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ABSTRACT OF DISSERTATION 
 
 

THE INTERPLAY BETWEEN THE EXPRESSION AND FUNCTIONS OF WNT13 
ISOFORMS DURING APOPTOSIS IN BOVINE AORTIC ENDOTHELIAL CELLS 

 
 

Wnt proteins are crucial for development/homeostasis by controlling cell fate 
including apoptosis (Moon RT et al. 1997). Three humanWnt13 isoforms were identified: 
the secreted Wnt13A, mitochondrial Wnt13B, and nuclear Wnt13C forms; and nuclear 
Wnt13 had an increased sensitivity to LPS/TNF-induced apoptosis in primary endothelial 
cells (EC); both Wnt13B and C mRNA contain two start codons (AUG+1 and +74), but 
the same protein encoded from AUG+74 by Wnt13C was expressed lower than Wnt13B 
(Struewing IT et al.2006). We hypothesize that during EC apoptosis, the nuclear Wnt13C 
expression is regulated translationally; nuclear Wnt13 favors apoptosis through 
regulating the activity/expression of apoptosis-related factors; Wnt13 isoforms may have 
differential effects on EC apoptosis and apoptosis-related factors. 

1. The protein levels, but not the mRNA levels of Wnt13C were induced by 
apoptosis-inducers. And the Myc-tag insertion at the AUG+1 in Wnt13C mRNA 
inhibited its expression, indicating the RNA sequences/structures are critical. Therefore, 
nuclear Wnt13C is regulated during apoptosis at translational levels. 

2. Nuclear Wnt13 increased caspase-3/7 expression with/without LPS, followed 
by an increase in LPS-induced caspase-3/7 cleavage; and nuclear Wnt13 upregulated the 
pro-apoptotic Bcl-2 family member Bim expression, suggesting that nuclear Wnt13 
increased caspase activation through upregulating caspase and Bim expression. Wnt13 
isoforms increased EC apoptosis with different strengths: nuclear > mitochondrial > 
secreted forms. 

3. Both caspase-3 and Bim are FOXO target genes; and nuclear Wnt13 increased 
the nuclear localization of FOXOs, suggesting increased FOXO activity. Nuclear Wnt13 
also upregulated SOD2, another FOXO target gene related to oxidative stress-resistance. 



 

Nuclear Wnt13 did not increase FOXO activity at the SOD2 promoter, but increased the 
SOD2-intron 2 element luciferase activity upon LPS, where a novel putative FOXO site 
was found, implying intron 2 may be responsible for enhanced SOD2 transcription by 
nuclear Wnt13.  

Altogether, our results pinpoint the interplay between the expression and functions of 
Wnt13 forms during EC apoptosis, forming a positive cycle further facilitating the 
apoptotic program completion, which is important for EC homeostasis.  

 

KEYWORDS: Translational regulation, caspases, FOXOs, SOD2 

transcription, EC homeostasis
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CHAPTER 1. INTRODUCTION 

 

1.1 Wnts and Wnt signaling 

1.1.1 Overview 

1.1.1.1 Brief history 

In 1982, Nusse R and Varmus ER firstly identified a mouse proto-oncogene 

called Int-1 as a preferential integration site in the host genome for insertional activation 

by mouse mammary tumor virus (MMTV) in mammary tumors (Nusse R et al. 1982). 

When sequenced, Int-1 was found to encode a novel secreted glycoprotein (van Ooyen A 

et al. 1984). The Drosophila homolog of Int-1 (Dint-1) turned out to be identical to a 

segment polarity gene, wingless (Wg), which mutation led to the lack of wings and 

halteres in adult flies (Sharma RP et al. 1976, Rijsewijk F et al. 1987a). In 1991, Nusse R 

et al proposed a new nomenclature to call Int-1 and related genes Wnt, which is an 

amalgam of Wingless and Int (Nusse R. 1991).  Wnt1 was shown to induce 

morphological transformation in cultured cell lines, including C57MG mammary 

epithelial cells (Brown AM et al. 1986; Jue SF et al. 1992), RAC311 mammary cells 

(Rijsewijk F et al. 1987b), PC12 pheochromocytoma cells (Bradley RS et al. 1993), and 

C3H 10T1/2 fibroblasts (Bradbury JM et al. 1994). Then people extended to all the other 

Wnts, and found that different Wnts have distinct ability in transforming activity; hence 

the Wnt family members were divided into two groups based on this biological activity: 

Wnt1, 3a and 7a are highly transforming members, while Wnt 4, 5a and 11 are non-

transforming members (Wong GT et al. 1994). In the late 1980s and early 1990s, many 

genes were discovered via screen of Drosophila mutations displaying segment polarity 
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defects (Nüsslein-Volhard C et al. 1980; Eberl DF et al. 1988), which helped the 

identification of components of the Wnt signaling cascade, such as the cytoplasmatic 

Disheveled (Klingensmith J et al. 1994) and nuclear signal transducers Armadillo/β-

catenin (Wieschaus E et al. 1987), and then the epistatic relationship between these 

molecules was characterized showing that they comprise the Wnt canonical signaling 

pathway (Klaus A et al. 2008). So people later on prefer using the terms canonical Wnt 

(initiating β-catenin/T cell factor pathway) and non-canonical Wnt (Wnt-Plannar cell 

polarity pathway or Wnt- Ca2+ pathway) to classify the Wnt members (Herman M. 2001; 

van Amerongen R et al. 2006). Today the Wnt picture has been greatly enriched by the 

discovery of new members, receptors, coreceptors, target genes, agonists, antagonists, 

biological functions of Wnt signaling, as well as the involvement in human diseases, 

which timeline has been reviewed by Klaus A et al (Klaus A et al. 2008). 

 

 
1.1.1.2 Wnt protein family 

Wnt proteins are highly conserved throughout the animal kingdoms, with Wnt 

homologs found in genomes of human, mouse, xenopus, chicken, zebrafish, Drosophila, 

C. elegans and even Cnidaria (van Amerongen R et al. 2008 and  Cadigan KM et al. 

1997). There are 19 Wnt proteins in the mammalian genome which can be divided into 

12 conserved subfamilies based on evolutionary relationship, and they are expressed in 

temporal-spatial patterns during development (Clevers H. 2006). 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22N%C3%BCsslein-Volhard%20C%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
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Most Wnt proteins have around 350 amino acids in sequence with a molecular 

weight of about 40KD (Coudreuse D et al. 2007). Wnts feature a signature Wnt motif (C-

K-C-H-G-[LIVMT]-S-G-S-C), as well as 23-25 conserved cysteine residues and  several 

N-glycosylation sites (Zhai L et al. 2004; Coudreuse D et al. 2007). Thus, one post-

translational modification that Wnts undergo is N-glycosylation, and Wnt1, 3a, 3a, 5b, 6 

and 7b have been shown to enter the endoplasmic reticulum (ER) and to be N-

glycosylated (Smolich BD et al. 1993).  Another post-translational modification is lipid 

modifications (addition of palmitate at cysteine residues or palmitoleic acid at serine 

residues) which contribute to the insolubility of Wnts (Kikuchi A et al. 2007). So far, 

Wnt1 (Franch-Marro X et al. 2008), 3a (Willert K et al. 2003) and 5a (Kurayoshi M et al. 

2007) have been reported to undergo lipid modifications. And this hydrophobic feature of 

Wnts confers a strong affinity for cell membrane; for example, Drosophila Wnt-1 (Wg) 

was shown to be converted to a membrane-anchored (more specifically, lipid raft-

targeted) protein after lipid modification (Zhai L et al. 2004). Both N-glycosylation and 

lipid modification have been shown critical for the secretion and action of Wnt3a 

(Komekado H et al. 2007; Takada R et al. 2006; Kurayoshi M et al. 2007). However, for 

Wnt5a, palmitoylation is critical for its activity, but N-glycosylation is necessary for only 

the secretion (Kurayoshi M et al. 2007). For Drosophila, palmitoylation has been found to 

regulate the activity of Wg (Galli LM et al. 2007), but WntD does not require lipid 

modification for its secretion and function (Ching W et al. 2008). When Wnt enter into 

ER, Wnt undergoes N-glycosylation and then acylation by membrane-bound O-acyl 

transferases PORC (Porcupine for Drosophila); subsequently, Wnt is transported into the 

Golgi apparatus, where further glycosylations occur, and then Wnt (Wg or XWnt4) is 
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routed to plasma membrane accompanied by Wntless (a conserved membrane protein 

that is dedicated in Wnt secretion) to be finally secreted from cell surface in a mature and 

active form (Zhai L et al. 2004; Bänziger C et al. 2006; Kikuchi A et al. 2007; Kim H et 

al. 2009). However, this model does not apply for all the Wnts. For example, not all of 

the Wnts are secreted, e.g. Wnt13B and C are intracellular Wnts (Streuwing IT, 2006).  

Wnt1, Wnt3a, and Wnt8 are usually believed to be canonical Wnts while Wnt5a 

and Wnt11 are usually called non-canonical Wnts, based on which signaling pathways 

they initiate, respectively. However, it is difficult to categorize Wnts due to the lack of 

clear distinction among all the Wnts by using this classification, and there are increasing 

evidence to support that Wnt proteins per se are not intrinsically canonical or 

noncanonical but that the pathways that Wnt ligands activate is determined by the context 

of receptors (van Amerongen R et al. 2008), and Table 1 demonstrated the details of 

individual Wnt that binds which specific frizzled (Fz) receptors and then initiates specific 

signaling pathways.  

 

1.1.1.3 Receptors and ligands in Wnt signaling 

1.1.1.3.1 Frizzled (Fz) receptors  

The interaction between Wnts and their receptors on the cell surface is the first 

step in transducing the extracellular signal into intracellular responses, and the first 

discovered Wnt receptors were the Fz proteins (Wondarz A et al. 1998).  The Fz genes 

constitute a big family which belongs to the G-protein-coupled receptors (GPCR) 
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superfamily, and they encode seven-pass transmembrane proteins that have high affinity 

for secreted Wnt ligands (Kikuchi A et al. 2007; He X et al. 2004). The Fz receptors have 

been found in a variety of animal species, and so far there are 10 Fzs reported in humans 

(Kikuchi A et al. 2007). The Fz receptors are characterized by the N-terminal cysteine-

rich domain (CRD), a conserved extracellular region of 120 amino acids, which is 

required for Wnt-Fz binding (Clevers H. 2006; Kikuchi A et al. 2007). Knockout mouse 

studies have shown that some Fzs are essential for embryonic development (van 

Amerongen R et al. 2008). 

1.1.1.3.2 Coreceptors 

Low density lipoprotein receptor-related proteins (LRP) constitute a subfamily of 

LDL receptor family, an ancient family of endocytic receptors (Kikuchi A et al. 2007; He 

X et al. 2004). The LRP family is constitutively endocytosed from the membrane and 

recycled back to the cell surface (Lillis AP et al. 2005). Unlike LDL receptor which 

appears to act solely in lipoprotein metabolism, LRPs seem to have other functions in 

protease degradation, activation of lysosomal enzymes, cellular entry of viruses and 

toxins,  and neurotransmission as well as vasculature protection by regulating cell 

migration and integrin activity (Herz J et al. 2001; Lillis AP et al. 2005). Moreover, 

LRP5/6 or Arrow (Drosophila homologue), is a type I single-pass transmembrane 

protein, which has been shown to be indispensable for Wnt signaling cascade and appears 

to function as Wnt co-receptors (He X et al. 2004). Unlike Fz receptors which are 

required for Wnt-β-catenin, Wnt-PCP and Wnt-Ca2+ pathways, LRP5/6 is specifically 
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necessary for canonical Wnt-β-catenin pathway, but not for non-canonical pathways 

(Kikuchi A et al. 2007; Staal FJ et al. 2008).  

1.1.1.3.3 Alternative ligands for Fz/LRP 

The finding of alternative ligand for Fz receptors changed the dogma of Wnts 

exclusively binding to Fzs (Hendrickx M et al. 2008). Besides Wnts, there are other types 

of factors which activate Fz/LRP receptors and serve as alternative ligands of Wnt 

signaling. One type is a secreted protein with a cysteine-knot motif called Norrin, which 

was found in the Norrie disease, an X-linked congenital blindness due to vascular defect 

in the eye (Hendrickx M et al. 2008). Norrin is a specific and high-affinity ligand for Fz4 

and play a critical role in vascular development in the eye and the inner ear (Xu Q et al. 

2004). Another type of ligand is secreted R-spondin, which is a family of 

thrombospondin type I repeat (TSR) domain containing proteins (Clevers H. 2006). Four 

related proteins have been found in this family: R-spondin 1-4, and all of them 

structurally feature an N-terminal signal peptide, a CRD with 2 furin like domains, a 

thrombospondin type1 domain, and a C-terminal region with positively charged amino 

acids (Hendrickx M et al. 2008).  

In addition, some factors bind LRP5/6, serving as antagonists for Wnt signaling. 

One family called Dickkopf (Dkk) which comprises four members (Dkk1-4) and a unique 

Dkk-3 related protein named Soggy (Sgy), contain two CRDs separated by a linker 

region (Kawano Y et al. 2003). Dkk1 and 2 have been demonstrated to be specifically 

bound to LRP6 with high affinity (Mao B et al. 2001). Moreover, another similar secreted 

ligand called Wise, consisting of 206 amino acids with a cysteine knot-like domain, 
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shares 38% identity with SOST, and the mutation of SOST gene resulting in truncated 

product sclerostin has been found responsible for sclerosteosis (a severe and rare bone 

disease characterized by a progressive craniotubular hyperostosis) (Itasaki N et al. 2003; 

Semënov M et al. 2005; Kim CA et al. 2008), and both Wise and SOST have been shown 

to bind LRP5/6 to modulate Wnt pathway (Ellies DL et al. 2006).  

1.1.1.3.4 Alternative receptors or coreceptors for Wnt proteins 

The discovery of alternative receptors for Wnt proteins confirmed that Wnts are 

not exclusively binding to Fzs, but they also interact with some receptor tyrosine kinases 

(RTKs). Ryk (related to tyrosine kinase), a newly identified receptor for Wnt, belongs to 

the atypical receptor tyrosine kinase family (Lu W et al. 2004). The Ryk family is 

composed of a single Ryk gene in mammals and also in C. elegance as well as three Ryk 

genes in Drosophila (Bejsovec A. 2005). Ryk contains extracellular Wnt inhibitory factor 

(WIF) domain (functionally similar to CRD of Fz receptors), an intracellular PDZ-

binding domain and a tyrosine kinase domain (Kikuchi A et al. 2007). Unlike regular 

RTKs, Ryk family bears unusual kinase domain motifs with mutations in conserved 

tyrosine kinase residues, resulting in a lack of catalytic activity (Hovens CM et al. 1992; 

Yoshikawa S et al. 2001; Yoshikawa S et al. 2003). Derailed, the Drosophila homolog of 

Ryk, was shown to be a receptor for Wnt5 and essential for Wnt5-mediated Drosophila 

axon guidance (Yoshikawa S et al. 2003). Mammalian Ryk interacts directly with Wnt1 

or 3a via its extracellular WIF domain, and is required for the activity of Wnt-1 or -3a 

(Lu W et al. 2004). The extracellular domain of Ryk forms a ternary complex with Fz8 

and Wnt, and the intracellular domain of Ryk interacts with Dsh, which is required for 
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the TCF activation induced by Wnt3a, suggesting Ryk may be involved in Wnt canonical 

signaling (Lu W et al. 2004). Another example is receptor tyrosine kinase-like orphan 

receptor (Ror) proteins, which also constitute a conserved family of tyrosine kinase 

receptors. Ror receptors are composed of two structurally related proteins, Ror1 and Ror2 

(Green JL et al. 2008). Ror-family RTKs feature an extracellular Fz-like CRD, a 

membrane proximal kringle (KR) domain, and cytoplasmic tyrosine kinase domains and 

proline-rich domain (Forrester WC et al. 1999; Green JL et al. 2008). Ror2 was shown to 

interact with Wnt5a its CRD (Oishi I et al. 2003). Unlike Ryk, Ror2 has been recently 

demonstrated to require tyrosine kinase activity to mediate the inhibitory canonical 

activity by Wnt5a (Mikels A et al. 2009). 

 

1.1.1.4 Wnt signaling 

So far, at least three different Wnt signaling pathways have been described: the 

canonical Wnt pathway (β-catenin dependent) for cell fate determination, and two non-

canonical Wnt pathways (β-catenin independent) including the planar cell polarity (PCP) 

pathway for tissue polarity and the Wnt-Ca2+ pathway for cell movement (Staal FJ et al. 

2008 and Katoh M et al. 2007).   

1.1.1.4.1 Canonical β-catenin pathway 

1.1.1.4.1.1 Overview 

In the absence of Wnt ligands, the destruction complex of β-catenin is formed, 

where Axin, the scaffold protein, interacts with all other components like tumor 
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suppressor adenomatours polyposis coli (APC), β-catenin and two kinases, glycogen 

synthase kinase (GSK) 3α/β and casein kinase (CK)1; therefore, GSK and CK1 

sequentially phosphorylate β-catenin at Ser/Thr residues (Ser45 by CK1, and then Ser33, 

37 and Thr41 by GSK), which is then recognized by β-transducin-repeat-containing 

protein (βTRCP), a component of an E3 ligase complex, and results in β-catenin 

ubiquitination and final degradation by 26S proteasome (Figure 1A). Hence, the levels of 

β-catenin in cytoplasm and nucleus stay low without activating signals due to continuous 

phosphorylation events, and in the nucleus, the binding of Groucho (a family of nuclear 

factors that lack DNA-binding activity but interact with transcription factors resulting in 

transcriptional repression) to transcription factors T cell factor (TCF) /lymphoid enhancer 

factor (LEF) leads to the inhibition of Wnt-β-catenin signaling target gene transcription 

(Clevers H. 2006; Staal FJ et al. 2008; Buscarlet M et al. 2007).  

In contrast, in the presence of Wnt ligands, the Fz receptor/LRP coreceptor 

complex activates the canonical signaling pathway (Figure 1B). The formation of Fz/LRP 

complex through Dvl (mammalian homologue of Drosophila Dishevelled) facilitates the 

phosphorylation in the cytoplasmic tail of LRP5/6 by CK1 and GSK3, allowing the 

docking of Axin to the LRP phosphorylation sites. Hence, the recruitment of Axin to the 

plasma membrane prevents the formation of the destruction complex of β-catenin, and 

results in the stabilization of β-catenin. The stabilized β-catenin then translocates to the 

nucleus and physically displaces Groucho from TCF/LEF and promotes the expression of 

Wnt-β-catenin signaling target genes including cMyc and Cyclin D1 (Clevers H. 2006 

and Staal FJ et al. 2008). 
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1.1.1.4.1.2 Glycogen synthase kinase (GSK) 3β and Akt 

GSK3β is a Ser/Thr protein kinase, initially described as a key enzyme in 

glycogen metabolism, but now known to regulate a diverse array of cell functions, 

including development, protein translation, cell cycle, and cytoskeleton dynamics (Cohen 

P et al. 2001; Hardt SE et al. 2002). GSK3β has also been shown to promote cell 

apoptosis in neuronal cells (Li M et al. 2000), and to activate proinflammatory dendritic 

cells (Rodionova E et al. 2007). Direct phosphorylation of a tyrosine residue (Y216) in 

the catalytic domain is associated with an increase of its kinase activity, whereas direct 

phosphorylation of N-terminal Ser9 is associated with the inhibition of GSK3β activity 

(Forde JE et al. 2007). Lithium, a mood stabilizer, not only competitively inhibits Mg2+ 

leading to the inhibition of Mg2+-ATP-dependent catalytic activity of GSK3β, but also 

increases Ser9 phosphorylation of GSK3β, resulting in inhibited GSK3β activity (Wada 

A et al. 2009), and thereby activating Wnt/β-catenin signaling through stabilizing β-

catenin (Rao AS et al. 2005). In the resting cells, GSK3β is constituively active in the 

absence of the extracellular signal. However, in growth factor signaling, the activation of 

protein kinase B (PKB)/ Akt leads to the phosphorylation of Ser9 and thereby the 

inhibition of GSK3β (Pearl LH et al. 2002).  

PI3K-Akt pathway can be activated by a variety of extracellular signals, and have 

been involved in cell proliferation, survival and protein synthesis, and tumor growth. The 

activation of Akt can inhibit apoptosis through activating pro-survival factors like NF-κB 

and inactivating pro-apoptotic factors such as Bad (a Bcl-2 family member), FOXOs, 

caspase-9, as well as GSK3β (Jiang BH et al. 2008; Dillon RL et al. 2007). 3T3-L1 cells 
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expressing Wnt-1 inhibited cell apoptosis by inducing expression and secretion of IGFs 

that activated Akt signaling, and inhibited PI3K partially blocked the effect of Wnt-1 on 

cell apoptosis (Longo KA et al. 2002).  Almedida M et al reported that Wnt5a required 

PI3K/Akt to protect pre-osteoblastic cells from serum withdrawl-induced apoptosis 

(Almedida M et al. 2005). Purified Wnt3a also induced phosphoylation and activation of 

Akt as well as the phosphorylation of GSK3β at Ser9 to enhance Wnt/β-catenin signaling 

in vitro, which was reversed by sFRP-4 (Constantinou T et al. 2008). Also, during 

DMSO-induced cardiomyocyte differentiation of P19CL6 cells, Akt inhibition abrogated 

Wnt-3a or-8a-induced canonical Wnt/ β-catenin activity, indicating that PI3K/Akt 

pathway maintains canonical Wnt cascade during early caridomyogensis (Naito AT et al. 

2005). All these studies support that Akt signaling plays a critical role in Wnt cascade. 

1.1.1.4.1.3 β-catenin 

One of the substrates of GSK3β, β-catenin, display distinct functions in specific 

intracellular pools: the membrane bound pool of β-catenin is involved in cell-cell 

adhesion while the cytosolic and nuclear pool of β-catenin transduces signals in Wnt 

canonical pathway as well as oxidative stress signaling pathway (Dietrich C et al. 2002; 

Essers MA et al. 2005). The function and localization of β-catenin depends on the state of 

the cell: in human keratinocytes, β-catenin is throughout the cell promoting proliferation 

in subconfluent state, while β-catenin translocates to membrane to promote cell adhesion 

when cells are confluent (Dietrich C et al. 2002). In endothelial cells, adherens junctions 

are composed of vascular endothelial cadherin (VE-cadherin), and several protein 

partners including β-catenin to connect VE-cadherin to cytoskeleton, and the dynamic 
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opening and closure of adherens junctions regulate endothelial permeability and vascular 

integrity (Dejana E et al. 2008). In mouse embryos where β-catenin is endothelial cell-

specifically inactivated, vessels display an abnormal lumen and frequent hemorrhage, 

indicating the critical role of β-catenin in vascular patterning and permeability (Cattelino 

A et al. 2003). The function of β-catenin in Wnt canonical signaling has been described 

previously. Additionally, Essers MA discovered a functional interaction between FOXOs 

and β-catenin under oxidative stress, and then proposed that  upon Wnt signaling which 

turns TCF on, or upon insulin signaling that turns FOXOs off, β-catenin prefers 

interacting with TCF rather than FOXO to promote cell proliferation; in contrast, under 

oxidative stress conditions where FOXO activity is on, β-catenin preferentially binds to 

FOXOs to induce apoptosis or quiescence (Essers MA et al. 2005; Bowerman B. 2005). 

1.1.1.4.2 Wnt-PCP pathway 

Polarity is one of the fundamental properties of many cells, and the tissue 

polarity, or planar cell polarity (PCP) is the generation of uniform orientation of a 

population of cells within a single plane, which has been demonstrated in organisms from 

flies to humans (Fanto M et al. 2004; Montcouguiol M et al. 2006). Drosophila provides 

numerous striking examples of PCP in its body, such as uniform organization of hairs on 

the wing, and the ommatidial polarity in the eye (Fanto M et al. 2004). One noncanonical 

pathway utilizes Fz and Dishvelled (Dvl), as well as many other signaling molecules to 

regulate the formation of PCP, which has been proved to be crucial for Drosophila 

morphogenesis and vertebrate gastrulation (Kim GH et al. 2005). In one hand, Dvl is in 

association with Dishevelled-associated activator of morphogenesis (DAAM) to initiate 
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Ras homologue gene-family member A (RhoA) – Rho-associated coiled-coil containing 

protein kinase (ROCK) signaling cascade, which regulates cytoskeletal reorganization; in 

the other hand, Dvl also activates another small GTPase Rac, both Rac and RhoA can 

stimulate stress responsive Jun N-terminal kinase (JNK) signaling to regulate 

cytoskeleton dynamic and cell shape (Montcouguiol M et al. 2006; Staal FJ et al. 2008) 

(Figure 1.2A). The Wnt-PCP pathway also includes some other components, like protein 

tyrosine kinase 7 (PTK7, which recruits Dsh), the four-pass transmembrane protein Van 

Gogh (Vang, core factor in PCP pathway via recruiting Dsh), Drosophila 

Flamingo/vertebrate Celsr (encoding an atypical proto-cadherine functioning in recruiting 

Fz and Vang), and Ror2/Ryk receptors seem to be involved in PCP signaling transduction 

(Montcouguiol M et al. 2006; Katoh M et al. 2007; Shnitsar I et al. 2008; Heisenberg CP 

et al. 2002; Chen WS et al. 2008). 

1.1.1.4.3 Wnt- Ca2+ pathway 

The other β-catenin-independent pathway is Wnt-Ca2+ pathway, which utilizes 

calcium as a second messenger in this cascade, and has been shown required for body 

plan specification during development (Kohn AD et al. 2005). Fz receptors, containing 

seven-pass membrane GPCR structure, appear to function in association with G proteins 

(Kohn AD et al. 2005; Katanaev VL et al. 2009). When Wnt ligand (e.g. Wnt5a) binds Fz 

receptor (e.g. Fz2), phospholipase C (PLC) is activated through heterotrimeric GTP 

binding proteins (e.g. Gβγ subunits) and Dvl protein (Slusarski DC et al. 1997). This in 

turn causes the cleavage of phosphatidylinositol-4, 5-bisphosphate to inositol 

trisphophate (IP3) and diacylglycerol (DAG) (Figure 1.2B). IP3 binds to its receptor 



14 
 

localized in the endoplasmic reticulum membrane and renders ER-stored calcium release 

to cytoplasm, and the increased calcium concentration activates PKC and 

calcium/calmodulin kinase II (CamKII), which in turn stimulates Nemo-like kinase 

(NLK) and transcription factor nuclear factor of activated T cells (NFAT), resulting in 

cell fate regulation and cell movement (Ciani L et al. 2005; Katoh M et al. 2007; Staal FJ 

et al. 2008). 

1.1.1.4.4 Other Wnt signaling pathways 

Ryk and Ror proteins are newly identified receptors for Wnt, which has been 

previously described. 

1.1.1.4.5 Dishevelled   

Notably, Dishevelled (Dsh) is the protein involved in all the Wnt pathways, and 

governs a lot of developmental processes of animals ranging from Hydra to humans 

(Wallingford JB et al. 2005). Dsh protein contains three conserved elements in structure: 

1) N- terminal DIX (Dishevelled/Axin) domain featuring a lot of α-helix; 2) central PDZ 

(PSD-95, DLG, ZO1) domain with a hydrophobic cleft responsible for binding to other 

proteins; and 3) DEP (Dishevelled, EGL-10, Pleckstrin) domain with a bundle of three α-

helices (Wallingford JB et al. 2005). And the unique structure of Dvl proteins provides 

docking sites for a diverse set of protein kinases, phosphatases, adaptor proteins, G 

proteins and scaffolds, and as a “toolbox” for Wnt signaling, Dsh involves in different 

signaling with distinct domains (Malbon CC et al. 2006). In canonical β-catenin pathway, 

Dvl-associated proteins include Fz1, Axin, CK1, GSK-binding protein/FRAT (preventing 
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β-catenin phosphorylation), Dapper (promoting Dvl degradation)  and IDAX (competing 

with Axin for binding Dvl); in Wnt-PCP pathway, Dvl interacting proteins include Fz1, 

Go, DAAM, Vang, Diego (sequestering Dsh to Fz/PCP pathway), Prickle, Rac1; in Wnt-

Ca2+ pathway, the interacting partners of Dvl include Fz2, Go/Gt (Wallingford JB et al. 

2005; Malbon CC et al. 2006; van Amerongen R et al. 2005; Gao X et al. 2008; Hino S et 

al. 2001; Wu J et al. 2008). In addition, Wnt3a has been shown to induce Dvl 

phosphorylation via CKI, and CKI activates Wnt pathway, suggesting that CKI-mediated 

Dvl phosphorylation might be capable of transducing Wnt cascade (McKay RM et al. 

2001).  

1.1.1.4.6 The activation/inhibition of Wnt signaling 

Some alternative ligands for Fz/LRP receptors and alternative receptors for Wnts 

can activate Wnt cascade and serve as the agonists of Wnt signaling. Norrin-Fz4 pair 

activates the canonical Wnt cascade in an LRP5/6-dependent manner (Xu Q et al. 2004). 

Other ligands like R-spondin and Ryk receptor, also activate canonical β-catenin/TCF 

pathway (Hendrickx M et al. 2008; Lu W et al. 2004). Moreover, Lithium serves as an 

activator of canonical β-catenin/TCF signaling through inhibited GSK-3β (Wexler EM et 

al. 2008).  

However, there are some other alternative ligands/receptors inhibiting Wnt 

cascades and they function as antagonists in Wnt signaling. Soluble Frizzled-related 

proteins (sFRPs) are the largest family of Wnt antagonists that contain a cysteine-rich 

domain (CRD) which resembles the ligand-binding domain of Fzs. sFRPs directly bind to 

both Wnts and Fz receptors, and thus might have dual effect: antagonist of Wnt signaling 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22van%20Amerongen%20R%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
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but agonist for specific Fz-signaling pathway or Fz-functions, (Clevers H. 2006; 

Bovolenta P et al. 2008). The inhibitory function of sFRPs may be caused either by 

interaction and sequestration of Wnts from Fzs or formation of nonfunctional complexes 

with Fz receptor (Bafico A et al. 1999). But sFRPs was shown to interact with Fz2 and 

regulate the growth of retinal ganglion cell axons, implying that sFRPs might activate 

canonical Wnt signaling in some cases (Rodriguez et al. 2005).  

Unlike sFRPs, there are some Wnt inhibitors functioning through LRPs. Secreted 

Dkk-1 blocks activation of the Wnt signaling cascade by interacting with LRP5/6 instead 

of Wnts per se, which in turn, crosslinks LRP6 to Kremens, leading to the formation of a 

ternary complex including Kremen (Krm), DKK and LRP5/6 and facilitating the 

internalization of LRP6 from the cell surface, which in turn, inhibits the downstream β-

catenin-TCF signaling the internalization of LRP (Hendrickx M et al. 2008; Nakamura T 

et al. 2008). Krm was originally isolated as a novel type I transmembrane protein 

containing an extracellular kringle domain which is a homologous triple-disulfide-linked 

peptide region (Nakamura T et al. 2008). Both Krm1 and Krm2 were shown to be the 

high affinity receptors for secreted Dkk (Mao B et al. 2002). Another example is 

SOST/Sclerostin: SOST binds to both LRP5 and LRP6, destroying the formation of Fz-

LRP complex in the presence of Wnt1, hence blocking the Wnt1-β-catenin signaling 

(Hendrickx M et al. 2008). In addition, Ror receptors interacts with Wnt5a via its CRD, 

and then activates JNK pathway and/or inhibits β-catenin-TCF pathway (Oishi I et al. 

