Inc, Newport, RI) were prepared using a 1:1 

mixture of DMSO and 95% ethanol and then added to protoplast preparations at 40 µg/ml 

just before electroporation.  
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APB (1,500 µM) or DMSO (1.5% as a control) was used for infiltration into N. 

benthamiana leaves, followed by inoculation of the same leaves with inoculum 

containing TBSV, CNV or TMV. Total RNA extraction from the inoculated leaves was 

done at 4 dpi (Cheng et al., 2007).  

VIGS constructs.  

pTRV1 and pTRV2 plasmids to launch Tobacco rattle virus (TRV) infection 

through agroinfiltration were kindly provided by Dinesh-Kumar (Dinesh-Kumar et al., 

2003). To amplify partial SMO1/2 cDNA fragments from N. benthamiana, primers were 

designed according to consensus regions of aligned SMO1/2 sequences (Darnet and 

Rahier, 2004). To generate plasmid pTRV2-SMO1, a 387 bp fragment of NbSMO1 was 

amplified by RT-PCR with primers #2901 

(GGCGGAATTCACAAGTTTGCCCCTGCCGTC) and #2902 

(GGCGCTCGAGAACATAGTGATGGTAGTCATGGTAATC) (Darnet and Rahier, 

2004) using total RNA extract obtained from uninfected N. benthamiana leaves. The 

obtained RT-PCR product was treated with EcoRI and Xho1 and then was cloned at the 

EcoRI and Xho1 sites of pTRV2 vector. Construct pTRV2-SMO2 carrying a 450 bp of 

NbSMO2 sequence was generated as described for pTRV2-SMO1 except using primers 

#2903 (GGCGGAATTCATGGCTTCCATGATCGAATCTGCTTGG) and #2904 

(GGCGCTCGAGGACAAGAAAAAGAATTTCAGCAGGGTGAGC) (Darnet and 

Rahier, 2004).  

Virus-induced gene silencing (VIGS).  

The VIGS assay to silence SMO1/2 in N. benthamiana was performed as 

described previously (Wang et al., 2009). Eleven days after agroinfiltration of pTRV2-
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SMO1 and pTRV2-SMO2, the accumulation levels for NbSMO1/2 mRNAs in N. 

benthamiana were determined by semi-quantitative RT-PCR with primers #3273 

(CCTAATCTTCTCTTGTGTCCCTC) and #2902 and primer pair of #3274 

(CAATTGACTTGTCTTGGTGGGTTT) and #3275 

(CAAGGACTCTAAGTGAGACCC), respectively (Darnet and Rahier, 2004). The 

accumulation level of the control tubulin mRNA was measured by semi-quantitative RT-

PCR using primers #2859 

(TAATACGACTCACTATAGGAACCAAATCATTCATGTTGCTCTC) and #2860 

(TAGTGTATGTGATATCCCACCAA). The obtained RT-PCR products were 

sequenced to confirm their identities. The VIGS silenced leaves were sap inoculated with 

TBSV or TMV as described (Wang et al., 2009). Total RNA extracts from the infected 

leaves were prepared at 3 dpi (day post-inoculation) and from systemically infected 

leaves at 5 dpi to analyze TBSV and TRV accumulation. 

 

RESULTS 

Down regulation of ERG25 mRNA level in yeast reduces TBSV RNA accumulation 

and inhibits the replicase activity in vitro.  

To confirm the role of ERG25 in TBSV replication, we used ERG25/THC 

(TET::ERG25) strain from the yTHC collection (Open Biosystems). The expression of 

the essential ERG25 gene is under the control of a doxycycline titratable promoter in the 

yeast genome in the ERG25/THC strain. Therefore, the expression of the ERG25 gene 

can be down regulated/turned off by the addition of doxycycline to the yeast growth 

medium (Mnaimneh et al., 2004). This approach allowed us to test tombusvirus RNA 
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replication in the presence of high level of Erg25p (when yeast was grown without added 

doxycycline after the induction of tombusvirus repRNA replication) or various reduced 

level of Erg25p (when yeast was grown in the presence of doxycycline) (Mnaimneh et 

al., 2004).  

To test the replication of the TBSV replicon (rep)RNA, which is an efficiently 

replicating surrogate RNA template derived from the TBSV genomic (g)RNA (Panavas 

and Nagy, 2003; White and Morris, 1994), we expressed the p33 and p92pol replication 

proteins and DI-72 repRNA from plasmids in ERG25/THC yeast strain. These 

experiments revealed efficient replication of DI-72 repRNA in ERG25/THC strain grown 

under standard growth conditions without added doxycycline (see Materials and 

Methods) (Fig. 2.1A, lanes 1 and 3). Addition of doxycycline to the growth media led to 

rapid decrease in ERG25 mRNA levels at the beginning of repRNA replication (5 hour 

time point, Fig. 2.1B, lane 5). The level of ERG25 mRNA was undetectable with 

Northern blotting 11 hours after the addition of doxycycline (Fig. 2.1B, lane 6) as well as 

at the 24-hour time point (Fig. 2.1B, lane 7), when the samples for TBSV repRNA 

analysis were collected (Fig. 2.1A). The accumulation level of DI-72 repRNA was ~3-

fold lower in ERG25/THC yeast lacking detectable level of ERG25 mRNA (Fig. 2.1A, 

lane 4), suggesting that high expression level of ERG25 promotes TBSV repRNA 

replication in yeast.  

To test if Erg25p affected the tombusvirus replicase activity, we generated 

enriched tombusvirus replicase preparations containing the co-purified repRNAs form 

ERG25/THC yeast grown in the absence or presence of doxycycline. Using comparable 

amounts of p33 replication protein during the assay (Fig. 2.1C, lower panel), we found 
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that the tombusvirus replicase preparation obtained from yeast with the undetectable level 

of ERG25 mRNA was ~5-fold less active than the comparable replicase preparation 

obtained from yeast grown in the absence of doxycycline (Fig. 2.1C, lanes 5-8 versus 1-

4). These experiments demonstrated that expression of Erg25p in yeast is important for 

the activity of the tombusvirus replicase.  

 

 Inhibition of Erg25p by APB chemical inhibitor in yeast reduces TBSV RNA 

accumulation. 

To further test the role of ERG25 in TBSV replication, we took advantage of a 

potent chemical inhibitor, namely 6-amino-2-n-pentylthiobenzothiazole (APB). APB has 

been shown to bind to Erg25p and inhibits its catalytic function in a competitive manner 

(Darnet and Rahier, 2003; Kuchta et al., 1995). Treatment of yeast with APB inhibited 

the biosynthesis of ergosterol and led to the accumulation of the methylated sterol 

precursors, such as ergosta-5,7-dienol and squalene, but had no significant effect on the 

composition and the rate of biosynthesis of fatty acids (Kuchta et al., 1997). We found 

that applying increasing amounts of APB to the growth media affected both yeast growth 

and TBSV accumulation (Fig. 2.2A). Normalization of TBSV repRNA accumulation 

based on yeast rRNA level indicated that APB, when applied between 20-40 mM 

concentration, had inhibited TBSV repRNA accumulation 4-to-5-times more than it 

inhibited yeast growth (Fig. 2.2A). This finding was confirmed in both ERG25/THC 

(TET::ERG25) (Fig. 2.2A) and BY4741 (wt) yeast strains (Fig. 2.2B). 

TBSV replicates on the peroxisomal membrane surface in yeast and in plant cells 

[(Mccartney et al., 2005) and (Pathak et al., 2008)]. However, TBSV replication can shift 
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to the ER membrane in the absence of peroxisome, which results in as efficient 

replication as that occurring on the peroxisomal membrane surface (Jonczyk et al., 2007; 

Pathak et al., 2008). To test if the APB-driven inhibition of sterol biosynthesis could also 

reduce TBSV replication occurring on the ER membrane, we used pex19D yeast strain, 

which lacks peroxisomes (Jonczyk et al., 2007; Pathak et al., 2008). The accumulation of 

the TBSV repRNA decreased to ~20% in 30 mM APB-treated pex19D yeast strain, a 

level of inhibition comparable to that in the wt BY4741 strain (Fig. 2.2B, lanes 10-12 

versus 4-6). Therefore, TBSV replication seems to be equally dependent on sterol 

biosynthesis when takes place on the peroxisomal membrane surface as on the ER 

membrane.  

Since down-regulation of ERG25 mRNA level (Fig. 2.1) or the use of APB 

inhibitor of Erg25p is known to lead to the accumulation of methylated sterol precursors, 

it is possible that these compounds directly inhibit TBSV repRNA replication in stead of 

the lack of sterols in the above yeast cells resulting in reduction of viral replication. To 

test this possibility, we also applied lovastatin, which is a potent inhibitor of 

hydroxymethylglutaryl-CoA (HMG-CoA) reductase (coded by the HMG1 and HMG2 

genes in yeast), a rate-limiting enzyme in the mevalonate pathway that regulates 

cholesterol synthesis. Lovastatin acts as a competitive inhibitor of HMG-CoA reductase, 

effectively lowering sterol levels in yeast (Daum et al., 1998; Lorenz and Parks, 1990). 

Application of lovastatin reduced TBSV repRNA accumulation in yeast by four-fold 

(Fig. 2.2C, lanes 5-8) without affecting p33 level. The strong inhibitory effect of 

lovastatin on TBSV replication is not compatible with the model that the accumulation of 



	
   25 

methylated sterol precursors in yeast with down-regulated ERG25 mRNA level is 

responsible for direct inhibition of TBSV repRNA replication.  

Inhibition of sterol biosynthesis in yeast at an early time point of TBSV replication is 

the most detrimental to TBSV RNA accumulation.  

Previous EM images indicated that tombusvirus replication likely utilize the 

preexisting peroxisomal membrane surfaces in the infected cells at the beginning of 

infection, followed by induction of new membranes and possibly utilizing other than 

peroxisomal membranes at late time points of infection (Navarro et al., 2006). To test 

when TBSV is the most sensitive to inhibition of sterol biosynthesis, we devised a 

scheme for time-restricted inhibition of sterol biosynthesis via treatment with APB, 

followed by removing the inhibitor at given time points (see Fig. 2.3A for the 

experimental scheme). 

Surprisingly, inhibition of sterol biosynthesis only during the period of TBSV 

replication was as effective as inhibition of sterol biosynthesis prior to and during TBSV 

replication (treatment #2 versus #3 in Fig. 2.3B-C, lanes 5-8 versus 9-12). Also, treatment 

of yeast cells with APB inhibitor only prior to the beginning of TBSV replication had 

limited inhibitory effect on TBSV accumulation (treatment #4, Fig. 2.3B-C, lanes 13-16). 

These data suggest that the pre-existing sterol level might not be as critical as the newly 

synthesized sterols during TBSV replication.  

To further define when sterol biosynthesis is the most critical during TBSV 

replication, we used shorter treatments with APB. These experiments revealed that sterol 

biosynthesis is the most critical during the beginning of TBSV replication (between 1-12 

hours, treatment #5, Fig. 2.3B-C, lanes 17-20) and less effective at the late time point 
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(between 12-24 hours, treatment #6, Fig. 2.3B-C, lanes 21-24). These data indicate that 

TBSV replication requires new sterol biosynthesis the most at an early stage of infection. 

Inhibition of sterol biosynthesis by APB inhibits the replicase activity in vitro and 

reduces the half-life for p92pol in yeast.  

In the experiments shown in Fig. 2.1., we have expressed the p33 and p92pol 

replication proteins from the constitutive ADH promoter, which could potentially allow 

some limited assembly of the replicase complex prior to down-regulation of ERG25 

level. Therefore, we have retested the replicase activity when the p33 and p92pol 

replication proteins were expressed from the inducible CUP1 promoter to allow the 

replicase assembly to take place only when ergosterol biosynthesis was inhibited (Fig. 

2.4). Testing the activity of tombusvirus replicase preparations obtained from APB-

treated ERG25/THC yeast grown in the absence of doxycycline revealed that 40 mM 

concentration of APB inhibited the replicase activity by ~90% at a late time point (24 

hour) when we adjusted the preparations to contain comparable amounts of p33 

replication protein (Fig. 2.4A, top panel, lanes 4-6 versus 1-3). Interestingly, the amount 

of p92pol was lower in the replicase samples obtained from the APB-treated than from the 

untreated yeast (Fig. 2.4A, middle panel, lanes 4-6 versus 1-3). These experiments 

demonstrated that APB treatment of yeast could inhibit the in vitro activity of the 

tombusvirus replicase and decrease the level of p92pol. 

To test the stability of p33 and p92pol replication proteins when sterol biosynthesis 

is inhibited, we treated yeast cells first with APB and, then with cyclohexamide (to 

inhibit new protein synthesis), followed by measuring protein levels (Fig. 2.4B-C). We 

found that the half-life of p33 did not change significantly (Fig. 2.4C), while that of 
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p92pol was reduced by ~3-fold in APB-treated yeast in comparison with the DMSO-

treated control yeast (based on reduction of the half-life of p92 from ~100 min to ~30 

min, Fig. 2.4B). Interestingly, APB treatment did not affect translation of p33 or p92pol in 

vitro (Fig. 2.4D), suggesting that degradation of p92pol might be accelerated in APB-

treated yeast, leading to reduced stability selectively for p92pol but not for p33.  

Inhibition of sterol biosynthesis in plant protoplasts reduces TBSV RNA accumulation.  

The above experiments demonstrated that sterol level is important for TBSV 

repRNA accumulation in yeast cells and in vitro. To test if sterol biosynthesis is also 

important for TBSV RNA accumulation in plant cells, we inhibited sterol biosynthesis by 

APB treatment based on the conserved function of Erg25p protein in yeast and Smo1/2 

proteins in plants (Darnet and Rahier, 2003, 2004). We found that 40 mM APB 

concentration applied either before (Fig. 2.5A, lanes 2 and 5) or after electroporation (not 

shown) of TBSV genomic (g)RNA into N. benthamiana protoplasts inhibited TBSV 

gRNA as well as subgenomic (sg)RNA1 and sgRNA2 accumulation by ~3-fold. Time-

course experiments showed that treatment with APB that started at the 0 time point (Fig. 

2.5B, lanes 6-7) was more effective than treatments starting from 3 or 6 hour-post-

electroporation time points. These experiments indicated that sterol biosynthesis is also 

important in plant cells for TBSV RNA accumulation, especially at the early time point. 

Stigmasterol complements TBSV accumulation in plant protoplasts treated with APB.  