2003). Ror also has other ways to signal, such as sequestering Wnt ligands, interacting 

with Van Gogh to affect cell polarity, forming dimers to promote osteoblast 

differentiation (Green JL et al. 2008).  
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However, WISE turned out to activate or inhibit Wnt signaling in a context-

dependent manner: Wise activates the Wnt-β-catenin pathway in animal cap; whereas 

Wise blocks Wnt8-induced secondary axis formation (Itasaki Net al. 2003). 

Also, Wnt ligand is not limited to only one pathway, so one question arises that 

how different Wnt ligands preferentially choose these pathways? The specificity may be 

achieved by the context of receptors and the availability of coreceptors and/or other 

signaling molecules (Kohn AD et al. 2005). For example: Wnt5a interacts with Fz2 

preferentially activating Wnt-Ca2+ cascade (Slusarski DC et al. 1997); in association with 

LRP5, Wnt5a binds Fz4 to stimulate Wnt- β-catenin pathway (Verkaar F et al. 2009); 

however, in the presence of coreceptors like collagen triple helix repeat containing 1 

(Cthrc1) and Ror2, Wnt5a bound with Fz5 or 6 can initiate Wnt-PCP signaling pathway 

(Yamamoto S et al. 2008). And Table 1 shows more examples of different 

Wnt/Fz/coreceptor interaction which specifically induces distinct downstream signaling 

cascade. 

 

1.1.2 Functions of Wnts and Wnt signaling  

Together with fibroblast growth factor (FGF) pathway, Notch signaling, 

transforming growth factor (TGF) β pathway and Hedgehog signaling, Wnt signaling is 

recognized as one of the handful powerful pathways that control basic development and 

organism homeostasis. (Cadigan KM et al. 1997. Wang J et al. 2007. Clevers H. 2006 

and Staal FJ et al. 2008) 
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Wnts and Wnt signaling are involved in virtually every aspect of embryogenesis 

and organogenesis, including gastrulation, implantation, the patterning of brain and spin 

cord, heart formation, hematopoiesis, and the development of liver, limb, kidney, lung, 

skin and gastrointestinal tract. In addition, the non-canonical Wnt pathways such as Wnt-

PCP pathway and Wnt-Ca2+ pathway also play a key role in cell polarity and cell 

movement, leading to the regulation of tissue polarity establishment and morphogenesis 

by Wnts (Wang J et al. 2007). Knockout mouse models have been proved to be a 

powerful tool to investigate the role of Wnt signal transduction in mammalian patterning, 

physiological conditions and disease development (van Amerongen R et al. 2006). 

Table1 summarizes the roles of individual Wnt in embryogenic development and the 

phenotypes in available knockout mice. Also, Wnts and Wnt signaling also regulate self-

renewal and repair processes in numerous adult tissues, such as gut, hair follicle, skin, 

and bone (Clevers H. 2006). 

The roles of Wnts and Wnt signaling in development result from their function in 

controlling cell fate, including cell proliferation or self-renewal, differentiation, apoptosis 

and senescence, which has been extrapolated to many different systems, such as intestine, 

hematopoiesis, CNS, skin, liver, adipogenesis, and bone (Hayward P et al. 2008).   

Wnt/β-catenin signaling has been shown the dominant force in controlling cell 

fate along the crypt-villus axis in small intestine. In neonatal mice lacking TCF4, the 

differentiated villus epithelium appears unaffected, but crypt progenitor compartment is 

entirely absent, indicating physiological Wnt signaling maintains the crypt progenitor 

compartment (Radtke F et al. 2005). Also, Wnt3a treatment can promote cell 
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proliferation, reduce apoptosis, and inhibit osteogenic differentiation of multipotential 

adult mesenchymal stem cells (MSCs) (Boland GM et al. 2004). For midbrain 

dopaminergic development, Wnt3a can increase the proliferation of precursor cells, 

whereas purified Wnt5a induces immature primary precursors into dopaminergic neurons 

(Schulte G et al. 2005). Overexpression of constitutively active β-catenin expands the 

pool of hematopoietic stem cells (HSCs) in vitro and maintains their immature phenotype 

(Reya T et al. 2003).  

Wnt signaling is also a critical modulator in adipocyte differentiation. NIH3T3-L1 

preadipocytes treated with lithium or infected with Wnt1 or stabilized β-catenin showed 

abolished differentiation to adipocytes, which was rescued by PPARγ or C/EBPα 

infection; canonical Wnt10b had similar inhibitory effect on adipogenesis in vitro (Ross 

SE et al. 2000). Christodoulides C et al gave the first evidence of the possible role of Wnt 

signaling in human early adipogenesis: they found DKK1, a Wnt antagonist, had a 

transient upregulation in expression during human adipogenesis and ectopic expression of 

DKK1 inhibited Wnt-β-catenin activation and promoted preadipocyte differentiation 

(Christodoulides C et al. 2006).  

Moreover, Wnts and Wnt signaling are also involved in cell senescence and 

aging. Wnt/β-catenin signaling was shown to be enhanced in muscle from aged mice and 

in myogenic progenitors exposed to aged serum; and the cell fate conversion of myogenic 

progenitor by aging was also mediated by Wnt/β-catenin signaling (Brack AS et al. 

2007). Increased Wnt/β-catenin signaling induced cell senescence both in vivo and in 

vitro, which may be via klotho protein, because klotho is an antagonist of Wnt/β-catenin 
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signaling, and mice lacking klotho displayed accelerated aging phenotypes (Liu H et al. 

2007). Additionally, Lithium, the inhibitor of GSK-3β was found to induce endothelial 

cell senescence via stabilizing p53 and upregulating the expression of matrix 

metalloproteinase-1 (Mao CD et al. 2001; Struewing IT et al. 2009). 

Besides, Wnts and Wnt signaling are also implicated in cell polarity and 

orientation. The uniform orientation of mechanosensory hair cells in the inner ear is a 

good example for vertebrate cell polarity (Montcouquiol M et al. 2006). In vivo study 

showed that mutation in Vangl2 led to significant defects in the polarization of 

stereociliary bundles in mouse cochlea due to the disruptions in the orientation of 

movement of the kinocilium in hair cells, indicating Vangl2 is a core Wnt-PCP factor 

with a crucial role in the generation of uniform bundle orientation (Montcouquiol M et al. 

2003). In the presence of a chemokine gradient, Wnt5a increased the percentage of cells 

with the Wnt-mediated receptor-actin-myosin polarity (W-RAMP) structure which was 

accumulated asymmetricaly at the cell periphery, triggering membrane contractility and 

nuclear movement in the direction of membrane retraction; and this effect by Wnt5a was 

found via reciprocal interaction with actin and myosin IIB, as well as the involvement of 

small GTPase Rab4 and RhoB (Witze ES et al. 2008). Also, Wnt11 was demonstrated to 

play a key role in the oriented elongation of the myocytes during early chick myogenesis 

through JNK, because Wnt11 SiRNA showed a failed or mis-oriented enlongation, and 

ectopic Wnt11 significantly promoted myocyte orientation (Gros J et al. 2009).  

In addition, Wnts and Wnt signaling are also important for cell migration. Wnt5a 

was shown upregulated in T cells upon the treatment of CXC chemokine ligand (CXCL)-
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12, and Wnt5a potentiated CXCL-12-stimulated T cell migration through PKC activation 

(Ghosh MC et al. 2009). Wnt3a, a canonical Wnt/β-catenin signaling activator, not only 

induced HUVEC proliferation, but it also induced HUVEC migration, accompanied with 

the upregulation of the target genes such as c-myc, Tie-2 and GJA-1 (Samarzija I et al. 

2009). Moreover, intestinal epithelial cells incubated in conditioned media from Wnt11-

secreting cells were shown to be stimulated in cell proliferation and cell migration, as 

well as increased activity of PKC and CAMKII, with abnormal distribution of E-cadherin 

(Ouko L et al. 2004). 

The role of Wnts in cell apoptosis will be discussed in detail later.  

 

1.1.3 Wnt and diseases 

Due to the crucial roles in organism development and postnatal homeostasis, 

Wnts and Wnt signaling are highly related to diseases: germline mutations in the Wnt 

pathway lead to certain hereditary diseases, and somatic mutations are associated with 

cancer and other human disorders (Clevers H. 2006). 

 

1.1.3.1 Cancer 

Normally, Wnt/β-catenin signaling tightly controls the proliferation and renewal 

of stem cells and progenitors during the development and regeneration of tissues, like 

intestinal crypt, hair follicles, and hematopoietic systems. Nonetheless, deregulated Wnt 

signaling can cause aberrant expansion of the stem cell pool and constitutive activation of 
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stem cell function on progenitor cells, promoting tumor formation in these tissues, 

including colon cancer, hair follicle tumors and leukemia (Reya T et al. 2005. Clevers H. 

2006). It is noteworthy that without the involvement of some key components of Wnt 

signaling, Wnt ligands alone are rarely related to the activation of Wnt pathway during 

carcinogenesis (Giles RH et al. 2003).  

1.1.3.1.1 Colon cancer 

Physiological Wnt signaling appears to be indispensible for the establishment of 

crypt stem/progenitor compartment in small intestine epithelium; yet, when APC is 

mutated, the stablized β-catenin activates crypt stem/progenitor cell proliferation and 

causes tumor formation (Clevers H. 2006). APC was first identified as a tumor 

suppressor in human colon cancer, because the germline mutation of APC (mainly 

truncation) is responsible for a hereditary cancer called Familiar Adenomatous Polyposis 

(FAP), which progresses to colorectal adenomas, and malignant adenocarcinomas, as 

well as tumors elsewhere like gastrointestinal tract, brain and thyroid (Polakis P et al. 

1997). Not only in FAP, a rare form of cancer, APC mutations are also found in 

approximately 85% of somatic colorectal cancer, which is the most common human 

neoplasms (Bienz M et al. 2000 and Giles RH et al. 2003). However, recent studies 

revealed that loss of APC alone is not sufficient to induce tumor formation in zebrafish, 

but contribute to adenoma initiation as the first step, while KRAS-mediated nuclear 

localization of β-catenin is required for intestinal cell proliferation as the second step in 

promoting adenoma progression to carcinomas (Phelps RA et al. 2009). Besides Wnt 

signaling components, Wnt2 was shown upregulated in 74 cases out of 120 colorectal 

cancers, and Wnt2 may be associated with the development rather than progression of 
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colorectal cancers (Park JK et al. 2009). Moreover, Wnt2 was also shown to be 

overexpressed in other digestive neoplasms like gastric cancer and esophageal 

carcinomas (Vider BZ et al. 1996). Wnt antagonists were also found to be associated with 

colorectal cancer. For sFRP-1, hypermethylation (less transcription) and down-regulated 

mRNA levels were identified significantly more often in tumor samples than normal 

samples (Caldwell GM et al. 2004). Moreover, DKK-1 was also found hypermethylated 

in 17% primary colorectal tumor cases, and the CpG island promoter of DKK-1 was 

selectively hypermethylated in advanced Duke’s stages of human colorectal neoplasms 

(Aguilera O et al. 2006). 

1.1.3.1.2 Skin cancer 

Normal Wnt cascade in hair follicles activates epidermal stem cells in bulge area, 

promoting the entry into hair lineages, and cell migration to transit-amplifying 

germinative matrix, resulting in hair formation (Clevers H. 2006). Both trichofolliculoma 

and pilomatricoma are tumors with elements of follicular differentiation, and they both 

contain cells undergoing differentiation along hair lineages from epidermal stem cells 

that reside in hair follicle (Owens DM et al. 2003). Transgenic mice expressing a 

stabilized β-catenin form in the epidermis and hair follicles developed trichofolliculoma-

like tumors in the mouse skin, and older mice developed pilomatricoma-like lesion (Gat 

U et al. 1998). This observation was also seen using tamoxifen-induced stabilized β-

catenin transgenic mice which developed tumors resembling trichofolliculomas upon 

continuous activation of β-catenin (Lo Celso C. et al. 2004). In addition, most 

spontaneous pilomatricomas in humans carry constitutive mutations in β-catenin (Clevers 

H. 2006).  
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Besides hair follicle tumor, Wnts are also related to other skin cancers. In a study 

with 59 primary melanoma cases, cytoplasmic Wnt5a expression is increased with 

melanoma progression, and the strong Wnt5a expression is a risk factor for metastasis 

and reduced survival (Da Forno PD et al. 2008). And the increased mobility of melanoma 

cells by Wnt5a is mediated through the inhibition of metastasis suppressors, such as 

KISS-1 (a gene encoding kisspeptin which is a peptide ligand of a GPCR called GPR54 

to block chemotaxis) , and is associated with an epithelial to mesenchymal transition 

(EMT) in a PKC-dependent manner (Dissanayake SK et al. 2007). 

1.1.3.1.3 Leukemia 

Hematopoietic stem cells (HSCs), the best studied stem cells in human body, are 

controlled by Wnt cascade in their self-renewal and normal growth (Reya T et al. 2005). 

Moreover, like stem/progenitor cells in crypt or hair follicles, HSCs can also be the target 

of mutational Wnt/β-catenin signaling to cause leukemia (Clevers H. 2006). Wnt5a null 

mice showed 35% increase in the proportion of B lineage cells and 55% increase of B 

cell number, and Wnt5a heterozygous mice developed B cell lymphomas and chronic 

myeloid leukemia, indicating Wnt5a is able to suppress hematopoietic malignancies 

(Liang H et al. 2003). Jamieson CH and coworkers reported that the granulocyte-

macrophage progenitors from patients with chronic myelogenous leukemia (CML) 

displayed striking increase of nuclear β-catenin and LEF/TCF activity compared to 

normal cells (Jamieson CH et al. 2004). Wnt signaling is also related to acute myeloid 

leukemia (AML) since AML fusion proteins induced TCF/LEF target gene transcription 

in vitro (Müller-Tidow C et al. 2004). Moreover, some evidences support that abnormal 

Wnt signaling is associated with acute lymphoblastic leukemia (ALL); e.g. conditional 
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activation of β-catenin by deleting exon3 in mice developed aggressive thymic 

lymphomas, and this process was not Notch signaling required, which is the first report 

demonstrating that aberrant Wnt/β-catenin cascade alone in the thymus can lead to 

leukemia (Guo Z et al. 2007). Similarly, mice transplanted with bone marrow cells 

expressing constitutively active mutant of LEF-1 developed B lymphoblastic leukemia 

and AML at 12 months, proving the crucial role of LEF-1 activity in normal 

lymphopoiesis (Petropoulos K et al. 2008). Besides, DKK1 was found upregulated in the 

serum from patients with diagnosed myeloma (Tian E et al. 2003). 

1.1.3.1.4 Other cancers 

Wnt-1 was found as an oncogene activated by integration with tumor virus 

MMTV to induce murine breast cancer (Nusse R et al. 1982). Moreover, Axin mutation 

has been found in hepatocellular carcinoma (HCC) cell lines and primary HCCs (Satoh S 

et al. 2000), and mice with deletion of APC in liver developed HCC (Colnot S et al. 

2004), demonstrating the association of activated Wnt-β-catenin signaling with HCC. 

Prostate cancer samples were also shown to carry β-catenin mutations (Gersterin AV et 

al. 2002). Additionally, in Wilms Tumor (WT) which is a kidney cancer, genetic 

abnormalities were identified, such as mutations in β-catenin and WT gene on the X-

chrmosome (WTX), a tumor suppressor preventing β-catenin from translocating to the 

nucleus (Nusse R. 2007).  

The effect of Wnt5a in tumor development and progression is dependent on the 

cancer types: as discussed previously, Wnt5a promotes metastasis in melanoma; 

however, Wnt5a transfection can suppress cell proliferation, migration, invasiveness and 
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clonogenicity in thyroid tumor cell lines, which is associated with the inhibition of 

canonical β-catenin signaling, implying that Wnt5a has tumor suppressor activity in 

thyroid carcinoma, which is consistent with the finding in B cell lymphoma 

(Kremenevskaja N et al. 2005; Liang H et al. 2003). Furthermore, the up-regulated 

expression of Wnt5a is related to the early stages of lip carcinoma (Xavier FC et al. 

2009). 

 

1.1.3.2 Alzheimer’s Disease (AD) 

Wnt signaling plays an important role not only in the early phases of the nervous 

system development during embryogenesis, but also in self-renewal processes, including 

maintenance of adult neural stem cells, refinement of neuronal circuits (axon, dendrites, 

synapse) and adult hippocampal neurogenesis (Toledo EM et al. 2008; Michaelidis TM et 

al. 2008). AD is known as a neurodegenerative disease characterized by diffuse loss of 

neurons, protein deposits including neurofibrillary tangoes and amyloid plaques (De 

Ferrari GV et al. 2000). The activation of Wnt/β-catenin signaling has shown 

neuroprotective roles in AD models. Wnt3a prevented Aβ-induced neurotoxicity in 

hippocampal neurons (Alvarez AR et al. 2004). Therapeutic concentrations of lithium 

(GSK3β inhibitor) treatment dramatically reduced the production of Aβ peptides in vitro 

and in vivo, which was achieved by interfering with the cleavage of amyloid precursor 

protein (APP) (Phiel CJ et al. 2003). Furthermore, De Ferrari GV and coworkers reported 

that LRP6 single nucleotide polymorphisms (SNPs) were associated with late-onset AD 

in both muticenter case-control and family-based series, and Ile1062 --> Val substitution 
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which reduced β-catenin activation was also found, showing the involvement of Wnt 

signaling components in AD (De Ferrari GV et al. 2007). Furthermore, presenilin 1 (PS1) 

is a causative gene product of familial AD, and GSK-3β-mediated phosphorylation of 

PS1 inhibited its interaction with N-cadherin, resulting in impaired activation of cell-cell 

contact-induced Akt survival pathway, suggesting the possible involvement in reduced 

neuronal viability and synaptic plasticity (Uemura K et al. 2007). In the other hand, GSK-

3β-mediated PS1 phosphorylation induced a structural change of PS1, which in turn 

reduced PS1-β-catenin interaction and led to decreased phosphorylation and degradation 

of β-catenin, resulting in enhanced β-catenin nuclear signaling (Prager K et al. 2007) 

 

1.1.3.3 Metabolic syndrome 

Canonical Wnt signaling activity was observed in pancreatic β cell lines and 

mature islets (Welters HJ et al. 2008), and some evidences support that Wnt/β-catenin 

signaling may regulate β cell function. Wnt10b transgenic mice showed improved 

glucose tolerance and insulin sensitivity (Longo KA. 2004). Additionally, LRP5 deficient 

mice displayed impaired glucose-induced insulin secretion under chow diet, which was 

restored by the infection with adenovirus encoding LRP5; also LRP5+/+ islets had 

increased insulin secretion pretreated with Wnt3a or 5a conditioned media (Fujino T et al. 

2003).  

Wnt5b was shown to be associated with type II diabetes in Japanese population 

(Kanazawa A et al. 2004). And another studies demonstrated the association of 

transcription factor 7 like – 2 (TCF7L2, previously TCF4) polymorphism with the risk in 
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type 2 diabetes in three Caucasian cohorts. In Grant SF’s study, a microsatellite, 

DG10S478, located in the intron 3 of TCF7L2, was found to be related to type 2 diabetes, 

and the homozygous carriers of at-risk allele, a DG10S478 composite had around 2.4 

times more risk of type 2 diabetes than noncarriers (Grant SF et al. 2006). Then a similar 

study was done in Amish population, and the data further indicated that TCF7L2 variants 

likely influence insulin sensitivity (Damcott CM et al. 2006).  

For in vivo studies, FABP4-Wnt10b transgenic mice showed less adipose tissue 

and more resistance to diet-induced obesity (Longo KA. 2004) compared to wildtype 

mice; and under ob/ob or agouti background, FABP4-Wnt10b transgenic mice still 

displayed reduced body weight, tissue weight and white adipose tissue (Wright WS et al. 

2007). All these studies indicate that Wnt signaling inhibit obesity formation in mice. 

 

1.1.3.4 Cardiovascular diseases 

Wnt cascade is of significance in normal heart development, and abnormal Wnt 

signaling has been shown to be associated with several heart diseases (van de Schans VA 

et al. 2008). Using immunohistochemical analysis, coincident expression of both Wnt5a 

and TLR-4 was found in murine and human atherosclerotic lesions (Christman MA et al. 

2008). Conditional deletion of β-catenin in mouse cardiomyocytes resulted in attenuation 

of cardiac hypertrophy induced by pressure, suggesting β-catenin is the regulator of 

cardiomyocyte growth (Chen X et al. 2006). Mani A et al characterized a family with 

extraordinary prevalence of early coronary artery disease (CAD), also featuring 

metabolic syndromes (hyperglycemia, hyperlipidemia, and hypertension). A missense 
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mutation (R611C) in LRP6 gene was then identified in most family members through 

genotyping studies, linking Wnt signaling to the development of CAD (Mani A et al. 

2007).  

 

1.1.3.5 Bone diseases 

Bone mass is regulated by the balance between osteoblasts (bone-forming cells) 

and osteoclasts (bone-resorbing cells), and osteoporosis comes from the imbalance 

between bone resorption and bone formation.  Wnt/β-catenin signaling promotes 

osteoblasts expansion and function, playing a particularly important role in bone biology 

(Westendoff JJ et al. 2004; Krishnan V et al. 2006). Mutation of human LRP5 was found 

to cause an autosomal recessive disorder osteoporosis-pseudoglioma syndrome (OPPG), 

featuring low bone mineral density (Gong Y et al. 2001). Also, deletion of sFRP-1 led to 

increased trabecular bone formation as well as decreased apoptotic osteoblasts and 

osteocytes in adult mice, and to stimulate osteoclastogenesis in vitro (Bodine PV et al. 

2004). Similarly, transgenic mice with expression of Wnt10b in marrow also showed 

increased bone mass and strength, more resistance to bone loss due to aging or estrogen 

deficiency, further suggesting that the involvement of Wnt/β-catenin signaling in bone 

mass, and the underlying mechanism could be that Wnt10b inhibits PPARγ –mediated 

adipogenic program and shifts the cell fate of bipotential mesenchymal precursors to the 

osteoblast lineage (Bennett CN et al. 2005).  
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1.1.4 Wnt and vasculature 

1.1.4.1 Wnt and vascular biology 

Genetic deletions or mutations of Wnt or Wnts signaling components provide the 

evidences that Wnt is required for vascular development and function. Wnt2 deficient 

mice died perinatally due to the severe placental defects with visible hematomas, 

abnormal large maternal blood pools, and reduced number of fetal capillaries, suggesting 

Wnt2 is indispensible for the proper vascularization of mouse placenta development 

(Monkley SJ et al. 1996). Wnt7b is another example: germline knockout of Wnt7b in 

mice led to hemorrhages surrounding the pulmonary vessels caused by defects in the 

differentiation (aberrant expression of smooth muscle α-actin) and maintenance of 

vascular smooth muscle cells (more apoptosis of vascular smooth muscle cells) (Shu W 

et al. 2002). Another study showed that Wnt7b mutant mice failed to drive hyaloids 

vessel regression in the developing eye, which is an indication of correlation between 

Wnt7b and cell apoptosis required for vasculature (Lobov IB et al. 2005). Moreover, Fz5 

conventional knockout mice displayed defective yolk sac and placental vasculature 

(Ishikawa T. 2001), further suggesting the regulatory role of Wnt signaling in vessel 

development. More recently, Stenman JM et al developed Wnt7a/7b double mutant mice 

and showed that these mice had a severe CNS-specific hemorrhaging phenotype due to 

endothelial abnormalities, strongly indicating that Wnt7a/7b and canonical Wnt signaling 

directly target vascular endothelium to promote vasculature formation in the central 

nervous system in mouse embryos and to initiate the development of blood-brain barrier 

(Stenman JM et al. 2008). 
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1.1.4.2 Wnts and vascular diseases 

The discovery of association between Wnt/β-catenin signaling and human 

vascular disease was with Fz4 mutations in familial exudative vitreoretinopathy (FEVR), 

a hereditary ocular disorder characterized by excessive vascular branching due to failure 

of vessel regression, retina detachments and leaky vasculature (Miyakubo H et al. 1982; 

Robitaille J et al. 2002; Masckauchán TN et al. 2006). Another type of disease related to 

Fz4 is Norrie disease, which is a sex-linked, congenital disorder with fibrous and vascular 

changes of the retina causing visual impairment (Zerlin M et al. 2008). Xu Q et al also 

reported that Fz4 null mice displayed intraretinal vascular defects in adulthood (Xu Q et 

al. 2004), indicating the critical role of Fz4 in retina vasculature. Furthermore, unlike Fz5 

whole-body knockout mice described before, Fz5 retina-specific knockout mice 

developed  phenotypes similar to human eye disease persistent hyperplastic primary 

vitreous (PHPV), characterized by accumulation of retrolental tissue, failure of vessel 

regression, and abnormal retina morphogenesis (Zhang J et al. 2008), also proving that 

abnormalities in Wnts and Wnt//β-catenin signaling are responsible for vascular 

pathogenesis.  

In zebrafish, Wnt13 (Wnt2bb) was detected in posterior lateral plate mesoderm 

(LPM) during somitogenesis, predominantly in cells who are committed to endothelial 

and hematopoietic lineages, and expressed in the developing vasculature, endocardium, 

atrioventricular valve in the clater stages (Ober EA et al. 2006). Additionally, all three 

isoforms of Wnt13 have been found in differentiated endothelial cells, (Struewing IT et 

al. 2006), and the differential function of Wnt13 isoforms in endothelial cells will be 

discussed in following chapters.  
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Figure 1.1.1 Wnt/β-catenin canonical pathways. A) In the absence of Wnts (e.g. Wnt1, 

3a), the scaffold Axin assembles the destruction complex of β-catenin which contains 

APC, GSK3, CK1 and β-catenin. In this complex, β-catenin is sequentially 

phosphorylated by CK1 and GSK3, and then recognized by β-TrCP, a component of E3 

ligase which conjugates β-catenin with ubiquitin, resulting in the degradation of β-catenin 

by proteasome. In the nucleus, the binding of transcription repressor Groucho to 

transcription factors T cell factor (TCF) /lymphoid enhancer factor (LEF) leads to the 

inhibition of Wnt-β-catenin signaling target gene transcription. B) In the presence of 

Wnts (e.g. Wnt1, 3a), Axin is recruited to cell surface through LRP5/6 phosphorylation. 
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Without the formation of destructive complex, the phosphorylation and degradation of β-

catenin is thereby inhibited, so β-catenin is stabilized and accumulated in the cytosol, and 

then translocates to the nucleus to displace Grouncho and activate TCF transcription 

factor to initiate Wnt target gene transcription (He X et al. 2004).  
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Figure 1.1.2 Noncanonical Wnt pathways. A) Wnt-PCP pathway activates RhoA and Rac 

through Dvl and DAAM. Subsequently ROCK and JNK signaling are initiated to regulate 

cytoskeletal remodeling, cell adhesion and mobility. B) Wnt-Ca2+ pathway is mediated 

via heterotrimeric G protein and Dvl, which in turn activates PLC to produce IP3 and 

DAG, leading to Ca2+ release from ER and the activation of PKC, CAMKII, and 

phosphatase Calcineurin, leading to the regulation of cell fate and the change of cell 

movement (Staal FJ et al. 2008).  
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Table 1 The receptors/coreceptors, signaling pathways, phenotypes of knockout mice and 

other features of individual Wnts 

 Bound receptors 
(coreceptors) and 
signaling 

Secreted Isoforms Phenotypes of  
Knockout mice 

Wnt1 
(Wg) 

Fz1, 2, 5 (LRP6): 
canonical/β-catenin 
(Cong F et al.2004) 
Fz9 (Wang YK et al. 
1997) 
Fz4, 7, 8 (Bhabot P 
et al.1996)  

Yes 
(Smolich 
BD et al. 
1993) 

Not reported yet Prenatal lethality or 
antaxia if survival 
(deficiency in midbrain 
and cerebellum) 
(Thomas KR et al. 
1990) 

Wnt2 Fz1, 4, 5, 9: 
canonical/β-catenin 
(Gazit A et al. 1999; 
Ishikawa T et al. 
2001;  Karasawa T 
et al. 2002; Klein D 
et al. 2008) 
 

Yes 
(Klein D 
et al. 
2008) 

3 different 
isoforms: variant 
1 and variant 2 
differ in N-
terminus, while 
variant 3 only 
contains partial 
mRNA with 
exon1 and 2 
(Genebank) 

Perinatal lethality or 
reduced birthweight 
due to placental defects  
with visible 
hematomas, abnormal 
large maternal blood 
pools, and reduced 
number of fetal 
capillaries (Monkley SJ 
et al. 1996); severe 
lung hypoplasia with 
dilated vascular 
endothelial plexus 
(Goss AM et al. 2009) 

Wnt3 Fz1, 7: canonical/β-
catenin (Gazit A et 
al. 1999; Kim M et 
al. 2008) 

Yes 
(Kobune 
M et al. 
2007) 

Not reported yet Embryonic lethality 
with no primitive streak 
formation (sign of 
anterior-posterior axis) 
before gastrulation (Liu 
P et al. 1999) 
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Table 1 (continued) 

  

 Bound receptors 
(coreceptors) and 
signaling 

Secreted Isoforms Phenotypes of  
Knockout mice 

Wnt3a Fz1, 2: canonical/β-
catenin (Gazit A et 
al. 1999;  Verkaar F 
et al. 2009) 
Fz1: Go activation 
(Katanaev VL et al. 
2009) 
Fz5, 6 [protein 
collagen triple helix 
repeat containing 1 
(Cthrc1), Ror2]: 
Wnt-PCP 
(Yamamoto S et al. 
2008) 
Fz8 (LRP6) (Cong F 
et al.2004) 

Yes(Smoli
ch BD et 
al. 1993) 

Wnt3a variant 1 
and Wnt3a 
variant 2 
(chicken): differ 
in N-terminus 
(exon 1).  Wnt3a 
variant 2 induces 
β-catenin 
activity. (Narita 
T. 2007) 

Embryonic lethality 
due to axial truncation 
as well as defective  
development of dorsal 
mesoderm and CNS 
morphogenesis (Takada 
S et al. 1994) 
 
 
 
 
 
 
 

Wnt4 Fz1, 2: canonical/β-
catenin (Harris KE. 
2007) 
Fz6: non-canonical 
(Lyons JP et al. 
2004) 
Fz3: (Lyuksyutova 
AI et al. 2003)  
( Four jointed, Fj): 
Wnt-PCP (Lim J et 
al.2005) 

Yes 
(Smolich 
BD et al. 
1993; 
Stark K et 
al. 1994) 

Not reported yet Perinatal lethality with 
failure in Kidney 
tubulogenesis (Stark K 
et al. 1994); 
Loss of female 
productive duct 
formation (Vainio S et 
al. 1999); 
Defect in testis 
differentiation (Jeays-
Ward K. 2004) 



37 
 

Table 1 (continued) 

  

 Bound receptors 
(coreceptors) and 
signaling 

Secreted Isoforms Phenotypes of  
Knockout mice 

Wnt5a Fz1: unknown 
(Gazit A et al. 1999) 
Fz1,6,7: Go 
activation (Katanaev 
VL et al. 2009) 
Fz2: Wnt-Ca2+  via 