To test if the negative effect on TBSV RNA accumulation by the APB-mediated 

inhibition of sterol biosynthesis could be complemented by addition of phytosterols to the 

growth media of plant protoplasts, we used stigmasterol (the major phytosterol in plant 

cell membranes) and campesterol in various concentrations prior to or after 



	
   28 

electroporation of the TBSV gRNA. Interestingly, we found that 20 mM stigmasterol 

(Fig. 2.6A, lane 9) or 10 mM stigmasterol (not shown) applied in combination with 60 

mM APB before electroporation of TBSV gRNA into N. benthamiana protoplasts 

increased TBSV gRNA accumulation from 27% (APB treatment, Fig. 2.6A, lanes 5-6) to 

91% (20 mM stigmasterol treatment, lane 9) and 75% (10 mM stigmasterol treatment, not 

shown). The complementation was less pronounced with 40 mM campesterol (Fig. 2.6B, 

lane 10), which resulted in 52% TBSV gRNA accumulation from 25% (APB treatment, 

Fig. 2.6B, lanes 5-6) in N. benthamiana protoplasts. Overall, these experiments 

demonstrated that phytosterols, especially stigmasterol, could complement the inhibitory 

effect of APB treatment on TBSV gRNA replication in plant protoplasts. 

 Inhibition of sterol biosynthesis by APB reduces TBSV RNA accumulation in N. 

benthamiana plants.  

To demonstrate that inhibition of sterol biosynthesis is important for TBSV RNA 

accumulation in plants, we infiltrated leaves of N. benthamiana with 60-to-1,500 mM of 

APB prior to inoculation with infectious TBSV virion preparations. Isolation of total 

RNA from the inoculated leaves 4 days after inoculation, followed by Northern blotting, 

revealed that APB treatment, when applied in 1,500 mM concentration, inhibited TBSV 

RNA accumulation by ~90% (Fig. 2.7A, lanes 11-17). Similar treatment with APB of N. 

benthamiana prior to inoculation with infectious CNV (a close relative of TBSV) virion 

preparations reduced CNV gRNA accumulation below detection limit at 4 dpi (Fig. 2.7C, 

lanes 10-21). Similar to TBSV, the CNV infected and APB treated plants showed a delay 

in symptom development in systemically-infected leaves when compared to the DMSO-

treated and CNV or TBSV-inoculated plants (Fig. 2.7B, D). In contrast, APB treated 
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leaves supported TMV (an unrelated plus-strand RNA virus of the alphavirus 

supergroup) RNA accumulation almost as efficiently as the DMSO-treated leaves (Fig. 

2.7E). As expected, there was no delay in symptom appearance in APB- or DMSO-

treated plants infected with TMV (Fig. 2.7F). The APB treatment had no obvious effect 

on the leaves or the whole plants (panel F in Fig. 2.7).  These experiments demonstrated 

that APB-treatment could lead to significant reduction of TBSV and CNV RNA 

accumulation in the treated leaves and delay in symptom development, whereas similar 

treatments had no significant effect on TMV RNA accumulation and did not delay 

symptom development in TMV-infected plants. Thus, the requirement for sterol 

biosynthesis seems to be different for tombusviruses and TMV.   

 

Inhibition of sterol biosynthesis by silencing of SMO1 and SMO2 genes in N. 

benthamiana plants reduces TBSV RNA accumulation.  

The two orthologs of yeast ERG25 gene in plants are the SMO1 and SMO2 genes, 

which are 4alpha-methyl oxidases involved in phytosterol biosynthesis (Darnet and 

Rahier, 2004). The SMO1 and SMO2 genes are involved in different steps of phytosterol 

biosynthesis and they only show ~50% sequence identity, allowing for separate silencing 

of these genes (Darnet and Rahier, 2004). Accordingly, we silenced individually or in 

combination the expression of SMO1 and SMO2 genes, by using a VIGS strategy in N. 

benthamiana. Indeed, RT-PCR analysis has shown decreased levels of SMO1 and SMO2 

mRNAs 11 days after infiltration of Agrobacterium carrying the VIGS constructs (Fig. 

2.8G, lanes 4-6; and lanes 10-12). Inoculation of the SMO1 and SMO2 silenced leaves 

with TBSV led to ~3-fold reduced TBSV gRNA accumulation in the inoculated leaves 
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when compared with the nonsilenced leaves (plants infiltrated with Agrobacterium 

carrying the pTRV empty vector) (Fig. 2.8A, lanes 8-14 versus 1-7; and C, lanes 8-14 

versus lanes1-7). Silencing of both SMO1 and SMO2 mRNAs led to even further 

reduction in TBSV RNA accumulation in the inoculated leaves that reached only ~10% 

of the TBSV RNA in the nonsilenced plants (Fig. 2.8E, lanes 8-14 versus 1-7). The 

development of the TBSV symptoms in SMO1, SMO2 and SMO1/SMO2 silenced plants 

was significantly delayed when compared with the pTRV-treated plants (Fig. 2.8B, D and 

F). However, silencing of the SMO1, SMO2 and SMO1/SMO2 mRNAs did not lead to 

complete protection of the plants from TBSV infections, as shown by the appearance of 

systemic symptoms (Fig. 2.8B, D and F) and the accumulation of TBSV gRNA in 

systemically-infected upper leaves (not shown). 

  On the contrary to the above results, the SMO1 and SMO2 silenced leaves 

accumulated TMV RNAs almost as efficiently in the inoculated leaves as in the 

nonsilenced leaves (~60-74%; Fig. 2.8I). Also, symptom development was comparable in 

the silenced versus nonsilenced N. benthamiana plants inoculated with TMV (Fig. 2.8J, 

L). The systemically-infected leaves supported TMV RNA accumulation in the silenced 

plants as efficiently as in the nonsilenced plants (Fig. 2.8K).  Co-silencing of both SMO1 

and SMO2 genes in N. benthamiana plants also had no detectable effect on TMV 

accumulation (Fig. 2.8M, N and O). These results show that inhibition of sterol 

biosynthesis by silencing of SMO1 and SMO2 genes reduces specifically tombusvirus 

replication, but the effect on TMV accumulation is weaker in the silenced plants. In 

addition, the above results make it unlikely that the SMO1 and SMO2 silenced plants 

inhibit tombusvirus replication due to nonspecific effects (such as "sick plant phenotype-
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based general inhibition of virus accumulation"), since these plants are compatible for 

supporting TMV replication. Moreover, it seems that various plant viruses show different 

levels of dependence on sterol biosynthesis for their replication.  

 

DISCUSSION 

Since the replicase complexes of (+)RNA viruses are membrane bound, the lipid 

composition of membranes influencing membrane fluidity, rigidity and permeability is 

expected to affect the activity of the viral replicase. Accordingly, we demonstrate that 

down regulation of Erg25p, a critical enzyme in the sterol biosynthesis pathway (Bard et 

al., 1996), or inhibition of the activity of Erg25p by APB (Darnet and Rahier, 2003) 

reduced TBSV repRNA replication in yeast by 3-to-5-fold. Moreover, inhibition of sterol 

biosynthesis by Lovastatin also resulted in 4-fold reduction in TBSV repRNA replication 

in yeast. In addition, a previous genome-wide screen for the identification of host factors 

for TBSV revealed reduced TBSV repRNA accumulation in erg4D yeast (Panavas et al., 

2005b), suggesting that the sterol biosynthesis pathway is required for TBSV replication.  

TBSV replication is dependent on newly synthesized sterols.  

The reduced level of sterols might have direct inhibitory effect on the tombusvirus 

replicase activity, since the isolated replicase complex with the co-purified repRNA 

showed ~5-fold reduced activity in vitro when obtained from yeast with down regulated 

Erg25p or treated with APB inhibitor. Interestingly, similar level of inhibition of TBSV 

RNA accumulation by APB treatment was observed in yeast lacking peroxisomal 

membranes, in which TBSV replication occurs on the ER membrane (Fig. 2.2B). These 
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data suggest that TBSV replication is greatly affected by sterols in yeast regardless of the 

subcellular location of the replicase complexes. 

Pre-treatment of yeast cells with APB had only minor inhibitory effect on TBSV 

repRNA replication (Fig. 2.3B-C, treatment #4), while APB treatment after the induction 

of TBSV replication had larger inhibitory effect, especially when applied in the first 12 

hours (Fig. 2.3B-C, treatment #5). These data suggest that TBSV replication mostly 

depends on the newly synthesized sterols in yeast, while inhibition of sterol biosynthesis 

prior to TBSV replication to reduce the level of pre-existing sterols in the cellular 

membranes had only minor inhibitory effect. Similarly, we found that APB-treatment 

was the most effective in N. benthamiana protoplasts when applied from the beginning of 

TBSV RNA replication (Fig. 2.5). Based on these data, it is possible that sterols regulate 

TBSV replication by not only affecting the structure and features of the subcellular 

membranes supporting TBSV replication, but also playing additional functions during 

TBSV replication. 

Although the functions of sterols during TBSV replication are not yet known, it 

seems that sterols are needed for the stability of p92pol in yeast (Fig. 2.4). It is possible 

that the bulky p92pol replicase protein might be exposed more to cytosolic proteases in 

sterol-poor micro-environment or the structure of p92pol is different under sterol-depleted 

condition, leading to premature degradation of p92pol. It is also possible that subcellular 

localization of p92pol could be different if less than normal level of sterols was available 

in cells.  
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Inhibition of sterol biosynthesis has similar effect on TBSV replication in plants and 

yeast. 

Although the sterols synthesized in yeast (ergosterol) and in plants (phytosterols, 

among sterols stigmasterol is the most abundant) are different, they might play 

comparable roles in TBSV replication. Accordingly, down regulation of ERG25 

expression in yeast or silencing the orthologous SMO1/SMO2 genes in N. benthamiana or 

APB treatment of yeast and plant cells had comparable inhibitory effects on TBSV RNA 

accumulation. Also, the negative effect of the APB treatment on TBSV RNA 

accumulation could be complemented in plant protoplasts by exogenous stigmasterol, 

strongly suggesting that sterols are the active compounds that affect TBSV RNA 

replication. It is intriguing that TBSV replication can take advantage of different sterols 

in yeast and in plants, suggesting high flexibility for TBSV in different subcellular 

environments.   

Interestingly, sterols seem to be needed for tombusvirus replication, but less 

critical for TMV replication based on silencing SMO1/SMO2 genes in N. benthamiana or 

the APB treatment of plant leaves. This different effect could be due to: (i) different 

subcellular compartments (tonoplast/vacuole and peroxisome, respectively) where TMV 

and TBSV replicate; and (ii) different features of the replication proteins or their abilities 

to bind to sterols. For example, the TMV replication proteins are likely peripheral 

membrane proteins (Hagiwara et al., 2003; Komoda et al., 2007), while TBSV replicaton 

proteins are integral membrane proteins (McCartney et al., 2005; Panavas et al., 2005a).  

Similar to tombusviruses, replication of other viruses, such as Dengue virus, 

Norwalk virus and hepatitis C virus (HCV), also depends on sterols (Chang, 2009; 
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Kapadia et al., 2007; Rothwell et al., 2009; Sagan et al., 2006). It has been shown that the 

HCV replicase complex is associated with cholesterol-rich lipid rafts (Aizaki et al., 

2004). Infection with West Nile virus has been demonstrated to lead to redistribution of 

cholesterol to the sites of virus replication, possibly from the plasma membrane, and 

result in reduced antiviral responses (Mackenzie et al., 2007). Cholesterol is also 

important for animal virus entry to cells, infections and the exit of virus particles from 

cells (Lee et al., 2008; Marquardt et al., 1993; Phalen and Kielian, 1991; Simon et al., 

2009). These findings invite further studies on dissecting the functional and mechanistic 

roles of sterols during virus infections. This could then lead to development of novel, 

broad range antiviral strategies in animals and plants. 
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Figure 2.1 Down regulation of ERG25 expression reduces TBSV repRNA 

accumulation in yeast 

(A) Northern blot analysis with a 3' end specific probe was used to detect the 

accumulation level of the TBSV repRNA. ERG25 expression was down regulated by 

doxycycline 12 hours prior to expressing the TBSV-derived DI-72 repRNA in 

ERG25/THC yeast, which contains a doxycycline regulatable promoter replacing the 

native ERG25 promoter. To launch TBSV repRNA replication, we expressed 6xHis-p33 

and 6xHis-p92 from the ADH1 promoter and DI-72(+) repRNA from the galactose-

inducible GAL1 promoter. After pre-growing in the presence of doxycycline, yeast cells 

were cultured for additional 24 hours at 29ºC on 2% galactose SC minimal media 

containing doxycycline (as indicated by a "+" sign). The yeast was collected for total 

RNA extraction at the indicated time points. The accumulation levels of repRNA were 

calculated using Imagequant software. rRNA was used as a loading control (panel at the 

bottom). (B) Northern blot analysis to estimate the level of ERG25 mRNA in yeast grown 

in the absence/presence of doxycycline. ND means non-detectable signal (less than 1%). 

(C) Decreased replicase activity in the presence of low Erg25p level. A replicase activity 

assay with membrane-enriched preparations obtained from yeast expressing high or low 

levels of Erg25p, based on the addition of 10 mg/L doxycycline to the growth media 12 

hours prior to launching TBSV repRNA replication. The yeast samples were taken 24 

hours after the induction of TBSV replication. The membrane-enriched fraction contains 

the endogenous repRNA template that is used during the in vitro replicase assay in the 

presence of 32P-UTP and the other unlabeled rNTPs. Note that the in vitro activities of the 

tombusviral replicase were normalized based on p33 levels.   
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Figure 2.2 Inhibition of TBSV repRNA accumulation in yeast treated with APB. 

 (A) Yeast was treated with APB (0-to-60 mM, as shown), and TBSV repRNA 

replication was launched as described in Fig. 2.1 legend. Samples for viral RNA analysis 

were taken at 24 hours after the induction of TBSV replication. Northern blotting (top 

panel) shows the level of TBSV repRNA accumulation in individual samples using a 3' 

end specific probe. The middle panel shows a Northern blot indicating the level of 18S 

rRNA. Each experiment was repeated three times. Yeast treated with DMSO (the lanes 

marked by "0") was chosen as 100%. The bottom panel shows a Western blot for 6xHis-

tagged p33 level in the samples. The graph shows the accumulation level of DI-72(+) 

repRNA in percentage, which was normalized based on 18S rRNA. Note that the APB 

treatment at the highest concentration inhibited yeast growth, so we did not quantify 

TBSV repRNA accumulation for this treatment. (B) Northern blot showing the 

accumulation level of DI-72 repRNA in yeast lacking peroxisome (pex19D) and wt yeast 

(BY4741) treated with 30 mM APB or DMSO as shown. Note that the total RNA 

samples were loaded based on adjusted 18S rRNA level. See further details in panel A. 

(C) Inhibitory effect of lovastatin treatment on TBSV repRNA accumulation. Lovastatin 

was used at 20 mg/ml concentration. See further details in panel A. 
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Figure 2.3 APB inhibits TBSV repRNA accumulation most effectively when applied 

at the beginning of virus replication in yeast. 

 (A) The scheme of APB treatment relative to initiation of repRNA replication. APB was 

added/removed to/from the growth media as shown with dotted lines. repRNA replication 

took place for 24 hours at 29 ºC before RNA analysis. (B) Yeast was treated with 30 mM 

APB or (C) with 40 mM APB. Northern blotting (top panel) shows the level of TBSV 

repRNA accumulation. DMSO-treated yeast (-APB, #1) was chosen as 100%. The graph 

shows the accumulation level of DI-72(+) repRNA in percentage, which was normalized 

based on 18S rRNA. See other details in Fig. 2.1. 
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Figure 2.4 APB treatment of yeast inhibits the in vitro activity of the tombusvirus 

replicase and shortens the half-life of p92pol replication protein. 

 (A) To launch TBSV repRNA replication, we expressed 6xHis-p33 and 6xHis-p92 from 

the CUP1 promoter and DI-72(+) repRNA from the TET promoter in BY4741 yeast 

strain. Yeast cells treated with either 30 mM APB or DMSO were cultured for 24 hours 

at 23ºC on 2% glucose SC minimal media containing 50 mM copper sulfate. Top panel: 

The replicase activity in the membrane-enriched preparations obtained from yeast was 

measured in the presence of 32P-UTP and the other unlabeled rNTPs. Note that the in 

vitro activities of the tombusviral replicase were not normalized to p33 levels in these 

experiments. Middle panel: Western blotting analysis to show p33/p92 levels in the 

above replicase preparations from APB- or DMSO treated yeast. Note that the band 

migrating slightly faster than p92 is caused by heat/SDS-resistant p33 homodimers. 

Bottom panel: An ethidium-bromide stained gel showing the accumulation level of 

TBSV repRNA and rRNA in APB- or DMSO treated yeast based on total RNA extracts. 

(B) Shortened half-life of p92pol due to APB treatment of yeast. Yeast was pre-grown at 

29 ºC for 12 hours in SC L- with 2% glucose and 30 mM APB or DMSO (0.03%), 

followed by addition of 50 mM copper sulfate for 30 min to induce the expression of 

p92pol. After removal of copper sulfate, 30 mM APB and cyclohexamide (100 mg/ml) 

were added and samples were collected at the shown time points. The amount of p92pol 

was estimated via Western blotting based on anti-His antibody and ECL-Plus. The 

images were analyzed by a phosphorimager and quantitated via Imagequant. The 

experiments were repeated three times. (C) Estimation of half-life of p33 after APB 
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treatment of yeast. See details in panel B. (D) Lack of inhibition of in vitro translation of 

TBSV RNA by APB. The wheat germ translation assay was programmed with 0.3 mg 

artificial uncapped p92 or p33 mRNA carrying a poly(A) tail in the presence of 30 mM 

APB or DMSO as a control. The radiolabeled p92 and p33 products were analyzed on 

SDS-PAGE. The experiment was repeated three times.  
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Figure 2.5  Inhibition of TBSV gRNA accumulation in N. benthamiana protoplasts 

by treatment with APB. 

 (A) Northern blot analysis was used to detect the accumulation levels of TBSV gRNA 

and subgenomic (sg)RNAs based on a 3' end specific probe. N. benthamiana protoplasts 

were treated with the shown concentrations of APB before electroporation. The samples 

were harvested 40 hours after electroporation. The average values of sgRNA2 

accumulation for the same treatments are shown under the image. (B) Time course assay 

to test the effectiveness of APB treatment. N. benthamiana protoplasts were treated with 

APB after electroporation (0, 3 or 6 hours later). DMSO (0.06% solution), the solvent for 

APB, was used as a control. Northern blot analysis was done as in panel A. The 

ethidium-bromide stained gel at the bottom shows the ribosomal (r)RNA levels as 

loading controls. Note that the gRNA can reach rRNA levels in N. benthamiana 

protoplasts. The survival of the plant cells (after electroporation and treatment) was 

checked by measuring rRNA levels in total RNA extracts.  
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Figure 2.6 Complementation of the inhibitory effect of the APB treatment of N. 

benthamiana protoplasts on TBSV gRNA accumulation by phytosterols. 

 (A) The stimulatory effect of stigmasterol on TBSV RNA accumulation. Northern blot 

analysis showing the accumulation levels of TBSV gRNA in N. benthamiana protoplasts 

treated with DMSO + ethanol (Lanes 1-4), APB alone (lanes 5-8), or with APB + 

stigmasterol (lanes 9-12) before or after electroporation. The samples were harvested 40 

hours after electroporation. Bottom panel: An ethidium-bromide stained gel shows the 

ribosomal (r)RNA levels as loading controls.  (B) The stimulatory effect of campesterol 

on TBSV RNA accumulation. Northern blot analysis showing the accumulation levels of 

TBSV gRNA in N. benthamiana protoplasts treated with DMSO + ethanol (lanes 1-4), 

APB alone (lanes 5-8), or with APB + campesterol (lanes 9-12) before or after 

electroporation. See further details in panel A. Each experiment was repeated.  
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Figure 2.7 Inhibition of TBSV and CNV gRNA accumulation in N. benthamiana 

plants treated with APB. 

(A) Leaves were first infiltrated with DMSO (1.5%) or APB (1,500 mM), followed by 

inoculation of the same leaves with TBSV virion preparation. Samples for viral RNA 

analysis were taken from the infiltrated leaves at 4 dpi. Northern blotting (top panel) 

shows the level of TBSV gRNA and sgRNAs accumulation in individual samples using a 

3' end specific probe. The bottom panel: an ethidium bromide stained gel indicating the 

levels of rRNA and TBSV gRNA. Each experiment was repeated three times. DMSO 

sample was chosen as 100%. (B) The delay in symptom development due to TBSV 

infections in the APB treated plant (shown on the right) at 6 dpi that indicates the potent 

antiviral activity of APB. Comparable DMSO treatment of plant leaves prior to 

inoculation with TBSV did not protect the plants from infection. (C) APB treatment 

inhibits CNV RNA accumulation in N. benthamiana plants. Treatment with DMSO or 

APB, inoculation of leaves with CNV, sample preparation and Northern blotting were 

done as described in panel A for TBSV. (D) The delay in CNV-induced symptom 

development in the APB treated plant at 10 dpi indicates the potent anti-CNV activity of 

APB. See further details in panel B. (E) Moderate inhibitory effect of APB treatment on 

TMV RNA accumulation in N. benthamiana plants. Treatment with DMSO or APB, 

inoculation of leaves with TMV, sample preparation and Northern blotting with a TMV-

specific probe were done as described in panel A. (D) The lack of delay in TMV-induced 

symptom development in the APB treated plant at 10 dpi indicates the weak anti-TMV 
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activity of APB. Plants mock inoculated and infiltrated with APB (1,500 mM) or DMSO 

(1.5%) are shown on the right. See further details in panel B. 
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Figure 2.8 The role of SMO1/SMO2 sterol biosynthesis genes in TBSV RNA 

replication in whole plants. 

 (A) Accumulation of TBSV gRNA in the inoculated leaves of SMO1 knockdown N. 

benthamiana plants 3 days post-inoculation, based on Northern blot analysis. VIGS was 

performed via agroinfiltration of TRV vectors carrying SMO1 sequence or the TRV 

empty vector (as a control). Inoculation with TBSV gRNA was done 11 days after 

agroinfiltration. (B) Delay in TBSV-induced symptom development in the SMO1 

knockdown plant (shown in the middle) at 10 dpi when compared to the control plant 

infiltrated with pTRV empty vector (shown on the left) that indicates the requirement of 

SMO1 for TBSV infection. (C) Accumulation of TBSV gRNA in the inoculated leaves of 

SMO2 knockdown N. benthamiana plants 3 days post-inoculation, based on Northern 

blot analysis. See further details in Panel A. (D) Delay in TBSV-induced symptom 

development in the SMO2 knockdown plant. See further details in Panel B. (E) 

Accumulation of TBSV gRNA in the inoculated leaves of SMO1/SMO2 knockdown N. 

benthamiana plants 3 days post-inoculation, based on Northern blot analysis. See further 

details in Panel A. (F) Delay in TBSV-induced symptom development in the 

SMO1/SMO2 knockdown plant. See further details in Panel B. (G) Semi-quantitative RT-

PCR analysis of the accumulation of SMO1 or SMO2 mRNAs in the knockdown N. 

benthamiana plants and in the control plants, which were agroinfiltrated with the TRV 

empty vector 11 days after agroinfiltration. RT-PCR analysis of the tubulin mRNA from 

the same samples served as a control. (H) Minor phenotypic effect, such as moderately 

increased leaf-size, of SMO1, SMO2, or SMO1/SMO2 knockdown on N. benthamiana 



	
   53 

plants when compared to the control plants, which were agroinfiltrated with the pTRV 

empty vector. (I) Accumulation of TMV sgRNA in the inoculated leaves of SMO1 or 

SMO2 knockdown N. benthamiana plants 3 days post-inoculation, based on Northern 

blot analysis (top image). The accumulation level of TMV gRNA and the rRNA (as a 

loading control) are shown in an ethidium-bromide stained gel (bottom image). See 

further details in Panel A. (J) Lack of delay in TMV-induced symptom development in 

the SMO1 knockdown plant. See further details in Panel B. (K) Accumulation of TMV 

sgRNA in the systemically infected leaves of SMO1 or SMO2 knockdown N. 

benthamiana plants 5 days post-inoculation, based on Northern blot analysis (top image). 

The accumulation level of TMV gRNA and the rRNA (as a loading control) are shown in 

an ethidium-bromide stained gel (bottom image). See further details in Panel A. (L) Lack 

of delay in TMV-induced symptom development in the SMO2 knockdown plant. See 

further details in Panel B. (M) Accumulation of TMV sgRNA in the inoculated leaves of 

SMO1/SMO2 knockdown N. benthamiana plants 3 days post-inoculation, based on 

Northern blot analysis. See further details in Panel I. (N) Lack of delay in TMV-induced 

symptom development in the SMO1/SMO2 knockdown plant. See further details in Panel 

J. (O) Semi-quantitative RT-PCR analysis of the accumulation of SMO1 or SMO2 

mRNAs in the knockdown N. benthamiana plants and in the control plants, which were 

agroinfiltrated with the TRV empty vector 11 days after agroinfiltration. RT-PCR 

analysis of the tubulin mRNA from the same samples served as a control.   
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Chapter 3 Inhibition of phospholipid biosynthesis decreases the activity of the 

tombusvirus replicase and alters the subcellular localization of replication proteins. 

(This chapter is published in Virology. 2011;415(2):141-52. Copyright © Monika 

Sharma 2011 and Elsevier Inc. [Z. Sasvari did the confocal microscopy]) 

 

 

INTRODUCTION 

The host cell’s organellar membranes are efficiently subverted by plus-stranded 

(+)RNA viruses for their replication (Miller and Krijnse-Locker, 2008b). High 

concentrations of membrane-bound viral proteins and co-opted host proteins lead to the 

formation of “viral replication organelles” that provide protection against cellular 

nucleases and proteases (Ahlquist, 2003). In addition, the membrane lipids and proteins 

could also serve as scaffolds for the assembly of the viral replicase complex or they can 

facilitate the targeting of the viral replication proteins to a particular microdomain in the 

membrane. Moreover, the subcellular membranes may provide critical lipid or protein 

cofactors to regulate the function of the viral replicase. Indeed, dynamic 

remodeling/deforming membranes to give rise to unique structures, called spherules (i.e., 

invaginations of lipid membranes), is a characteristic feature for many (+)RNA viruses 

These viral-induced spherules serve as sites of viral RNA replication. Importantly, 

(+)RNA viruses also induce membrane proliferation that requires new lipid biosynthesis. 

Indeed, several genome-wide screens identified lipid biosynthesis/metabolism genes  
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affecting (+)RNA virus replication (Cherry et al., 2005; Krishnan et al., 2008; Kushner et 

al., 2003; Panavas et al., 2005b; Serviene et al., 2006).  

The best characterized examples of virus-induced modification of cellular lipid 

metabolism include the recruitment of host enzymes such as PI4PKIIIß, which is 

involved in phosphatidylinositol-4-phosphate (PI4P) synthesis, to modify the lipid 

composition of membranes during poliovirus replication (Belov and Ehrenfeld, 2007; 

Belov et al., 2007; Hsu et al., 2010; Sasvari and Nagy, 2010). Hepatitis C virus (HCV) 

modulates phospholipid biosynthesis by recruiting PI4PKIIIα, which is also involved in 

PI4P synthesis, to facilitate the formation of the “membranous-web” (cellular vesicles), 

which serves as the site of HCV RNA replication (Berger et al., 2009). Dengue virus co-

opts FASN, a major rate-limiting enzyme in fatty acid biosynthesis, by retargeting it to 

the ER membrane, the site of dengue virus replication (Heaton et al., 2010). Another 

example is Drosophila C virus (picorna-like virus), whose replication was blocked by 

depletion of the HLH106 regulator of fatty acid metabolism and fatty acid synthase 

(Cherry et al., 2006). Mutation of Ole1p, which affects the amount of unsaturated fatty 

acids, reduced the activity of the BMV replicase, and possibly altered the binding of the 

BMV 1a replication protein to the membrane due to a reduced ratio of unsaturated fatty 

acids in S. cerevisiae (Lee and Ahlquist, 2003a). Infection with West Nile virus (WNV) 

was shown to result in redistribution of cholesterol from the plasma membrane to the 

sites of virus replication (Mackenzie et al., 2007). Yet other change in lipid metabolism is 

induced by Dengue virus, which promotes autophagy and beta-oxidation of lipids 

released from lipid droplets to generate extra ATP needed for virus replication (Heaton 

and Randall, 2010). 
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TBSV, a tombusvirus, is among the most advanced model RNA viruses regarding 

characterization of host factors (Nagy, 2008). Among the five proteins encoded by the 

TBSV genome, only p33 replication co-factor, which is an RNA chaperone, and the 

p92pol RNA-dependent RNA polymerase (RdRp) are essential for TBSV RNA replication 

(Stork et al., 2011; White and Nagy, 2004). p33 and p92pol are integral membrane 

proteins with a topography facing the cytosolic surface of the peroxisomes or 

occasionally ER, the sites of replicase complex formation and viral RNA replication 

(Panavas et al.,2005a) 

Electron microscopic images of cells replicating tombusvirus demonstrated 

extensive remodellng (Barajas et al., 2009). Previously, our lab identified 14 host genes 

involved in lipid biosynthesis metabolism affecting tombusvirus replication and 

recombination, suggesting that tombusviruses depend on active lipid biosynthesis (Jiang 

et al., 2006; Panavas et al., 2005b; Serviene et al., 2006; Serviene et al., 2005). The 

identified lipid biosynthesis/metabolism genes included 8 genes affecting phospholipid 

biosynthesis, 4 genes affecting fatty acid biosynthesis/metabolism and 2 genes affecting 

sterol synthesis (Nagy, 2008). These finding suggest that lipids are likely involved, 

directly or indirectly, in TBSV replication in yeast. Accordingly, previous studies showed 

that sterols are critical for TBSV replication (Sharma et al., 2010).  

In order to demonstrate the roles of phospholipids in TBSV RNA replication, we 

selected INO2 for additional in-depth studies from the pool of identified genes in the 

genome-wide screens with TBSV (Jiang et al., 2006; Nagy, 2008; Panavas et al., 2005b). 