Gβγ (Slusarski DC 
et al. 1997) 
Fz4 (LRP5):  
canonical/β-catenin 
(Verkaar F et al. 
2009) 
Fz5:  canonical/β-
catenin (He X et al. 
1997) 
Fz5, 6 (Cthrc1, 
Ror2): Wnt-PCP 
(Yamamoto S et al. 
2008) 

Yes(Smoli
ch BD et 
al. 1993) 

Not reported yet Neonatal lethality; 
defective outgrowth of 
limbs, face, ears and 
genitors due to 
disability of anterior-
posterior (A-P) axis 
extension in embryos 
(Yamaguchi TP et al. 
1999); 
Abnormal lung 
morphogenesis (Li C et 
al. 2002); 
Impaired pituitary 
gland shape (Cha KB et 
al. 2004) 

Wnt5b Fz1: Go activation 
(Katanaev VL et al. 
2009) 
Fz7: Myogenesis 
(Linker C et al. 
2003) 
Unknown: Wnt-PCP 
(Carreira-Barbosa F 
et al. 2003) 

Yes 
(Smolich 
BD et al. 
1993) 

Human Wnt5b 
variant 1 and 2: 
differ in 5’-UTR 
at mRNA level, 
encoding the 
same protein 
(pubmed) 

Viable (van 
Amerongen R et al. 
2006) 

Wnt6 Fz7: canonical/β-
catenin? (Linker C et 
al. 2005) 
Fz8 (LRP5):  
canonical/β-catenin 
(Semenov MV et al. 
2006) 

Yes 
(Smolich 
BD et al. 
1993) 

Not reported yet Viable (van 
Amerongen R et al. 
2006) 
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Table 1 (continued) 

 

 

  

 Bound receptors 
(coreceptors) and 
signaling 

Secreted Isoforms Phenotypes of  
Knockout mice 

Wnt7a Fz1,6: Go activation 
(Katanaev VL et al. 
2009) 
Fz5, 10: 
canonical/β-catenin 
(Carmon KS et al. 
2008b; Kawakami Y 
et al. 2000) 
Fz10: Wnt-PCP ( 
Carmon KS et al. 
2008a) 

Yes 
(Smolich 
BD et al. 
1993) 

Not reported yet Lack of anterior-
posterior and dorsal-
vertral axis patterning 
of limb (Parr BA et 
al.1995);  
Female mice were 
sterile due to 
posteriorized 
productive tracts 
(Miller C et al. 1998); 
Delayed morphological 
maturation in 
cerebellum (Hall AC et 
al. 2000) 

Wnt7b Fz1, 10 (LRP5):  
canonical/β-catenin 
(Wang Z et al. 2005) 
Fz4:  canonical/β-
catenin (Lobov IB et 
al. 2005) 

Yes 
(Smolich 
BD et al. 
1993) 

Wnt7b-1 and 
Wnt7b-2 (mouse 
and chicken): 
differ in N-
terminus (exon 
1) (Rajagopal J 
et al. 2008 and 
Fokina VM et al. 
2006) 

Embryonic lethality 
due to placental 
abnormalities (exon 3 
deletion) (Parr BA et 
al. 2001) 
Perinatal lethality due 
to respiratory failure 
(defects in 
mesenchymal 
proliferation and vessel 
development) (exon 1 
deletion) (Shu W et al. 
2002) 
Some neonatal lethality 
while viable mice 
showing fertile and 
failure of hyaloids 
vessel regression (exon 
1 deletion) (Lobov IB 
et al. 2005) 
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Table 1 (continued) 

 

 

  

 Bound receptors 
(coreceptors) and 
signaling 

Secreted Isoforms Phenotypes of  
Knockout mice 

Wnt8a Fz1:  canonical/β-
catenin (Yang-
Snyder J. 1996) 
Fz4,5,7 (LRP6):  
canonical/β-catenin 
(Holmen SL et al. 
2002) 
Fz2,8 (Hsieh JC. 
1999a) 

Yes 
(Hsieh JC. 
1999b) 

Not  reported  
yet 

Viable (van 
Amerongen R et al. 
2006) 

Wnt8b Fz8a:  canonical/β-
catenin (Kim SH et 
al. 2002; Cavodeassi 
F et al. 2005) 

Yes 
(Katoh M 
et al. 
2005) 

Not  reported  
yet 

Viable (van 
Amerongen R et al. 
2006) 

Wnt9a 
(Wnt14) 

Fz4, 7, 9:  
canonical/β-catenin 
(Matsumoto K et al. 
2008)  

Yes ( 
Matsumot
o K et al. 
2008) 

Not  reported yet Neonatal lethality; 
skeletal defects and 
chrondroid metaplasia 
in some joints (Später D 
et al. 2006) 

Wnt9b 
(Wnt15) 

Fz5 (LRP6), Fz8:  
canonical/β-catenin 
(Liu C et al. 2008) 

 Not  reported  
yet 

Neonatal lethality with 
defective urogenital 
system (Carroll TJ et 
al. 2005) 

Wnt10a   Not  reported  
yet 

Unknown  

Wnt10b 
(Wnt12) 

Fz8 (LRP5):  
canonical/β-catenin 
(Semenov MV et al. 
2006) 
Fz5:   canonical/β-
catenin (Ishikawa T 
et al. 2001) 

Yes (Ouji 
Y et al. 
2006) 

2 isoforms: 
differ in a central 
region Exon 
3(Wang J et al. 
1996)   

More myogenic 
differentiation of 
myoblasts and 
increased activation of 
adipogenic program in 
muscle injury (Vertino 
AM et al. 2005); 
Reduced bone 
formation rate (Bennett 
CN et al. 2007) 
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Table 1 (continued) 

 

 

 

 Bound receptors 
(coreceptors) and 
signaling 

Secreted Isoforms Phenotypes of  
Knockout mice 

Wnt11 Fz5 (LRP6):  
canonical/β-catenin 
(Holmen SL et al. 
2002)  
Fz5: antagonize  
canonical/β-catenin 
(Cavodeassi F et al. 
2005) 
Fz7 (Ryk): Wnt-PCP 
(Djiane A et al. 
2000; Kim GH et al. 
2008) 

Yes  
(Kikuchi 
A et al. 
2007) 

Not  reported  
yet 

Perinatal lethality with 
smaller size of kidney 
due to defective 
ureteric branching 
patterning (Majumdar 
A et al. 2003) 

Wnt13 
(Wnt2b) 

Fz7(receptor for 
Wnt13A): unknown 
(Struewing IT et al. 
2007) 

Yes 
(Wnt13A) 
(Struewin
g IT et al. 
2006) 

Wnt13A, Wnt13B 
and Wnt13C 
(human): differ in 
N-terminus 
(Katoh M et 
al.2000 and 
Struewing IT et 
al. 2006) 

Viable (van 
Amerongen R et al. 
2006) 
Wnt2/Wnt2b double 
knockout mice: 
complete lung agenesis 
(Goss AM et al. 2009) 

Wnt16 Unknow receptors:  
canonical/β-catenin 
(Mazieres J et al. 
2005) 

 Wnt16a, Wnt16b 
(human): differ in 
N-terminus (exon 
1) (Fear MW et 
al. 2000) 

Viable (van 
Amerongen R et al. 
2006) 
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1.2 Wnt13 

1.2.1 General background 

The original human Wnt13B (Wnt2b1) cDNA was firstly isolated and 

characterized from human gastric cancer mRNAs by Katoh M et al in 1996. However, the 

sequence of the human Wnt13B (Wnt2b1) was different than that of the Wnt13/Wnt2b 

identified in mouse, chicken and xenopus; and in 2000, the mouse Wnt13/Wnt2b was 

found equivalent to human Wnt13A/Wnt2b2 (Katoh M. et al. 2000). Besides Wnt13A 

and Wnt13B, the human Wnt13C was also identified from endothelial cells in 2006 

(Struewing IT et al. 2006). 

One of the distinguished features of a few Wnts compared to most of Wnts is that 

they have different isoforms which differ 1) either in N-terminus due to alternative 

splicing, resulting in distinct subcellular localizations, such as Wnt3a (Narita T et al. 

2007), 7b (Fokina VM et al. 2006 and Rajagopal J et al. 2008), 13(Katoh M. et al. 2000; 

Struewing IT et al. 2006), and 16 (Fear MW et al. 2000); 2) or in the central region, such 

as Wnt10b. Therefore Wnt13 is one of the few Wnt members with isoforms.  

The Wnt13B gene is located in human chromosome 1p13 (Katoh M et al. 1996). 

Due to the difference in the first or second exons, the mRNAs of Wnt13A and Wnt13B 

differ in the 5’-UTR and N-terminal coding region (Katoh M. et al. 2000). Wnt13B 

contains exon 1-2, 4-7, which encodes the protein of 372 amino acids including the N-

terminal hydrophobic domain; while Wnt13A contains exon 3-7, encoding 391 amino 

aids without this N-terminal hydrophobic domain (Katoh M. et al. 2000). The Wnt13B 

mRNA was detected in heart, brain, placenta, lung, prostate, testis, ovary, small intestine, 
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kidney, and colon (Katoh M et al. 1996). The Wnt13A mRNA was also detected in fetal 

brain, fetal lung, fetal kidney, caudate nucleus, testis, while Wnt13B expression level was 

relatively higher in fetal brain and fetal lung than in other tissues (Katoh M. et al. 2000). 

Besides the discovery of human Wnt13, the Wnt13 cDNAs were also identified in 

Xenopus (Wolda, SL et al. 1992), mouse (Zakin LD et al. 1998) , chicken (Jasoni C et al. 

1999), zebrafish (Ng JK et al. 2002), rat (Ricken A. et al. 2002) and bovine (Struewing IT 

et al. 2006; Goodwin AM et al. 2006). Indeed, the Wnt13 found in all these animal 

species refers to Wnt13A, so it seems that the isoform pattern of Wnt13 only exist in 

higher class of animals.  

Among Wnt family, Wnt2b and Wnt2 are under the same subfamily since the 

alignment of Wnt sequences shows that Wnt2 has more homology to Wnt2b (72.5% 

amino acid identity) than other Wnts (Katoh M. et al. 2000), and the evolutionary 

relationship between Wnt2 and Wnt2b is contributed by duplication of an ancient gene 

cluster (Katoh M. et al. 2002; Gariock RJ et al. 2007). 

 

1.2.2 Human Wnt13 isoforms 

Katoh M. et al firstly described two Wnt13 isoforms derived from the same gene 

due to alternative splicing. They isolated a novel Wnt13 isoform (Wnt2b2/Wnt13A) in 

addition to the original Wnt13 isoform (Wnt2b1/Wnt13B). Wnt13A and Wnt13B share 

the Wnt core domain but differ in the 5’-UTR and N-terminus, resulting in 87.0% amino 

acid homology between Wnt13A and Wnt13B. Also as shown in Figure 1.2A, Wnt13B 
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mRNA contains exons 1, 2 and 4-7, whereas Wnt13A contains mRNA contains exons 3-

7, and their expression pattern differs too (Katoh M. et al. 2000).  

Our laboratory demonstrated that various human cell types, such as differentiated 

endothelial cells and hematopoietic cells, express three different Wnt13 isoforms: 

Wnt13A, Wnt13B and a new form Wnt13C (Struewing IT et al. 2006; Bunaciu RP et al. 

2008). Wnt13C mRNA consists of exons 1 and 4-7 with the entire exon 2 skipped during 

an alternative splicing (see Figure 1.2A). Also, Wnt13A was shown transcribed from the 

P2 promoter, while mRNAs of Wnt13B and Wnt13C were generated using P1 promoter 

(Figure 1.2A, Struewing IT et al. 2006). 

Two translational start codons were found in Wnt13B and C mRNAs: Met1 and 

Met74, so Wnt13B mRNA gave rise to a long form and a short form at protein levels, 

resulting in the detection of a protein doublet by western blotting, in contrast to Wnt13A 

with one single band of 41KD in size. This result was confirmed by site mutagenesis: 

mutant M1L-Wnt13B, where Met1 was replaced by leucine1, only generated the short 

form of Wnt13B (S-Wnt13B); however, mutant M74L-Wnt13B, where Met74 was 

replaced by Leucine74, only generated the long form (L-Wnt13B). Compared to Wnt13B 

mRNA, Wnt13C sequence had a deletion of 71 nucleotides corresponding to exon 2, 

leading to a change in the open reading frame of exon 4 and formation of a stop codon 

(Figure 1.2 B). Consequently, Wnt13C encoded the same protein as S-Wnt13B from the 

second translational start site (Met74), plus a very short peptide of 30 amino acids in 

length from the first start site (Met1), but only S-Wnt13B band was able to be seen  by 

immunoblots (Struewing IT et al. 2006; Tang T et al. 2008). 
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The three Wnt13 isoforms displayed different subcellular localizations: Wnt13A, 

like most of other secreted Wnt members, was mainly retained in endoplasmic reticulum 

(ER), and underwent N-glycosylation during post-translational processing. In contrast, 

Wnt13B was not secreted but associated with intracellular fractions. Moreover, L- 

Wnt13B and S-Wnt13B were shown targeted to mitochondria and to the nucleus, 

respectively. Thus Wnt13 forms with S-Wnt13B alone, including Wnt13C and M1L-

Wnt13B were localized in nucleus; however, Wnt13 forms with L-Wnt13B alone, like 

M74L-Wnt13B was localized in mitochondria due to N-terminus containing 

mitochondrial targeting sequences. Wnt13B, which had both long and short forms, was 

tightly associated with mitochondrial membranes and was able to induce the changes of 

mitochondrial morphology (from reticular to fragmented morphology) (Struewing IT et 

al. 2006). 

 

1.2.3 Wnt13 expression and function 

1.2.3.1  In humans 

1.2.3.1.1 Human hematopoiesis 

Wnt13 transcripts were detected by RT-PCR in thymus in human fetus and 

different hematopoeitic cell lines, including B-cell lines (Daudi, Raji, and Ramos), a T-

cell line (Jurkat), myeloid cell lines (KG-1 and KG-1a), and erythroid cell lines (HEL and 

TF1), but not primitive stem/progenitor cells (CD34+Lin-), implying Wnt13 was likely 

expressed in committed progenitor cells and /or mature cells (Van Den Berg DJ et al. 

1998).  However, the Wnt13 primers used for PCR amplification can not distinguish the 

Wnt13 isoforms in this report, so the Wnt13 expression reflected the total levels of 
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Wnt13 isoforms.  Also, Wnt13A-transduced CV-1 cells were used to test the biological 

activity: Wnt13 was shown to increase greatly the numbers of mixed colony-forming 

units (CFU-MIX), colony-forming units-granulocyte macrophage (CFU-GM), and burst 

forming units–erythoroid (BFU-E), indicating Wnt13 gene may be a new group of 

hematopoietic factors (Van Den Berg DJ et al. 1998).  

 

Moreover, our laboratory further proved that all three Wnt13 isoforms were 

expressed in different human hematopoeitic cells including monoblastic U937 cells, 

erythroblastic K562 cells, and monocytic THP1 cells, with Wnt13C level being the 

highest compared to Wnt13A and B, by using specific primers for Wnt13A, Wnt13B and 

Wnt13C in realtime PCR reactions. In U937 cell line, Wnt13B and Wnt13C mRNAs 

were up-regulated while Wnt13A was down-regulated during cell differentiation towards 

monocyte/macrophages; however, in K562 cell line, the mRNA levels of all three Wnt13 

forms were increased with cell differentiation to megakaryocytes. And the expression of 

Wnt13B and C, not Wnt13A were correlated to transcription factor MAF-B level in both 

U937 and K562 systems (Bunaciu RP et al. 2008). This finding demonstrated differential 

regulation of Wnt13 forms and Wnt13 isoform switch during U937 cell differentiation, 

further suggesting that Wnt13 forms may be new players in leukemic differentiation 

process towards monocyte/macrophages. 

 

1.2.3.1.2 Human cancers 

The Wnt13B mRNA was found in some cancer cell lines, such as Hela (cervical 

cancer), MKN28 and MKN74 (gastric cancer) (Katoh M et al. 1996). The Wnt13 
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expression was also detected by RT-PCR in human mammary epithelial cells, and breast 

cancer cell lines (BT-20, T-47-D, BT-474, MCF-7, MDA-MB-468, MDA-MB-453) as 

well (Benhaj K. et al. 2006). Besides, Wnt13 was shown to be expressed in 2 

glioblastoma cell lines, 10 head and neck squamous cell carcinomas (HNSCC) cell lines, 

and 2 B cell tumor cell lines by using RT-PCR (Rhee C. et al. 2002). Wnt13 transcripts 

were detected in 4 cases out of 12 acute lymphoblastic leukaemia (ALL) cases using RT-

PCR (Khan NI et al. 2007), and Wnt13 isoforms are also expressed in leukemic cell lines 

(Bunaciu RP et al.2008). In addition, Wnt13 transcripts were found in rat ovarian surface 

epithelium using in situ hybridization as well as in human ovarian cancer lines (SKOV-3, 

HEY, CAOV-3. OVCAR, SW626) using RT-PCR (Ricken A. et al. 2002). Although all 

these results imply the association between the levels of Wnt13 protein expression and 

human carcinogenesis, one limitation that most of these studies share is that the 

methodology they used could not distinguish the isoforms of Wnt13.  

However, some other studies did specify the differential Wnt13 isoforms. The 

Wnt13 mRNA was shown up-regulated in 2 of 8 cases of primary gastric cancer by using 

matched tumor/normal expression array analysis where Wnt13 probe could detect both 

Wnt13A and B; in adult gastric epithelial cells, Wnt13A mRNA was the only form to be 

shown preferentially up-regulated in a case of primary gastric cancer by RT-PCR, and 

injection of synthetic mRNA of Wnt13A instead of Wnt13B was able to induce axis 

duplication in Xenopus embryos, suggesting that the Wnt13A may be positive regulator 

of Wnt/β-catenin pathway and its up-regulation may be related to tumor formation in 

gastric cancer (Katoh M et al. 2001). However, the activated effect on canonical signaling 

of Wnt13A is cell type specific, since Wnt13A failed to increase β-catenin/TCF activity 
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in HEK293 cells (Struewing IT et al. 2006). In addition, another report from Katoh has 

showed that Wnt13A mRNA, but not Wnt13B mRNA, was expressed in MCF-7 cells 

(breast cancer), NT2 cells (teratocarcinoma) and MKN45 cells (gastric cancer), further 

proved that differential expression of Wnt13 forms in carcinogenesis (Katoh M. 2001). 

Our laboratory also illustrated the differential expression and regulation of Wnt13 

isoforms during leukemic cell differentiation: in U937 cell line, Wnt13B and Wnt13C 

mRNAs were up-regulated while Wnt13A was down-regulated during cell differentiation 

towards monocyte/macrophages (Bunaciu RP et al. 2008). 

 

1.2.3.1.3 Human type II diabetes:  

In 2008, Lee SH et al reported that using immune-histochemistry approach 

(Wnt13 antibody: AF3900, from R&D), Wnt13 and other canonical Wnt signaling 

members (such as TCF3) were absent from islets of nondiabetic individuals, but were 

greatly up-regulated in islets from type II diabetic patients, and Wnt13 was robustly 

expressed in both β-cells and α-cells of diabetics (Lee SH et al. 2008). 

 

1.2.3.1.4 Inflammation in gastrointestinal tract 

You J et al examined the expression of Wnt pathway-related genes in patients 

with ulcerative colitis (UC) by Wnt-specific microarray analysis, and they found that 

Wnt13 expression in colonic mucosa from patients with inflammatory bowel disease 

(IBD) was around six fold higher than normal colonic mucosa (You J et al. 2008), but 

this finding was not confirmed by RT-PCR using specific primers.  
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Moreover, Tanaka A et al took advantage of suppressive subtractive hybridization (a 

technique combining suppressive PCR and subtractive hybridization) to compare mRNA 

populations from biliary epithelial cells (BEC) isolated from patients with primary biliary 

cirrhosis (PBC) to BECs from normal samples, and they identified that one of 71 cDNA 

clones which have higher transcription levels in PBC patients, has 98% homology to 

human Wnt13 gene, but the paper did not specify Wnt13 isoform and the detail of the 

increase by Wnt13 (Tanaka A et al. 2001).  

 

1.2.3.1.5 Others 

Bisgaard AM et al described a case of deletion in chromosome 1(1p13.1 and 

1p21.1) with breakpoints: the patient was a 13-year-old girl with severe mental 

retardation, short stature, dysmorphic appearance, and iris coloboma. The authors 

hypothesized that this phenotype in eyes might be contributed by Wnt13, as Wnt13 maps 

to 1p13.2 and Wnt13 is expressed in the optic vesicles during eye development (Bisgaard 

AM et al. 2006), but no evidence was given to support this hypothesis in the paper. 

The Wnt13 mRNA was also detected by RT-PCR in human bone marrow stromal 

cells (hMSCs), also known as bone marrow-derived mesenchymal stem cells, which have 

the potential to differentiate into various types of cells such as osteoblasts and adipocytes 

(Shen L et al. 2009). Due to the lack of the information about Wnt13 primers in this 

paper, it is unknown whether the Wnt13 mRNA the authors detected represented the total 

Wnt13 or a specific isoform. In this study, there was no significant gender difference in 

Wnt13 expression; however, the Wnt13 mRNA demonstrated a trend of higher levels in 

young group, and for the hMSCs from women, the mRNA expression of Wnt13 was 
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inversely correlated with age, suggesting that Wnt13 gene expression may be affected by 

age (Shen L et al. 2009). 

 

1.2.3.2 In animals 

Wnt13 functions as the stem cell factor for neural or retinal progenitor cells 

during embryogenesis (Zakin LD et al. 1998; Nakagawa et al. 2003; Kubo F. et al. 2003). 

Unlike in humans, Wnt13 isoforms have not been specified in animals, so Wnt13 in 

animal studies are usually referred to ortholog of human Wnt13A. 

 

1.2.3.2.1 Embryogenesis and organogenesis 

During embryogenesis in mice, xenopus, chicken, and zebrafish, the Wnt13 

expression is similarly characterized by a dynamic pattern at different developing stages 

(Zakin LD et al. 1998; Jasoni C et al. 1999; Ng JK et al. 2002). 

For mice, Wnt13A expression was detectable in the mouse embryonic mesoderm 

during gastrulation by using in situ hybridization. At later stages, robust expression of 

Wnt13A transcripts was found in neuroepithelium of the developing brain (as a narrow 

line of the dorsal midline of the diencephalon and mesencephalon), the heart primordia, 

the periphery of the lung bud and the otic and optic vesicles, suggesting Wnt13A may 

partially overlap with other Wnt genes in controlling mesoderm specification and 

embryonic patterning of brain, heart, or lung (Zakin LD et al. 1998). 
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1.2.3.2.2 Retinal development and degeneration  

According to Jasoni C et al, chicken Wnt13 was shown to be expressed in the 

developing eye with a two-phase pattern using in situ hybridization: the earlier expression 

was restricted within the pigment epithelium, and the later expression was confined to the 

lens and ciliary margin. Also strikingly, whole-mount hybridization experiment showed 

that cWnt13 was restricted to the proliferating lens epithelium and absent from the 

quiescent, differentiating annular pad, and in vitro BrdU incorporation studies indicated 

the correlation between cell division and Wnt13 expression in the lens (Jasoni C et al. 

1999), but the authors did not give specific information of the RNA probe for cWnt13 in 

this paper. Later, a study showed that dissociated retina cells formed the correctly 

laminated layer in Wnt13A-conditioned media, suggesting that Wnt13A may play a role 

in the formation of laminar structure in the retina (Nakagawa et al. 2003). Kubo F et al 

revealed that Wnt13A was visible in the marginal retina by in situ hybridization, and 

overexpressing Wnt13A  by in ovo electroporation in central retina inhibited neuronal 

differentiation (Kubo F. et al. 2003). Also, the retina progenitor cells (RPC) in chicken 

ciliary marginal zone (CMZ) showed prolonged proliferation in Wnt13A-conditioned 

media in vitro, suggesting Wnt13A serves as a stem cell factor in the retina (Kubo F. et 

al. 2003). In contrast, in vivo studies by Cho SH et al showed another case: canonical 

Wnt signaling reduced RPC proliferation in vivo, and viral infection of Wnt13A 

interfered with the maintenance of retinal progenitor gene (RPG) expression, resulting in 

the conversion of retina cells into the peripheral fates of the ciliary body and iris (Cho SH 

et al. 2006). A recent report showed that Wnt13A induced the formation of both CMZ 

and iris/ciliary epithelium, which was mediated by Hairy1, a Notch signaling effector 
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(Kubo F et al. 2009). All these data demonstrate that Wnt13A plays a crucial role in 

controlling retina cell fate. 

In addition to eye development, Wnt13 has been also shown to be involved in 

retina degeneration and regeneration. Wnt13 transcripts were detected during rod and 

cone photoreceptor death in mice by quantitative PCR (primer for Wnt13 was unable to 

distinguish Wnt13 isoforms), implying that Wnt13 might be a potential mediator in retina 

degeneration (Yi H. et al. 2007). Also, Wnt13 transcripts were found clearly expressed in 

the newt lens-regenerating iris tissue by RT-PCR, and local Wnt13 activation by lens 

removal or FGF-2 injection was restricted to the dorsal iris, indicating dorsal-specific 

activation of Wnt13 determines the dorsal iris-limited step during lens regeneration in the 

newt eye (Hayashi T et al. 2006). 

 

1.2.3.2.3 Limb initiation 

Kawakami Y. et al reported that Wnt13A-infected fibroblasts were able to induce 

Fgf-10 expression in lateral plate mesoderm, and to generate an ectopic limb when 

implanted in the flank of chicken embryo, which was mediated by stabilizing cytosolic 

and membrane β-catenin (Kawakami Y. et al. 2001). Similarly, in zebrafish embryos, 

Wnt13(Wnt2ba, which has 76% homology to human Wnt13A) loss-of-function 

experiments were performed by injection of Wnt13 morpholino oligonucleotides, and 

resulted in 75% embryos lacking pectoral fins, and this paper also showed Wnt13 was the 

upstream of Tbx5 and Fgf 10 to initiate limb outgrowth (Ng JK et al. 2002).  
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1.2.3.2.4 Liver specification 

Ober EA et al found that prometheus (prt) gene mutation caused an absence or 

remarkable reduction in liver formation during the early stages of zebrafish development, 

which was a transient but dramatic phenotype. Indeed, prt gene encodes Wnt2bb, which 

is another Wnt13 ortholog in zebrafish (89% identical to Wnt2ba, and 77% homology to 

human Wnt13A and B), and knock-down of wnt2bb function by injecting morpholino 

antisense oligonucleotides resulted in a complete absence of liver, indicating a positive 

role for Wnt13 in zebrafish liver specification (Ober EA et al. 2006).   

 

1.2.3.2.5 Kidney development 

The Wnt13 gene was also detected in the kidney of murine embryos using in situ 

hybridization (Lin Y et al. 2001). And isolated kidney mesenchyme which was placed on 

the monolayer of cells expressing secreted Wnt13A, failed to induce tubulogenesis, but 

ureteric bud cultured with Wnt13A-expressing cells showed promoted growth, branching 

and kidney reconstitution (Lin Y et al. 2001). Another report showed that canonical  Wnt 

signaling was detected in branching ureteric bud tips and emerging S-shaped bodies in 

TCF-LacZ transgenic mouse kidney, and Wnt13A transfection increased Topflash 

activity greatly in MK4 cells (murine mesenchyme), which suggests that Wnt13 might be 

involved in the branching nephrogenesis in fetal kidney (Iglesias DM et al. 2007).  

 

1.2.3.2.6 Vasculature 

During organogenesis, zebrafish Wnt2bb was detected using in situ hybridization 

at the onset of somitogenesis in the posterior lateral plate mesoderm (LPM), 
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predominantly in cells fated to give rise to the endothelial and blood lineages, and 

expressed in the developing vasculature, endocardium, atrioventricular valve in the later 

stages (Ober EA et al. 2006). 

 

1.2.3.2.7 Other organ development  

In xenopus, knockdown of Wnt13 by injecting different morpholino 

oligonucleotides resulted in a hypoplastic stomach as well as in hypoplasia of the 

pancreas, suggesting a positive role of Wnt13 in controlling proliferation of stomach and 

pancreas (Damianitsch K et al. 2009). In skeletal development, Wnt13 mRNA levels 

were decreased by 60% in human dermal fibroblasts exposed to demineralized bone 

powder (DBP) for 3 days, which is the first evidence that Wnt2b may influence post-natal 

chrondrocyte differentiation induced by DBP (Yates KE et al. 2004).  

It was reported that the conventional Wnt13 knock-out mice did not show obvious 

phenotype (van Amerongen R et al. 2006), but this information was gained through their 

personal communication with Yamaguchi T without any description of how these knock-

out mice were generated. Based on this result, either the role of Wnt13 might be not 

critical for development, or the deficiency of Wnt13 functions might be compensated by 

other Wnts.   

Goss AM et al generated Wnt2 null mice, Wnt2b null mice, and Wnt2/Wnt2b 

double knockout mice to study the function of Wnt2 and Wnt13 in the development of 

the anterior foregut (Goss AM et al. 2009). In this study, Wnt2b null mice were viable 

without showing obvious phenotypes, which is consistent with the result discussed in van 

Amerongen R’s review (van Amerongen R et al. 2006). Yet, most Wnt2 null mice were 
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cyanotic at birth and died perinatally; histological analysis in these mice showed 

remarkable lung hypoplasia, with poor development of the lung mesenchyme which 

resulted in dilated and abnormal vascular endothelial plexus by birth; these mice also 

displayed reduced cell growth in epithelial and mesenchyme cells and low levels of 

transcription factor important for lung development. Compared to Monkley SJ’s finding 

showing placental defects with visible hematomas, abnormal large maternal blood pools, 

and reduced number of fetal capillaries in Wnt2 knockout mice (Monkley SJ et al. 1996), 

this new paper discovered the novel function of Wnt2 in lung development. Moreover, 

the Wnt2/Wnt2b double knockout mutants in this paper revealed complete failure of lung 

and tracheal development due to specific loss of lung progenitor specification in the 

foregut endoderm. The findings described above suggest the positive role of both Wnt2 

and Wnt2b in specifying lung progenitors in the mouse foregut; yet, the difference 

between Wnt2 and Wnt2b is that the function of Wnt2 is not redundant whereas the role 

of Wnt2b may be, at least partially, compensated by Wnt2. In contrast, other organs 

derived from the foregut endoderm, including the thyroid, liver, pancreas and kidney, 

were unaffected by Wnt2/Wnt2b double knockout. This result seems to be contradictory 

to the findings by Ober EA et al: mutation in Wnt2bb gene caused a transient absence of 

liver formation in zebrafish development (Ober EA et al. 2006), which may be explained 

by the differential effects of Wnt2b in distinct species. Also, the phenotype of Wnt2bb 

knockout in zebrafish was transient, which implies that Wnt2bb deficiency may cause 

dramatic defects in liver specification at the early stage, but this deficiency might be 

compensated by other Wnts like Wnt2 in the later stage. 
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A) 

 

 

B) 

 

Figure 1.2 Three Wnt13 isoforms are generated via alternative promoter, alternative 

splicing, and alternative translational start codons. (A) The schematic human Wnt13 

gene is shown, and Wnt13A, B and C mRNAs are produced through different 

promoters and alternative splicing sites. (B) N terminal sequences of Wnt13B, 

Wnt13C forms as well as M1L-Wnt13B, M74L-Wnt13B mutants, showing a long 

form and a short form at protein level can be generated via alternative translational 

start sites (modified from Struewing IT et al. 2006).  
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1.3 Cell apoptosis 

1.3.1 Definition and features 

Cell death is a programmed event during development and tissue turn over, or the 

ultimate consequence of the cell upon toxic or pathologic insults (Leist M et al. 1997). So 

far, at least three major types of cell death have been described: autophagy, a process 

characterized by portion of cytoplasm (including organelles) which is enwrapped in 

double-membrane vacuoles and targeted for lysosomal degradation; necrosis is a passive, 

pathological, catabolic process, which results from cell response to extreme challenges or 

toxic stimuli; and apoptosis, a form of programmed cell death, is an active process in 

need of energy, which can occur under both physiological and pathological circumstances 

(Renvoizé C et al. 1998; Galluzzi L et al. 2008). Besides, there are other forms of 

programmed cell death which are caspase-independent, such as Wallerian degeneration 

(nervous system), excitotoxicity (neurons), erythropoiesis, and cornification (epidermis) 

(Melino G et al. 2005; Kroemer G et al. 2009).  

“Apoptosis” is a Greek word, originally meaning falling-off leaves from the tree 

in autumn. This term was anciently used by Hippocrates of Cos back in the 4th century 

BC, and reused by Kerr JF et al to describe a morphologically distinct form of cell death 

(Diamantis A et al. 2008; Kerr JF et al. 1972). 

The striking morphological changes make apoptosis easy to be identified in vitro. 

In nearly all cell types, apoptosis occurs in scattered, single cells or small cell clusters in 

a tissue which is actively regulating its own homeostasis. Once the cell is committed to 

suicide, chromatin condenses into dark crescentic masses adjacent to nuclear envelops, 
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leading to pyknosis, one of the most typical features in apoptosis. At the same time, the 

cell shrinks abruptly due to the loss of fluid, possibly because of blocked Na+-K+-Cl- 

cotransporter system, and with cell shrinkage, the cytoplasm thereby becomes dense and 

the organelles are more tightly packed. Convolutions of plasma and nuclear membranes 

take place progressively with chromatin condensation, leading to a bubbling or extensive 

blebbing surface. Minor modification of cytoplasmic organelles is found, and the cell is 

segregated into apoptotic bodies which contain cytoplasm and cytoplasmic organelles 

with or without nuclear fragments, and the integrity of plasma membrane is remained. 

Subsequently, these apoptotic bodies are soon phagocytosed by professional phagocytes 

such as macrophages and dendritic cells, or by amateur phagocytes in the neighboring 

tissue such as epithelial cells and mesangial cells, and eventually degraded within 

lysosomes (Maderna P et al. 2003; Monks J et al. 2003). Interestingly, no inflammatory 

reaction is found during the process of apoptosis and phagocytosis of apoptotic bodies, 

since apoptotic cells keep plasma membrane intact so that no cellular components leak 

into surrounding tissue, and they are quickly engulfed by other cells which are not 

releasing inflammatory mediators (Allen RT et al. 1997; Elmore S. 2007) 

In contrast to apoptosis, autophagy and necrosis have distinct morphological 

characteristics. Autophagy is featured by intracellular accumulation of autophagic 

vacuoles; however, necrosis is characterized by cellular swelling, lysed nucleus, rapid 

loss of cellular membrane integrity and diffuse inflammation (Allen RT et al. 1997; Loos 

B et al. 2009). 
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1.3.2 Apoptotic pathways and mechanisms  

The mechanisms of apoptosis are complex and sophisticated, involving a lot of 

highly-regulated molecular events. So far two main apoptotic pathways, intrinsic pathway 

and extrinsic pathway, have been described in eukaryotic cells (Blank M et al. 2007; 

Elmore S. 2007), which are illustrated in Figure 1.3.1. 

1.3.2.1 Intrinsic pathway 

1.3.2.1.1 Overview 

The intrinsic apoptotic signaling requires a variety of non-receptor stimuli that 

emanate intracellular signals converging at the mitochondria (Blank M et al. 2007). 

Mitochondria play a crucial role in cell apoptosis in mammals, because 1) the induction 

of mitochondrial outer membrane permeabilization (MOMP) is the pivotal event in the 

process of apoptosis; 2) the release of apoptogenic proteins, such as cytochrome c, from 

the mitochondrial intermembrane space to cytoplasm results in downstream execution 

phase apoptosis (Tsujimoto Y et al. 2000; Spierings D et al. 2005).  

Two nonexclusive models may explain the induction of MOMP: 1) as shown in 

Figure 1.3.1, the pro-apoptotic Bax or Bak, assemble by homo-oligomerization and then 

create pore-like structures in the outer membrane (OM) without affecting the function of 

the inner membrane (IM) and the matrix. The Bax and Bak are members of Bcl-2 family, 

which is described in 1.3.2.3.1. 2) Some signals, like Ca2+ overload and increased ROS, 

induce the opening of permeability transition pore complex (PTPC) which consists of 

voltage-dependent anion channel (VDAC) in the OM and adenine nucleotide translocator 

(ANT) in the IM, and osmotic forces drive water into the matrix, resulting in swelling 
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and the ultimate rupture of both membranes (Spierings D et al. 2005; Garrido C et al. 

2006).  

Once MOMP occurs, the mitochondria undergo the loss of the membrane 

potential and release a variety of pro-apoptotic proteins to the cytosol. One of the 

apoptotic proteins is cytochrome c, which functions as an electron shuttle between 

complex III and complex IV of the respiratory chain. And in mitochondria, most of 

cytochrome c (85%) is trapped within the cristae and associated with cardiolipin while 

the rest is free in the intermembrane space (IMS) or loosely attached to IM (Garrido C et 

al. 2006; Schug ZT et al. 2009). As shown in Figure 1.3.1, upon MOMP, cytochrome c is 

released into the cytoplasm, where it binds and activates the apoptotic protease-activating 

factor (Apaf)-1, leading to the formation of a heptameric caspase-activating complex with 

deoxyadenosine triphosphate (dATP) and procaspase-9, termed the apoptosome. Each 

apoptosome recruits seven dimers of procaspase-9, and provides a platform that 

efficiently cleaves and activates caspase-9. In turn, activated caspase-9 induces the 

cleavage of executioner caspase-3, 6 and 7, which results in later-on execution phase of 

apoptosis (Wang Z et al. 2005; Jin Z et al. 2005).  

Besides, the induction of MOMP also leads to the release of another type of 

apoptogenic factors including apoptotic inducing factor (AIF), endonuclease G (endoG) 

and Omi/HtrA2 to promote caspase-independent cell death (CICD) (Blank M et al. 2007). 

AIF, a mitochondrial flavoprotein, normally resides in IMS; however, upon apoptotic 

stimuli, AIF translocates from the mitochondria to the nucleus and induces peripheral 

chromatin condensation and large-scale DNA fragmentation (stage 1) (Donovan M et al. 

2004). Likewise, endoG, a mitochondrial enzyme, also translocates from IMS to the 
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nucleus to cause oligonucleosomal DNA fragmentation (DNA laddering; stage 2) 

secondary to the first stage caused by AIF (Donovan M et al. 2004). Mammalian 

Omi/HtrA2, a serine protease with homology to the bacterial high temperature 

requirement A (HtrA) heat shock protease, can also induce CICD but the mechanism 

remains unclear (Donovan M et al. 2004).  

 

1.3.2.1.2 Inducers of intrinsic pathways 

The signals to induce the intrinsic apoptotic pathway include, but not limited to, 

oxidative stress, DNA damage, endoplasmic reticulum (ER) stress, cytoskeletal damage, 

hypoxia, loss of cell adhesion, toxins, macromolecular synthesis inhibition, viral 

infection, as well as the withdrawal of certain growth factors, hormones and cytokines 

(Blank M et al. 2007; Elmore S. 2007). 

 

1.3.2.1.3 Regulators of intrinsic pathways 

1.3.2.1.3.1  B cell leukemia/lymphoma (Bcl) -2 family 

The Bcl-2 gene was first discovered because of its involvement in the t(14;18) 

chromosomal translocations in a cell line derived from an acute lymphoblastic leukemia 

(Pegoraro L et al. 1984), and somatic mutations in translocated Bcl-2 was frequently 

found in lymphomas (Tanaka S et al. 1992) . Transgenic mouse studies showed that Bcl-2 

protected thymocytes from cell apoptosis (Sentman CL et al. 1991), and Bcl-2 deficient 
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mice displayed massive apoptosis in thymus, spleen, and kidney (Veis DJ et al. 1993; 

Sorenson CM et al. 1995), indicating the critical role of Bcl-2 in suppressing apoptosis.  

Later on, other proteins with structure similar to Bcl-2 were identified, and so far, 

there are more than 12 core members in the Bcl-2 family that range from inhibiting 

apoptosis to promoting apoptosis in their bioactivities (Youle RJ et al. 2008). The Bcl-2 

family members share up to four Bcl-2 homology domains (BH1 to BH4). And they can 

be subdivided into three groups: the pro-apoptotic Bcl-2-associated X protein (Bax)/Bcl-2 

homologous antagonist-killer protein (Bak) family members (Bax and Bak), the anti-

apoptotic family members [Bcl-2, Bcl-X protein (Bcl-xl), Bcl-w, myeloid cell leukemia 

sequence-1 (Mcl-1) and Bcl-2 related protein A1A (A1A)], and the pro-apoptotic BH3-

only proteins [Bcl-2 interacting mediator of cell death (Bim), Bcl-2 antagonist of cell 

death (Bad), BH3-interacting domain death agonist (Bid), p53 upregulated modulator of 

apoptosis (Puma), Noxa, death protein 5/Harakiri (Hrk), Bcl-2 interacting killer (Bik)] 

(Youle RJ et al. 2008). Bax and Bak have 3 core multi-BH domains: BH1, BH2, BH3, 

but anti- apoptotic members Bcl-2 have one more domain called BH4 that is required for 

Bcl-2 interacting with Bax; and BH3-only proteins do not contain any other BH domains 

but BH3 (Danial NN. 2007). The balance between pro-apoptotic members and anti-

apoptotic members in Bcl-2 family governs the commitment of the cell to death, and 

constitutes a crucial switch during apoptosis. 

BH3-only proteins function as initial sensors of specific apoptotic signals that are 

released from various cellular processes. In normal state, BH3-only proteins are in very 

low levels in the cytoplasm or in mitochondrial membranes; inactivated Bax is located in 

the cytoplasm or loosely attached to the mitochondria membrane; and Bak is located in 



62 
 

mitochondrial membrane, forming an inactivated complex with anti-apoptotic proteins 

like Bcl-2 (Lomonosova E et al. 2008). When BH3-only proteins are upregulated or 

activated by apoptotic stimuli, they liberate Bak or Bax either by binding and neutralizing 

Bcl-2 (Willis SN et al. 2007) or by binding and directly activating Bax (Gavathiotis E et 

al. 2008). Activated Bax, which then translocates from cytoplasm to mitochondria 

membrane, as well as activated Bak, which is originally located in mitochondria and 

released from Bak/Bcl-2 complex, undergo homo-oligomerization with multiple 

conformational changes to form pores at mitochondrial intramembrane (Lomonosova E et 

al. 2008). Once MOMP occurs, apoptogenic proteins such as cytochrome c are released 

from intermembrane space, activating caspase-9 through the formation of the apoptosome 

and thereby inducing the cleavage of executioner caspases, which results in the execution 

phase of apoptosis (Danial NN. 2007; Youle RJ et al. 2008). Therefore, Bcl-2 family 

consists of members with opposing functions in the apoptotic cascade, including 

“activators” such as Bax or Bak, “inhibitors or repressors” such as Bcl-2 or Bcl-xL, and 

“sensitizers or derepressors” such as BH3-only proteins (Bim or Bid) (Spierings D et al. 

2005). 

Bid, one of the BH3-only members, has a unique function in associating the 

intrinsic pathway with the extrinsic pathway. In the extrinsic pathway, Bid is cleaved by 

activated caspase-8, generating C-terminal truncated form t-Bid, which translocates to 

mitochondria and activates Bax or Bak to promote MOMP and downstream caspase 

activation (Youle RJ et al. 2008). 

Bim is also one of the BH3-only members in the Bcl-2 family, and Bim exists in 

several isoforms: BimS, BimL, BimEL, BimAD and BimG. Bim is constitutively 
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expressed in various cell types but in an activated form through binding to the 

microtubule-associated dynein motor complex (Puthalakath H et al. 1999). Bim-deficient 

mice had abnormally high numbers of lymphoid and myeloid cells; B cells, T cells, 

monocytes and granulocytes were increased 2 to 4 fold in peripheral tissues from Bim-

deficient mice than those from wildtype animals; and older Bim-deficient mice develop 

splenomegaly, lymphadenopathy, and autoimmune kidney disease, indicating that Bim is 

critical for apoptosis and homeostasis in the lymphoid and myeloid compartments 

(Bouillet P et al. 1999). Overexpression of Bim induced  remarkably increased apoptosis 

in NIH 3T3 fibroblasts (Marani M et al. 2002) and in Hela cells (Herrant M er al. 2004). 

The mechanisms by which Bim induces apoptosis is not well understood; yet, Bim may 

function through interacting with and inhibiting Bcl-2 or Bcl-xL (Willis SN et al. 2007; 

Wang X et al. 2009)  or through direct binding and activating Bax (Gavathiotis E et al. 

2008). Antigens, cytotoxic agents, growth factor withdrawl and Reactive oxygen species 

(ROS) can activate Bim through various mechanisms: 1) by releasing it from the dynein 

motor complex or the anti-apoptotic Bcl2 proteins (Puthalakath H et al. 1999); 2) by 

increasing its mRNA level through transcriptional factors such as Forkhead Box O 

(FOXO) factors (Gilley J et al. 2003). Therefore, Bim serves as a key initiator of the 

intrinsic pathway of apoptosis, and the regulation of Bim expression and activity can 

tightly affect the downstream apoptotic events. 

The intrinsic pathway is tightly controlled by the balance between pro-apoptotic 

proteins over anti-apoptotic proteins, especially the pro-/anti-apoptotic balance in the 

Bcl-2 family members.  As described before, activated Bax can translocate to 

mitochondria from cytoplasm and oligomerize to generate pore-like structure in the OM, 
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while Bcl-2 or Bcl-xL can bind Bax or Bak after they insert into membranes and inhibit 

the oligmerization of Bax and Bak (Youle RJ et al. 2008). The pro- and anti-apoptotic 

Bcl-2 members also have opposite effect on MOMP: the pro-apoptotic Bax or Bak 

accelerate the openings of the VDAC channel, whereas the anti-apoptotic Bcl-xL closes 

VDAC (Shimizu S et al. 1999);  moreover, the pro-apoptotic Bax can cooperate with 

ANT to yield an efficient composite channel, whereas the anti-apoptotic Bcl-2 inhibits 

ANT activity (Brenner C et al. 2000), proving that the Bcl-2 family members regulate the 

permeability of mitochondrial membrane, and thereby control both caspase-dependent 

cell death and caspase-independent cell death (Tsujimoto Y et al. 2000; Donovan M et al. 

2004). 

Besides cell apoptosis, Bcl-2 members have been also shown regulate other forms 

of programmed cell death, such as autophagy (Shimizu S et al. 2004). Both Bcl-2 and 

Bcl-xL bind and inhibit Beclin1, an essential autophagy protein through interaction of 

BH3 domains, while other BH3-only proteins can block the inhibition by Bcl-2 by 

competitively disrupting the interaction between Bcl-2 and Beclin1, and induce cell 

autophagy (Levine B et al. 2008). Therefore, Bcl-2 family members exert a duel role in 

regulating both apoptosis and autophagy. 

 

1.3.2.1.3.2 Reactive oxygen species (ROS) 

In addition to contain pro- and anti-apoptotic proteins, mitochondria are the major 

site producing ROS in aerobic cells, and thus another important regulator is the balance 

of oxidant/anti-oxidant defense (Hengartner MO et al. 2000; Ott M et al. 2007). To 
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protect against possible harmful consequences of ROS, cells also possess an endogenous 

anti-oxidative defense system consisting of reductants like glutathione (GSH), and 

enzyme systems that remove ROS through metabolic conversion (Ryter SW et al. 2007). 

For example, superoxide (O2
-) can be converted by superoxide dismutases (SOD) to 

H2O2, which is in turn converted to H2O and O2 by catalase; in mitochondria, MnSOD, 

encoded by SOD2 gene, is specifically used to catalyze the superoxide conversion 

(Kamata H et al. 1999). When the oxidative insults are not properly resolved by the cell 

anti-oxidative capacity, they can threaten cell homeostasis, and even cause intrinsic 

apoptotic cascade (Han H et al. 2004). ROS has been shown to induce mitochondrial 

permeability transition (Garrido C et al. 2006). Furthermore, it was found that the 

oxidation of cardiolipin, which is a mitochondria-specific anionic phospholipid, 

decreases the affinity of cytochrome c to cardiolipin and leads to the detachment of 

cytochrome c from the inner mitochondrial membrane, which may be another mechanism 

to explain the role of oxidative stress in cell apoptosis (Ott M et al. 2007). Also, peroxide 

contributes the induction of apoptosis by stimulating the activity of nuclear transcription 

factors to upregulate pro-apoptotic proteins or to inhibit anti-apoptotic proteins (Chandra 

J et al. 2000). In the other hand, some animal models of mitochondrial disease, such as 

the ANT1 knockout mice, showed remarkable increased production of hydrogen peroxide 

in mitochondria isolated from skeletal muscle, heart and brain (Esposito LA et al. 1999), 

suggesting that mitochondria dysfunction may lead to enhanced ROS production. 
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1.3.2.1.3.3 Others 

As mentioned before, the morphology of the cell and its nucleus undergo dramatic 

changes during apoptosis. So does the mitochondria, and the striking morphological 

change in mitochondria may contribute to the induction of MOMP and the release of 

cytochrome c (Arnoult D et al. 2005). Mitochondria undergo extensive fragmentation 

upon apoptosis due to increased fission and reduced fusion. The pro-apoptotic Bak has 

been shown to be critical for mitochondrial fragmentation during apoptosis, which is 

inhibited by Bcl-2 (Brooks C et al. 2007).  

Other factors have also been found to be involved in the regulation of the intrinsic 

apoptotic pathway. One type of negative regulators is inhibitors of apoptosis (IAPs), and 

the functional unit in IAPs is Baculoviral Inhibitor of apoptosis Repeat (BIR). X 

chromosome-linked inhibitor of apoptosis (XIAP) protein is believed to be the most 

potent IAPs, containing three BIR domains. XIAP directly binds and specifically inhibits 

the enzymatic activities of active caspase-3, 7 through the linker region between BIR1 

and BIR2, whereas XIAP specifically inhibits active caspase-9 through BIR3 domain 

(Shi Y et al. 2002). The linker region and BIR3 may occupy the active site of caspases in 

a reverse orientation, thereby blocking the entry of substrates (Shi Y. 2002). XIAP also 

promotes proteasomal degradation of active caspase-3 via its ubiquitin-protein ligase 

activity (Blank M et al. 2007; Suzuki Y et al. 2001). The caspase-inhibitory activity of 

the IAPs, in turn, is blocked by IAP inhibitors, such as serine protease Omi/HtrA2 that 

can firstly sequester IAPs through its Reaper IAP-binding motif and subsequently 

degrade IAPs through its protease activity (Martins LM et al. 2002; Srinivasula SM et al. 

2003), and second mitochondrial activator of caspases (Smac)/direct IAP binding protein 
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with low pH (Diablo) whose N-terminal residues (Ala-Val-Pro-Ile) can sequester the BIR 

domains of IAPs (Vaux DL et al. 2003). Upon the induction of MOMP, Omi/HtrA2 and 

Smac/Diablo are released from the inner member space of mitochondria to the cytoplasm, 

and compete with caspases for IAP binding (Blank M et al. 2007; Spierings D et al. 

2005).  

 

1.3.2.2 Extrinsic pathway 

1.3.2.2.1 Overview 

Unlike the intrinsic pathway, the extrinsic apoptotic signaling is dependent on 

transmembrane receptors, called death receptors, which binds to extracellular ligands. 

The death receptors are members of the tumor necrosis factor (TNF) receptor 

superfamily, featured by cysteine-rich extracellular domains and an 80 amino acid 

cytoplasmic tail, also termed “death domain”, which is critical for transducting death 

signal from the cell surface to inside the cells. The Fas Ligand/Fas and TNFα/TNFR are 

well-known ligand/death receptor pairs (Elmore S. 2007). 

As shown in Figure 1.3, the interaction between the Fas ligand or TNF to Fas or 

TNFR leads to the recruitment of the adapter proteins Fas-associated death domain 

(FADD) and TNFR-associated death domain (TRADD), which then binds procaspase-8 

through dimerization of the death domain, generating a complex called the death-

inducing signaling complex (DISC), in which procaspase-8 is processed, and 

subsequently caspase-8 is activated to directly trigger caspase-3- mediated execution 

phase of apoptosis (Wang Z et al. 2005).  
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The above process does not invovle Bcl-2 family members; however, in some 

systems such as spinal cord injury (Yu WR et al. 2009), kidney (Campbell MT et al. 

2008) and various cancer cells (Bhattacharya K et al. 2009; Zhao Y et al. 2009), the 

extrinsic pathway can be linked to the intrinsic pathway through Bid, which is another 

group of pro-apoptotic Bcl-2 member. In the extrinsic pathway, the activated caspase-8 

can cleave Bid with the generation of C-terminal truncated form t-Bid, which translocates 

to mitochondria and effectively activates Bax to promote downstream caspase activation 

through the induction of MOMP (Figure 1.3) (Youle RJ et al. 2008). Although MOMP is 

not required for the development of extrinsic apoptotic pathway, it exerts amplifying 

effect on apoptotic signals received from the death receptor at the cell surface (Blank M 

et al. 2007). 

 

1.3.2.2.2 Inducers and regulators of the extrinsic pathway 

The activation of extrinsic apoptotic pathway is initiated by the stimulation of 

death receptors by the binding of corresponding ligands. Besides Fas Ligand/Fas and 

TNFα/TNFR, others such as lymphotoxin-α/TNFR, Apo3L (TRAMP)/DR3, Apo2L 

(TRAIL)/death receptor (DR)4 and Apo2L (TRAIL)/DR5 have also been defined as 

ligand/death receptor pairs to trigger the extrinsic death signaling (Fulda S et al. 2004; 

Elmore S. 2007). Therefore, the expression of these death ligand/receptor pairs is 

important for the regulation of the extrinsic apoptotic pathway. 

LPS is a highly pro-inflammatory molecule which can induce apoptosis through 

extrinsic apoptotic pathway in various systems, including endothelial cells (Bannerman 
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DD et al. 2003). Toll like receptor (TLR)-4 is the receptor of LPS, and LPS activates a 

caspase-8-initiated apoptosis dependent of FADD instead of TNFR1, Fas or DR3 in 

endothelial cells (Choi KB. 1998). In addition, the intrinsic apoptotic pathway is found to 

be required for LPS-induced apoptosis in human lung microvascular endothelial cells 

because the overexpression of Bcl-xL or deficiency of Bid can protect against cell death 

triggered by LPS (Wang HL et al. 2007). 

Signal transduction of the extrinsic pathway can be negatively regulated by the 

cellular Fas-associated death domain like interleukin-1-converting enzyme inhibitory 

protein (c-FLIP), an enzymatically inactive homolog of caspase-8, which inactivates the 

extrinsic apoptotic pathway by competing with caspase-8 for interacting with FADD 

(Schultz DR et al. 2003; Wilson NS et al. 2009). So the expression of c-FLIP is 

negatively correlated with the activity of the extrinsic apoptotic pathway. Another protein 

called phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes-15 KD 

(PED/PEA-15) also block FasL, TRAIL or TNFα –induced apoptosis by interrupting 

FADD and caspase-8 interactions (Hao C et al. 2001). Additionally, the Bcl-2 family 

members are involved in the regulation of the extrinsic pathway, because 1) the pro-

apoptotic tBid integrates the extrinsic apoptotic pathway with mitochondrial 

permeability; 2) in certain cell types, overexpression of the anti-apoptotic Bcl-2 and Bcl-

xL by stable transfection blocks the apoptotic activity triggered by Fas ligand (Scaffidi C 

et al. 1998).  
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1.3.2.3 Effectors of apoptotic cascade (caspases) 

Caspases are a family of highly conserved aspartate-specific cysteine proteases, 

and in the name, the “c” refers to cysteine used as the catalytic residues, and the “aspase” 

stands for cleaving their substrates behind aspartic acid residues. Yet, different caspases 

have different selectivity for cleavage through recognition of neighboring amino acid of 

aspartate (Alnemri ES et al. 1996). Each of these enzymes is synthesized as an inactive 

proenzyme in cells, which is proteolytically activated to form a heterodimetic catalytic 

domain (Alnemri ES et al. 1996). Caspases can either autoactivate themselves or are 

activated by other capases, followed by the initiation of caspase cascade and 

amplification of apoptotic signaling, which leads to rapid irreversible cell death (Elmore 

S. 2007).  

To date, 15 mammalian members have been identified in the caspase family, and 

categorized into two subfamilies which are 1) inflammatory caspases (caspase-1, 4, 5, 11, 

12, 13 and 14); and 2) apoptotic caspases that can be further grouped into 

initiator/apoptotic activator (caspase-2,8,9,and 10) and effector/apoptotic executioner 

(caspase-3,6,7) (Chowdhury I et al. 2008). Once receiving pro-apoptotic signals, the 

activation of the upstream initiator caspases (caspase-2, 8, 9, and 10) results in the 

proteolytic activation of the downstream executioner caspases (caspase-3, 6, and 7), and 

these effector caspases are the one that cleave the following protein substrates (Saikumar 

P et al. 1999; Saraste A et al.2000).  

The substrates of caspases include: 1) cytoskeletal proteins such as actin and 

actin-binding proteins gelsolin and fodrin, which degradation by caspases leads to the 
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blebbing of the plasma membrane in apoptotic cells; 2) lamins and the nuclear matrix 

protein (NuMA), which function in maintaining nuclear integrity, and whose caspase-

dependent cleavage is responsible for nuclear fragmentation; 3) the apoptotic chromatin 

condensation inducer in the nucleus (ACINUS), which is a modulator of chromatin 

condensation during apoptotic process; 4) the inhibitor of caspase-activated DNase 

(ICAD), when cleaved by caspases causing DNA fragmentation; 5) some DNA repair 

factors,  such as poly(ADP-ribose) polymerase-1 (PARP-1) and the catalytic subunit of 

the DNA-dependent protein kinase (DNA-PK); 6) survival factors like MEKK-1, Akt-1, 

Bcl-2 (Blank M et al. 2006). Therefore, the activation of the effector caspases and their 

actions on protein cleavage initiate the apoptotic execution phase including DNA 

breakdown and morphological modifications. 

Caspase-3 is thought to be the most important effector caspases. Caspase-3, 

activated by caspase-8, caspase-9, or caspase-10, preferentially activates caspase 

activated DNase (CAD) and ACINUS to induce DNA degradation and chromatin 

condensation respectively, and also cause cytoskeletal disassembly and the formation of 

apoptotic bodies (Elmore S. 2007). 

Both the activity and the expression of caspases can be regulated. The natural 

inhibitors of caspase activity include IAPs, cytokine response modifier A (CrmA), p35 

and v-FLIP, etc (Chang HY et al. 2000). Unlike IAPs which have mammalian homologs, 

virus proteins CrmA and p35 do not have cellular homologs so far, and they function as 

pan-caspase inhibitors through covalent modification of catalytic site of caspases (Shi Y. 

2002).  Posttranslational modifications also modulate the activity of caspases. For 

example, the phosphorylation of caspase-9 by Akt inhibits the activity of caspase-9; and 
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denitrosylation enhances the activity of mature caspase-3 (Earnshaw WE et al. 1999; 

Chang HY et al. 2000).  

 

1.3.2.4 Other apoptotic features 

1.3.2.4.1 DNA fragmentation 

One of the earliest prominent features showing an irreversible commitment to cell 

death is DNA breakdown by Ca2+ - and Mg2+ -dependent endonucleases, ending up with 

DNA fragments of 180 to 200 base pair and multiple thereof, containing blunt end and 

single base 3’ overhangs (Allen RT et al. 1997; Saraste A et al.2000). A number of 

caspase substrates are responsible for DNA breakdown during apoptosis, such as DNA 

fragmentation factor (DEF40)/CAD, which bind their inhibitory proteins DEF45/ ICAD 

respectively to form inactive heterodimers in normal condition, but these substrates can 

be selectively activated once cleaved by caspase-3 or other caspases, and then further 

breakdown double strand DNA to induce nuclear morphological changes (Saraste A et 

al.2000). 

1.3.2.4.2 Phosphatidylserine translocation 

To ensure apoptotic cell debris rapidly engulfed, there must be some changes in 

plasma membrane (PM) to create a recognition site by phagocytes (Allen RT et al. 1997). 

So another biochemical characteristic is the expression of cell surface markers; for 

example, phosphatidylserine, which is normally inward-facing in the cell lipid bilayer, 

translocates to outer leaflet of the PM during apoptosis, mediating phagocytic recognition 

as a ligand for phagocytes and subsequent elimination of apoptotic cells (Elmore S. 
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2007). In addition, other protein markers are also expressed in the cell surface when the 

cell undergoes apoptosis and phagocytosis, such as Annexin V, calreticulin, and 

thrombospondin-1 (Elmore S. 2007). 

 

1.3.2.5 Apoptotic detection/quantification 

One of commonly-used approaches to study the presence of apoptosis is to 

demonstrate the activation of caspases, either by western blot to show the caspase 

cleavage or by enzymatic assay to determine caspase activity (Saraste A et al.2000), and 

both are commercially available. The formation of DNA fragments has been applied for 

the detection of apoptosis: a characteristic “DNA ladder” pattern is evident in agarose gel 

stained with ethidium bromide and viewed under ultraviolet illumination; also, cell 

carrying DNA strand breaks can be visualized under microscope with the terminal 

transferase mediated DNA nick end labeling (TUNEL) assay (Saraste A et al.2000; 

Elmore S. 2007). Some markers such as Annexin V which are expressed at cell surface 

during apoptosis have also been used for detection of apoptotic cells commercially. 

 

1.3.3 Regulation of apoptosis 

The levels of apoptotic factors control the susceptibility of the cell to apoptosis. 

Based on the study from heterozygous and null mice of caspase-3, the expression of 

caspase-3 correlated with the sensitivity of T cells to apoptosis induced by etoposide 

(Sabbagh L et al. 2004). Human U937 cells treated by γ-interferon which can induce 
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caspase expression showed enhanced susceptibility to apoptosis triggered by gamma-

irradiation or antitumor agents (Tamura T et al. 1996). The deregulation of apoptotic 

factors is highly related to tumorigenesis; for example, lymphomas were often found to 

bear chromosomal translocation of the anti-apoptotic gene Bcl-2 resulting in 

hypomethylation and high-level expression of Bcl-2 gene (Hanada M et al. 1993); and the 

expression of the pro-apoptotic Bim at both mRNA levels and protein levels were shown 

significantly lower in chronic myeloid leukemia (CML) cells than that in normal cells 

(Aichberger KJ et al. 2005). The expression of apoptotic factors is also important for 

development (such as caspases) and function of immune system (such as FasL/Fas) 

(Kuida K et al. 1996; Ettinger R et al. 1995). The apoptotic cascade is controlled by the 

balance between pro-apoptotic proteins and anti-apoptotic proteins, and this regulation 

can occur in a variety of levels including transcriptional levels, post-transcriptional levels 

and translational levels. 