Ino2 is a basic helix-loop-helix transcription activator for phospholipid synthesis genes 

(Block-Alper et al., 2002). The phospholipid biosynthesis in S. cerevisiae is based on 
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biochemical pathways conserved in higher eukaryotes [(Carman and Han 2009) and 

(Nohturfitt and Zhang 2009)]. The expression of phospholipid biosynthesis genes is 

controlled at the mRNA transcription and stability steps. The expression of many genes 

involved in phospholipid biosynthesis is controlled by a cis-acting DNA sequence 

(UASINO); the transcription activator Ino2, which forms a heterodimer with Ino4; and a 

repressor, named Opi1 (Fig. 3.1A) [(Carman and Han 2009) and (Nohturfitt and Zhang 

2009)]. When low amount of phosphatidic acid (PA, a precursor of phospholipids) is 

present in the ER membrane, then Opi1 is released from the ER membrane and after its 

translocation into the nucleus, Opi1 binds to Ino2 and represses the mRNA transcription 

of the phospholipid biosynthesis genes (Fig. 3.1A) [(Carman and Han 2009) and 

(Nohturfitt and Zhang 2009)]. 

Our approach to test the effect of phospholipid biosynthesis regulators on TBSV 

RNA replication is justified by the data from the genome-wide screens that INO2 and 

additional transcription regulators of the phospholipid biosynthesis genes [called SAGA 

complex and HAT (histone acetyltransferase) complex] have been identified, while single 

structural genes for phospholipid biosynthesis were not (Jiang et al., 2006; Nagy, 2008; 

Panavas et al., 2005b). This is expected because two parallel pathways, the de novo and 

the Kennedy, exist to produce phospholipids in yeast (Nohturfft and Zhang, 2009). Thus, 

single deletion of structural genes for phospholipid biosynthesis could be partially 

complemented under the conditions we performed the genome-wide screens (Jiang et al., 

2006; Panavas et al., 2005b). However, deletion of INO2 affects both pathways [(Carman 

and Han 2009) and (Nohturfitt and Zhang 2009)]. Accordingly, we demonstrate in this 

paper that co-deletion of INO2-INO4 leads to a reduced level of TBSV repRNA 
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accumulation in yeast. The tombusvirus replicase complexes isolated from ino2∆ino4∆ 

yeast show poor activity, suggesting that phospholipids are important for the 

assembly/activity of the tombusvirus replicase. In addition, we demonstrate altered 

cellular localization of the tombusvirus replication protein in ino2∆ino4∆ yeast. 

Moreover, to expand our findings to other RNA viruses, we also show that the replication 

of FHV is inhibited in ino2∆ino4∆ yeast. Thus, the emerging picture from the current 

work is that phospholipid biosynthesis is required for efficient replication of some 

(+)RNA viruses. 

 

MATERIALS AND METHODS 

Yeast strains and expression plasmids.  

Saccharomyces cerevisiae strain BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 

ura3Δ0) and single-gene deletion strain ino2Δ and ino4Δ strains were obtained from 

Open Biosystems (Huntville, AL). The following yeast expression plasmids have been 

generated before: pHisGBK-His33 (Panaviene et al., 2004); pGAD-His92 (Panaviene et 

al., 2004); pYC-DI72sat (Panavas and Nagy, 2003); pHisGBK-CUP1::His33-ADH::DI72 

(Mendu et al., 2010); pESC-His-p33-DI-72 (Jonczyk et al., 2007); pGBK-His33/DI-72 

(Jiang et al., 2006); pYES-HisGFP-33 (Panavas et al., 2005a); pex13-CFP (Panavas et al., 

2005a); pho86-CFP (Panavas et al., 2005a); pGAD-His92-Cup1 and 

pHisGBKHis33Cup1/GAL-DI (provided by K. Pathak). pESC-His-Cup-FHV-RNA1-

TRSVRz was provided by J. Pogany. 

To create double deletion strain ino2Δino4Δ, we used homologous recombination 

in ino2Δ strain by replacing INO4 ORF with hphNT1 (Hygromycin resistance) gene. The 
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hphNT1 ORF was PCR amplified from pFA6a-HPH (Euroscarf) using the following 

primers: #3693 

(CGAAGGAGTTAAGAGGGCGGCTTGAACTAAAAAGAGAAAAGCA-

cgtacgctgcaggtcga) and #3694 (AGAATTTCTTCGCTTATATTAC-

TTACTTTACCCTACTCCTTGatcgatgaattcgagctc). The obtained PCR product was used 

to transform ino2Δ strain. The new strain ino2Δino4Δ was confirmed with primers #2501 

(ATCCACGCCCTCCTACATC)  and #3695 

(GGGTACCTCCAAATCTGCGAAGGTA).  

  To express Ino2 in yeast, the full-length ORF of INO2 was cloned into 

pYES/NT/C (Invitrogen). First, INO2 ORF was amplified by PCR from yeast genomic 

DNA by using primers #2311 

(CAGCGGATCCATGCAACAAGCAACTGGGAACGAATTACT) and #2312 

(GACCCTCGAGTCAGGAATCATCCAGTATGT) that were appended with BamHI and 

XhoI recognition sequences, respectively, to facilitate directional cloning. To express 

Ino2, we PCR amplified the INO2 ORF and digested with HindIII and XhoI sites and 

cloned into pYC2/CT low copy vector digested with the same pair of enzymes. 

To obtain pYES-His92, which contains GAL1-p92 and URA3 auxotrophic marker, 

p92 ORF was amplified using primers #788 

(GAGGGATCCGAGACCATCAAGAGAATG) and #952 

(CCCGCTCGAGTCATGCTACGGCGGAGTCAAGGA) appended with BamHI and 

XhoI restriction enzyme recognition sites to facilitate directional cloning and then ligated 

and cloned into pYES vector digested with the same pair of enzymes. Similarly, pYES-

His33, which contains GAL1-p33 and URA3 auxotrophic marker, the p33 ORF was 



	
   60 

amplified using primers #788 and #1403 

(gccgCTCGAGCTATTTCACACCAAGGGACTCA) appended with BamHI and XhoI 

restriction enzyme recognition sites to facilitate directional cloning and then ligated and 

cloned into pYES vector digested with the same pair of enzymes. Construct BG1805-

Opi1-zz carries OPI1 ORF behind the GAL1 promoter and fused to a tandem affinity tag 

that includes a His-tag and the zz domain of protein A at the C terminus (Li et al., 2008). 

TBSV replication assay in yeast.  

Yeast strains by4741, ino2∆, ino4∆ and ino2∆ino4∆ were transformed with 

phisgbkhis33 and pgadhis92 (Panaviene et al., 2004) as well as with pyc-di72 (Panavas 

and Nagy, 2003). replication assay was performed by measuring the accumulation of di-

72(+) reprna relative to the 18s rrna (Panavas and Nagy, 2003). to precisely regulate the 

amount and timing of expression of replication proteins p33 and p92 and to measure their 

subsequent effect on rna accumulation levels, ino2∆ino4∆ and by4741 yeast strains were 

transformed with the following combination of plasmids: (a) phisgbkhis33 and pgadhis92 

and pyc-di72; (b) pyes-92 and pesc-his33/gal-di; and (c) pgad-92cup1, 

phisgbkhis33cup1-gal-di. yeast cells were pre-grown at 29°c with shaking for 15 hrs and 

then transferred to media containing 2% galactose supplemented with 50µm cu++. 

standard rna extraction and northern blot was performed as mentioned in previous 

publications (Panavas and Nagy, 2003; Panaviene et al., 2004). 

In vitro replicase assay using membrane-enriched (ME) fraction of yeast.  

The procedure used to obtain functional ME fractions was the same developed by 

us earlier (Panaviene et al., 2005). Briefly, yeast was pre-grown in SC-ULH- medium 

containing 2% glucose for 24 h at 29 °C with shaking at 250 rpm. Then, yeast cells were 
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transferred to SC-ULH- containing 2% galactose and incubated at 23 °C with shaking at 

250 rpm. After 24 h growth, yeast samples were collected by centrifugation at 3000g for 

5 min, followed by washing the pellet with 20 mM Tris–HCl, pH 8.0. The pelleted cells 

were resuspended in 1 ml of 20 mM Tris–HCl, pH 8.0, followed by centrifugation at 

21,000g for 1 min. Yeast cells were broken by glass beads in a Genogrinder (Glen Mills 

Inc., Clifton NJ) for 2 min at 1500 rpm. After mixing with 600 µl chilled extraction 

buffer (200 mM sorbitol, 50 mM Tris–HCl [pH 7.5], 15 mM MgCl2, 10 mM KCl, 10 

mM β-mercaptoethanol, yeast protease inhibitor mix; Sigma), the samples were 

centrifuged at 100g for 5 min at 4 °C. The supernatant was moved to a new 

microcentrifuge tube, followed by centrifugation at 21,000g for 10 min at 4 °C. The 

pellet was resuspended in 0.7 ml extraction buffer, resulting in the ME fraction. The 

replicase assay with the ME fraction was performed in 100 µl volume containing RdRp 

buffer [40 mM Tris pH 8.0, 10 mM MgCl2, 10 mM DTT, 100 mM potassium glutamate, 

0.2µl Rnase inhibitor, 1 mM ATP, CTP, GTP, 0.1 µl radioactive P32-UTP (3000 

mCi/mmol ICN) and 50 µl ME fraction. Samples were incubated at 25 °C for 2 h. The 

reaction was terminated by adding 70 µl SDS/EDTA (1% SDS, 50 mM EDTA pH 8.0) 

and 100 µl phenol-chloroform (1:1). After standard isopropanol precipitation of the RNA 

products, the RNA samples were electrophoresed under denaturing conditions (5% 

PAGE containing 8 M urea) and analyzed by phospho-imaging using a Typhoon (GE) 

instrument as described (Panaviene et al., 2005). 

RNA and protein stability assays:  

Yeast strains BY4741 and ino2∆ino4∆ were transformed with pYC2-DI72. The 

transformed yeast strains were grown at 29°C in SC-U (synthetic complete without 



	
   62 

uracil) with 2% galactose. After 20 h, the cultures were re-suspended in SC-U 

supplemented with 2% glucose and collected after indicated time-points. Northern 

blotting was performed to measure repRNA levels at various time points. 

To study the stability of p33 in yeast, BY4741 and ino2∆ino4∆ were transformed 

with pYES-33 expressing 6xHis-tagged CNV p33 from the inducible GAL1 promoter. 

Yeast transformants were cultured overnight in SC U- medium containing 2% glucose at 

29°C. Yeast cultures were transferred to U- 2% Galactose medium for 6 hrs 29°C. To 

study stability of protein A of FHV, BY4741 and ino2∆ino4∆ strains were transformed 

with pGAD/CUP/PtnA/C-HA/FLAG construct. After pre-growing the cells in L- media 

containing 2% glucose, protein A expression was induced with 50µM Cu++
 for 12 hrs. 

Then, cycloheximide was added to a final concentration of 100 µg/ml to inhibit protein 

synthesis. Equal amounts of yeast cells were collected at given time points after 

cycloheximide treatment and cell lysates were prepared by the NaOH method as 

described previously (Sharma et al., 2010). The total protein samples were analyzed by 

SDS-PAGE and Western blotting with anti-His and anti-FLAG antibody as described 

previously (Panaviene et al., 2005; Panaviene et al., 2004).  

Complementation assay and over-expression of Ino2p and Opi1p.  

pYC-INO2 or pYC empty plasmids were transformed into BY4741 and ino2∆ 

strains containing pGAD-His92, pGBK-His33/DI-72 (to co-express p33 protein from the 

constitutive ADH1 promoter and DI-72 repRNA under inducible GAL1 promoter). pYC-

INO2, pYC-empty, pYES-INO2 or pYES-empty plasmids were transformed into 

BY4741 strain containing pGAD-His92-Cup, pHisGBK-Cup1::His33-ADH1::-DI72 

(Mendu et al., 2010), which expresses p33 protein from CUP1 promoter and DI-72 
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repRNA under constitutive ADH1 promoter. Cells were pre-grown at 29°C for 15 hrs in 

2 % galactose media followed by supplementation with 50µM Cu++ and further 

incubation at 29°C for 24 hrs. For time course analysis, media was changed as described 

in figure legend. To over-express Opi1 above mentioned strategy was employed using 

BG1805-Opi1-zz. 

 Replication Protein Analysis.  

Yeast strains were grown as described above for RNA analysis. A total of 2ml of 

yeast culture was harvested, the pelleted cells were resuspended in 200 µl of 0.1M NaOH 

and incubated at 23°C for 10 min. The supernatant was aspirated following a short 

centrifugation, and the pellet was resuspended in 100µl, 1X SDS-polyacrylamide gel 

electrophoresis (PAGE) buffer containing 5% β-mercaptoethanol and boiled for 5 min. 

The supernatant was used for SDS/PAGE and Western blot analysis as described 

(Panavas et al., 2005a). The primary antibodies were anti-6xHis (Invitrogen) for 

tombusvirus and anti-FLAG (Sigma) for FHV, and the secondary antibodies were 

alkaline-phosphatase-conjugated anti-mouse immunoglobulin-G (Sigma). 

 

Membrane fractionation.  

To check membrane association of p33 in BY4741 and ino2∆ino4∆ yeast, cells 

were broken using Fast Prep24 MP Bio. After removing debris by centrifugation at 1,000g 

for 5 min, membranes were collected at 40,000g for 1 hr. Supernatant and membrane 

fractions were analyzed for their p33 content by western blotting. In another set of 

fractionation experiments, we performed alkaline treatment to remove the proteins that 

bound peripherally to the membranes (Whitley et al., 1996). Briefly, after removal of cell 
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debris, supernatant (250µl) was incubated on ice with Na2CO3 (250 µl) 200mM pH 11.5, 

for 30 min and then loaded on the 300 µl cushion (200mM sucrose in100mM Na2CO3 pH 

11.5) followed by centrifugation for 30 min at 40,000g. Separated soluble and membrane 

fractions were analyzed for p33 content by western blotting. Different cellular organellar 

protein markers (Sec61, Ssa1 and Pgk1) were also visualized by using their respective 

antibodies. 

Yeast spheroplasting and membrane flotation.  

ino2Δino4Δ yeast transformed with pESC-HisY-p33-DI-72 (for inducible 

expression of YFP-p33) was pre-grown in 2% glucose H- media and then transferred to 

2% galactose media and grown to OD600 of 0.8 to 1.0. Spheroplasting was performed 

using Zymolyase digestion as described (Daum et al., 1982; Wang et al., 2009). Briefly, 

cells were harvested at 3000g, then washed with water and re-suspended in 0.1M TrisSO4 

pH 9.4 containing 10mM DTT. This was followed by incubation at 30°C. Cells were 

collected by centrifugation and washed with 1.2M sorbitol. Pellet was resuspended in 

1.2M sorbitol containing 20mM potassium phosphate (pH 7.4) and Zymolyase (5mg per 

1 g of wet yeast cells), then incubated at 30°C with very gentle shaking for 50-90 min. 

Spheroplasting efficiency was checked under a microscope. Yeast spheroplasts were 

harvested at 500g and washed twice with 1.2M sorbitol. 