 

1.3.3.1 Transcription levels 

The gene expression can be controlled by transcription factors interacting with 

their specific DNA sequences with other co-activators/co-repressors (Lemon B et al. 

2000). The expression of apoptotic factors such as caspases, Bcl-2 family members, and 

factors in the extrinsic pathway have been shown to be tightly regulated by certain 

transcription factors and cofactors. 
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1.3.3.1.1 Forkhead box O (FOXO) factors 

FOXO proteins are a family of transcription factors with important roles in 

metabolism, cell cycle, stress tolerance and possibly lifespan (van der Horst A et al. 

2007). FOXO family consists of FOXO1, 3a, 4 and 6, and FOXO proteins undergo post-

translational modification like phophorylation, ubiquitination, acetylation and 

methylation which activates or inhibits FOXO activity (Huang H et al. 2007; Yamagata K 

et al. 2008). In the presence of growth factors, FOXO phosphorylation by Akt, serum and 

glucocorticoid inducible protein kinase (SGK), I-kappa B kinase (IKK) and cyclin-

dependent kinase (CDK2) is inhibitory. However, under stress, the phosphorylation by 

JNK or MST1 is stimulatory, and can induce cell death in neurons (Barthélémy C et al. 

2004; Lehtinen MK et al. 2006). When FOXO proteins are inactivated, they are excluded 

out of the nucleus and then degraded by proteasome; however, activated FOXOs stay in 

nucleus and initiate the transcription of their target genes, including DNA repair-related 

Gadd45, oxidative detoxification-related SOD2 and catalase, cell cycle-related p27KIP1, 

cyclin D1 and cyclin D2, as well as apoptosis-related caspase-3, FasL, Bim, and TRAIL 

(Huang H et al. 2007). 

FOXO1-deficient mice died at around embryonic day 11 due to branchial arch 

defects and abnormal vascular remodeling in the yolk sacs, indicating that FOXO1 is 

required for mouse vascular development (Furuyama T et al. 2004). Also, FOXO1, 3, 4 

triple-knockout mice developed thymic lymphomas and hemangiomas (endothelial cell 

tumor), suggesting that FOXOs are tumor suppressors and specifically important for 

endothelial cell homeostasis (Paik JH et al. 2007). The tumor suppressing effect of 

FOXOs may be related to their pro-apoptotic functions. Also, constitutively activated 



76 
 

form FOXO1-TM has been shown to induce apoptosis in leukemia-derived cell lines via 

TRAIL (Kikuchi S et al. 2007); knock-down of FOXO3a by small interfering RNA 

abolished free fatty acid-induced hepatocyte apoptosis and Bim induction (Barreyro FJ et 

al. 2007), further indicating the promoting role of FOXOs in cell apoptosis. 

FOXOs are also found to converge with the Wnt/β-catenin signaling; in 2005, 

Essers MA discovered a functional interaction between FOXO and β-catenin under 

oxidative stress, so a new model of Wnt/FOXO was then proposed:  upon Wnt signaling 

which turns TCF on, or upon insulin signaling that turns FOXOs off, β-catenin favors 

interacting with TCF instead of FOXO to promote cell proliferation; in contrast, under 

oxidative stress conditions where FOXO activity is on, β-catenin preferentially binds to 

FOXOs to induce apoptosis or quiescence (Essers MA et al. 2005; Bowerman B. 2005). 

1.3.3.1.2 p53 

The transcription factor p53 is a tumor suppressor which is activated in response 

to DNA damage or oncogenic transformation, and its functions in inducing cell cycle 

arrest, cell death and DNA repair are well known (Harms KL et al. 2005). P53 can 

promote cell apoptosis through the following mechanism: 1) p53 transactivates target 

genes such as the pro-apoptotic Puma and Noxa to activate Bax both by directly 

interacting with Bax and by inhibiting anti-apoptotic Bcl-xL (Nakano K et al. 2001; 

Zhang Y et al. 2009); 2) p53 transactivates Bax, Bak and Bid as well as Apaf-1 to induce 

MOMP which is following by caspase activation (Miyashita T et al. 1995; Kannan K et 

al. 2001; Moroni MC et al. 2001; Schuler M et al. 2005). More recently, p53 has been 

demonstrated to induce apoptosis through a novel transcription-independent activity. 
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Upon stress, p53 translocates to mitochondria and functions as a direct apoptogenic factor 

to induce MOMP by neutralizing the inhibitory effects of Bcl-2 and Bcl-xL and by 

activating Bax/Bak (Mihara M et al. 2003; Chipuk JE et al. 2004). Also, p53 integrates its 

transcription activity with its transcription-independent activity to induce cell apoptosis 

by Puma, which is transcriptionally upregulated by nuclear p53, and also liberates p53 

from Bcl-xL, allowing p53 to induce MOMP and cell apoptosis (Chipuk JE et al. 2005; 

Vaseva AV et al. 2009).  

 

1.3.3.2 mRNA stability 

The fate of mRNAs has been believed to be one of the key steps in regulation of 

gene expression, and the stability of mRNAs is closely controlled post-transcriptionally 

(Donnini M et al. 2004). The Bcl-2 mRNA harbors an evolutionary conserved A+U-rich 

element (ARE) containing several AUUUA motifs in 3’-untranslated region (UTR). The 

Bcl-2 ARE has a moderate destabilizing activity, which is greatly enhanced by apoptotic 

stimuli while greatly reduced by PKC stimulation, thereby decreasing or prolonging the 

half-life of Bcl-2 mRNA (Schiavone N et al. 2000; Donnini M et al. 2001). Besides ARE, 

the CA repeats located upstream of ARE also contribute to the degradation of Bcl-2 

mRNA in the steady states (Lee JH et al. 2004). 

In addition, some other members of Bcl-2 family also can be regulated at their 3’-

UTR area. Similar to the Bcl-2 mRNA, the expression of the anti-apoptotic Bcl-xL is 

increased during apoptosis induced by UVA due to the enhanced mRNA stability through 

promoting the binding of 3’-UTR with RNA-binding proteins (Bachelor MA et al. 2004). 
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Another example is anti-apoptotic Bcl-w, which expression is down-regulated by miR-

122, a hepato-specific microRNA, by being directly targeted at 3’-UTR (Lin CJ et al. 

2008). 

 

1.3.3.1 Translational regulation 

Eukaryotic translation is composed of three phases: initiation, elongation and 

termination, and initiation, the rate-limiting step, is believed to be the most important and 

best studied process for translational regulation (Holcik M et al. 2005). Under 

physiological conditions, the majority of mature eukaryotic mRNAs undergoes 

translational initiation by a cap-dependent ribosomal scanning mechanism, which 

involves numerous eukaryotic initiation factors:  eIF4F (cap-binding protein complex, 

composed of eIF4E, 4A and 4G), eIF2 (catalyzing transfer of methionyl-tRNA to 43S 

pre-initiation complex), and adaptor eIF3, etc (Graber TE et al.2007).  

In contrast, in the context of apoptosis induced by cell stress, the cap-dependent 

translational initiation is impaired via distinct mechanisms including eIF2 

phosphorylation, eIF4E sequestration, and eIF4G proteolysis by caspases. But the 

paradox is that de novo protein synthesis is needed during cell stress because the cell 

must decide to live or to die by producing either more anti-apoptotic proteins to recover 

itself or more pro-apoptotic proteins to sustain the death signal, so in this case, there is a 

switch between the cap-dependent translation to alternative mechanisms, such as 

ribosomal shunting, re-initiation and internal ribosome entry (Graber TE et al.2007; 

Kozak M. 2003). 
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The process of internal ribosome entry is a cap-independent translational 

mechanism. Instead of employing scanning of the preinitiation complex from the 5’-cap 

toward the start codon, internal ribosome entry requires the direct recruitment of 

ribosomes to a complex RNA structural element called the internal ribosome entry 

segment (IRES) located at 5’-untranslated region (UTR) of the mRNA, which is 

facilitated by IRES trans-acting factors (ITAFs) (Spriggs KA et al.2005; Marash L et al. 

2005). For example, the mRNA of X-linked inhibitor of apoptosis (XIAP), which inhibits 

caspase-3 and 7 directly, has been demonstrated to contain the functional IRES motif, 

and the translation directed by XIAP-IRES is resistant to cell stress induced by γ-

irradiation or serum starvation in Hela and H661 cell lines (Holcik M et al. 1999). So the 

transcription of XIAP is maintained in these tumor cells even under stress, which may be 

one of mechanisms that tumor cells employ to escape apoptosis. Another anti-apoptotic 

factor carrying IRES at 5’-UTR is Bcl-2, and Bcl-2 IRES activity is induced in response 

to stress, resulting in increased protein levels (Sherrill KW et al. 2004). However, besides 

anti-apoptotic proteins, numerous pro-apoptotic proteins initiate their translation through 

IRES mechanism upon apoptosis. C-myc is a proto-oncogene, but its ectopic 

overexpression can sensitize cells to apoptosis, and c-myc-deficient cells fail to undergo 

apoptosis induced by DNA damage (Adachi S et al. 2000). Therefore, c-myc is necessary 

for cell apoptosis. During apoptosis in Hela cells triggered by the extrinsic pathway 

initiator TRAIL or the intrinsic pathway inducer staurosporine, the general protein 

translation is inhibited while c-myc protein expression remains constrained, and c-myc 

IRES is active while there is no increase for c-myc mRNA levels and no change in c-myc 

half life, indicating c-myc protein synthesis is initiated via IRES mechanism during 
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apoptosis (Stoneley M et al. 2000). Also, IRES-mediated translation of Apaf-1, but not 

XIAP is enhanced during UVC irradiation induced cell death in HEK-293T cells 

(Ungureanu NH et al. 2006). Additionally, under etoposide-induced DNA damage, p53 

synthesis is dramatically induced in MCF-7 cells, and this translational regulation can be 

at least partially explained by the identification of an active IRES site from p53 transcript 

(Yang DQ et al. 2006).  

The death associated protein (DAP) 5, also named p97 and NAT1, a member of 

the eIF4G family lacking the eIF4E binding site, acts as a dominant negative form to 

prevent cell from apoptosis (Marash L et al. 2005). Yet, DAP5/p97 can be activated 

during apoptosis by caspase cleavage, yielding a C-terminal truncated protein of 86KD, 

which promotes IRES mediated translation of death proteins, including c-Myc, Apaf-1, 

DAP5 and XIAP (Henis-Korenblit S et al. 2000; Henis-Korenblit S et al. 2002). 

Therefore, the activation of DAP5 IRES under cell apoptosis creates a positive feedback 

loop to potentiate the translation of DAP5 itself and other death proteins when the general 

translation machinery is abrogated, in order to help the cell to determine to live or die 

under stress circumstances.  

 

1.3.4 Biological significance   

Cell death programs are believed to be key players in embryonic development, 

tissue homeostasis, and cellular responses to stress, and the role of apoptosis in 

physiological conditions is as important as its counterpart, cell mitosis (Blank M et al. 

2007; Elmore S. 2007).  
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1.3.4.1 Development 

Apoptosis is a common and conserved characteristic in the development of many 

mammalian organs or tissues, and apoptosis plays a critical role in the process of normal 

development in vertebrate, including neural tube closure, eye development, palate 

development, and deletion of Mullerian duct in males or Wolffian duct in females 

(Mirkes PE. 2002). As for neural development, the nervous system initially overproduces 

cells, which is then followed by the elimination of at least half of the original population 

through cell apoptosis, resulting in removal of unconnected neural cells, as well as 

optimization of synaptic connection and neurons (Nijhawan D et al. 2000). Furthermore, 

caspase-3 knockout mice showed profound defects in brain development featuring 

multiple indentations and ectopic cell masses, and these supernumerary cells were found 

primarily due to a decrease of cell apoptosis in the brain, which supports that caspase-3 

mediated apoptosis is crucial during morphogenetic cell death in the brain development 

(Kuida K et al. 1996).  

 

1.3.4.2 Immune system 

Apoptosis is a central regulator of immune system for the maintenance of self-

tolerance and tight control of lymphocyte populations, which includes negative selection 

of developing B cells (removing B cells expressing autoreactive B cell receptors), as well 

as positive and negative selection of developing T cells (Maniati E et al. 2008). 

Moreover, regulation of peripheral T cells is also dependent on cell apoptosis: T cell are 

in resting status in peripheral lymphoid organs until they receive stimulating signals 
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(antigen presentation); when immune response is over, activated T cell must be 

eliminated via apoptosis to keep the homeostasis of immune systems (Krammer PH et al. 

2007). Additionally, cytotoxic T lymphocytes (CTL) can induce apoptosis in target cells 

through granzyme/perforin or Fas/Fas ligand, which is of vital importance to protect the 

host from pathogenic viruses (Osborne BA. 1996; Keckler MS et al. 2007). Deregulated 

immune cell death is able to give rise to severe consequences: an aberrant expansion of 

apoptotic cells leads to immunodeficiency like AIDS, whereas failed apoptosis of 

lymphocytes leads to lymphoma or autoimmune disorders such as autoimmune 

lymphoproliferative syndrome and autoimmune diabetes (Saikumar P et al. 1999; Maniati 

E et al. 2008). 

 

1.3.4.3 Wound healing 

Wound healing need a series of quick changes of specific cell populations 

functioning in preparing, depositing and maturing the wound. Different cell types are 

needed in specific stages, and once finishing their own missions, these cells have to be 

removed through apoptosis before the next step starts, which minimizes the inflammatory 

reaction and tissue injury. In the early stage of wound healing, apoptosis starts from 12 

hours after wounding to eliminate inflammatory cells (neutrophils and macrophages); in 

the later phase, fibroblasts and endothelial cells are found to undergo apoptosis in a 

similar pattern, along with decreased cellularity and vascularity in wound during 

maturation phase. Also, deregulation of cell apoptosis in wound healing causes 

pathological damage to the tissue like hypertrophic scarring (Greenhalgh DG. 1998). 
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1.3.4.4 Carcinogenesis 

A major cause of malignant transformation and tumor formation is the genetic 

abnormalities in pathways that regulate cellular growth and death. Indeed, suppression or 

failure of apoptosis is one of key features in cancer cells, and one of the central players in 

the development and progression of some cancers (Elmore S. 2007). Inhibited apoptosis 

not only is associated with the transformation process in tumor development, but also 

lead to the resistance of cancer cells to treatments such as chemotherapy. Thus FasL 

delivery by tissue-specific virus is based on tumor-specific translation of tumor-killing 

genes, and showed antitumor effect in prostate cancer cells and in mice (Li X et al. 2007).  

Mutations of apoptotic factors affect either their activity or their expression. 

Apoptosis-related genes that draw most attentions in cancer research are p53 and Bcl-2. 

Mutations of p53 have been found in nearly all the tumor types, and may be associated 

with half of all cancers, which makes p53 one of most prominent tumor suppressor 

(Amundson SA et al. 1998). The majority of p53 mutations is missense and located in the 

DNA binding domain, leading to disrupted p53 activity in cancers (Rose SL et al. 2003).  

The proto-oncogene bcl-2 was identified at the chromosomal break point of t(14;18) in 

patients with B cell follicular lymphomas, resulting in abnormally high-level expression 

of Bcl-2 at transcription levels (Sentman CL et al. 1991; Malagurneral L. 2004). Bcl-2 

transgenic mice showed elongated survival of B cells and T cells, and more resistance to 

cell apoptosis induced by glucocorticoid, radiation and anti-CD3 (Sentman CL et al. 

1991). Besides, other factors in apoptotic pathways are also related to tumorigenesis. 

Bax-deficient mice displayed accelerated tumor growth and abolished apoptosis (Yin C et 

al. 1997), and a human study also reported that 21 out of 41 case of primary colon 
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adenocarcinomas carried frameshift mutations within Bax gene, further proving that the 

relationship between genetic alternation of apoptotic molecules and carcinogenesis 

(Rampino N et al. 1997). 

 

1.3.5  Endothelial cell apoptosis 

1.3.5.1 Physiological importance 

Vascular endothelial cells (ECs) form the inner lining of blood vessels and the 

heart, and regulate the permeability of blood vessels to leukocytes and inflammatory 

factors (Choy JC et al. 2001). During both physiological development and pathological 

conditions, neovascularization and the vessel regression are determined by the balance 

between proliferation and apoptosis of ECs; and in mature vessels, EC turnover is also 

tightly controlled to maintain vessel homeostasis (Mallat Z et al. 2000). 

EC apoptosis have been shown to be required for vessel regression during normal 

vessel development and remodeling. Macrophage ablation transgenic mice showed eye 

defects due to persistence of normally transient remnants of hyaloid vessel system of the 

eye and persistence of the excessive papillary membrane, demonstrating that macrophage 

actively elicits endothelial cell apoptosis, leading to normal capillary regression, which 

ensures the proper development of the eye (Lang RA et al. 1993). The dead cells are 

thereby mobilized into the capillary lumen causing restriction and a block to blood flow. 

At this point, vascular ECs undergo a secondary apoptosis with a synchronous pattern, 

leading to another capillary regression to clear off all remaining cells in the affected 

segment (Meeson A et al.1996). Another example is that during the regression of the 
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corpus luteum in the guinea pig, there is rapid endothelial cell death in ovarian blood 

vessel with prominent apoptotic features (nuclear condensation and fragmentation) (Azmi 

et al. 1984), also indicating the relationship between endothelial cell apoptosis and vessel 

regression. 

1.3.5.2 Pathological importance 

As the vascular endothelium is critical for various normal conditions, endothelial 

cell apoptosis may be involved in diverse pathological circumstances like atherosclerosis 

and angiogenesis (Mallat Z et al. 2000; Dimmeler S et al. 2000).  

Atherosclerosis is a multifactorial disease which develops in the arterial wall in 

response to numerous pathological insults and results in excessive inflammatory injury 

and fibro-proliferative plaque (Sima AV et al.2009). A number of evidences have shown 

increased EC apoptosis in atherosclerotic plaques compared with normal tissues (Choy 

JC et al. 2001). EC apoptosis may be induced by oxLDL, cytotoxic T lymphocytes 

(CTL), cytokines, ROS or local inflammatory mediators (Sima AV et al.2009). In the 

early stage of atherosclerosis, EC apoptosis induces loss of EC number and EC integrity, 

leading to enhanced vascular permeability, vascular smooth muscle cell migration and 

increased blood coagulation (Choy JC et al. 2001).  

Angiogenesis is the process of neovasuclarization during both development and 

postnatal period, mediated by proliferation, migration and remodeling of differentiated 

endothelial cells. Unlike being mainly deleterious in atherosclerosis, EC apoptosis, 

counteracting proliferation, has an inhibitory function in tumor angiogenesis (Dimmeler 

S et al. 2000). Vascular endothelial growth factor (VEGF), which is a required growth 
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factor for angiogenesis, can efficiently block endothelial cell apoptosis through various 

mechanisms including: 1) inducing Bcl-2 expression (Pidgeon GP et al. 2001); 2) 

activating extracellular signal regulated kinase (ERK) 1 and ERK2 signaling and 

inhibiting stress-activated protein kinase (SAPK) /JNK signaling (Gupta K et al. 1999); 

3) activating PI3-kinase/Akt pathway through VEGF receptor, fetal liver kinase-1(Flk-

1)/kinase-insert domain-containing receptor (KDR) (Gerber HP et al. 1998). Moreover, 

administration of anti-VEGF monoclonal antibodies results in regression of tumor-

associated vasculature in xenograft mouse models (Yuan F et al. 1996). Thus, VEGF 

becomes a privileged target for the control of angiogenesis in anti-tumoral goal, and anti-

VEGF treatment has been applied in tumor therapy. A single infusion of the anti-VEGF 

antibody bevacizumab reduced blood perfusion of tumor, vascular volume, 

microvasucular density (MVD) and interstitial fluid pressure (IFP), as well as amount of 

circulating endothelial cells and progenitors in 6 patients with rectal cancer, which 

directly indicates the antivascular role of anti-VEGF therapy in human tumors (Willett 

CG et al. 2004). 

 

1.3.6  Wnts/wnt signaling and cell apoptosis 

1.3.6.1 Wnt proteins and cell apoptosis 

Wnt proteins, serving as stem cell factors in development and adult homeostasis, 

are usually thought to have proliferating or anti-apoptotic functions. Nonetheless, the role 

of Wnts in cell apoptosis is more complex: generally speaking, in transformed cells, Wnts 
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show anti-apoptotic actions; in contrast, in normal cells, Wnts seem to have pro-apoptotic 

functions.  

Transformed HEK293 cells stably transfected with Wnt3a and 5a showed reduced 

apoptosis induced by serum-starvation compared to cells transfected with vectors (Jia L 

et al. 2008). And Wnt1, 3a and 5a were found to prevent cell apoptosis in the 

uncommitted bipotential C2C12 cells, the pre-osteoblastic cell line MC3T3-E1, and bone 

marrow-derived OB-6 osteoblasts (Almeida M et al. 2005). However, Wnt7b was shown 

to mediate macrophage-induced programmed cell death in the developing mouse eye 

(Lobov IB et al. 2005). And the overexpression of Wnt5a led to increased apoptosis in 

thymocytes in vitro (Liang H et al. 2007). Wnt3a showed pro-apoptotic functions in the 

H9C2 cardiomyoblast line subjected to hypoxia reoxygenation (HR) injury (Zhang Z et 

al. 2009).  

Our laboratory showed that nuclear Wnt13 forms significantly increased the 

appearance of apoptotic nuclei in BAEC. At the basal level, the caspase-3 cleavage was 

undetectable in BAEC transfected with different Wnt13 isoforms; however, the activated 

caspase-3 was observed when BAEC was treated with TNF-α (5ng/ml) for 12 hours, and 

under this condition, nuclear Wnt13 forms further increased the levels of caspase-3 

activation, suggesting that nuclear Wnt13 forms enhance the susceptibility of endothelial 

cells to stimuli during apoptosis (Struewing IT et al. 2006). 

All these studies show that the differential effects of Wnts on cell apoptosis are 

dependent on cell type and possibly cell status. And since Wnt13 have 3 different 

isoforms with distinct subcellular localizations which can underlie possible differential 
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effects of three Wnt13 forms, it is of our interest to further analyze the role of Wnt13 

isoforms in apoptosis and to determine the mechanisms.  

 
1.3.6.2 GSK-3β and cell apoptosis 

GSK-3β, a multi-functional serine/threonine kinase, is the key regulator in Wnt 

signaling and insulin signaling, and also implicated in the development of a variety of 

human diseases including cardiovascular diseases, neurodegenerative disease, bipolar 

disorder and cancer (Luo J. 2009). Overexpression of GSK-3β was sufficient to trigger 

apoptosis in different types of cells, such as neurons, vascular smooth muscle cells, 

human umbilical vein endothelial cells (HUVEC), and astrocytes (Li M et al. 2000; Hall 

JL et al. 2001; Kim HS et al. 2002; Sanchez JF et al. 2003). And GSK-3β has been found 

to promote the intrinsic apoptotic pathway triggered by different cellular insults, such as 

DNA damage, ER stress, hypoxia, removal of NGF or BDNF, hypertonic stress, 

oxidative stress, mitochondrial toxins and ceramide, by regulating transcription factors 

like p53 that controls pro- and anti-apoptotic proteins, by promoting microtubule 

disruption, and by inducing mitochondrial disruption though activating pro-apoptotic 

members like Bax or degrading anti-apoptotic members like Mcl-1 (Beurer E et al. 2006; 

Forde JE et al. 2007). Moreover, the subcellular localization of GSK-3β was shown 

important for its functions. In embryonic stem cells (ESCs), GSK-3β shuttled between 

the cytoplasm and the nucleus through Akt signaling: Akt activity inactivated and 

exported GSK-3β to the cytosol; however, the decreased Akt signaling promoted 

accumulation of the active GSK-3β which inhibit c-myc through phosphorylation, 

resulting in differentiation instead of self-renewal in ESCs (Bechard M et al. 2009). Also, 
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in untreated human neuroblastoma cells, GSK-3β was mainly located in cytoplasm; 

however, the exposure of cells to different pro-apoptotic stimuli like serum-starvation, 

heat shock or staurosporine induced a rapid increase of nuclear GSK-3β (Bijur GN et al. 

2001), further suggesting that the subcellular distribution of GSK-3β is dynamically 

regulated by pro-apoptotic or anti-apoptotic signals. On the other hand, Lithium, the 

inhibitor of GSK-3β, reduced mouse acute renal failure induced by LPS via attenuating 

inflammation and renal cell apoptosis (Wang Y et al. 2009), further indicating that GSK-

3β has promoting role in cell apoptosis and inflammation.  

Ironically, GSK-3β was also been found to prevent apoptosis in some conditions. 

For example, lithium was shown to sensitize primary rat hepatocytes to TNFα-induced 

apoptosis (Schwabe RF et al. 2002); also, inhibition of GSK3 by chemical or RNA 

interference led to glioma cell death, accompanied with c-myc activation, the 

upregulation of pro-apoptotic factors and destroyed NF-κB activity (Kotliarova S et al. 

2008). The homozygous GSK-3β knockout mouse embryos were non-viable, and 

histological examination of GSK-3β-/- embryos showed multifocal hemorrhage in liver 

with severe apoptosis, and embryonic fibroblasts from GSK-3β-/- embryos had increased 

sensitivity to TNF-induced apoptosis, also indicating that GSK-3β is required for cell 

survival (Hoeflich KP et al. 2000).All the above observations make it difficult to clearly 

define the function of GSK-3β in cell apoptosis due to its range of conflicting roles, but 

in general, more evidence supports the pro-apoptotic function of active GSK-3β. 
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1.3.6.3 C-myc and cell apoptosis 

The transcription factor c-myc is a proto-oncogene which constitutive expression 

results in the development and progression of tumors. c-myc transactivates cell cycle 

promoting genes like cdc25A, cdk4 as well as cyclin D2,-E, -A while suppresses cell 

cycle inhibiting genes such as gas1, p15, p21cip and p27kip (Gartel AL et al. 2003). 

Interestingly, increasing evidence shows that inappropriate c-myc expression not only 

promotes cell proliferation and oncogenesis, but it also can induce or sensitize cells to 

apoptosis (Hoffman B et al. 1998). For example, in IL-3 dependent myeloid cell line, 

enforced c-myc expression accelerated cell apoptosis in the absence of IL-3 (Askewe DS 

et al. 1991). Besides, other cell types like hepatocytes and epithelial cells can also be 

subjected to similar apoptotic responses induced by c-myc (Hoffman B et al. 1998). The 

underlying mechanisms implicated in c-myc-induced apoptosis are very complex: 1) c-

myc stabilizes p53 by p19ARF; 2) c-myc upregulates the expression of pro-apoptotic Bax 

and Bim, while blocks the expression of anti-apoptotic Bcl-2 and Bcl-xL, resulting in 

cytochrome c release; 3) c-myc may cause DNA double strand breaks to induce apoptosis 

(Adhikary S et al. 2005; Hoffman B et al. 2008).  

 

1.3.6.4 Other Wnt signaling components and cell apoptosis 

Overexpression of Wnt receptors like Fz1 and Fz2 in COS7 and HEK293 cells 

resulted in increased cell apoptosis detected by TUNEL staining and DNA ladder assay 

(van Gijn ME et al. 2001). Also, Xenopus embryos injected with Xfz8 showed increased 

cell apoptosis with the involvement of JNK activation (Lisovsky M et al. 2002). 
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Moreover, the JNK pathway, which is the downstream signaling of Wnt-PCP pathway, 

has been shown a causal role in inducing apoptosis: one mechanism could be the 

upregulation of pro-apoptotic TNF superfamily members (TRAIL, FasL) at the 

transcription level; the other mechanism may be related to the inactivation of Bcl-2 by 

phosphorylation (Basu S et al. 1998; Shen HM et al. 2006). 

In the canonical Wnt signaling, accumulated β-catenin can translocate to the 

nucleus and activate TCF/LEF to regulate the expression of cell proliferation-related 

genes. Transgenic mice expressing a stabilized form of β-catenin in T cell compartment 

showed increased number of CD4+CD8+ double-positive (DP) thymocytes than wildtype, 

and DP thymocytes protection against spontaneous and glucocorticoid-induced apoptosis 

by upregulating Bcl-xL levels transcriptionally (Xie H et al.2005). However, the same 

group found that the β-catenin transgenic mice had accelerated deletion of Vβ8+ CD4+  T 

cells than wildtype mice, which was associated with AICD by promoting Fas-induced T 

cell apoptosis through enhancing Fas promoter activity (Huang Z et al. 2008). These 

results indicate that β-catenin has distinct roles between in early developing T cells and in 

peripheral mature T cells. Moreover, in HCT116 colon cancer cells, stabilized β-catenin 

inhibited FOXO3a-induced cell apoptosis (Dhener M et al. 2008). 

Axin, a component of β-catenin destruction complex, shows pro-apoptotic 

functions as a tumor repressor in cells. Exogenous Axin expression induced cytochrome c 

release, while knockdown of Axin attenuated UV-induced apoptosis in vitro (Li Q et al. 

2007). Upon UV irradiation, Axin is found to translocate to the nucleus where it binds 

Daxx, a death-domain associated protein, to interact with p53, thereby inducing apoptosis 

by stimulating p53 transcription activity (Li Q et al. 2007; Lin SC et al. 2007). In 
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astrocytoma cases, the expression levels of Axin was inversely correlated to the 

progression of the tumor, and overexpression of Axin in astrocytoma cells promoted cell 

death while inhibited cell proliferation possibly through the p53-dependent pathway 

(Zhang LY et al. 2009).  
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Figure 1.3 Schematic representation of the extrinsic and intrinsic apoptotic pathways. In 

the intrinsic apoptotic pathway, BH3-only proteins like Bim liberate Bax from Bcl-2 and 

promote Bax oligomerization and the formation of MOMP, resulting in the release of 

pro-apoptotic molecules like cytochrome c, Smac/DIABLO from the mitochondria. 

Cytochrome c binds and activates apoptotic protease-activating factor (Apaf)-1, forming 

the apoptosome complex with procaspase-9, which leads to the generation of active 

caspase-9. Meanwhile, Smac can inhibit inhibitor of apoptotic proteins (IAP) to further 

activate caspase-9, which in turn, induces the cleavage of executioner caspase-3, 6 and 7. 

In the extrinsic apoptotic pathway, the interaction between Fas ligand/TRAIL/TNF and 
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Fas/DR4, 5/TNFR leads to the recruitment of adapter proteins FADD and TRADD, 

which then bind procaspase-8, and subsequently caspase-8 is activated to trigger effector 

caspases either directly or through a BH3 only protein tBid. The activation of executioner 

caspases will cleave their substrates (actin, Lamins, ACINUS, ICAD) to induce 

morphological changes and DNA fragmentation in apoptotic cells (Blank M et al. 2006).  
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CHAPTER 2. CENTRAL HYPOTHESIS AND SPECIFIC AIMS 

 

Wnt proteins are critical for development and adult homeostasis by controlling 

cell fate (Moon RT et al. 1997), and they can have either pro-apoptotic or anti-apoptotic 

functions in different cell systems (Almeida M et al. 2005; Lobov IB et al. 2005). Wnt13 

is one of the major Wnt genes expressed in differentiated endothelial cells (Struewing IT 

et al. 2006). Three isoforms of human Wnt13 have been identified in endothelial cells 

with different subcellular localizations: secreted Wnt13A (localized in endoplasmic 

reticulum), mitochondrial Wnt13B and nuclear Wnt13C, which are generated through 

alternative promoter, alternative splicing, and alternative translational start sites 

(Struewing IT et al. 2006).  Wnt13 nuclear forms showed an increased sensitivity to LPS 

or TNF induced apoptosis in primary endothelial cells (Struewing IT et al. 2006). 

However, it is unclear whether the expression Wnt13 isoforms undergo regulation and 

whether there are differential functions of Wnt13 isoforms depending on their subcellular 

localizations. 

Central hypothesis: In differentiated endothelial cells, the expression of 

nuclear Wnt13C is regulated at translational levels during apoptosis; and nuclear 

Wnt13 isoforms favor apoptosis through regulating the activity or expression of 

apoptosis-related factors; also, distinct isoforms of Wnt13 may have differential 

effects on endothelial cell apoptosis and apoptosis-related factors. 

Wnt13C and short form of Wnt13B encodes the same protein translated form 

AUG+74, but the expression of this protein encoded by Wnt13C was found out much 
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lower than those which are encoded by Wnt13B and M1L-Wnt13B (Struewing IT et al. 

2006), suggesting a possible regulation during Wnt13C translation. During apoptosis, the 

general translational machinery via cap-dependent mechanism is inhibited. But, protein 

synthesis of some apoptotic-related factors is required to help cell fate decision of either 

self-recovery or suicide, so alternative mechanisms, such as internal ribosomal entry, are 

employed to initiate translation of  some proteins, including anti-apoptotic XIAP, Bcl-2, 

as well as pro-apoptotic c-myc, Apaf-1, p53. Since nuclear Wnt13 forms increase the 

endothelial cell susceptibility to apoptotic stimuli, it is of interest to know if nuclear 

Wnt13C behaves like other pro-apoptotic or anti-apoptotic factors (c-myc and Bcl-2), 

which expression is maintained or induced under stress and regulated at translational 

level during apoptosis. 

Aim 1: To study whether the expression of nuclear Wnt13 form is regulated 

at translational levels during endothelial cell apoptosis (Figure 2). 

 

Cell apoptosis is believed to be a key player in embryonic development and cell 

homeostasis, and it can be tightly regulated at different levels (Blank M et al. 2007; 

Elmore S. 2007). Apoptosis is controlled by the balance of pro-apoptotic factors against 

anti-apoptotic factors, which serves as an indicator of cell susceptibility to apoptosis 

(Nakajima T et al. 2006). Indeed, apoptotic events take place in different subcellular 

organelles: the release of cytochrome c from the mitochondria, caspase cleavage in the 

cytoplasm, and DNA fragmentation or the transactivation of transcription factor p53 in 

the nucleus. Therefore, three Wnt13 isoforms may show differential effects on 
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endothelial cell susceptibility to apoptosis through regulating different apoptotic events in 

the organelles where they are located. 

Also, the mechanism that increased endothelial cell apoptosis by nuclear Wnt13 

has yet to be investigated. The Bcl-2 family includes pro-apoptotic members like Bax and 

Bim as well as anti-apoptotic members like Bcl-2, which balance functions as a crucial 

switch to determine whether the cell  undergo apoptosis (Youle RJ et al. 2008); also, Bcl-

2 members are involved in the Wnt-related apoptosis during development (Liang H et al. 

2007).  Akt signaling is a pro-survival pathway, which inactivation leads to cell apoptosis 

by activating pro-apoptotic factors such as caspase-9, Bcl-2 family member Bad, and 

FOXO factors (Jiang BH et al. 2008; Dillon RL et al. 2007). And Akt signaling not only 

cross-talks with Wnt signaling through GSK-3β, but it plays a critical role in Wnt cascade 

(Longo KA et al. 2002; Almedida M et al. 2005; Constantinou T et al. 2008; Naito AT et 

al. 2005). Therefore, it is necessary to study whether the nuclear Wnt13 forms increase 

apoptosis in endothelial cells through tipping the balance of Bcl-2 family to pro-apoptotic 

members, and the involvement of Akt signaling.  

Aim 2: To study the differential effects of Wnt13 isoforms located in different 

subcellular organelles in endothelial cell apoptosis, and whether Wnt13 forms affect 

apoptosis though modulating the activity or expression of apoptotic effectors and 

regulators (Figure 2). 

 

In Aim2, we found that nuclear Wnt13 forms increased endothelial cell sensitivity 

to apoptosis possibly through upregulating the activity/expression of caspases, and Bim 
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expression. FOXO transcription factors, which activation is inhibited by Akt survival 

signaling, target and transactivate some apoptotic-related genes like caspase-3, Bim, 

FasL as well as TRAIL, and can induce apoptosis when constitutively activated in certain 

cell types (Huang H et al. 2007). Additionally, FOXOs are also found to converge with 

Wnt-signaling (Essers MA et al. 2005). Therefore, FOXOs could be the upstream 

regulator to increase BAEC apoptosis by Wnt13 proteins. Moreover, stress resistance-

related SOD2 and catalase are also the target genes of FOXOs (Huang H et al. 2007), and 

activated FOXOs can bind Forkhead binding site in SOD2 gene to promote SOD2 gene 

transcription (Kops GJ et al. 2002), so the expression and transcription of SOD2 and 

catalase may be another way to confirm FOXO activation since different post-

translational modifications of FOXOs might be important for apoptotic genes and 

oxidative stress resistance genes. Therefore, to confirm the activation of FOXOs by 

Wnt13 proteins, it is interesting to know the effect of Wnt13 forms on the expression of 

oxidative stress resistance genes and SOD2 transcriptional regulation. 

Aim 3: To study whether Wnt13 forms have differential effects on the 

expression and activation of FOXOs that mediate the transcriptional regulation of 

FOXO target genes related to apoptosis and oxidative stress resistance (Figure 2). 
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Figure 2 Specific aims in this dissertation. As some apoptotic factors are translationally 

regulated by cell apoptosis, the Aim1 is to study whether the expression of nuclear 

Wnt13 form is regulated at translational levels during endothelial cell apoptosis. Since 

caspases, Bcl-2 family members and FOXOs are crucial players in apoptosis, the Aim 2 

is to study the differential effects of Wnt13 forms located in different subcellular 

organelles in endothelial cell apoptosis, and whether Wnt13 forms affect apoptosis 

through modulating expression/activation of apoptotisis-related factors. Moreover, 

FOXOs are transcription factors to transactivate pro-apoptotic factors such as Bim, and 

SOD2 and catalase are also oxidative stress resistance-related FOXO target genes, so 

Aim3 is to study whether Wnt13 forms have differential effects on the expression and 

activation of FOXOs that mediate the transcriptional regulation of FOXO target genes 

related to apoptosis and oxidative stress resistance. 

Copyright © Tao Tang 2009 
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CHAPTER 3. GENERAL METHODS 

 

3.1 Materials 

Lipolysaccharide (LPS) and tumor necrosis factor (TNF) α were purchase form 

Calbiochem. The rabbit polyclonal antibodies against β-actin, D175 cleaved-caspase-3, 

and the secondary horseradish peroxidase (HRP) –conjugated antibodies were products 

from Cell Signaling Technology. The rabbit polyclonal anti-Flag tag antibodies were 

purchased from Cayman-Chemicals. Alexa-488 and Alexa-568 secondary antibodies as 

well as Mitotracker-633 deep red were products from Moleuclar Probes. 

 

3.2 Cell culture  

The bovine aortic endothelial cells (BAEC) were purchased from Cambrex, and 

maintained in 1 g/l glucose Dulbecco Modified Enriched medium (DMEM) 

supplemented with 5% fetal bovine serum (FBS), 100 U/ml penicillin and 100 µg/ml 

streptomycin at 37oC, 5% CO2. 

 

3.3 Transient transfection 

Cells were plated and grown to 70% confluency before transfection. Cell transient 

transfections were performed with ExGen 500 reagent (MBI Fermentas) according to the 

recommendations of the manufacturer. Briefly, for 1 105 cells, 1 µg plasmid DNA was 

diluted with 50 µl sterile 150 mM NaCl, and mixed with 50 µl diluted ExGen 500 reagent 

(1:9 in150 mM NaCl). The ExGen-DNA complex was then incubated at room 
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temperature for 15 minutes, and mixed with DMEM (no serum). After media change, 

cells were incubated with ExGen-DNA complex under 37oC, and 2 hours later, the 

transfection complex was replaced by complete growth media.  

 

3.4 Plasmid constructs 

The Wnt13A-Flag, Wnt13B-Flag, Wnt13C-Flag, M1L-Wnt13B-Flag and M1L-

Wnt13B-Flag expression constructs were previously described (Struewing IT et al. 2006).  

 

3.5 RNA isolation and real-time PCR 

3.5.1 RNA isolation 

Total RNA was isolated using Trizol reagent (Invitrogen). Briefly, for a 6 well 

plate, cells in each well were added with 1ml Trizol after medium removal, and scrapped 

off the plate, followed by being transferred into a microcentrifuge tube. 200 µl 

Chloroform was then added to the tube, and mixed. After 10 minute incubation, the 

Trizol-CHCl3 mixture was centrifuged at 12,000g for 10 minutes. The top layer was 

transferred to another tube, and mixed with 500 µl isopropanol prior to another 10 minute 

incubation and centrifuge. The RNA pellet was then washed by 500 µl 70% ethanol, 

followed by centrifugation for 5 minutes. After the supernatant was discarded, the pellet 

was left in room temperature until it became clear. Then 22 µl nuclease free water was 

added to dissolve the pellet. 1µl of RNA solution was used to measure the OD value and 

260/280 ratio by spectrometer, and another 1µl of RNA was loaded to fresh 1% agarose 

gel for electrophoresis to check the RNA quality. The isolated RNA was either used for 

reverse transcription immediately or stored at -80oC for later experiments. 
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3.5.2 Reverse Transcription  

Total RNA (1μg) was firstly treated by DNase-I (Invitrogen) with reaction buffer 

for 15min at room temperature to remove any genomic DNA contaminations until 2 µl 25 

mM EDTA was added to stop the reaction. After 10 minute incubation at 65 oC, The 

RNA-DNase I mixture was transferred on ice and added with 0.5 μg Oligo(dT) 

(Invitrogen), followed by another 10 minute incubation at 65 oC. The RNA mixture was 

then left on ice for at least 1 minute prior to being incubated with 1 µl (200U) 

SuperScript III reverse transcriptase (Invitrogen) as well as its reaction buffer (1 µl 0.1 M 

DTT, 0.6 µl RNaseOUT (Invitrogen), and 0.4 µl 25mM dNTP) at 50 oC for 1 hour, then 

inactivated by incubation at 70 oC for 15 minutes. Then the 20µl cDNA solution was 

diluted to 60 µl of total volume with Nuclear-Free Water and then stored in -80 oC. 

 

3.5.3 Real-time PCR 

The real-time PCR was performed in duplicates, with an equivalent of 16ng total 

RNA reaction and 10 pmoles of primers, using the SYBR-Green Kit (Applied Bio-

systems) in ABI7000 apparatus (Applied Bio-systems). Each 25µl reaction also contained 

1  SYBR-Green PCR reaction buffer, 3.0 µl 25mM MgCl2 solution, 2.0 µl 12.5mM 

dNTP, 0.25µl 1U/µl Amperase UNG, 0.125µl 5U/µl AmpliTaq Gold. RPL30 was used as 

the internal standard gene. Real-time PCR conditions for all genes were as follows: 2 

minutes at 50 oC; 10 minute at 95 oC; 40 cycles of 15 seconds at 95 oC and 1 minute at 60 

oC. At the end of the runs, data were analyzed. Ct values obtained from the amplification 

curve of the gene of interest were normalized to that obtained form the amplification 

curve of RPL30, to correct for equal amounts of starting RNA. 
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3.6 Cell extracts and western blot analysis 

For whole cell extracts, cells were harvested by centrifugation at 600g for 5 

minutes after being scrapped off the plates. After washing by PBS buffer, each 1 105 

cells were lysed with 125 µl 50mM HEPES, pH7.4, 0.1% CHAPS, 5mM DTT, and 2mM 

EDTA in the presence of protease and phosphatase cocktail inhibitors (Sigma). After 

freeze-thaw cycles, each 125 µl cell lysate was added with 25 μl 6  Laemmli buffer, and 

then boiled for 5 minutes. Subsequently, 25ul lysates from each sample were loaded on 

SDS-polyacrylamide gels (ranging from 8% to 14%, depending on the size of protein of 

interest) for electrophoresis, and proteins were then transferred onto Immobilon P 

membrane (Minipore). After blocking with 3% fat free milk (BioRad), the membranes 

were incubated with specific primary antibodies overnight, followed by washing with 3 

time TBS-Tween buffer (10 minutes for each time).  Subsequently, the membranes were 

incubated with the corresponding secondary antibodies conjugated to horseradish 

peroxidase (HRP) for 1-2 hours and also followed by the same wash for 3 times. Each 

membrane with Immuno-reactive proteins and conjugated HRP were detected using the 

mixture of 1.5 μl stable peroxide buffer and 1.5 μl Lumino enhancer buffer supplied by 

SuperSignal chemiluminescence (Pierce Chemical Co), and exposed for an appropriate 

time ranging from 1 second to 20 minutes. At last, the intensity of each band including 

loading control β-actin was quantified by densitometry with Scion software, and the 

expression level of each protein of interest was shown as the ratio of Density (protein of 

interest)/Density (β-actin). 
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3.7 Plasmid DNA purification 

3.7.1 Minipreps 

For small amount of plasmid DNA isolation, Wizard® Plus SV Minipreps DNA 

Purification Systems (Promega) were used. According to the manufacture’s instruction, 

for each sample, 1ml bacterial culture was harvested by centrifugation for 5 minutes at 

highest speed (14 103 rpm) in a tabletop centrifuge. Supernatant was then poured, and 

250µl Cell Resuspension Solution was added to the cell pellet, followed by thorough 

resuspension by pipetting. 10µl Alkaline Protease Solution was then added and mixed 

with cell pellet suspension by inverting the tube 4 times. Subsequently, 250µl of Cell 

Lysis Solution was added and mixed by inverting the tube 4 times, which was then 

incubated for 5 minutes. 350µl Neutralization Solution was added to the tube and mixed 

immediately by inverting the tube 4 times, followed by centrifuging the bacterial lysate at 

maximum speed for 10 minutes at room temperature. Afterwards, the cleared lysate was 

transferred to the prepared Spin Column by decanting, and then centrifuged at maximum 

speed for 1 minute at room temperature. The Spin Column was removed, and reinserted 

into the Collection Tube after flowthrough was discarded from the Collection Tube. The 

Spin Column was then added by 750 µl Column Wash Solution, and centrifuged at 

maximum speed for 1 minute at room temperature, with flowthrough discarded.  The 

wash procedure was repeated using 250 µl Column Wash Solution, followed by 

centrifugation at maximum speed for 2 minutes. Then, the Spin Column was transferred 

to a new, sterile microcentrifuge tube, and plasmic DNA was eluted by adding 100 µl 

Nuclease-Free Water and subsequent centrifuging for 1minute.  
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3.7.2 Maxipreps 

For large amount of plasmid DNA purification, UltraMobiusTM 200 plasmid Kits 

(Novagen) were used in our study, based on the manufacture’s manuals. For each sample, 

100ml bacterial culture was centrifuged at 6,000 rpm for 20 minutes (4oC), and the pellet 

was then resuspended in 3ml Bacterial Resuspension Buffer supplemented with RNase A. 

After this, the pellet was added with 3ml Bacterial Lysis Buffer, which was then mixed 

by inverting the bottle, followed by 5 minute incubation at room temperature. 3ml of 

Mobius Neutralization Buffer was added to the lysate, which was then incubated on ice 

for 5 minutes, prior to centrifuging at 10,000 rpm for 20 minutes. The supernatant was 

filtered, supplemented with 1.5ml Detox Agent, and incubated on ice for 30 minutes. The 

supernatant mixture was then applied to the equilibrated Mobius 200 Column, which was 

subsequently washed with 10ml Mobius Wash Buffer, and eluted with 2.5ml Mobius 

Elution Buffer. The elution was added and mixed with 1.75ml isopropanol prior to the 

centrifugation at 15,000 rpm for 20 minutes. Then, the pellet was washed by 3ml 70% 

ethanol, followed by another centrifugation for 10 minutes. Once dried, the pellet was 

dissolved in 400ul TE buffer, and the OD value was measured by spectrometer before the 

storage of the purified DNA solution. 

 

3.8 Immunofluorescence microscopy 

BAECs were plated in LabTek slide chambers 24 hours prior to transfection. 40 

hours after transfection, when required, BAECs were incubated with 100nM Mitotracker-

633 deep red (Molecular Probes) in growth media for 1 hour to stain mitochondria, 

followed by cell washes 3 times with PBS supplemented with 1mM CaCl2 and 1mM 
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MgCl2. Then cells were fixed in 4% formaldehyde for 17 minutes prior to 3 time cell 

washes, and were permeabilized and blocked in PBS, 0.1% Triton X-100, 0.7% fish skin 

gelatin (Sigma) at 37oC for 30 minutes. Fixed cells were then incubated sequentially with 

primary antibodies and Alexa-secondary antibodies for 2 hours each in the gelatin buffer, 

and each incubation was followed by 3 time cell wash using the gelatin buffer. 

Subsequently, cells in the chambers were finally washed with PBS (CaCl2 and MgCl2), 

and mounted with Vectashield H1200 (Vectro Laboratories Inc.) supplemented with 4’, 

6-diamidino-2-phenylindole (DAPI) to stain nuclei, and finally observed under Nikon 

ECLIPSE TE 2000-U. 

 

3.9 Statistical analysis 

All results are expressed as mean ± SEM. Analysis of variance (ANOVA) is valid 

if 1) all groups of observations represent random samples; 2) the population distributions 

must be approximately normal (Probability and statistics Ebook, Statistics Online 

Computational Resource, SOCR). Thus, for the values represented by the relative levels 

over PCR3 control, if PCR3 control was set as 1, which did not fall in normal 

distribution,  One Way ANOVA analysis was not appropriate at this point; therefore, as 

suggested by stasticians, One Sample T-test (hypothesized value = 1) was used. 

Statistical significance was accepted at a value of P<0.05. However, if the values of 

PCR3 control follow normal distribution, One Way ANOVA analysis was used followed 

by Tukey’s test for differences between groups.  
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3.10 Wnt13-Flag-expressing system 

3.10.1 Transient transfection  

After transient transfection, the expression of Wnt13-Flag isoforms was detected 

by immunoblotting. As shown in Figure 3.1, PCR3 was the vector control which did not 

express Wnt13-Flag proteins. Wnt13A-Flag displayed one single band of 41KD in size, 

and Wnt13B-Flag expressed a protein doublet because Wnt13B mRNA gave rise to a 

long form and a short form at protein levels due to alternative start codons, (AUG (+1) 

and AUG (+74) (Struewing IT et al. 2006). For Wnt13C-Flag, only one single protein 

equivalent to short form of Wnt13B was detected, and the expression level is very low. 

M1L-Wnt13B-Flag only encoded the short form of Wnt13B because the first codon AUG 

(+1) was mutated, and the expression was dramatically higher than that of Wnt13C, 

which will be stated in the Aim1. And M74L-Wnt13B exclusively expressed the long 

form of Wnt13B since AUG+74 was mutated. The expression pattern in Wnt13-Flag 

protein level during transient transfection were M1L-

Wnt13B>Wnt13B>Wnt13A>M74L-Wnt13B>Wnt13C. Moreover, the protein level of 

Wnt13C was increased upon LPS treatment, which is also described in Aim1.  

 

3.10.2 Stable transfection  

We have tried to track the expression of Wnt13-Flag in stably-transfected BAECs 

by western blotting, but except Wnt13A, all the other forms of Wnt13 were almost 

undetectable (data not shown), suggesting that stable transfection has lower expression 

levels than transient transfection. Therefore, we employed immunofluorescence 

microscopy to determine the expression of Wnt13-Flag in stably-transfected BAECs. As 
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shown in Figure 3.2, the subcellular localization of Wnt13 isoforms in stable transfection 

was not distinguishable than that in transient transfection: Wnt13A-Flag was localized in 

ER; Wnt13B and M74L-Wnt13B were mitochondrial forms; Wnt13C and M1L-Wnt13B 

were localized in the nucleus. However, the expression pattern in stable transfection was 

found out different: Wnt13A>Wnt13C=M1L-Wnt13B>M74L-Wnt13B>Wnt13B (data 

not shown). And this difference in protein levels may underlie the difference in the 

effects of Wnt13 forms between stable transfection and transient transifection which is 

described in Aim2.  
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Figure 3.1 The expression patterns of Wnt13-Flag isoforms in transiently transfected 

BAECs with or without LPS treatment. BAECs were transiently transfected with the 

PCR3 vector or Wnt13-Flag constructs for 24 hours followed by being treated with or 

without 100ng/ml LPS. 16 hours later, cells were harvested and lysed whole cell exacts 

were prepared and Flag-tag and β actin were analyzed by immunoblotting with specific 

antibodies. 
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Figure 3.2 The expression patterns and subcellular localizations of Wnt13-Flag isoforms 

in stably transfected BAECs. BAECs with stably-expressed Wnt13-Flag constructs were 

incubated with growth media supplemented with Mitotracker-633 deep red for 

mitochondrial staining (blue), and then fixed with 4% formaldehyde, permeabilized in 

0.1% Triton, and stained with rabbit polyclonal anti-Flag antibody (green) and mouse 

monoclonal β-catenin (red), followed by the incubation of Alexa goat anti-rabbit 488 and 

Alexa goat anti-mouse 568 antibodies.  

Copyright © Tao Tang 2009 
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CHAPTER 4. SPECIFIC AIM 1 

To study the expression of nuclear Wnt13 forms is regulated at translational 

levels during endothelial cell apoptosis 

 

4.1 Summary 

Wnt proteins control cell proliferation, cell differentiation and cell fate during 

embryonic development and homeostasis in adulthood. Our laboratory has demonstrated 

the complexity of human Wnt13 gene in human cells, and the association of the nuclear 

Wnt13 forms with cell apoptosis, but the regulation of Wnt13 forms has yet to be 

defined. Wnt13B, Wnt13C and M1L-Wnt13B have been shown to encode the same 

protein translated form AUG+74, but the expression of this protein encoded by Wnt13C 

mRNA is found out much lower than those who encoded by the mRNAs of Wnt13B and 

M1L-Wnt13B (Struewing IT et al. 2006), suggesting a possible translational regulation 

for Wnt13C. In our study, Wnt13C expression was increased in response to stress and 

apoptosis-inducers (including MG132), and appeared to be correlated with caspase-3 

cleavage. This regulation did not seem to occur at the transcriptional level since there was 

no significant increase at mRNA level upon the treatment of MG132. And in BAEC, the 

insertion of Myc tag at the first AUG in Wnt13C mRNA not only inhibited the 

expression of exogenous Wnt13C at basal level, but also totally abolished the increase of 

Wnt13C expression by MG132 treatment, which indicates RNA sequences or structures 

are critical for Wnt13C expression. Therefore, our data suggest that nuclear Wnt13C can 

be regulated during apoptosis more likely at the translational levels than the 

transcriptional levels, and since the nuclear Wnt13 forms were reported to increase EC 
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sensivity to apoptosis (Struewing IT et al. 2006), this regulation may underlie a possible 

association of the nuclear Wnt13 forms with apoptosis in BAECs. 

 

4.2 Introduction 

Wnt proteins form a large family of cysteine-rich glycoproteins which expression 

is tightly regulated in a spatial and temporal fashion during development and adult 

homeostasis. So far there are 19 different Wnt members in mammals, and they function 

critically in embryonic development, organogenesis and later-on self-renewal in adult 

tissues by controlling cell fate, including cell proliferation, differentiation, and apoptosis 

(Clevers H. 2006; Almeida M et al. 2005). 

The complexity of human Wnt13 gene has been displayed in various human cell 

types with three isoforms identified: secreted Wnt13A, mitochondrial Wnt13B and 

nucleus Wnt13C, which differ in their N-terminal sequences and generated through 

alternative promoter, alternative splicing and alternative start codons (Struewing IT et al. 

2006; Bunaciu RP et al. 2008). Moreover, the Wnt13 nuclear forms showed an increased 

sensitivity to LPS- or TNF- induced apoptosis in primary endothelial cells (Struewing IT 

et al. 2006), indicating the function of the Wnt13 nuclear forms is associated with 

apoptosis. The 5’-leader sequences of Wnt13B and Wnt13C mRNAs are rather long, 

featuring highly stable secondary structures based on M-fold analysis, which are the 

characteristics suggesting possible translational regulation (Tang T et al. 2008). 

Increasing evidence has suggested that translational regulation is a crucial 

mechanism to allow the cell to alter its phenotype in response to different environmental 

changes, and the expression of a number of either apoptosis-related factors or growth 
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factors (FGF2 and VEGF) via translational mechanisms plays a significant role in the 

regulation of their functions (apoptosis or proliferation) (Graber TE et al. 2007; Willis 

AE. 1999). During cell stresses, the global translational machinery is compromised, and 

the translation of most mRNAs is thereby inhibited. Paradoxically, the synthesis of 

several proteins is still needed to mount an appropriate response to apoptosis by 

increasing either death signals or survival signals to help the cell make decision to die or 

not to die (Graber TE et al. 2007). So under stress, while the global rate of translation by 

classical cap-dependent mechanism is reduced, the mRNAs of some proteins are not 

treated the same way: alternative translational mechanisms are used to maintain the 

synthesis of these proteins. For example, during apoptosis, pro-apototic proteins c-myc 

(Adachi S et al. 2000), as well as anti-apoptotic proteins Bcl-2 (Sherrill KW et al. 2004) 

maintain their protein synthesis by employing a cap-independent mechanism called 

internal ribosomal entry, which involves specific RNA secondary structures able to 

recruit IRES trans-acting factors (ITAFs) that initiate translation from the alternative 

AUG site (Spriggs KA et al.2005; Marash L et al. 2005). Besides IRES, there are some 

other mechanisms also responsible for the process of translational control, such as 

ribosomal shunting, leaky scanning and re-initiation through small upstream open reading 

frames (ORFs) (Graber TE et al. 2007; Kozak M. 2003).  

Therefore, in this study, we aim to investigate whether nuclear Wnt13 forms 

behave like other apoptotic factors like c-myc or Bcl-2, which undergo regulation at 

translational levels during apoptosis. 
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4.3 Materials and methods: 

4.3.1 Materials 

  ALLN, MG132, LY294002 and tunicamycin were from Sigma. The specific 

proteasome inhibitors epoxomycin and eponomycin were kind gifts from Dr. Kyung-Bo 

Kim (University of Kentucky). The monoclonal anti-Myc antibody was purchased from 

Cell Signaling Technology.  

 

4.3.2 Cell culture and transfection 

Please refer to 3.2 and 3.3. 

 

4.3.3 Myc-Wnt13C-Flag plasmid constructs:  

To obtain the pCR3.1-Myc-Wnt13C construct, Myc-tag was inserted into the start 

codon AUG of Wnt13C by PCR using the primers 5’-

CCACCATGGGCGAACAAAAACTCATCTCAGAAGAGGATCTGGTGTTGGATGG

CCTTG-3’, and 5’- 

TCACTTATCGTCGTCATCCTTGTAATCTGCGGTCTGGTCCAGCCAC-3’ (Tang T 

et al. 2008). To obtain the pCR3.1-Myc-Wnt13C-Flag construct, as shown in Figure 4.1, 

pCR3.1- Myc-Wnt13C construct and pCR3.1-Wnt13B-Flag were digested by BamH1 

(Invitrogen) at 37oC for 2 hours, and the products were loaded to 1% agarose gel. The 

digest product from pCR3.1-Wnt13B-Flag was specifically treated with 1µl Calf 

Intestinal Alkaline phosphatase (CIAP, Invitrogen) for 5 minutes to dephosphorylate 

linerized vector DNA prior to gel running. After electrophoreses, a 300bp fragment from 

pCR3.1-Myc-Wnt13C and a 6kb fragment from pCR3.1-Wnt13B-Flag were expected 
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and extracted from the agarose gel using QIAGEN Gel Extract Kit. The two DNA 

fragments were then ligated using T4 ligase (Invitrogen) at 8-12 oC overnight, followed 

by transformation, which were subsequently spread evenly to a pre-warmed LB plate and 

incubated at 37oC. After 18 hours, colonies were seen on the plate, and each of them was 

then picked gently and mixed with 3ml LB broth in each tube. After incubation for 6 

hours, minipreps were performed for each colony to purify DNA, and 10µl of each 

purified DNA was digested by Pvu II (Invitrogen) to test the orientation during ligation. 

The DNA miniprep with right orientation was then sent to SegWright for sequencing, and 

maxiprep was performed to purify amplified pCR3.1-Myc-Wnt13C-Flag plasmid DNA, 

which was stored at -20 oC. 

 

4.3.4 RNA isolation and real-time PCR 

Please refer 3.5. 

 

4.3.5 Cell extracts and western blot analysis 

Pleases refer 3.6. 

 

4.3.6 Statistical analysis 

All results are expressed as mean ± SEM. The values were represented by the 

relative levels over PCR3 control (set as 1), and One Sample T-test (hypothesized value = 

1) was used. Statistical significance was accepted at a value of P<0.05.  
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4.4 Results 

4.4.1 Short form of Wnt13B, Wnt13C and M1L-Wnt13B express differently when 

transfected into BAEC 

As described previously, Wnt13B and C mRNAs (Figure 1.2B) contain two 

translational start sites: AUG (+1) and AUG (+74), so Wnt13B mRNA encodes a long 

form and a short form (Figure 3.1). M1L-Wnt13B, where Met1 is replaced by leucine1, 

only gives rise to the short Wnt13B form (Figure 3.1), which is localized in the nucleus. 

However, for Wnt13C mRNA, the absence of all 71 nucleotides in exon 2 leads to a 

change in the open reading frame of exon 4 and formation of a stop codon, so the 

translation from AUG (+1) and AUG (+74) gives rise to a short peptide and the short 

Wnt13B form, respectively. But only the short Wnt13B was detected by immunoblotting 

in Wnt13C-transfected BAEC (Figure 3.1). Also, both Wnt13C and M1L-Wnt13B are 

localized in the nucleus when transfected into BAEC, further indicating Wnt13C and 

M1L-Wnt13B are equivalent to the short form of Wnt13B (Struewing IT et al. 2006). 

Nonetheless, in normal cell culture conditions, the exogenous expression of Wnt13C was 

always found out much lower than short protein form of Wnt13B or M1L-WntB (>10 

folds) in primary BAEC cells (Figure 3.1).  