Using 15 strokes in Dounce homogenizer, 100 milligram of yeast cells was 

broken in 600 µl of yeast lysis buffer (200 mM sorbitol, 50 mM Tris-HCl [pH 7.5], 15 

mM MgCl2, 10 mM KCl, 10 mM β-mercaptoethanol, yeast protease inhibitor mi 

[Sigma]), followed by centrifugation for 5 min at 100g to pellet unbroken cells. 
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Supernatant was centrifuged at 16,000g for 15 minutes and the pellet containing 

membranes were collected for the flotation experiments. 

For sucrose flotation gradient analysis, samples were adjusted to 52% (wt/wt) 

sucrose in the lysis buffer, and 400 µl was loaded to the bottoms of ultraclear 

polycarbonate ultracentrifuge tubes (Beckman), overlaid with 900 µl of 45% sucrose in 

lysis buffer, topped with 100 µl of 10% sucrose in lysis buffer, and subsequently 

centrifuged at 40,000 rpm at 4°C for 16 h by using an TLS55 Ti rotor in a Beckman 

Optima-Max-XP ultracentrifuge. Ten fractions (140 µl each) were manually collected 

from the top to the bottom, followed by protein analysis by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis and Western-blotting procedures as described 

previously using antibodies against Sec61p (an integral ER membrane protein) and anti-

Pgk1p (cytosolic protein) (Wang et al., 2009).  

Confocal Laser Microscopy.  

Yeast cells were transformed with yfp- or gfp-tagged p33 (pesc-yfp-33 or pyes-

hisgfp-33) (Panavas et al., 2005a). To visualize peroxisome and er, pex13-cfp and 

pho86-cfp, respectively, were used as markers (Panavas et al., 2005a). Transformed 

yeast cells were pre-grown overnight at 29°c and then transferred to media containing 2% 

galactose and samples were collected for microscopy after 6 hrs (Panavas et al., 2005a). 

to test the effect of ino2 overexpression on p33 localization pattern, above yeast 

transformants were re-transformed with pyc-ino2 or pyc (as a control). Samples were 

collected for confocal microscopy 6 and 24 hrs post induction. 
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FHV replication assay.  

BY4741 and ΔINO2/ΔINO4 strains were transformed with pESC-His-Cup-FHV-

RNA1-TRSVRz. After pregrowing at 29°C, media (SC-H- with 2% galactose) was 

supplemented with 50µM Cu++ and harvested after 48 hrs for RNA analysis. To study the 

effects of Ino2 overexpression, above yeast strains were transformed with pYC-INO2 or 

pYC-empty plasmids along with pESC-His-Cup-FHV-RNA1-TRSVRz. Cells were grown 

in media SC-UH- 2% galactose media at 29°C and then supplemented with 50µM Cu++ 

and harvested after 48 hrs for RNA analysis. 

 

 

RESULTS 

Deletion of Ino2 and Ino4 transcription activators in yeast reduces TBSV RNA 

accumulation and inhibits the viral replicase activity in vitro.  

To confirm the role of phospholipid biosynthesis in TBSV replication, we tested 

replication of the TBSV replicon (rep)RNA, which is an efficiently replicating surrogate 

RNA template derived from the TBSV genomic (g)RNA (Panavas and Nagy, 2003; 

White and Morris, 1994), in ino2∆ yeast, co-expressing the p33 and p92pol replication 

proteins and DI-72 repRNA from plasmids. Northern blot analysis revealed ~60% less 

efficient replication of DI-72 repRNA in ino2∆ yeast in comparison with the parental 

yeast (Fig. 3.1B, lanes 1-4 versus 5-8), confirming the data from the previous genome-

wide screen (Panavas et al., 2005b). The expression level of p33 also decreased by ~50% 

in ino2∆ yeast (Fig. 3.1B), which could be one of the reasons for the reduced 

accumulation level of the TBSV repRNA in ino2∆ yeast. To test if the activity of the 
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tombusvirus replicase complex was similar in ino2∆ and wt yeast strains, we isolated the 

membrane-bound tombusvirus replicase from these yeast strains and tested the in vitro 

template activity on the co-purified endogenous template RNA. These experiments 

revealed that the tombusvirus replicase showed only 22% activity when obtained from 

ino2∆ yeast, although the amount of p33/p92pol was adjusted to comparable levels in the 

membrane fractions (Fig. 3.1C). The replicase-based in vitro data suggest that the 

reduced phospholipid synthesis in ino2∆ yeast inhibits the relative activity of the 

tombusvirus replicase. Thus, phospholipids are likely important for tombusvirus 

replication. 

Additional control experiments showed that plasmid-born INO2 could 

complement the negative effect of INO2 deletion on TBSV RNA accumulation (Fig. 

3.1D, lanes 1-4). Moreover, deletion of INO4 also reduced TBSV replication 

significantly (Fig. 3.1E). This is not surprising since Ino4 is a transcription activator that 

forms a heterodimer with the Ino2 to control the transcription of phospholipid 

biosynthesis genes [(Carman and Han 2009) and (Nohturftt and Zhang 2009)].    

Since inhibition of TBSV replication was consistently stronger in ino2∆ yeast 

than in ino4∆ yeast, we decided to test TBSV replication in a double-deletion yeast strain 

(ino2∆ino4∆). TBSV repRNA replication was even more debilitated in the double-

deletion yeast strain (down to ~25% level Fig. 3.2A). In addition, we observed 

consistently reduced levels of p33/p92pol in the double-deletion yeast (Fig. 3.2A), 

although both replication proteins were expressed from the constitutive ADH1 promoter. 

To exclude the possibility that the reduced p33/p92pol levels were due to inhibition of 

ADH1 promoter-driven transcription, we also tested the accumulation of p33/p92pol when 
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expressed from GAL1 galactose inducible/glucose suppressible promoter (Fig. 3.2B) or 

from the copper-inducible CUP1 promoter (Fig. 3.2C). Interestingly, repRNA replication 

as well as p33/p92pol levels were also reduced in these yeasts, suggesting that viral RNA 

replication and reduction in replication protein levels is not promoter-specific (Fig. 3.2A-

C). Testing the tombusvirus replicase activity in the membrane-enriched fraction 

obtained from ino2∆ino4∆ yeast revealed that the normalized template activity (after 

adjustment of p33 to comparable levels in each sample) of the tombusvirus replicase on 

the endogenous template was low (Fig. 3.3, lanes 1-2 versus 3-4). Altogether, these data 

suggest that repRNA accumulation, the normalized activity of the tombusvirus replicase 

and the level of p33/p92pol decreased markedly in ino2∆ino4∆ yeast. 

Reduced stability of p33 replication protein in ino2∆ino4∆ yeast.  

To test the stability of p33 replication protein when phospholipid biosynthesis is 

inhibited, we first expressed p33 from GAL1 promoter for 6 hours, followed by adding 

cycloheximide (to inhibit new protein synthesis), followed by measuring protein levels 

(Fig. 3.4A). We found that the half-life of p33 decreased ~ 2-fold to 3.5 hours in 

ino2∆ino4∆ yeast from more than 6 hours in wt yeast (Fig. 3.4A). Interestingly, the 

stability of the repRNA did not change in ino2∆ino4∆ yeast (Fig. 3.4B), suggesting that 

the primary effect of reduced phospholipid synthesis is on the replication proteins and not 

on the stability of repRNA.  

Over-expression of Ino2 increases TBSV RNA accumulation in yeast.  

Over-expression of Ino2 has been shown to increase the phospholipid synthesis in 

yeast [(Carman and Han 2009) and (Nohturftt and Zhang 2009)]. We found that over-

expression of Ino2 from either a low (Fig. 3.5, lanes 1-4) or high (lanes 9-12) copy 
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number plasmids led to 2-3-fold increase in TBSV RNA accumulation. The level of 

p33/p92pol replication proteins did not change in the over-expression strains, suggesting 

that the increased RNA accumulation was likely due to increased TBSV RNA 

replication.   

To test when TBSV is the most dependent on phospholipid biosynthesis, we 

devised a scheme for controlled over-expression of Ino2, and thus regulated increase in 

phospholipid biosynthesis, followed by measuring TBSV RNA accumulation 24 hours 

after inducing repRNA replication (see Fig. 3.6A for the experimental scheme). The 

control experiments included the same expression plasmid and inducer (galactose), but 

without the INO2 open reading frame (Fig. 3.6C), which leads to the over-expression of a 

small peptide. We found that Ino2 over-expression increased TBSV repRNA 

accumulation to the largest extent when it was over-expressed all the time (3x increase, 

from 69% to 225%, compare treatment #3 in Fig. 3.6B-C, lanes 7-9). We also observed 

~2-fold increase in TBSV RNA accumulation when Ino2 was over-expressed for 12 h 

either before the induction of TBSV repRNA accumulation (from 88% to 151%, compare 

treatment #2, Fig. 3.6B-C, lanes 4-6) or the first half of TBSV replication period 

(treatment #4, lanes 10-12). Similarly, over-expression of Ino2 for 24 h during the entire 

TBSV replication period led to ~2x increase in TBSV RNA accumulation (compare 

treatment #6, Fig. 3.6B-C, lanes 16-18). In contrast, over-expression of Ino2 for 12 h 

during the second half of TBSV replication period (compare treatment #5, Fig. 3.6B-C, 

lanes 13-15) did not alter TBSV RNA accumulation. Altogether, these data are consistent 

with the model that TBSV replication is the most dependent on phospholipid biosynthesis 

at the early stage of the replication cycle and less dependent at the latter stage. However, 
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it is important to note that since we over-expressed Ino2 transcription activator, the actual 

effect on phospholipid levels in yeast cells could take place couple of hours after the 

induction of Ino2. 

 

Over-expression of Opi1, a repressor of phospholipid synthesis, decreases TBSV RNA 

accumulation in yeast.  

To further show that TBSV replication depends on active phospholipid 

biosynthesis, we over-expressed Opi1, which is a repressor of Ino2-Ino4 complex 

[(Carman and Han 2009) and (Nohturfitt and Zhang 2009)]. TBSV repRNA 

accumulation decreased by 2.5-fold in yeast over-expressing Opi1 (Fig. 3.7, lanes 1-4). 

The amount of p33 and p92pol replication proteins also decreased in this yeast (Fig. 3.7). 

Thus, the overall effect of over-expression of Opi1 was very similar to the situation seen 

with ino2∆ino4∆ yeast (Fig. 3.2), suggesting that the phospholipid biosynthesis pathway 

is important in tombusvirus replication. 

Phospholipid synthesis is required for proper subcellular localization of tombusvirus 

replication proteins.  

To monitor the subcellular localization of the tombusvirus replication protein in 

ino2∆ino4∆ yeast, first we used GFP-tagged p33 and confocal microscopy. Interestingly, 

the large majority of yeast cells showed unusual diffused pattern for GFP-p33 in 

ino2∆ino4∆ yeast (Fig. 3.8A), which is in contrast with the punctate structures formed in 

wt BY4741 yeast (not shown and Fig. 3.8C, E, J-K) (Jonczyk et al., 2007; Panavas et al., 

2005a). A smaller fraction of yeast cells showed GFP-p33 as part of punctate structures, 

as expected from cells replicating the TBSV repRNA (Fig. 3.8A).  
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   To define the subcellular location of p33 in ino2∆ino4∆ yeast, we co-expressed 

YFP-p33 with CFP-Pex13, which is a peroxisomal marker protein (Jonczyk et al., 2007; 

Panavas et al., 2005a). Surprisingly, both YFP-p33 and CFP-Pex13 showed the unusual 

diffused pattern in the majority of yeast cells (Fig. 3.8B), which is dramatically different 

from the usual punctate structures and co-localization as seen in the wt BY4741 strain 

(Fig. 3.8C). In a small fraction of cells (~25%), in which YFP-p33 and CFP-Pex13 

showed punctate structures (Fig. 3.8B, bottom panel), their co-localization was 

detectable, suggesting that in a few cells tombusvirus p33 might be able to get 

transported to proper subcellular location, while it is mislocalized in the majority of 

ino2∆ino4∆ yeast cells.  

To further test the subcellular location of p33 in ino2∆ino4∆ yeast, we co-

expressed YFP-p33 with CFP-Pho86, which is an ER marker protein (Jonczyk et al., 

2007; Panavas et al., 2005a). We did not observe co-localization of p33 and the ER 

marker protein in ino2∆ino4∆ yeast (Fig. 3.8D), while we detected some co-localization 

of YFP-p33 with CFP-Pho86 in wt BY4741 yeast (Fig. 3.8E). Most of the punctate 

structures formed by YFP-p33 were located in the proximity of ER, but not co-localized 

with the ER marker, as shown previously (Jonczyk et al., 2007; Panavas et al., 2005a). 

This pattern is typical for tombusviruses, which is interpreted as peroxisomal location. 

We also used cell-fractionation experiments to test if YFP-p33 is still membrane-bound 

in ino2∆ino4∆ yeast. The obtained data from independent sets of experiments revealed 

that YFP-p33 sedimented with the membrane-containing fraction, not the supernatant 

containing the soluble proteins (Fig. 3.8F). Treating the membrane-fraction with alkaline 

to remove peripheral membrane-bound proteins did not remove p33, indicating that p33 
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is an integral membrane-protein in ino2∆ino4∆ yeast (Fig. 3.8G). Membrane flotation 

experiments confirmed that p33 was the most abundant in the top fractions 2 and 3, 

which contains most of the membrane-bound proteins, such as Sec61p (Fig. 3.8H, lanes 

2-3). Altogether, these data suggest that most YFP-p33 is likely membrane-associated in 

ino2∆ino4∆ yeast. 

Over-expression of Ino2 in BY4741 strain resulted in YFP-p33 pattern with 

frequent formation of large punctate structures both at 6 h and 24 h time points (Fig. 3.8J-

K), which were co-localized with Pex13 peroxisomal marker at the 6h time point (Fig. 

3.8I). In comparison, YFP-p33 is distributed to a large number, but smaller punctate 

structures in the wt yeast (Fig. 3.8J-K). Since Ino2 over-expression simulates TBSV 

repRNA accumulation, it is likely that the large punctate structures in Ino2 over-

expressing cells are increasingly active in viral RNA synthesis.  

 

Phospholipid synthesis is needed for replication of FHV.  

To test if the reduced phospholipid synthesis in ino2∆ino4∆ yeast could also 

affect the replication of another RNA virus, we chose FHV (Castorena et al., 2010; 

Kopek et al., 2010; Odegard et al., 2010; Pogany et al., 2010; Price et al., 2002), which is 

an insect virus distantly related to TBSV, with both viruses belonging to the Flavivirus-

supergroup among (+)RNA viruses. The accumulation of FHV RNA1 and the 

subgenomic RNA3 (produced from RNA1 during replication) was reduced dramatically 

in ino2∆ino4∆ yeast (Fig. 3.9A). Interestingly, an N-terminally truncated protein A 

(PrtA) replication protein accumulated in ino2∆ino4∆ yeast (Fig. 3.9B), suggesting that 

the FHV replication protein is unstable in presence of reduced amounts of phospholipids. 
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Time-course experiments showed that the full-length FHV PrtA was barely detectable 

even at the beginning of the protein stability experiments (Fig 9B).  

Over-expression of Ino2 in wt BY4741 yeast resulted in ~3-fold increase in FHV 

RNA3 accumulation (Fig. 3.9C, lanes 1-4 versus 5-8). Thus, similar to TBSV, FHV 

replication is also dependent on phospholipid synthesis in yeast.  

 

 

DISCUSSION 

Phospholipids are major components of cellular membranes, affecting the size, 

shape and rigidity of cells and intracellular organelles (Nohturfft and Zhang, 2009). 

Replication of various RNA viruses, which hijack subcellular membranes to induce the 

formation of viral replication organelles (den Boon et al., 2001; Miller and Krijnse-

Locker, 2008a; Novoa et al., 2005) likely depends on phospholipids. Indeed, all the 

genome-wide screens performed with (+)RNA viruses have led to the identification of a 

number of host genes affecting lipid biosynthesis or metabolism (Cherry et al., 2005; 

Krishnan et al., 2008; Kushner et al., 2003; Li et al., 2009a). Similarly, genome-wide 

screens with TBSV identified at least 14 host genes affecting phospholipid, sterol and 

fatty acid biosynthesis/metabolism (Jiang et al., 2006; Panavas et al., 2005b). The 

abundance of the identified host lipid synthesis genes suggests that lipids are important 

for TBSV replication. Indeed, we have shown previously that sterols affect TBSV 

replication in yeast, in plants and in vitro (Sharma et al., 2010). 

 The role of phospholipids in TBSV replication is supported by several pieces of 

evidence presented in this paper. First, single deletions of INO2 and INO4 or the double-
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deletion of INO2-INO4 inhibited TBSV replication in yeast (Figs. 1-2). INO2 and INO4 

are activators of phospholipid biosynthesis genes, and, thus, their deletions are known to 

reduce phospholipid levels and prevent membrane proliferation (Block-Alper et al., 2002; 

Schuck et al., 2009). The ino2∆ino4∆ yeast is viable due to the base-level phospholipid 

biosynthesis that occurs in the absence of Ino2/Ino4 transcription activators. We found 

that ino2∆ino4∆ yeast still can support low level of TBSV replication (Figs. 1-2), likely 

due to the presence of some phospholipids in the cellular membranes. Second, over-

expression of Opi1, which is a repressor of phospholipid biosynthesis by binding to Ino2 

(Wagner et al., 1999; Wagner et al., 2001), also inhibited TBSV repRNA accumulation in 

yeast (Fig. 3.7). Third, over-expression of Ino2 increased TBSV RNA accumulation 

(Figs. 5-6).  

 The follow-up experiments revealed that the reduced phospholipid levels affected 

many steps/processes during TBSV replication. For example, the in vitro activity of the 

tombusvirus replicase in the membrane-enriched fraction from ino2∆ino4∆ yeast was 

poor when compared with a similar preparation from wt yeast (Fig. 3.3). Since we 

adjusted the preparations to have comparable amounts of tombusvirus replication 

proteins, the differences in the template activity of these replicase preparations are likely 

due to either poor assembly of the replicase complex or the low activity of the replicase 

in ino2∆ino4∆ yeast. Thus, phospholipids affect the activity of the replicase to make viral 

RNA products. 

 Another characteristic of TBSV replication in ino2∆ino4∆ yeast is the reduced 

stability of the tombusvirus replication protein (Fig. 3.4A). This reduced stability could 

be due to incorrect localization of the replication proteins in ino2∆ino4∆ yeast. Instead of 
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the usual punctate structures formed by p33 on the peroxisomal or ER membranes, p33 

shows diffused distribution in ino2∆ino4∆ yeast, albeit most of the p33 proteins seem to 

be still associated with membranes based on cell-fractionation and treatment of 

membranes with alkaline (Fig. 3.8). Based on these data, we propose that the tombusvirus 

replication proteins are not targeted to the proper subcellular locations in ino2∆ino4∆ 

yeast. This interferes with the assembly of the viral replicase, resulting in reduced 

replicase activity and possibly faster turnover of the replication protein in ino2∆ino4∆ 

yeast. On the contrary, the intracellular targeting of p33 and the assembly of the replicase 

might be facilitated by over-expression of Ino2, which resulted in enlarged punctate 

structures in yeast (Fig. 3.8H-I).  

 FHV replication also occured at a reduced level in ino2∆ino4∆ yeast (Fig. 3.9). 

This confirms previous findings that phospholipids are important for FHV replication 

(Castorena et al., 2010). A new finding is the occurrence of a truncated prtA replication 

protein in ino2∆ino4∆ yeast, suggesting that phospholipids could be important to protect 

prtA from cleavage by cellular proteinases. We did not observe similar abundant 

truncated products of p33 or p92pol in ino2∆ino4∆ yeast, but this could be due to faster 

degradation of p33 or p92pol that rapidly removes the putative truncated protein products. 

Overall, the replication proteins of both viruses seem to require phospholipids for 

enhanced stability. 

 Although the data shown here support strongly the roles of phospholipids in 

TBSV and FHV RNA replication, we cannot yet pinpoint the critical phospholipids, since 

INO2/INO4 transcription activators affect the production of many phospholipids in yeast 

(Carman and Han, 2009). A more detailed work on FHV demonstrated that genes 
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involved in the production of phosphatidylcholine are critical for FHV replication 

(Castorena et al., 2010). Additional experiments will be needed to identify the critical 

phospholipids for TBSV replication.   
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Figure 9 Figure 3.1 Deletion of INO2 and INO4 inhibits TBSV repRNA 

accumulation in yeast. 

 (A) Schematic representation of the regulation of expression of phospholipid 

biosynthesis genes by Ino2/Ino4 transcription activators and Opi1 repressor. (B) Top 

panel: Northern blot analysis with a 3' end specific probe was used to detect the 

accumulation level of the TBSV repRNA in ino2∆ or wt (BY4741) yeast. To launch 

TBSV repRNA replication, we expressed both 6xHis-p33 and 6xHis-p92 from the ADH1 

promoter as well as DI-72(+) repRNA from the galactose-inducible GAL1 promoter from 

plasmids. Yeast cells were cultured for 24 hours at 23ºC in 2% galactose SC-ULH- 

media. The accumulation levels of repRNA were calculated using Imagequant software. 

Middle panel: Northern blot analysis to probe ribosomal rRNA, which was used as a 

loading control. Bottom panel: Western blot analysis of p33 accumulation using anti-His 

antibody. (C) Decreased tombusvirus replicase activity in ino2∆ yeast. An in vitro 

replicase activity assay was performed with membrane-enriched preparations obtained 

from ino2∆ or wt yeasts grown as in Panel B. The membrane-enriched fraction contains 

the tombusvirus replicase bound to the endogenous repRNA template that is used during 

the in vitro replicase assay in the presence of 32P-UTP and the other unlabeled rNTPs. 

Note that the in vitro activities of the tombusviral replicase were normalized based on 

p33 (middle panel) levels. Bottom panel shows Western blot analysis of p92 present in 

the membrane-enriched replicase preparations. (D) Northern blot analysis of TBSV 

repRNA in ino2∆ yeast complemented with Ino2 expression from the low copy pYC-
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INO2 plasmid (lanes 1-4), or wt yeast (with the empty pYC plasmid). (E) Northern blot 

analysis of TBSV repRNA in ino4∆ yeast. See further details in Panel B.  
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Figure 10 Figure 3.2 Reduced TBSV repRNA accumulation in ino2∆ino4∆ yeast.  

 (A) Northern blot analysis of TBSV repRNA in ino2∆ino4∆ or wt yeast. To launch 

TBSV repRNA replication, we expressed 6xHis-p33 and 6xHis-p92 from the ADH1 

promoter and DI-72(+) repRNA from the galactose-inducible GAL1 promoter. Yeast cells 

were cultured for 24 hours at 23ºC in 2% galactose SC- ULH- media containing 2mg/L 

inositol. See further details in Fig. 3.1B. (B) To induce TBSV repRNA replication, we 

expressed 6xHis-p33, 6xHis-p92, and DI-72(+) repRNA from the GAL1 promoter. See 

further details in Fig. 3.1B. (C) To induce TBSV repRNA replication, we expressed 

6xHis-p33 and 6xHis-p92 from the copper-inducible CUP1 promoter and DI-72(+) 

repRNA from GAL1 promoter. See further details in Fig. 3.1B.   
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Figure 11 Figure 3.3 Reduced tombusvirus replicase activity in ino2∆ino4∆ yeast. 

TBSV repRNA replication was induced by expressing 6xHis-p33 and 6xHis-p92 from 

the ADH1 promoter and DI-72(+) repRNA from GAL1 promoter in yeast for 24 hours at 

23ºC in 2% galactose SC-ULH- media containing 2mg/L inositol. See further details in 

Fig. 3.1C. 
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Figure 12 Figure 3.4 Reduced half-life of p33 replication protein in ino2∆ino4∆ 

yeast. 

 (A) Yeast was pre-grown at 29 ºC for 12 hours in SC-U- with 2% glucose, followed by 

replacing the media with SC-U- with 2% galactose for 6 hours to induce the expression of 

p33, followed by addition of cycloheximide (100 mg/ml). Samples were collected at the 

shown time points. The amount of p33 was estimated via Western blotting based on anti-

His antibody and ECL-Plus. The images were analyzed by a phosphorimager and 

quantitated via Imagequant. The experiments were repeated three times (two repeats are 

shown). The error bars represent the upper half of standard error. (B) Yeast was pre-

grown at 29 ºC for 12 hours in SC-U- with 2% glucose, followed by replacing the media 

with SC-U- with 2% galactose containing 78mg/L inositol for 12 hours at 23 ºC to induce 

the expression of DI-72(+) repRNA, followed by replacing the media with SC-U- with 

2% glucose. Samples were collected at the shown time points. The amount of DI-72(+) 

repRNA was estimated by Northern blotting. * marks the full-length transcripts 

(uncleaved) carrying nonviral sequences at the 3’ end, while the repRNA (which was 

quantified) carries the authentic TBSV 3’ end due to cleavage of the 3’ extension by a 

ribozyme and is pointed at by a solid arrowhead.  
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Figure 13 Figure 3.5 Over-expression of Ino2 enhances TBSV repRNA replication in 

yeast. 

Top panel: Northern blot analysis of TBSV repRNA in BY4741 yeast over-expressing 

Ino2 from the GAL1 promoter from the low copy pYC-INO2 plasmid (+INO2, lanes 1-

4), or from the high copy pYES-INO2 (+INO2, lanes 9-12). The control yeast carried 

either the empty pYC or pYES plasmids as shown. The expression of Ino2 started 15 

hours before launching TBSV repRNA replication, which started by expressing 6xHis-

p33 and 6xHis-p92 from the CUP1 promoter and DI-72(+) repRNA from the GAL1 

promoter, and continued to the end of the experiment (24 hours of TBSV replication at 29 

ºC). We omitted inositol from the growth media. In addition, we used 100 µM BCS for 

15 hours before inducing TBSV replication (to prevent leaky transcription from the 

CUP1 promoter). See further details in Fig. 1B. Bottom panel shows the Western blot 

analysis of p33 and p92 replication proteins using anti-His antibody.  
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Figure 14 Figure 3.6 Over-expression of Ino2 facilitates TBSV repRNA 

accumulation the most effectively when expressed continuously in yeast. 

(A) The scheme of Ino2 over-expression from the GAL1 promoter from the low copy 

pYC-INO2 plasmid relative to initiation of repRNA replication. repRNA replication took 

place for 24 hours at 29 ºC before RNA analysis. (B) Northern blot analysis of TBSV 

repRNA in yeast samples over-expressing Ino2 as shown schematically in panel A. We 

omitted inositol from the growth media, which always contained 2% raffinose plus 0 or 

2% galactose as shown in panel A. In addition, we used 100 µM BCS for 12 hours before 

inducing TBSV replication (to prevent leaky transcription from the CUP1 promoter). 

Note that treatment #1 (no Ino2 is expressed) is the same as in panel C and it is chosen as 

100% to allow comparison between the two panels. (C) Northern blotting shows the level 

of TBSV repRNA accumulation when a small peptide was over-expressed from the 

GAL1 promoter in pYC as shown schematically in panel A. The accumulation level of 

DI-72(+) repRNA (shown in percentage) was normalized based on 18S rRNA.  
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Figure 15 Figure 3.7 Over-expression of Opi1 repressor inhibits TBSV repRNA 

replication in yeast. 

Top panel: Northern blot analysis of TBSV repRNA in BY4741 yeast over-expressing 

Opi1 from the GAL1 promoter from the low copy pYC-OPI1 plasmid (+OPI1, lanes 1-4). 

The control yeast carried the empty pYC plasmid (lanes 5-8). The expression of Opi1 

started 15 hours before launching TBSV repRNA replication, which started by expressing 

6xHis-p33 and 6xHis-p92 from the CUP1 promoter and DI-72(+) repRNA from the 

GAL1 promoter, and continued to the end of the experiment (24 hours of TBSV 

replication at 29 ºC). We used 100 µM BCS in the media for 15 hours before inducing 

TBSV replication (to prevent leaky transcription from the CUP1 promoter). See further 

details in Fig. 3.1B. Bottom panel shows the Western blot analysis of p33 and p92 

replication proteins using anti-His antibody. 
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Figure 16 Figure 3.8 Phospholipid synthesis is essential for the proper subcellular 

localization of tombusvirus p33 replication protein in yeast. 

 (A) Confocal laser microscopy analysis of subcellular distribution of GFP-tagged p33 in 

ino2∆ino4∆ yeast. DIC represents Differential interference contrast microscopic images. 

(B-C) YFP-tagged p33 co-expressed with CFP-tagged Pex13, a peroxisomal marker 

protein, in ino2∆ino4∆ yeast and in wt BY4741. (D-E) Subcellular localization of YFP-

p33 co-expressed with CFP-Pho86, an ER marker protein, in ino2∆ino4∆ yeast and in wt 

BY4741, respectively. Throughout the experiments GFP- or YFP- tagged p33 was 

expressed from GAL1 promoter and the marker proteins, CFP-Pex13 and CFP-Pho86 

from the ADH1 promoter. (F) Western blot analysis of p33 (6xHis-tagged) after 

fractionation from wt (BY4741) and ino2∆ino4∆ yeast cells. Sec61 ER protein, Ssa1 both 

cytosolic and membranous protein, and Pgk1p cytosolic protein were used as controls 

and detected with specific antibodies. (G) Western blot analysis of p33 after fractionation 

from wt (BY4741) and ino2∆ino4∆ yeast cells. Note that the membrane fraction was 

treated with alkaline to remove peripheral proteins from the membrane as described in 

Materials and Methods. (H) Western blot analysis of p33 from wt and ino2∆ino4∆ yeast 

cells after membrane flotation. The top fractions contain the membrane-associated 

proteins, while the bottom fractions contain soluble or aggregated proteins. See further 

details in panel F. (I) Confocal laser microscopy analysis of subcellular localization of 

YFP-p33 co-expressed with CFP-Pex13 peroxisomal marker protein at 6 h time point in 

yeast over-expressing Ino2. (J) and (K) Localization of YFP-p33 at 24 h time point, in 

yeast over-expressing Ino2 or in wt (control) background as shown. The bottom row of 

images are shown at lower magnification of yeast cells to illustrate the presence of ~1-4 
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large punctate structures in yeast over-expressing Ino2, while smaller punctate structures 

form in the control BY4741 yeast transformed with the empty vector.  
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Figure 17 Figure 3.9 Deletion of INO2 and INO4 inhibits FHV RNA accumulation in 

yeast. 