 

4.4.2 The expression of Wnt13C increased in response to apoptotic inducers 

Next, we tried to determine that whether the expression of Wnt13C can be also 

regulated during apoptosis in apoptosis-sensitive BAEC cells. Tunicamycin, an 

endoplasmic reticulum (ER) stress inducer (He L et al. 2009), and LY294002, a PI3 

Kinase inhibitor, together with pro-inflammatory factors (LPS and TNFα) as well as 
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proteasome inhibitors (MG132, ALLN, epoxomycin and eponomycin) can induce 

apoptosis in various cell types. However, in our experimental conditions, BAECs were 

sensitive to apoptosis induced by 100ng/ml LPS, 10ng/ml TNFα, 1µM MG132, 1 µM 

epoxomycin and 1 µM eponomycin, but insensitive to 2.5 µg/ml Tunicamycin or 10 µM 

LY294002(LY). As shown in Figure 4.2A, Tunicamycin and LY294002 did not induce 

obvious apoptosis in BAEC as there was no or very little caspase-3 cleavage, and in this 

case, Wnt13C expression was not significantly changed. In contrast, BAEC cells 

underwent apoptosis upon the treatment of inflammatory agents like TNFα, LPS, as well 

as proteasome inhibitors ALLN, MG132, epoxomcin and eponomycin, and at the same 

time, the expression of Wnt13C was shown to be increased with these stimuli. Therefore, 

even endothelial cell apoptosis was induced at different levels and via different 

mechanisms, all the stimuli inducing apoptosis can increase the expression of Wnt13C in 

BAEC.  

 

4.4.3 The regulation of Wnt13C by apoptosis may be at translational levels 

The increased expression of Wnt13C upon the treatment of apoptotic stimuli 

could result from either transcriptional regulation or translational regulation of Wnt13C. 

Thereby, we performed real-time analysis and found that the mRNA levels of exogenous 

Wnt13C-Flag were increased by 47% after MG132 treatment (see Figure 4.2B), which 

can not explain the 4 fold-increase of protein expression by MG132, suggesting that the 

regulation of Wnt13C is not mainly due to transcriptional levels.  

Furthermore, in BAEC cells, modification of AUG (+1) by the insertion of a myc-

tag sequence in Wnt13C not only led to a total absence of Wnt13C expression from the 
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downstream AUG (+74) at basal levels, but also abolished the increase of Wnt13 

expression induced by MG132 treatment. This phenomenon implies that the mRNA 

structures of Wnt13C, especially the sequences surrounding AUG (+1) is critical for the 

regulation of Wnt13C by MG132, confirming that the increased expression of Wnt13C 

by MG132 is more likely at translational levels than transcriptional levels. In contrast, in 

HEK293 cells, the insertion of myc-tag at AUG (+1) did not change the expression 

pattern of Wnt13C, indicating this regulation is cell type-specific (see Figure 4.3A). We 

also tried to track the small peptide translated from AUG (+1) of Myc-Wnt13C-Flag by 

using specific Myc antibody to see whether Wnt13C AUG (+1) was also regulated 

translationally. Unfortunately, even when 20% Acralymide gel was used, the Myc-tagged 

small peptide was undetectable (Figure 4.3B). 

 

4.5 Discussion 

Translational control is one of the critical regulatory mechanisms in eukaryotic 

gene expression, which allows the cell to respond rapidly to environmental changes 

(Graber TE et al. 2007; Willis AE. 1999). The majority of the mRNAs able to undergo 

translational regulation, especially those who encode growth factors and oncoproteins, 

carries long 5’ untranslated regions (UTRs) with complex secondary structure that 

impedes the scanning during translational initiation, and such structure may harbor 

internal ribosomal entry site or upstream open reading frames (Willis AE. 1999; 

Pickering BM et al. 2005). Wnt13 proteins also function in controlling stem cell growth 

during development and are associated with human cancers. Also, like those mRNAs of 

growth factors, the 5’-UTRs of Wnt13B and Wnt13C are very long (120 nucleotides 
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before AUG+1, and 340 or 229 nucleotides before AUG+74 in Wnt13B or Wnt13C 

mRNAs, respectively), and highly structured with high free energies (-88~-104 kcal/mole 

for Wnt13B mRNA, and -70~-75 kcal/mole in Wnt13C mRNA) (Tang T et al.2008), 

which gives the evidence  for sendonary structure to support possible translational 

regulation in the mRNAs of Wnt13B or Wnt13C (Willis AE. 1999).  

Wnt13C and M1L-Wnt13B have been shown to encode the same protein (the 

short form of Wnt13B) which is translated from AUG+74 in the mRNA (Struewing IT et 

al. 2006). In this study, we found that the exogenous expression pattern of this protein in 

regular cell culture condition differs a lot: M1L-Wnt13B>short form of 

Wnt13B>Wnt13C (Figure 3.1). However, the exogenous mRNA levels between Wnt13B 

and Wnt13C lack the significant difference, suggesting that the translation of Wnt13C is 

not as efficient as that of Wnt13B or M1L-Wnt13B.  

Our results also show that the expression of Wnt13C is increased during 

endothelial cell apoptosis triggered by a variety of stimuli. The protein expression of 

Wnt13C is correlated with the level of cleaved caspase-3, and all the proteasome 

inhibitors are able to induce higher levels of Wnt13C than TNFα and LPS, suggesting 

that increased protein stability by proteasome inhibitors may potentiate the increasing 

effect on Wnt13C-Flag expression by apoptosis-inducers. Subsequently, we also show 

that the slight increase of exogenous Wnt13C at mRNA levels after MG132 treatment, 

unable to fully explain the 4 fold increase of Wnt13C-Flag at protein levels, further 

indicating that the positive regulation of exogenous Wnt13C expression by stimuli may 

be more possibly at translational levels than transcriptional levels.  
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Moreover, as shown in Figure 4.3, in BAEC cells, the insertion of myc tag at 

AUG (+1) in the Wnt13C mRNA totally abolishes the exogenous protein expression of 

Wnt13C, even under the treatment of MG132, indicating that Wnt13C expression is 

greatly dependent on the RNA sequences and/or structures, especially surrounding AUG 

(+1). Indeed, our laboratory also showed that the deletion of the first 12 amino acids with 

a start codon inserted in Wnt13B mRNAs resulted in almost undetectable expression of 

both the long form translated from AUG (+12) and the short form translated from AUG 

(+74), while the deletion of the first 17 amino acids with a start codon inserted led to 

more expression of the long form than the short form (Tang T et al. 2008), which 

confirms that the RNA sequences and/or structures surrounding AUG+1 are crucial for 

the translation initiation at AUG (+74) for the mRNAs of both Wnt13B and Wnt13C. 

And our data showed that the translational regulation of Wnt13C occurred in BAEC cells, 

but not in HEK293 cells. The possible explanation is that HEK293 cells are immortalized 

transformed cells, which may determine distinct response of Wnt13C to undergo 

translational regulation by apoptosis than primary cells. 

Since both c-myc and Bcl-2 have shown to be regulated via IRES-mediated 

translation, the presence of IRES in Wnt13C mRNA was firstly suspected to explain the 

regulation mechanism of Wnt13C. However, using dicistronic Renilla –firefly (FL) 

luciferase assay, the 5’-UTR of Wnt13C does not exhibit an IRES activity with or 

without the treatment of MG132 (Tang T et al. 2008).  

As the presence of IRES in Wnt13C mRNA is excluded, upstream opening 

reading frame (uORF) becomes a possible mechanism for translational regulation of 

Wnt13C. In some mRNAs, there exist a number of AUG codons at the upstream of the 
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main open reading frame (ORF), which sequester ribosome from the AUG which 

precedes the main ORF, resulting in the general decrease of the initiation efficiency of 

translation (Meijer HA et al. 2002). For example, Bcl-2 contains a small ORF located 

from -119 to -84, which is well conserved between mouse, rat, chicken and humans. 

Deletion or mutation of this uORF from chloramphenicol acetyltransferase (CAT) 

reporter gene resulted in a significant increase in CAT activity in vitro; conversely, 

positioning this uORF into the reporter gene led to a remarkable inhibition of CAT 

protein production without decreasing CAT mRNA, which indicates that the uORF 

located within the 5'UTR of the bcl-2 gene is important and sufficient for translational 

regulation of bcl-2 gene (Harigai M et al. 1996). 

Indeed, it has been demonstrated by our laboratory that the insertion of 5’ leader 

sequences of Wnt13C into RL reporter lead to a 95% and 85% inhibition of translation 

activity in BAEC cells and HEK293 cells, respectively (Tang T et al. 2008). Furthermore, 

two uORFs were found in Wnt13C-leader sequences, and the expression of Wnt13C-Flag 

increased with the deletion of upstream AUG or CUG and the mutation of AUG (+1), 

indicating that two upstream ORFs are responsible for the reduced translational 

efficiency in Wnt13C. Also, the 5’ leader sequences of Wnt13B contain only one uORF, 

which explains the higher expression of Wnt13B encoded from AUG+74 than Wnt13C. 

In conclusion, our data demonstrated that nuclear Wnt13C undergoes regulation 

at translational levels during apoptosis induced by a variety of stress stimuli. Considering 

that nuclear Wnt13 forms favor apoptosis in endothelial cells, the upregulation of 

Wnt13C forms during apoptosis may potentiate the progression of apoptosis in 

endothelial cells, which forms a positive feedback to facilitate the completion of 
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apoptosis. And further studies in our laboratory showed that unlike some other apoptotic 

factors like c-myc and Bcl-2, the translational regulation of Wnt13C mRNA is not via 

IRES mechanism, but more likely attributed by the presence of upstream open reading 

frames.  
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Figure 4.1 Schematic representation of the process to obtain the pCR3.1-Myc-Wnt13C-

Flag construct. For mRNA sequence, Wnt13B has an extra exon2 (E2) compared to 

Wnt13C. pCR3.1- Myc-Wnt13C construct and pCR3.1-Wnt13B-Flag were digested by 

BamH1 (Invitrogen) at 37oC for 2 hours, and the products were loaded to 1% agarose gel. 

After electrophoreses, a 300bp fragment from pCR3.1-Myc-Wnt13C and a 6kb fragment 

from pCR3.1-Wnt13B-Flag were extracted from the agarose gel using QIAGEN Gel 

Extract Kit. The two DNA fragments were then ligated using T4 ligase, followed by 

transformation to E coli, and the expressed pCR3.1-Myc-Wnt13C-Flag was purified by 

minipreps. After orientation check and sequencing check, the plasmid DNA was 

amplified by maxipreps. 
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A) 

 

B) 

 

Figure 4.2 Wnt13C expression is increased in response to apoptotic stimuli. A) BAEC 

were transiently transfected with the Wnt13C-Flag construct for 24 hours, followed by 

being treated with 100ng/ml LPS, 10ng/ml TNFα, 2.5 µg/ml Tunicamycin (Tu), 10 µM 

LY294002(LY), 1µM MG132, 1 µM epoxomycin (EPX) and 1 µM eponomycin (EPN). 

16 hours later, whole cell exacts were prepared and Wnt13C-Flag proteins, cleaved 

caspase-3 and β actin were analyzed by immunoblotting with specific antibodies. B) The 

mRNA levels of exogenous Wnt13C-Flag in BAEC with or without the treatment of 1µM 

MG132 were determined using real-time PCR with RPL30 as internal control. The 

relative mRNA levels after normalization are represented in the graph (mean±SEM, n=2 

independent transfection experiments). 
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A) 

 

B) 

 

Figure 4.3 The insertion of Myc-tag into 5’-UTR of Wnt13C-Flag abolished the 

translation of Wnt13C in BAECs rather than in HEK293 cells. A) Wnt13C-Flag or Myc-

Wnt13C-Flag were transfected into BAEC cells or HEK293 cells for 24hrs, followed by 

1µM MG132 treatment for 16 hours, and whole cell extracts were prepared for 

subsequent immunoblotting analysis with anti-Flag antibody. B) Wnt13C-Flag or Myc-

Wnt13C-Flag were transfected into BAEC cells for 24hrs, followed by 1µM MG132 

treatment for 16 hours. Media were harvested and whole cell extracts were prepared for 

subsequent immunoblotting analysis with anti-Flag and anti-Myc antibodies. 

Copyright © Tao Tang 2009 



126 
 

CHAPTER 5. SPECIFIC AIM 2 

  To study the differential effects of Wnt13 isoforms located in different 

subcellular organelles in endothelial cell apoptosis, and whether Wnt13 forms affect 

apoptosis though modulating the activity or expression of apoptotic effectors and 

regulators. 

 

5.1 Summary 

Wnt proteins control cell proliferation, cell differentiation and cell fate during 

development and postnatal homeostasis. Our laboratory has illustrated the complexity of 

human Wnt13 gene, with three isoforms (secreted Wnt13A, mitochondrial Wnt13B and 

nuclear Wnt13C) encoded in human cells, and the association of nuclear Wnt13 forms 

with cell apoptosis. Also, nuclear Wnt13C was shown to be increased at the translational 

level during apoptosis induced by various stimuli including LPS. However, it is still 

unclear 1) whether Wnt13 forms exert different effects on cell apoptosis in BAECs due to 

their different subcellular localizations of Wnt13 isoforms; 2) what are the mechanisms 

underlying the increased apoptosis by nuclear Wnt13 forms. In this study, we found that 

1) in all the apoptotic assays, the activity of Wnt13 forms in increasing EC sensitivity to 

apoptosis in BAEC were different: nuclear (robust) > mitochondrial (moderate) > 

secreted forms (weak); 2) Wnt13 forms affected executioner caspase-3/7, but not the 

caspase-8 in the extrinsic pathway, nor the inflammatory caspase-4/5: nuclear Wnt13 

forms increased the expression of caspase-3/7 both at basal levels and after LPS 

treatment, followed by an increase in caspase-3/7 cleavage induced by LPS; 3) Wnt13 
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forms did not change the phosphorylation/activity of Akt and GSK, and showed a mild 

effect on ROS production; 4) exogenous Wnt13 forms upregulated the pro-apoptotic Bcl-

2 family member Bim expression without changing Bax/Bcl-2 ratio; 5) Wnt13 forms did 

not significantly increase apoptotic factors (TRAIL, DR5, and caspase-8) in the extrinsic 

apoptotic pathway. To sum up, our data suggest that Wnt13 forms increase apoptosis in 

BAEC with different strengths: nuclear > mitochondrial > secreted forms, and Wnt13 

forms increase caspase activation though upregulating the expression of caspases and 

Bim protein, without affecting the extrinsic apoptotic pathway, the Akt-GSK signaling 

and ROS production.  

 

5.2 Introduction 

Wnt proteins constitue a large family of cysteine-rich glycoproteins whose 

expression is tightly regulated in a spatial and temporal pattern during development. They 

bind specifically to frizzled receptors (Fz) to activate three different signaling pathways: 

1) the Wnt/β-catenin/TCF pathway resulting in cell proliferation and cell survival, 2) the 

Wnt/planar cell polarity (PCP) pathway involved in cytoskeleton regulation and tissue 

morphogenesis and 3) the Wnt/Ca2+ dependent pathway leading to changes in cell 

migration (Fodde R et al.2007). Due to the crucial roles in organism development and 

postnatal homeostasis, Wnts and Wnt signaling are highly related to diseases, such as 

cancer, Alzheimer’s disease, and metabolic syndrome (Clevers H. 2006). Wnt proteins 

are crucial for development and tissue homeostasis by controlling cell fate including cell 

proliferation, differentiation, and especially apoptosis (Moon RT et al. 1997). Generally, 
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Wnt proteins show anti-apoptotic action in transformed cells, but they display pro-

apoptotic functions in primary cells, which details have been stated in 1.3.5.1.  

So far, 19 different Wnt family members displaying a conserved pattern of 21-23 

cysteine residues have been identified in mammals (Clevers H. 2006). Wnt13, also called 

Wnt2b, was shown to be critical for embryogenesis or organogensis, and to be related to 

some human diseases. We have shown the complexity of human Wnt13 gene expression 

from human cells with the identification of three Wnt13 isoforms: the secreted Wnt13A, 

mitochondrial Wnt13B, and nuclear Wnt13C forms, which were generated through 

alternative promoter, alternative splicing site and alternative start codon (Struewing IT et 

al.2006). Also, our laboratory showed that Wnt13 nuclear forms had an increased 

sensitivity to TNF-induced apoptosis in primary endothelial cells (Struewing IT et 

al.2006), and nuclear Wnt13C underwent translational regulation during apoptosis (Tang 

T et al. 2008). Indeed, apoptotic events take place in different subcellular organelles: the 

release of cytochrome c from the mitochondria, caspase cleavage in the cytoplasm, and 

DNA fragmentation or the transactivation of transcription factor p53 in the nucleus. 

Therefore, we are wondering whether the three Wnt13 isoforms have differential effects 

on endothelial cell apoptosis through regulating different apoptotic events in the 

organelles where they are located. 

During apoptosis, caspase activation is one of the biochemical hallmarks. 

Caspase-3, 6, 7 are the executioner caspases which cleave proteins, including cytoskeletal 

proteins and nucleases, leading to the characteristics DNA breakdown and morphological 

modifications (Saraste A et al. 2000). Caspase-3 is thought to be the most important 

effector capases. Caspase-3, activated by caspase-8, caspase-9, or capase-10, has the 
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substrate specificity for the amino acid sequence Asp-Glu-Val-Asp (DEVD) and cleaves 

a number of different proteins, such as poly (ADP-ribose) polymerase-1 (PARP-1), 

DNA-dependent protein kinase, which are important for apoptosis initiation (Villa P et al. 

1997; Nicholson DW et al. 1995).  Also, caspase-3 preferentially activates caspase 

activated DNase (CAD) and ACINUS to induce DNA degradation and chromatin 

condensation respectively, and also cause cytoskeletal modifications and the formation of 

apoptotic bodies (Elmore S. 2007). 

The regulation in caspase expression at transcription levels or translational levels 

is important for caspase processing and activity (Eearnshaw WC et al. 1999). Human 

U937 cells treated by γ-interferon which can induce caspase expression showed enhanced 

susceptibility to apoptosis triggered by gamma-irradiation or antitumor agents (Tamura T 

et al. 1996), which is important for U937 cell differentiation to monocytes/macrophages. 

And based on the study from heterozygous and knockout mice of caspase-3, the 

expression of caspase-3 correlated to the sensitivity of T cells to apoptosis induced by 

etoposide (Sabbagh L et al. 2004), further indicating the significance of caspase-3 

expression in apoptosis.  

The activation of caspases is in particular regulated by Bcl2 family, which can be 

subdivided into three groups: the pro-apoptotic Bax and Bak, the anti-apoptotic family 

members Bcl-xl, Bcl-w, Mcl-1 and A1A, and the pro-apoptotic BH3-only proteins Bim, 

Bad, Bid (Youle RJ et al. 2008).  Bax and Bak are major pro-apoptotic members in Bcl-2 

family, which oligomerization will form the channels or pores at mitochondrial innner 

membrane, leading to the release of cytochrome c and initiation of downstream apoptotic 

events. However, Bcl-2 and Bcl-xL are major anti-apoptotic members, which form 
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heterodimer with Bax or Bak and inhibit their apoptosis-promoting function 

(Lomonosova E et al. 2008). The status of this pro-apoptotic/anti-apoptotic balance in 

Bcl-2 family not only governs whether the cell is committed to cell death, but it also 

determines the ability of the cell to respond to an apoptotic signal (Perlman H et al. 

1999). The Bax/Bcl-2 rheostat has been shown to be critical for the sensitivity of human 

melanoma cells to cell death induced by Fas and ceramide (Raisova M et al. 2001); 

estrogen enhanced Bax/Bcl-2 ratio and induced apoptosis both in ovariectomized rats and 

cultured anterior pituitary cells (Zaldivar V et al. 2009). Moreover, the Bax/Bcl-2 ratio 

was found to accurately predict the clinical response and outcome of patients with acute 

myeloid leukemia because patients with higher Bax/Bcl-2 ratio had significantly longer 

overall survival and disease free survival (Del Poeta G et al. 2002). So Bax/bcl-2 ratio 

has been used as an index to roughly predict the susceptibility of the cell to apoptosis.  

In addition, BH3-only proteins such as Bim can promote pro-apoptotic signals 

through either directly activating Bax, or inhibiting anti-apoptotic Bcl-2, resulting in Bax 

oligomerization (Danial NN. 2007). Bim-deficiency mice had abnormally high numbers 

of lymphoid and myeloid cells; and older Bim-deficient mice develop splenomegaly, 

lymphadenopathy, and autoimmune kidney disease, indicating that Bim is critical for 

apoptosis and homeostasis in the lymphoid and myeloid compartments (Bouillet P et al. 

1999). Overexpression of Bim induced a remarkable increase of apoptosis in NIH 3T3 

fibroblasts (Marani M et al. 2002) and in Hela cells (Herrant M er al. 2004). Therefore, 

Bim serves as a key initiator of the intrinsic pathway of apoptosis, and the regulation of 

Bim expression and activity can tightly affect the downstream apoptotic events. 
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Bcl-2 family is the hub to connect the intrinsic apoptotic pathway with the 

extrinsic apoptotic pathway (Youle RJ et al. 2008). In endothelial cells, LPS-induced 

apoptosis involves the extrinsic pathway (Bannerman DD et al. 2003). Generally, the 

extrinsic apoptotic pathway is dependent on transmembrane death receptors binding 

extracellular ligands, (for example, DR5/TRAIL is one of the death receptor/ligand 

pairs), leading to the recruitment of adapter proteins TRADD, which form death-inducing 

signaling complex (DISC) with caspase-8 and activates caspase-8 to induce downstream 

caspase-3 activation (Wang Z et al. 2005). C-FLIP can regulate and inhibit extrinsic 

pathway by competing with caspase-8 for DISC activation (Wilson NS et al. 2009). So 

upregulating pro-apoptotic TRAIL, DR5 and caspase-8 or downregulating anti-apoptotic 

FLIP may be the mechanisms to promote apoptosis through the extrinsic pathway. 

PI3K-Akt pathway can be activated by a variety of extracellular signals, and 

involved in cell proliferation, survival and protein synthesis, and tumor growth. The 

activation of Akt can inhibit apoptosis through activating pro-survival factors like NF-κB 

and inactivating pro-apoptotic factors such as Bad (a Bcl-2 family member), FOXOs, 

caspase-9, as well as GSK3β (Jiang BH et al. 2008; Dillon RL et al. 2007). Moreover, 

Akt signaling has been found to be required in the functions of Wnt-1, 3a, 5a, and 8a in 

different systems (Longo KA et al. 2002; Almedida M et al. 2005; Constantinou T et al. 

2008; Naito AT et al. 2005), suggesting the critical role of Akt signaling in Wnt cascade 

which is involved in cell survival. 

GSK3β, which can inhibit Wnt/β-catenin signaling, has also been shown to be 

associated with cell apoptosis and inflammation. Overexpression of GSK-3β is sufficient 

to trigger apoptosis in different types of cells, such as neurons, vascular smooth muscle 
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cells, endothelial cells, and astrocytes (Li M et al. 2000; Hall JL et al. 2001; Kim HS et 

al. 2002; Sanchez JF et al. 2003). And GSK-3β has been found to promote the intrinsic 

apoptotic pathway triggered by different cellular insults, such as DNA damage, ER stress, 

hypoxia, removal of NGF or BDNF, hypertonic stress, oxidative stress, mitochondrial 

toxins and ceramide, by regulating transcription factors that control pro- and anti-

apoptotic proteins, by promoting microtubule disruption, and by inducing mitochondrial 

disruption though activating pro-apoptotic members like Bax or degrading anti-apoptotic 

members like Mcl-1 (Beurer E et al. 2006; Forde JE et al. 2007). On the other hand, 

Lithium, the inhibitor of GSK-3β, reduces mouse acute renal failure induced by LPS via 

attenuating inflammation and renal cell apoptosis (Wang Y et al. 2009), further indicating 

that GSK-3β plays a positive role in promoting cell apoptosis and inflammation.  

For GSK3β, direct phosphorylation of N-terminal Ser9 is associated with the 

inhibition of GSK3β activity (Forde JE et al. 2007), and the activation of Akt leads to the 

phosphorylation of Ser9, thereby inhibiting GSK3β (Pearl LH et al. 2002). So Akt 

activation through phosphorylation at Ser473 and GSK inactivation through 

phosphorylation at Ser9 may be negatively correlated with cell apoptosis.  

Also, ROS can be another mechanism that induces apoptosis. ROS has been 

shown to induce mitochondrial permeability transition (Garrido C et al. 2006). 

Furthermore, it was found that the oxidation of cardiolipin, which is a mitochondria-

specific anionic phospholipid, decreases the affinity of cytochrome c to cardiolipin and 

leads to the detachment of cytochrome c from the inner mitochondrial membrane, which 

may be another mechanism to explain the role of oxidative stress in cell apoptosis (Ott M 

et al. 2007). Also, peroxide contributes to the induction of apoptosis by stimulating the 
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activity of nuclear transcription factors to upregulate pro-apoptotic proteins or to inhibit 

anti-apoptotic proteins (Chandra J et al. 2000). Some studies showed that ROS-induced 

apoptosis is related to Akt signaling. Manumycin-A stimulated superoxide production 

and apoptosis in lymphoid tumor and myeloma cell lines, and led to dephosphorylation of 

Akt in ROS-dependent manner (Sears KT et al. 2008). And Cao J et al further revealed a 

direct interaction between Akt and ROS: ROS mediated a conformational change of Akt 

by forming an intramolecular disculfide bond and disrupted Akt activity by promoting 

dephosphorylation at Ser473 (Cao J et al. 2009). 

Consequently, to study the possible mechanisms of the increased apoptosis by 

nuclear Wnt13 forms, here we have investigated the effect of Wnt13 forms on caspase 

activation and expression, Bcl-2 family members including Bax, Bcl-2 and Bim, 

apoptotic factors in the extrinsic pathway, the Akt-GSK signaling and ROS production. 

 

5.3 Materials and methods 

5.3.1 Materials 

Geneticin (G-418) were purchased from Invitrogen. The rabbit polyclonal 

antibodies against cleaved caspase-7 (Asp198), and caspase-7, Bax, Bim, Akt, P-Akt 

(Ser473), GSK3β, P-GSK3β (Ser9) were products from Cell Signaling Technology. The 

rabbit polyclonal Bcl-2 antibody was from Santa Cruz. EnzChek® Caspase-3 Assay Kit 

was from Molecular Probes.  
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5.3.2 Cell culture and transfection 

Cell culture and transient transfection were described in 3.2 and 3.3. For stable 

transfection, BAECs were plated into a 6-well plate and each well was transfected 

transiently with either PCR3 vector control or one of Wnt13 constructs using Exgene500. 

40 hours later, cells in each well were trypsinized and plated into an individual dish, and 

maintained with culture media supplemented with 750µg/ml Geneticin for 2-3 weeks till 

colonies appeared. After selection, cells positive for plasmid were remained and 

amplified for the use of experiments.  

 

5.3.3 Plasmid constructs 

Please refer 3.4. 

 

5.3.4 RNA isolation and real-time PCR (refer 3.5) 

 

5.3.5 Cell extracts and western blot analysis (refer 3.6) 

 

5.3.6 Caspase-3 like activity assay 

Caspase-3 like activity was determined using EnzChek® Caspase-3 Assay Kit. 

According to the manufacture’s handbook, cells were harvested after treatment by 
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scrapping off the plates and subsequently underwent centrifuge at 600g for 5 minutes. 

After washing with PBS, cell pellet of each sample was lysed by 100µl 1X cell lysis 

buffer supplemented with 10mM NaF, 1X Phosphatase Cocktail and Apotonin (Sigma), 

and underwent freeze-thaw cycle. The lysed cells were then centrifuged at 5000rpm for 5 

minutes (4oC). 25µl of supernatant was used for caspase-3 like activity assay, and another 

20µl of supernatant was used to determine protein content. 

For caspase-3 like activity assay, 25µl of supernatant sample was transferred to a 

96 well microplate and mixed with 75µl substrate working solution, which was a mixture 

of 25µM Z-DEVD-R110 and 1X reaction buffer at room temperature. At the same time, 

to generate standard curve, 5mM R110 standard solution was diluted to yield R110 

solutions ranging in concentration from 0- 25µM, which were then transferred to the 

same microplate. After 30 minutes, the fluorescence intensity was measured by Fusion 

Microplate Reader (excitation/emission 475/520nm). Once the standard curve was drawn, 

the fluorescence intensity of each sample was calculated, and divided by protein content 

of the same sample for correction. 

 

5.3.7 Protein determination 

Protein content was measured using Bio-Rad DC Protein Assay kit, based on 

Lowry assay. Firstly, 10µg/µl BSA was diluted into the cell lysis buffer used in caspase-3 

activity assay, to make 5 different dilutions for protein standard. For each 20µl sample 

and protein standard, 100µl Reagent A’, which was made from Reagen A (alkaline 

copper tartrate solution) mixed with Reagent S) was added to the tube and mixed with the 
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sample. Then, 1ml Reagent B (dilute Folin Reagent) was pipetted into the tube containing 

Reagent A and the sample/standard, and then mixed with by vortex. After 15 minute 

incubation at room temperature, the reaction solution of each sample was transferred into 

a 96 well microplate, and the absorbance was read at wavelength 750nm by 

spectrophotometer. When the standard curve was drawn, the protein content of each 

sample was calculated using the equation generated from the standard curve.  

 

5.3.8 Determination of reactive oxygen species 

5.3.8.1 CM-H2DCFDA assay for intracellular ROS (peroxide, peroxyl radical, 

peroxynitrite, and nitric oxide) 

5-(and-6)-chloromethyl-2', 7'-dichlorodihydrofluorescein diacetate, acetyl ester 

(CM-H2DCFDA) is a cell-permeable indicator and sensitive to intracellular ROS. The 

fluorescent signal used to detect the ROS results from the intracellular removal of the 

acetate groups of CM-H2DCFDA and oxidation. BAECs were plated in a 24-well plate 

and then transfected with Wnt13-Flag constructs. After 40 hours, media were removed 

from the plate, and cells were washed with PBS once. Subsequently, cells were added 

with PBS (Ca2+, Mg2+) supplemented with CM-H2DCFDA dye (final concentration 2µM) 

and incubated at 37oC for 30 minutes. Then cells were washed with PBS (Ca2+, Mg2+) for 

3 times followed by incubation at 37oC for 15 minutes. The fluorescence intensity was 

read using Fusion Microplate Reader at wavelength 490 (Excitation) /520 (Emission) nm. 

CyQuant assay was then performed to determine the cell number. The relative CM-
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H2DCFDA intensity was calculated by CM-H2DCFDA fluorescence intensity/CyQuant 

fluorescence intensity.  

 5.3.8.2 Dihydroethidium (DHE) assay for superoxide  

BAECs were plated in a 24-well plate and then transfected with Wnt13-Flag 

constructs. After 40 hours, media were removed from the plate, and cells were washed 

with PBS once. Subsequently, cells were added with no-serum DMEM supplemented 

with DHE dye (final concentration 10 µM) which upon reaction with superoxide anions 

forms a red fluorescent product (ethidium), and incubated at 37oC for 30 minutes. Cells 

were then washed with PBS (Ca2+, Mg2+) for 3 times. The fluorescence intensity was read 

using Fusion Microplate Reader at wavelength 520 (Excitation) /590 (Emission) nm. 

CyQuant assay was then performed to determine the cell number. The relative DHE 

intensity was calculated by DHE fluorescence intensity/CyQuant fluorescence intensity.  