(A) Top panel: Northern blot analysis with a 3' end specific probe was used to detect the 

accumulation level of the FHV RNA1 and RNA3 in ino2∆ino4∆ or wt (BY4741) yeast. 

To launch FHV RNA replication, we expressed FHV RNA1 from the copper-inducible 

CUP1 promoter from a plasmid. Yeast cells were cultured for 48 hours at 29ºC in 2% 

galactose SC-H- media containing 2mg/L inositol. The accumulation levels of repRNA 

were calculated using Imagequant software. The accumulation level of FHV RNA3 

(shown in percentage) was normalized based on 18S rRNA. Middle panel: Northern blot 

analysis to probe rRNA, which was used as a loading control. (B) Western blot analysis 

of protein A (prtA) accumulation using anti-FLAG antibody. Samples were collected at 

0, 1, 2, 3, 4, 5 and 7 hours. Note that sample 7 (bottom panel) also contains a trace 

amount of full-length prtA, depicted by an arrowhead, as a size control to illustrate the 

difference in protein A products. (C) Over-expression of Ino2 facilitates FHV RNA 

accumulation in yeast. Ino2 was over-expressed from the GAL1 promoter from the low 

copy pYC-INO2 plasmid. FHV replication took place for 48 hours at 29 ºC before RNA 

analysis. The accumulation level of FHV RNA3 (shown in percentage) was normalized 

based on 18S rRNA. We omitted inositol from the growth media, which always 

contained 2% raffinose. 
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Chapter 4 Role of cardiolipin and its biosynthetic genes in tombusvirus replication 

 

INTRODUCTION 

One of the key features of RNA viruses is that they replicate on different host 

intracellular organeller membranes and assemble their replicase complexes on the 

cytoplasmic surface of these membranes (Stapleford et al., 2009). To facilitate the 

membrane associated replicase complex formation viruses contain replication proteins 

which encode the membrane targeting sequences; Several of them are well characterized 

(den Boon et al., 2001; Miller and Ahlquist, 2002; Miller et al., 2003; Schaad et al., 

1997). However host factors that are necessary for membranes biogenesis and final 

components of membranes important for virus replicase assembly are not well studied. 

Identification of such host factors and its final products assisting virus to assemble 

replicase complex for its efficient replication can be an important target for antiviral 

(Stapleford et al., 2009). 

Positive stranded RNA viruses often induce vesiculation, proliferation, and 

redistribution of specific intracellular membranes (Lee and Ahlquist, 2003b). A lipid 

synthesis inhibitor, cerulenin, is known to inhibit RNA replication of Semliki Forest 

virus, poliovirus, and cowpea mosaic virus, indicates a requirement for lipid and/or 

membrane synthesis (Lee and Ahlquist, 2003b). Lovastatin, an inhibitor of another lipid 

(cholesterol) also reduces the replication of WNV (Mackenzie et al., 2007). Furthermore, 

some of the in vitro studies demonstrated that complete in vitro replication of FHV 

requires glycerophospholipid (Wu et al., 1992). However, present knowledge of the  
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 contributions of membranes and different lipids to the assembly and function of viral 

RNA replication complexes is not clear.  

Identification of several factors in genome wide screens, suggest that lipids are 

likely involved, directly or indirectly, in TBSV replication in yeast. Accordingly, 

previous studies (Chapter 1 and 2) showed that INO2/ INO4, positive regulator of 

phospholipids and ergosterol are critical for TBSV replication (Sharma et al., 2010, 

2011). 

Ino2p/Ino4p transcription factors regulate the synthesis of hundreds of genes 

involved in phospholipid biosynthesis in yeast.  Likewise several positive strand RNA 

viruses require phospholipids during their replication. Previous work from our lab 

established the importance of phospholipids in TBSV replication but could not pinpoint 

which phospholipids in particular are being utilized by tombusvirus. For e.g. FHV uses 

phosphotydyl choline and cardiolipin during replication (Stapleford et al., 2009). 

Polioviruses depend upon glycerotadyl choline (Vance et al., 1980). Recently it has been 

shown that PIP4 levels are critical for replication of poliovirus (Hsu et al., 2010) 

Similarly downregulation of phosphoinositol synthesizing genes in mammalian cells 

compromised the replication of Hepatitis C virus (Reiss et al., 2011). In this study, we 

wanted to know which phospholipids(s) are utilized by TBSV during its replication. 

During the genome wide studies conducted in our lab, specific genes were not found 

altering the replication of TBSV. It’s not surprising because its known that different 

phopholipid synthesis pathways exist in the yeast cells and also that individual products 

can also be complemented for each other (Osman et al., 2010). In order to discover the 

individual phospholipids in TBSV RNA replication, we exploited the lipid arrays and 
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tested viral replication proteins for its binding to particular lipid. Cardiolipin positively 

bound to the TBSV replication proteins. Cardiolipin, is a dimeric phosphoglycerolipid 

mainly present in mitochondrial membranes. It plays important roles in the cellular 

energy metabolism mitochondrial dynamics and in the initiation of apoptotic pathways 

(Osman et al., 2010). 

We further focused on cardiolipin and its biosynthetic pathways because 

peroxisomes are the second most abundant sink of cardiolipins in the yeast cells (Zinser 

et al., 1991). Moreover these are the only phospholipids in yeast cells with four different 

carbon chains rendering it highly anionic. Accordingly, we demonstrate in this paper that 

deletion of crd1 and gep4 leads to a drastically low level of TBSV repRNA accumulation 

in yeast. crd1 and gep4 are crucial factors for the synthesis of cardiolipins (Osman et al., 

2010). We demonstrate that cellular localization of the tombusvirus replication protein 

changes in crd1∆ yeast. We also show that the replication of nodamuravirus is inhibited 

in crd1∆ yeast broadening our discovery to other positive strand RNA viruses. This work 

indicates that cardiolipin biosynthesis is required for efficient replication of some (+) 

strand RNA viruses. 

 

MATERIAL AND METHODS 

Yeast and bacterial strains:  

Saccharomyces cerevisae strains s288c, crd1Δ, gep4Δ, and pgc1Δ were generous 

gifts from Dr. Thomas Langer of Max-Planck-Institute for Biology of Aging, Cologne, 

Germany. Top10 strain of E.coli was used for cloning purposes. 
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Plasmids:  

To express Crd1, Gep4, Pgc1 in yeast, their ORFs were cloned into pYC vector 

containing 6X His residues on amide terminal end using BamH1 and XhoI sites. 

Following primers appended with BamH1 and XhoI recognition sequences respectively to 

facilitate directional cloning were used to amplify the desired ORFs: (i) Crd1: #4748 

(AAAATGATTCAAATGGTGCCCATTTATTCATGCTCC) and #4749 

(CTATTTTAAAAGTTTAAAAGCGTTTCTC)  (ii) Gep4: #4752 

(AAAATGAACATCAGTGGCACCTTAAATACGC) and #4753 

(TCAAAATCCCAAAAAGTTGTATAAT) and (iii) Pgc1: #4750 

(AAAATGGTTGAAATTGTGGGCCACAGAGCTTTTAAA) and #4751 

(TCAAAGAAAATGAATGGTTCGAAGGAAC). 

TBSV replication assay in yeast 

Yeast strains s288c, crd1Δ, gep4Δ, and pgc1Δ were transformed with the 

plasmids pHisGBK-CUP-His33/GAL-DI72 (Jaag et al., 2010) and pGAD-CUP-Hisp92 

(Sharma et al., 2011). Replication assay was performed by measuring the accumulation 

of DI-72(+) repRNA relative to the 18S rRNA (Panavas and Nagy, 2003a).  

Protein Analysis 

  Yeast strains were grown as described above for RNA analysis. A total of 2ml of 

yeast culture was harvested, the pelleted cells were resuspended in 200 µl of 0.1M NaOH 

and incubated at 23°C for 10 min. NaOH was aspirated after a short centrifugation, and 

the samples were resuspended in 100µl, 1X SDS-polyacrylamide gel electrophoresis 

(PAGE) buffer containing 5% β-mercaptoethanol and boiled for 5 min. The supernatant 

was used for SDS/PAGE and Western blot analysis as described in by Panavas et al., 
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(2005). The primary antibodies were anti-6x His (Invitrogen), and the secondary 

antibodies were alkaline-phosphatase-conjugated anti-mouse immunoglobulin-G 

(Sigma). 

Confocal microscopy 

Yeast cells were transformed with YFP tagged p33 (pESC-YFP-33). To visualize 

peroxisome, pex13-CFP was used. Cells were pregrown overnight at 29°C and then 

transferred to media containing 2% galactose at 32°C and samples were collected after 6 

hrs and 24 hrs.  

 

Nodamura virus replication assay 

S288c and all deletion strains were transformed with pESC-His-Cup-NOV-

RNA1-TRSV (provided by Dr. Judit Pogany, University of Kentucky). After pregrowing 

at 29°C, media was supplemented with 50µM Cu++ and samples were divided into two 

batches and transferred to 29°C and 32°C respectively and harvested after 48 hrs for 

RNA analysis.  

Overexpression of host proteins 

pYC-Crd1, pYC-Gep4, pYC-Pgc1, pYC-empty, plasmids were transformed into 

s288c strain containing pGAD-His92-Cup1, pHisGBK-CUP-His33/GAL-DI72, which 

expresses p33 protein from the regulatable CUP1 promoter and DI72 under inducible 

GAL promoter. Cells were pregrown at 29°C for 15 hrs in 2 glucose media followed by 

supplementation with 50µM Cu++ and further incubation at 29°C for 24 hrs. To over-  
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Complementation assay 

pYC-Crd1, pYC-Gep4, pYC-Pgc1, pYC-empty plasmids were transformed into 

crd1Δ, gep4Δ, pgc1Δ and s288c strains containing pGAD-His92-Cup1, pHisGBK-CUP-

His33/GAL-DI72 (expresses p33 protein from the inducible Cup1 promoter and DI72 

under inducible GAL1 promoter). All the steps of yeast transformation, yeast cultivation 

and RNA analysis were same as described above. 

 

RESULTS 

TBSV replication proteins binds to cardiolipin 

TBSV RNA is synthesized in close association of membranes and viral 

replication proteins, which include the p33 and p92. We tested whether these proteins had 

themselves any affinity for any kind of lipid. We assayed for binding of p33 and p92 by 

incubating MBP tagged purified recombinant MBP tagged p33 and p92 proteins with 

membrane strips spotted with different types of cellular lipids and MBP alone as a 

control. After washing and detecting with anti-MBP antibody we found that these 

replication proteins bound to cardiolipin and sulfatide (ceramide) lipids over all other 

phospholipids (Figure 4.1). Thus either p33 or p92 replication protein alone, independent 

of any other components of the viral replication complex, has an affinity for cardiolipin 

and sulfatide lipids that potentially can regulate both its binding to cellular membranes 

and its subsequent RNA synthesis activities.  
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Deletion of Gep4 and Crd1 cardiolipin biosynthetic genes in yeast reduces TBSV RNA 

accumulation whereas deletion of Pgc1 increases its accumulation.  

To find out the relevance of cardiolipin in TBSV replication, we tested number of 

genes involved in the cardiolipin biosynthesis pathway. This pathway has two genes Crd1 

and Gep4 involved in cardiolipin biosynthesis and Pgc1, which maintains the optimum 

amount of cardiolipin in cell by degrading excess phosphatidylglycerol (PG) (Simockova 

et al., 2008) (Fig. 4.2A). gep4∆, crd1∆, pgc1∆ along with wild type strain (s288c) were 

tested for their ability to accumulate TBSV RNA accumulation. Northern blot showed 

that in gep4∆, crd1∆ yeast strains replication was 25% and 3% compared to parental 

strain respectively. (Fig. 4.2B, lanes 13-16, 5-8 versus 1-4, 9-12). pgc1∆ yeast strain 

showed increase in rep RNA accumulation compared to the parental strain (Fig. 4.2B, 

lanes 21-24 versus 17-20). Increase in rep RNA accumulation in pgc1∆ yeast strain is 

most likely because of increased amount of cardiolipin. The expression level of p33 was 

not affected in all of these deletion strains, while accumulation level of p92 was less in 

crd1∆ yeast strain (Fig. 4.2C, lanes 5-6 versus 3-4). 

Overexpression of cardiolipin genes increases TBSV RNA accumulation in yeast  

Overexpression of CRD1 has been shown to increase the cardiolipin synthase 

activity in yeast (Chen et al., 2010). We have found over expression of 6X His NH2-

tagged Gep4 and Crd1 from the low copy number plasmid led to around 1.5 fold (Fig. 

4.3B, lanes 9-12 versus 5-8) and 2.5 fold (Fig. 4.3B, lanes1-4 versus 5-8) increase in 

TBSV replication respectively. Overexpressing Gep4 without any tag increases TBSV 

replication around 2 fold compared to an empty vector in wild type background (Fig. 

4.3B, lanes 13-14 versus 5-8). The level of p33 and p92 replication proteins did not 
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change in these strains, suggesting that the increased RNA accumulation was likely due 

to increased activity of tombusvirus replicase. We have also found overexpression of 

Pgc1 decrease the TBSV replication to 27 % compared to wild type (Fig. 4.3B, lanes 18-

21versus 15-17). 

Providing cardiolipin back in the yeast cells via CRD1 and GEP4 can rescue viral 

replication. 

Plasmid-born Crd1 and Gep4 could complement the negative effect of their 

deletion on TBSV RNA accumulation (Fig.4.4A (lanes 1–4) and B, (lanes 1–3) 

respectively. Where as control experiments showed decrease in RNA accumulation in 

crd1 and gep4 deletion yeast strain (Fig. 4.4A (lanes 5-8) and B, (lanes 5-7). We have 

found crd1 could increase RNA accumulation around 2 times compared to parental strain 

expressing empty plasmid (Fig.4.4A  lanes 1–4 versus lanes 9-12). 

Cardiolipin is required for proper subcellular localization of tombusvirus replication 

proteins  

To find out the subcellular localization of p33 in crd1∆ yeast, we co-expressed 

YFP-p33 with CFP-Pex13, which is a peroxisomal marker protein YFP-p33 showed the 

diffused pattern in the majority of yeast cells while small amount of p33 proteins also 

found in punctate form especially after 6 hrs of induction of virus replication (Fig.4.5A) 

which is different from the usual number of punctate structures and co-localization as 

seen in the wt s288c strain (Fig.4.5B).  These punctate structures after 24 hrs in crd1∆ 

were very less than wt s288c strain (Fig.4.5D) instead having unusual diffused pattern of 

p33 (Fig.4.5C) suggesting that these few punctate structures formed by p33 are able to 

support 10% of the replication we observe in experiments shown in Fig. 4.2. The 
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peroxisomal protein marker pex13p was very diffused in the crd1∆ cells (data not shown) 

probably because of deranged peroxisomal membranes. 

Cardiolipin is needed for replication of Nodamura virus.  

To test if the reduced cardiolipin synthesis in different deletion yeast strains could 

also affect the replication of another RNA virus, we chose Nodamura virus (NoV) (Price 

et al., 2005), which is virus distantly related to TBSV, can be efficiently replicated in 

yeast (Price et al., 1996), with both viruses belonging to the Flavivirus-supergroup among 

(+)RNA viruses. The accumulation of NoV RNA1 and the subgenomic RNA3 (produced 

from RNA1 during replication) was reduced in all the deletion yeast strains where 

cardiolipin is supposed to accumulate to a low level (Fig. 4.6). When I performed the 

experiments at 32°C the differences between wildtype and deletion strains became even 

more dramatic. (Fig. 4.6 Lanes 1-24). Interestingly, deletion of Pgc1 that produces a 

factor critical for removal of PG, increases NoV RNA accumulation (Fig 4.6 lanes 21-

24). 

DISCUSSION 

In the previous chapter we found strong evidences of role of phospholipid 

biosynthesis genes INO2 and INO4 for TBSV and FHV. This chapter presents several 

evidences that suggest that cardiolipins are one of the particular phospholipids cruicial for 

TBSV and NoV replication in yeast.  First, we found that cardiolipin bound to the TBSV 

replication proteins p33 and p93 (Fig. 4.1). Second, deletions of CRD1 or GEP4 or the 

double-deletion of the same inhibited TBSV replication in yeast (Figs. 2). CRD1 and 

GEP4 are critical for synthesis of cardiolipin and, thus, their deletions are known to 

reduce cardiolipin levels (Osman et al., 2010). Second, deletion of Pgc1, which is a factor 
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removing PG that is a precursor of CL increased TBSV repRNA accumulation in yeast 

(Fig. 4.2). Third, over-expression of CRD1 and GEP4 increased TBSV RNA 

accumulation whereas PGC1 reduced it as expected (Fig. 4.3). And lastly, all the 

phenotypes observed in deletion strains could be complemented when the missing 

proteins were provided via plasmid expression (Fig. 4.4).  

 The follow-up experiments revealed that the reduced cardiolipin levels affected 

the quality of punctate structures probably because of diffused localization of replication 

protein p33 (Fig. 4.5). Thus, phospholipids affect the activity of the replicase to make 

viral RNA products. Based on this data, I propose that the tombusvirus replication 

proteins are not targeted to the proper subcellular locations in cardiolipin deficient yeast.  

  NoV, replication is known to occur on the membranes of mitochondria (Garzon 

et al., 1990). Also highest concentration of cardiolipin is found in the outer mitochondrial 

membranes (second highest being peroxisomal membranes) (Zinser et al., 1991). 

Dramatic decrease in NoV RNA accumulation in cardiolipin deficient yeast strains 

further confirms the importance of cardiolipins in NoV replication. 

 Altogether, in this chapter I was able to pinpoint the exact phospholipid critical 

for tombusvirus and further extended its relevance to a related insect virus (can infect 

mammalian cells under artificial conditions). To decipher the molecular details of “How 

this lipid helps tombusvirus replication” needs further investigation. The features of 

cardiolpin that TBSV might be utilizing are its anionicity and high level of unsaturation 

apart from the presence of four aliphatic chains instead of two in the common lipids. 

 Gaining this kind of knowledge is proving very helpful for the virologists wanting 

to develop antivirals.  
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Figure 18 Figure 4.1 Cardiolipin binds to tombusviral replication proteins. 

NH2 – terminal MBP tagged p33 and p92 were expressed and purified using 

amylose column chromatography and normalized to the similar amounts as MBP that 

served as a negative control. Purified proteins were incubated with lipid strips pre-spotted 

(far right map, including cardiolipin at No. 15) with fifteen lipids followed by washing 

and detection using anti-MBP antibody. The other lipids spotted on the strip are as 

follows Triglyceride Phosphatidylinositol (Pi), Diacylglycerol (DAG), 

PtdIns(4)P, Phosphatidic acid (PA), PtdIns(4,5)P2 , Phosphatidylserine (PE), 

PtdIns(3,4,5)P3, Phosphatidylethanolamine (PE), Cholesterol, (11) 

Phosphatidylcholine (PC), (12) Sphingomyelin, (13) Phosphatidylglycerol (PG), (14) 3-

sulfogalactosylceramide (Sulfatide), (15) Cardiolipin (CL) and (16) Blank
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Figure 19 Figure 4.2 Effect of deletion of cardiolipin metabolic genes on TBSV RNA 

accumulation. 

 (A) Schematic representation of the cardiolipin biosynthesis pathway. (B) Northern blot 

analysis to detect TBSV repRNA in gep4∆, crd1∆, pgc1∆ and wt (s288c) yeast strains. 

To launch TBSV repRNA replication, we expressed both 6X His-p33 and 6XHis-p92 

from the CUP1 and DI-72(+) repRNA replication under the GAL1 promoters 

respectively. Yeast cells were grown in induction media for 24 hrs at 32°C. RepRNA 

values were normalized as per their ribosomal RNA (18S) accumulation (C) Western blot 

analysis of p33 and p92 using anti-His antibody and (D) Coomassie blue stained gel 

showing total protein accumulation  
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Figure 20 Figure 4.3 Over-expression of Cardiolipin biosynthesis factors TBSV in 

yeast. 

 (A) Scheme showing the metabolic factors in cardiolipin synthesis in yeast. (B) Northern 

blot analysis of TBSV repRNA in BY4741 yeast over-expressing Amide-terminally 

6XHis tagged Crd1, Gep4, Gep4-NT (untagged) and Pgc1 from GAL1 promoter from a 

low copy pYC-plasmid. The control yeast (−) carried the empty pYC plasmid. The 

expression of proteins started 15 h before launching TBSV repRNA replication, which 

started by expressing 6xHis-p33 and 6xHis-p92 from the CUP1 promoter and DI-72(+) 

repRNA from the GAL1 promoter, and continued to the end of the experiment (24 h of 

TBSV replication at 29 °C). We used 100 µM BCS in the media for 15 h before inducing 

TBSV replication (to prevent leaky transcription from the CUP1 promoter). (C) Western 

blot analysis using anti-His antibody shows p33 (solid arrowhead) Gep4p (Star) and 

Pgc1p (white arrowhead). An empty arrowhead marks a putative host protein detected by 

the antibody (D) Coomassie staining showing total protein isolated from the yeast cells 

from panel (C). 
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Figure 21 Figure 4.4 Viral replication complementation by cardiolipin biosynthetic 

genes. 

(A) Northern blot analysis of TBSV repRNA in wt (s288c) and crd1Δ yeast strains 

expressing amide-terminally 6XHis tagged CRD1 or just the tag as a control (-) in a low 

copy centromeric plasmid. Growing conditions and other methods were similar as in 

Figure 4.3. (B) Similar experiments as in (A) were performed in gep4Δ and wt yeast 

strains. 
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Figure 22 Figure 4.5 Cardiolipin synthesis is essential for the proper subcellular 

localization of tombusvirus p33 replication protein in yeast. 

YFP-tagged p33 co-expressed with CFP-tagged Pex13, a peroxisomal marker protein, in 

crd1∆ (A,C) yeast and in wt s288c (B,D). Throughout the experiments YFP-tagged p33 

was expressed from GAL1 promoter and the peroxisomal marker protein and Pex13-CFP 

from the ADH1 promoter. Note that pex13-CFP was below detection limits in crd1∆ 

cells.  
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Figure 23 Figure 4.6 Effect of deletion of cardiolipin metabolic genes on Nodamura 

virus RNA accumulation. 

Northern blot analysis to detect NoV RNA1 and RNA3 in gep4∆, gep4∆taz4∆, crd1∆, 

pgc1∆ and wt (s288c) yeast strains. A 3′ end specific probe was used to detect the 

accumulation level of the NoV RNA1 and RNA3 in deletion strains or wt (BY4741) 

yeast. To launch NMV RNA replication, we expressed NMV RNA1 under the copper-

inducible CUP1 promoter from a plasmid. After pre-growth, cells were cultured for 48 h 

at 29°C and 32°C in 2% galactose media containing 50µM Cu++. The accumulation of 

RNA2 was calculated using Imagequant software.  
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Chapter 5 Summary and Discussion  

Tombusvirus is a positive stranded RNA virus involves interaction of host factors 

as well as viral factors at different steps of its replication cycle. Viral RNA in early stages 

interacts to the cellular factors to produce viral replication proteins. These proteins along 

with host cellular factors and cellular membranes facilitate viral RNA to assemble 

replicase complex and helps in efficient replication. There are evidences that viral RNA 

components form different complexes with different proteins, membranes in host cell, so 

it is important to identify different host factors to dissect their role in viral replication. 

Lot of efforts has been made in these areas in recent years. Many genetic and 

biochemical approaches has been performed and identified over 100 factors affecting 

tombusvirus replication. Identified host factors can be divided into two categories 

according to their effect on viral replication: One group has positive effect (enhancers) 

and other has negative effect (inhibitors) on virus replication. Among ‘enhancers’ around 

14 factors have been identified which has role in different lipid biosynthesis pathway, 

which indicates the importance of lipids in viral replication. In the essential yeast library 

screen, we found a possible positive regulator ERG25, whose downregulation led to 

decreased TBSV rep RNA accumulation. ERG25 encodes for an intermediate enzyme C-

4 methyle oxidase in the ergosterol biosynthesis pathway of yeast (Fig. 5.1). Ergosterol is 

an important component of cellular membranes involved in various functions like 

maintaining fluidity, flexibility, rigidity, and permeability. It also helps membranes to 

interact with different proteins and lipids. Sterols are conserved among different 

kingdoms like fungi mammals and plants minor differences in the several steps of its 

synthesis. 
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To see the effect of ERG25 on TBSV repRNA accumulation, I added doxycycline 

and observed rapid decrease in mRNA levels as early as 5 hrs and found an effect on rep 

RNA accumulation of virus. I also used one of the well-known inhibitor of ERG25 

named APB (Fig. 5.1) that reduced replication in yeast by 3-to 5- folds. Similar inhibitory 

effects were observed using lovastatin, an inhibitor of another factor of the same 

pathway, suggesting that the sterol biosynthesis pathway is required for TBSV 

replication.  

In order to find out this effect is specific to peroxisome or also effects 

endoplasmic reticulum, another replication site for TBSV, we used Δpex19 yeast strains 

where peroxisomes are absent and treated these cells with APB. This treatment decreased 

TBSV replication, which indicates that TBSV replication is hugely affected by sterols, 

regardless of the site of replication.  

We also down regulated yeast orthologs of ERG25 in N. benthamiana SMO1 and 

SMO2 and observed comparable inhibition of viral RNA accumulation. This inhibition 

could be complemented in plant protoplasts by adding exogenous stigmasterol. These 

experiments strongly suggest that sterols are important component in tombusvirus 

replication.  

The molecular mechanism by which the sterols affect TBSV replication is not 

known. The shortening of half-life of p92 molecules in the yeast knocked-down for sterol 

suggested the dependence of the bulky polymerase protein on perfect membrane structure 

thereby protecting it from the cellular proteases. Alternatively, deranged membranes 

could have changed the intra-cellular localization of p92. Its noteworthy, the stability of 

p33 (three times smaller molecule than p92) did not change in sterol-depleted cells. We 
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also performed in vitro wheat germ translation assay, which had no inhibitory effect on 

translation of p33 and p92 replication proteins.  

We identified another lipid metabolism host gene Ino2 whose deletion halved the 

total rep-RNA accumulation. Ino2p is a positive transcriptional regulator of number of 

genes involved in phospholipids biosynthesis pathway (Fig. 5.1) Ino2p is a basic helix 

loop helix protein, forms heterodimer with another protein Ino4p for its activator activity 

and with Opi1p for its inhibitory function (Fig. 5.1). In order to find out if the inhibition 

in viral replication in absence of Ino2, was direct effect of a lack of ino2 or because of 

some other factors affected, I provided back Ino2p and observed complementation in 

replication. Double deletion of ino2 and ino4 reduced the TBSV replication in yeast up to 

five-folds. However we did not observed any effect on RNA stability in these yeast 

strains. Based on these observations we can conclude that this effect is not because of the 

effect of transcription factor on transcription of DI72 plasmid. I also tested stability of 

p33 in these strains and observed degradation is much faster. 

Overexpresssion of Opi1p in BY4741 yeast strain, a negative regulator of 

phospholipid biosynthesis pathway also reduces virus replication, supports the 

importance of lipids in TBSV replication. Similarly over expression of Ino2 increases the 

DI accumulation around 3 times. I also tested the pattern of p33 localization in these cells 

and found bigger punctate structure compared to wild type. It might be possible that virus 

induced phospholipids may help p33 replication protein to concentrate efficiently and 

better replicase complex formation.  

 In the fourth chapter, I was able to pinpoint the lipid usage of tombusvirus and 

NoV to cardiolipin, a lipid enriched in mitochondrial and peoxisomal membranes (Fig. 
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5.1). The yeast strains lacking in the genes involved in cardiolipin biosynthesis pathway 

also were not able to support good level of tombusvirus replication. Furthermore, 

cardiolipin deficient yeast cells were unable to maintain the typical punctate structures by 

the TBSV replication auxiliary protein p33 (Fig. 5.1). These structures are the special 

structures where high level of TBSV replication occurs.   

 Overall, my research work shows that two different classes of lipids, cardiolipin a 

phospholipid and ergosterol are used for efficient replication of tombusvirus and other 

related viruses in yeast and in plants. 
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Figure 24 Figure 5.1 Tombusvirus utilizes host lipid factors and peroxisomal 
membranes to form replication complex. 

Cartoon showing p33 and p92 targeted to peroxisomal membranes together with the viral 

RNA (black freeform) and other host factors (HF) to initiate the formation of replicase 

complex. Replication proteins bind to cardiolipin (middle half of the lipid bi-layer), 

which is generated via Pgs1, Crd1 metabolic pathway. It is under the ICRE gene 

expression system regulated by Ino2/Ino4 transcription factors. Opi1 binds to Ino2 and 

inhibits the Ino2/Ino4 dimer formation that turns off the transcription of the phophsolipid 

genes.  Squalene is converted to ergosterol via multiple metabolic intermediates 

(sequential arrows) one of them being Erg25. APB, a potent inhibitor of Erg25 is known 

to dramatically decrease tombusvirus replication in yeast and plant hosts.  
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