5.3.8.3 CyQuant assay 

The CyQUANT assay is based on the use of the green-fluorescent CyQUANT GR 

dye, which exhibits strong fluorescence enhancement when bound to cellular nucleic 

acids. Also cellular DNA content is highly regulated, and it is closely proportional to cell 

number, so the CyQUANT assay is one of the methods to measure cell number. After the 

CM-H2DCFDA or DHE assay, PBS was removed from the plate and cells were frozen in 

-80oC. After the freeze-thaw cycle, the plate were read by Fusion Microplate Reader at 

wavelength 485 (Excitation) /520 (Emission) nm for determination of background 

fluorescence. Then cells were added with a mixture of 1× CyQuant substrate and 1× lysis 

buffer followed by 10-minute incubation at room temperature. Then the fluorescence 
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intensity was read using Fusion Microplate Reader at 485 (Excitation) /520 (Emission) 

nm. The CyQuant fluorescence intensity was calculated by (Intensity after adding 

substrate – Intensity before adding substrate). 

 

5.3.9 Statistical analysis 

All results are expressed as mean ± SEM. All values in this chapter are 

represented by the relative levels over PCR3 control. Since all the values in the control 

groups were set as 1, which does not fit normal distribution, One Way ANOVA analysis 

is not appropriate at this point. Thus, One Sample T-test (hypothesized value = 1) was 

used. Statistical significance was accepted at a value of P<0.05.  

 

5.4 Results 

5.4.1 The effect of Wnt13 isoforms on caspases in BAECs 

5.4.1.1 Caspase-3 activation 

Caspase-3 activation is one of the hallmarks during apoptosis, so we firstly 

determined caspase-3 like activity in BAECs. As shown in Figure 5.1A, after transient 

transfection with different Wnt13-Flag constructs, the caspase-3 like activity at basal 

levels was increased only by the nuclear M1L-Wnt13B (around 60%) compared to the 

vector control PCR3. After 100ng/µl LPS treatment for 16 hours, caspase-3 activity went 

up to 8 fold higher than that in basal level (data not shown), and M1L-Wnt13B showed 

increased activity by 50% compared to the vector control. Although this increase was not 
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statistically significant, the increase trend is still similar than that in basal levels. We also 

established BAECs which stably expressed Wnt13-Flag isoforms, and similar to transient 

transfection, M1L-Wnt13B still showed 1.5 fold increase of caspase-3 like activity 

compared to the vector control both at basal levels and after LPS treatment. But unlike 

transient transfection, stably-transfected Wnt13C (Figure 5.1B) had up to 2 fold increase 

of caspase-3 activity than control group in LPS-treated BAECs. For M74L-Wnt13B, 

there was a moderate increase (40%-50%) in transient transfection, but the increase in 

stable transfection was even bigger (by 80%), especially in basal levels showing the 

statistical significance.  

To further confirm caspase-3 activation, we also measured the amount of protein 

product after caspase-3 cleavage by western blotting. Two markers were used: one is 

cleaved caspase-3/actin, which demonstrated the absolute amount of cleaved caspase-3 

produced during apoptosis; the other is cleaved caspase-3/total caspase-3, which 

represented the ratio of cleavage compared to total caspase-3 (pro-caspase-3 plus 

cleaved-caspase-3). There was no cleaved-caspase 3 detected at basal levels, but LPS 

treatment induced obvious caspase-3 cleavage in BAECs. In transient transfection 

(Figure 5.2A), M1L-Wnt13B showed around 2 times increase in cleaved caspase-3/actin 

during LPS-induced apoptosis, and the mitochondrial forms (Wnt13B and M74L-

Wnt13B) increased the amount of cleaved caspase-3 to a less extend (around 50%). Also, 

cleaved caspase-3/total caspase-3 ratio was increased by mitochondrial forms and nuclear 

forms, but all the Wnt13 isoforms showed less increase of cleaved caspase-3/total 

caspase-3 than that of cleaved caspase-3/actin, especially M1L-Wnt13B (40% increase in 

cleaved caspase-3/total caspase-3), suggesting that the increase of caspase-3 cleavage 
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may partially result from the increase of pro-caspase-3 expression. However, in stable 

transfection (Figure 5.3A), Wnt13C-Flag was the only form to obviously elevate cleaved 

caspase-3/actin (2.3 fold), and M1L-Wnt13B and M74L-Wnt13B had a moderate 

increase by 50%. But the ratio of cleaved caspase-3/total caspase-3 remained unchanged 

for all the Wnt13 isoforms, further suggesting the increase of pro-caspase 3 levels by 

Wnt13 forms.  

5.4.1.2 Caspase-3 expression 

We then analyzed caspase-3 expression at protein levels and mRNA levels. As 

expected, transiently-transfected M1L-Wnt13B had bigger increase (> 2 fold) of capase-3 

protein expression both at basal levels and after LPS treatment than all the other Wnt13 

forms, as is shown in Figure 5.4A, supporting the previous hypothesis that increased 

caspase-3 cleavage was partially due to the increase of pro-caspase-3 expression. At 

mRNA levels, M1L-Wnt13B still produced higher increase of caspase-3 than other 

Wnt13 isoforms (Figure 5.4B). However in stable transfection (Figure 5.5), all the Wnt13 

isoforms increase both the protein and mRNA expression of caspase-3 at basal level more 

than Wnt13B, which can be explained by the stably-transfected Wnt13B expression level 

which was the least among all the isoforms. After LPS treatment, the protein level of 

caspase-3 went up to 4 fold of the expression at basal levels, and all the Wnt13 isoforms, 

showed a trend of increase (more than 50%), especially M1L-Wnt13B and M74L-

Wnt13B (> 2 fold), but only Wnt13A had statistical significance.  
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5.4.1.3 Caspase-7 cleavage and expression 

The EnzChek® Caspase-3 Assay Kit we used for caspase-3 like activity allowed 

the detection of not only caspase-3 activity, but also other DEVD-specific protease 

activities, such as caspase-7. Therefore, we also determine the cleavage of caspase-7 to 

see whether caspase-7 contributed to the increase of caspase-3 like activity. As shown in 

Figure 5.6A, Wnt13A, Wnt13B and M1L-Wnt13B increased the absolute amount of 

cleaved caspase-3 (cleaved caspase-3/actin) in transiently-transfected BAECs during 

LPS-induced apoptosis. However, the ratio of cleaved caspase-7/caspase-7 was not 

changed by any Wnt13 isoforms. Thus we then investigated the caspase-7 expression, 

and we found that Wnt13 forms, except Wnt13C and M74L-Wnt13B, showed a trend in 

increasing the protein expression of caspase-7 at basal levels. LPS treatment induced a 4 

fold increase in protein levels of caspase-7 compared to basal levels (data not shown), 

and Wnt13A and M1L-Wnt13B further elevated caspase-7 protein expression (Figure 

5.6B). Wnt13B showed a similar increase, but it was not statistically significant. 

Therefore, Wnt13A and M1L-Wnt13B increase the amount of cleaved caspase-7 mainly 

by increasing caspase-7 expression.  

 

5.4.2 The effect of Wnt13 forms on Bcl-2 family members in BAEC 

5.4.2.1 Bax/Bcl-2 

Bcl-2 family governs the switch on or off of apoptosis by the pro-apoptotic 

members such as Bax and anti-apoptotic members such as Bcl-2. Therefore, to study the 

underlying mechanisms by which nuclear Wnt13 forms increase the caspase activation, 
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we analyze the levels of Bax and Bcl-2. Firstly, in transient transfection (Figure 5.7A), 

both protein levels and mRNA levels of Bax were shown upregulated (around 50%) by 

M1L-Wnt13B at basal levels in BAECs; during LPS-induced apoptosis, the protein levels 

of Bax were also increased by M1L-Wnt13B (Figure 5.7B). However, stably-transfected 

Wnt13 isoforms did not show any effect on Bax expression at either protein levels or 

gene levels (Figure 5.8). Moreover, in transiently-transfected BAECs at basal levels, 

M1L-Wnt13B and M74L-Wnt13B upregulated both the protein expression and mRNA 

expression of Bcl-2 by 80% and 60%, respectively, which is shown in Figure 5.7 and 5.9. 

After LPS treatment, the protein expression of Bcl-2 had a similar trend of increase by 

M1L-Wnt13B and M74L-Wnt13B (Figure 5.7B). Like Bax, the Bcl-2 expression in 

stable transfection was not obviously changed by Wnt13-Flag isoforms (Figure 5.8 and 

5.10).   

Importantly, Bcl-2 forms heterodimer with Bax to antagonize Bax/Bax 

homodimerization and disrupts Bax-induced apoptosis, so the ratio of Bax/Bcl-2 

represents a cell-autonomous rheostat determining the life or death response of the cell to 

apoptotic stimuli (Korsmeyer SJ et al. 1995). We then calculated the Bax/Bcl-2 ratio 

which imbalance will cause the activation of downstream apoptotic events. Figure 5.11 

demonstrated that for both transient transfection and stable transfection, the ratio of 

Bax/Bcl-2 remained unchanged by Wnt13 isoforms either at basal levels or after LPS 

treatment.  

 

 



143 
 

5.4.2.2 Bim expression 

Besides Bax and Bcl-2, BH3 only proteins, such as Bim, represent one subfamily 

under Bcl-2 family, which function in activating Bax to promote pro-apoptotic action. 

Thus we determined the expression of Bim in BAECs. In transient trasfection (Figure 5.7 

and 5.9), M1L-Wnt13B upregulated Bim expression at protein levels both at basal levels 

(>2 fold) and after LPS treatment (around 1.8 fold), and also upregulated its mRNA 

levels up to 4 fold at basal levels. Like M1L-Wnt13B, Wnt13B had a similar increasing 

effect but with lower extent. Wnt13A showed a trend of increasing Bim expression, but 

only the protein expression at basal levels had statistical significance. For stable 

transfection (Figure 5.8 and 5.10), like other markers described previously, Wnt13B 

induced lower Bim expression than all the other Wnt13-Flag isoforms (Figure 5.12). 

Nuclear forms of Wnt13 and M74L-Wnt13B increased Bim expression at mRNA levels 

by 2-3 fold. Moreover, only M74L-Wnt13B showed the statistical significance in 

increasing Bim expression at protein levels in LPS-treated BAECs. Therefore, although 

there was no difference in Bax/Bcl-2 ratio in Wnt13-transfected BAECs, the increase of 

pro-apoptotic Bim expression may be one of the mechanisms driving elevated caspase 

activation by nuclear Wnt13 forms. 

 

5.4.3 The extrinsic pathway and inflammatory caspases 

We were also wondering whether the increased caspase activation in BAECs was 

due to the change in apoptotic factors involved in extrinsic pathways, such as TRAIL, 

DR5, caspase-8 and anti-apoptotic FLIP. Realtime PCR analysis in transient transfection 
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showed that only M1L-Wnt13B had a trend in increasing mRNA levels of TRAIL and 

DR5, caspase-8 (Figure 5.12). Wnt13B demonstrated a weaker effect on increasing 

mRNA levels of caspase-8. However, the increasing trend in pro-apoptotic caspase-8 by 

M1L-Wnt13B and Wnt13B was accompanied by the same or even stronger increase in 

anti-apoptotic FLIP, suggesting that the extrinsic apoptotic pathway might not be the 

main force to drive EC apoptosis by Wnt13 forms. 

Besides executioner caspases (caspase-3 and 7) and initiator caspases (caspase-8), 

we also tried to discover whether Wnt13 forms increase the expression of inflammatory 

caspases (caspase-4 and 5). As shown in Figure 5.13, Wnt13 forms did not show an 

increase in mRNA expression of caspase-4 and caspase-5 in transiently-transfected 

BAECs. Therefore, our findings showed that Wnt13 forms mainly increased the 

expression/activation of the executioner caspase-3/7, but not the extrinsic pathway factor 

caspase-8, nor inflammatory caspase-4/5. 

 

5.4.4 Akt-GSK signaling and ROS production 

Since PI3K-Akt is a pro-survival signaling, and the decrease in Akt activation is 

related to apoptosis, we thereby tried to investigate whether Wnt13 forms had effect on 

Akt signaling. The phosphorylation at Ser473 of Akt is required for the full activation of 

Akt, and we found out the P-Akt (Ser473)/Akt was not obviously changed by transient 

transfection of Wnt13 forms (Figure 5.14A). Moreover, Akt targets GSK3β, a kinase 

inhibiting Wnt/β-catenin signaling and promote apoptosis in its downstream activation 

events, so we determined the phosphorylation of GSK3β at Ser9 which is inhibitory to 
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GSK activity. As shown in Figure 5.14B, Wnt13 forms did not decrease this 

phosphorylation; instead, M1L-Wnt13B showed an increasing trend in GSK 

phosphorylation. Therefore, the increased apoptosis by Wnt13 forms is independent of 

Akt activation and GSK activation. 

ROS can be one of the events that induce apoptosis with the involvement of Akt, 

so we then determined if Wnt13 forms affected ROS production in BAECs. As shown in 

Figure 5.15, all the Wnt13 forms were able to decrease the fluorescence intensity in CM-

H2DCFDA staining slightly (by 20%). However, Wnt13 forms did not decrease the 

fluorescence intensity in DHE staining; instead, mitochondrial forms increased the 

intensity of DHE by 20-40%, and Wnt13B was statistically significant. What these two 

dyes measure differs in species of ROS: the CM-H2DCFDA probe is indicative of 

intracellular ROS, including peroxide, peroxyl radical, peroxynitrite, and nitric oxide 

whereas DHE dye is mainly indicative of superoxide. Thus, our results suggest that 

Wnt13 forms slightly decrease the amount of peroxide, peroxyl radical, peroxynitrite, and 

nitric oxide, while mitochondrial forms may have a mild increase in the production of 

ROS (mainly superoxide). Overall, Wnt13 forms showed limited effect on the production 

of total ROS, and the increased caspase-3 activation by Wnt13 fomrs may not be due to 

ROS production. 

 

5.5 Discussion 

Altogether the results presented in this study showed: 1) exogous nuclear Wnt13 

forms increase caspase-3 like activity, cleavage of caspase-3,7 and caspase-3,7 
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expression in BAEC; 2) exogenous mitochondrial Wnt13 forms increased cleavage and 

protein expression of caspase-3,7, but not caspase-3 like activity; 3) except  caspase-3 

expression, secreted Wnt13A did not increase caspase-3 like activity and caspase-3 

cleavage in BAECs; 4) Wnt13 forms were unable to change Bax/Bcl-2 ratio, but 

upregulated Bim expression; 5) Wnt13 forms did not significantly increase apoptotic 

factors (TRAIL, DR5, and caspase8) in the extrinsic apoptotic pathway; 6) Wnt13 forms 

did not increase inflammatory caspase-4 and caspase-5; 6) Wnt13 forms did not change 

the phosphorylation of Akt and GSK. Hence, Wnt13 forms increase apoptosis in BAEC 

with different strengths, and Wnt13 forms, especially nuclear forms, increase the 

activation of caspases possibly though upregulating the expression of caspases and Bim 

protein. 

 

5.5.1 BAECs are sensitive to LPS-induced apoptosis 

Bacterial lipopolysaccharide (LPS) is an outer envelope of gram-negative 

bacteria, and it has been shown to cause systemic inflammatory responses as well as the 

injury of BAECs in vitro (Chakravortty D et al. 2000). And endothelial cell death induced 

by LPS in a dose range is apoptotic in nature (Bannerman DD et al. 2003). In our study, 

BAECs started to undergo morphological changes, such as cell shrinking, rounding, and 

the formation of intercellular gaps after 100ng/ml LPS treatment for 6 hours. 16 hours 

later, LPS induced obvious caspase-3 and 7 cleavage (Figure 5.2 and 5.6), 8-9 fold of 

increase in caspase-3 like activity, and 4-5 fold of increase in the expression caspase-3 
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and caspase-7, suggesting that BAECs are the cell type sensitive to undergo apoptosis 

induced by LPS. 

5.5.2 Wnt13 forms do not induce apoptosis at basal levels, but increase the susceptibility 

of BAECs to LPS-induced apoptosis 

At basal levels, although the caspase-3 like activity and the expression of caspase-

3, 7 were increased by Wnt13 forms, there was no caspase-3 cleavage detected in BAECs 

transfected with Wnt13-Flag constructs. However, LPS-challenged cells showed obvious 

cleavage of caspase-3, and Wnt13 isoforms, especially nuclear forms further increased 

caspase-3 cleavage, as well as caspase-3 like activity in BAECs treated with LPS, 

implying that Wnt13 proteins per se are not apoptotic inducers or stimuli, but the factors 

that promote the apoptotic process, in particular by increasing the expression of pro-

apoptotic factors such as executioner caspase-3/7.  

5.5.3 The nuclear forms of Wnt13 have stronger pro-apoptotic effect in BAECs than 

other forms of Wnt13 

In our study, the nuclear forms of Wnt13 demonstrated robust effects on 

increasing apoptosis in BAECs due to the following facts: 1) the nuclear Wnt13 forms 

increased caspase-3 like activity (in both transient and stable transfection) with or without 

LPS treatment, caspase-3 cleavage (in transient transfection) and caspase-3 expression (in 

both transient and stable transfection) in BAECs (Figure 5.1-5.5); 2) the nuclear Wnt13 

forms increased caspase-7 cleavage due to the increase of caspase-7 expression in BAEC 

treated with LPS (in transient transfection; Figure 5.6); 3) the nuclear Wnt13 forms 

upregulated expression of both Bax and Bcl-2 at both protein levels and mRNA levels in 
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transient transfection (Figure 5.7-5.10), without changing  Bax/Bcl-2 ratio (Figure 5.11); 

4) the expression of BH3-only protein Bim was upregulated by nuclear Wnt13 forms 

(transient transfection) both at basal levels and after LPS treatment (Figure 5.7), which 

may be one of the explanations for the increased caspase activation by nuclear Wnt13 

proteins. 

Mitochondrial forms of Wnt13 seem to have moderate effects on increasing 

apoptosis in BAECs because: 1) mitochondrial forms increased protein expression of 

caspase-3 (Figure 5.2-5.3), but not caspase-3 like activity in BAEC in transient 

transfection (Figure 5.1), so mitochondrial forms may be unable to reach the threshold of 

caspase expression to induce caspase activation; 2) M74L-Wnt13B increased caspase-3 

expression at basal levels and caspase-3 like activity after LPS treatment in stable 

transfection (Figure 5.5); 3) transiently-transfected Wnt13B increased caspase-7 cleavage 

in BAEC treated with LPS (Figure 5.6). For the Bcl-2 family members, mitochondrial 

Wnt13 forms have weaker effects on increasing expression of Bax (around 50%, Figure 

5.7-5.10) as well as Bcl-2 (Figure 5.7-5.10), and have no effect on Bax/Bcl-2 ratio 

(Figure 5.11). Besides, Wnt13B upregulated Bim expression up to 2 fold in transient 

transfection, and this increase was slightly lower than nuclear Wnt13 forms which 

upregulated Bim up to 2.7 fold (Figure 5.7 and 5.9).  

Secreted Wnt13A form is the one with the least activity in increasing apoptosis in 

BAECs. Wnt13A upregulated caspase-3 expression (Figure 5.4 and 5.5), but Wnt13A 

was not able to increase caspase-3 like activity and caspase-3 cleavage in BAECs (Figure 

5.1-5.3). And Wnt13A showed a mild effect on caspase-7 cleavage and caspase-7 

expression (Figure 5.6). As for Bcl-2 family members, Wnt13A did not show the ability 
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of increasing in the expression of Bax or Bcl-2, nor Bax/Bcl-2 ratio (Figure 5.7-5.11), but 

Wnt13A displayed a moderate effect on upregulating Bim expression (Figure 5.7-10).  

Therefore, the strength of Wnt13 isoforms in increasing BAEC apoptosis is: 

nuclear >mitochondrial >secreted forms. This phenomenon is consistent with the findings 

our laboratory has reported in 2006, i.e., nuclear forms of Wnt13, other than 

mitochondrial forms or Wnt13A,  increased the appearance of apoptotic nuclei as well as 

the sensitivity of BAECs to TNFα-induced apoptosis (Struewing IT et al. 2006). 

Furthermore, some other Wnts showed pro-apoptotic action in cells. For example, Wnt7b 

mediated macrophage-induced programmed cell death in the developing mouse eye 

(Lobov IB et al. 2005), and Wnt5a overexpression cause increased apoptosis in 

thymocytes in vitro (Liang H et al. 2007). Additionally, components of Wnt signaling 

including Fz receptors, GSK-3β, c-myc have been shown to function in increasing cell 

apoptosis (van Gijn ME et al. 2001; Li M et al. 2000; Askewe DS et al. 1991). So our 

study further indicates that together with other Wnts, Wnt13 proteins, especially nuclear 

Wnt13 forms, are important for the regulation of cell apoptosis. 

5.5.4 The difference of expression patterns in transient transfection and stable 

transfection 

In transient transfection, although Wnt13C and M1L-Wnt13B are equivalent in 

translated protein, the expression of Wnt13C is always much weaker than that of M1L-

Wnt13B in normal culture condition (Figure 4.2A), so it is expected that M1L-Wnt13B 

showed bigger effect in increasing apoptotic markers in BAEC than Wnt13C. 
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However, stable transfection is another case. For Wnt13 expression, except 

Wnt13A, all the other exogenous Wnt13 forms could not be detected by immunoblotting 

using Flag antibodies. Based on the immnofluoresence staining, we found that the 

expression pattern is: Wnt13A>Wnt13C=M1L-Wnt13B>M74L-Wnt13B>Wnt13B 

(described in 3.10.2), which makes easier to understand some phenomenon in stable 

transfection: 1) the advantage of M1L-Wnt13B over other forms in increasing caspase-3 

activation and expression was not that obvious (Figure 5.1-5.2 and Figure 5.4) due to the 

lower levels of M1L-Wnt13B in stable transfection (maybe more M1L-Wnt13 positive 

cells died during G418 selection because of the increased EC sensitivity by M1L-

Wnt13B); 2) Wnt13C sometimes had stronger effects than in transient transfection 

(caspase 3 in Figure 5.1-5.3 and Bim in Figure 5.8, 5.10); 3) Wnt13A had higher incease 

in caspase-3 expression (Figure 5.5); 4) the effect of Wnt13B was the weakest in 

upregulating the expression of caspase-3 and Bim (Figure 5.5 and 5.8, 10). And we also 

noticed that Wnt13 forms in stable transfection had stronger effects than those in 

transient transfection. For example, the mRNA expression of caspase-3 was increased by 

Wnt13 forms up to 5 fold in stable transfection instead of 2 fold in transient transfection 

(Figure 5.4-5.5). A possible explanation is that in stable transfection, Wnt13 forms has 

been expressed continuously although in lower amount, which might produce durable and 

accumulated actions, ending up with a bigger effects on EC sensitivity to apoptosis. 

5.5.5 The putative significance of Wnt13 forms in apoptosis 

In the previous chapter (Aim1), our data demonstrated that nuclear Wnt13C was 

increased at translational levels during apoptosis induced by a variety of stress stimuli. 

And in this chapter, we have shown that nuclear forms of Wnt13 was able to increase 
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caspase activation through upregulating caspase and Bim expression, further suggesting 

the presence of the positive loop between expression and function of Wnt13 nuclear 

forms, which may facilitate the completion of apoptosis in BAECs upon stress challenge.  

5.5.6 Wnt13, Akt/GSK signaling and ROS 

PI3K-Akt pathway is involved in cell proliferation, survival and protein synthesis, 

and tumor growth through activating pro-survival factors like NF-κB and inactivating 

pro-apoptotic factors such as Bad, FOXOs, caspase-9, as well as GSK3β (Jiang BH et al. 

2008; Dillon RL et al. 2007). Akt signaling is required in the functions of Wnt-1, 3a, 5a, 

and 8a in different systems (Longo KA et al. 2002; Almedida M et al. 2005; 

Constantinou T et al. 2008; Naito AT et al. 2005). GSK3β, which can inhibit Wnt/β-

catenin signaling, has also been shown to promote cell apoptosis. The activation of Akt 

leads to the phosphorylation of GSK3β at Ser9, thereby inhibiting GSK3β (Pearl LH et 

al. 2002). So Akt activation through phosphorylation at Ser473 and GSK inactivation 

through phosphorylation at Ser9 may be negatively correlated with cell apoptosis. 

However, our study showed that Wnt13 forms did not significantly decrease either Akt 

phosphorylation at Ser473 or GSK3β phosphorylation at Ser9, indicating that Wnt13 

forms did not inhibit Akt activation nor promote GSK activation in BAECs. Instead, 

M1L-Wnt13 showed a moderate increase in GSK (Ser9) phosphorylation, which suggests 

that the effect of M1L-Wnt13B on GSK3β is relatively independent of Akt activity, and 

other signaling pathway, such as ERK1/2 which also phosphorylates  GSK3β at Ser9 

(Kim SD et al. 2007) may be involved in the increased EC sensitivity to apoptosis by 

Wnt13 forms.  
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Also, increased ROS production can be another mechanism that induces 

apoptosis, and some studies showed that ROS-induced apoptosis is related to Akt 

signaling. In our study, CM-H2DCFDA staining showed that Wnt13 forms slightly 

decreased the amount of ROS including peroxide, peroxyl radical, peroxynitrite, and 

nitric oxide, while DHE staining showed that mitochondrial forms had a mild increase in 

the production of ROS (mainly superoxide). The net effect of Wnt13 forms is limited on 

the production of total ROS. Thereby, the increasing effect on EC susceptibility to 

apoptosis by Wnt13 forms may be not attributed by increased ROS production, or by 

Akt-GSK signaling. In addition, for H2DCFDA staining, we used intensity of CyQuant 

staining for normalization. However, CyQuant staining is measuring cell number without 

indicating cell status, so it would be more appropriate to use oxidized DCFDA for the 

control of probe uptake and the activity of esterase in cells.  

Altogether, our data showed that Wnt13 forms, especially the nuclear forms, 

increased EC sensitivity to LPS-induced apoptosis via upregulating the expression of key 

apoptotic factors such as the executioner caspases and the pro-apoptotic Bim, without 

affecting the extrinsic apoptotic pathway, inflammatory caspases, ROS production or 

Akt/GSK signaling. Thus, our next goal is to determine which transcription factor is 

activated or regulated by Wnt13 forms to increase the expression of executioner caspases 

and Bim. 
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A) 

 

B) 

 

Figure 5.1 The nuclear Wnt13 forms increased caspase-3 like activity in BAECs. BAECs 

were transiently transfected with the PCR3 vector or Wnt13-Flag constructs for 24 hours 

(A) or stably transfected (B), followed by treatment of 100ng/ml LPS; 16 hours later, 

cells were harvested and lysed for caspase-3 like activity determination. The relative 

activity levels after normalization with basal or LPS treated PCR3 values (set as 1) are 

represented in the graph (mean±SEM, n=6 independent transfection experiments; *<0.05, 

**<0.01, ***<0.001). 
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A) 

 

B) 

 

Figure 5.2 The nuclear and mitochondrial Wnt13 forms increased caspase-3 cleavage in 

BAECs in transient transfection.  BAECs were transiently transfected with the PCR3 

vector or Wnt13-Flag constructs for 24 hours, followed by LPS treatment (100ng/ml). 16 

hours later, whole cell exacts were prepared and Flag-tag, cleaved caspase-3 and β actin 

were analyzed by immunoblotting with specific antibodies. A) The relative cleavage 

levels after normalization with basal or LPS treated PCR3 values (set as 1) are 

represented in the graph (mean±SEM, n=6-15 independent transfection experiments; 

*<0.05, **<0.01). B) Representative images of western blotting analysis are shown. 
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A) 

 

B) 

 

Figure 5.3 The nuclear Wnt13 forms increased caspase-3 cleavage in BAECs in stable 

transfection.  BAECs were stably transfected with the PCR3 vector or Wnt13-Flag 

constructs, followed by LPS treatment (100ng/ml). 16 hours later, whole cell exacts were 

prepared and Flag-tag, cleaved caspase-3 and β actin were analyzed by immunoblotting 

with specific antibodies. A) The relative cleavage levels after normalization with basal or 

LPS treated PCR3 values (set as 1) are represented in the graph (mean±SEM, n=6-15 

independent transfection experiments; *<0.05). B) Representative images of western 

blotting analysis are shown. 
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A)                                                                                         

 

B) 

 

Figure 5.4 The nuclear Wnt13 forms increase caspase-3 expression more than the other 

forms in transient transfection. BAECs were transiently transfected with the PCR3 vector 

or Wnt13-Flag constructs for 24 hours, followed by LPS treatment (100ng/ml), A) 16 

hours later, whole cell exacts were prepared and caspase-3 and β actin were analyzed by 

immunoblotting with specific antibodies; or B) 6 hours later, cells were harvested and 

treated with Trizol prior to RNA extraction and real-time PCR analysis. The relative 

protein or mRNA levels after normalization with basal or LPS treated PCR3 values (set 

as 1) are represented in the graph (mean±SEM, n=6-15 independent transfection 

experiments; *<0.05, **<0.01). 
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A) 

 

B) 

 

Figure 5.5 All the Wnt13 isoforms induced increase in caspase-3 expression at basal 

levels in stable transfection. BAECs were stably transfected with the PCR3 vector or 

Wnt13-Flag constructs, followed LPS treatment (100ng/ml). A) 16 hours later, whole cell 

exacts were prepared and caspase-3 and β actin were analyzed by immunoblotting with 

specific antibodies; or B) 6 hours later, cells were harvested and treated with Trizol prior 

to RNA extraction and real-time PCR analysis. The relative protein or mRNA levels after 

normalization with basal or LPS treated PCR3 values (set as 1) are represented in the 

graph (mean±SEM, n=6 independent transfection experiments; *<0.05, **<0.01, 

***<0.001). 
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A)                                                                        B) 

 

C) 

 

Figure 5.6 Transiently-transfected Wnt13 forms increase caspase-7 cleavage due to the 

increase of caspase-7 expression in BAECs treated with LPS. BAECs were transiently 

transfected with the PCR3 vector or Wnt13-Flag constructs for 24 hours, followed by 

LPS treatment (100ng/ml). 16 hours later, whole cell exacts were prepared and cleaved 

caspase-7, caspase-7 and β actin were analyzed by immunoblotting with specific 

antibodies. The relative cleavage or protein levels after normalization with basal or LPS 

treated PCR3 values (set as 1) are represented in the graph (mean±SEM, n=10 

independent transfection experiments; *<0.05, **<0.01). Caspase-7 cleavage (A), the 

protein expression of caspase-7(B), and representative images of western blotting 

analysis (C) are shown. 
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A)                                                                                        B)              

 

C)

 

Figure 5.7 Effect of Wnt13 forms on the protein expression of Bcl-2 family members in 

transient transfection. BAECs were transiently transfected with the PCR3 vector or 

Wnt13-Flag constructs for 24 hours, followed by LPS treatment (100ng/ml). 16 hours 

later, whole cell exacts were prepared, and Bim, Bax, Bcl-2 and β actin were analyzed by 

immunoblotting with specific antibodies. The relative protein levels after normalization 

with (A) basal or (B) LPS treated PCR3 values (set as 1) are represented in the graph 

(mean±SEM, n=10 independent transfection experiments; *<0.05, **<0.01, ***<0.001). 

C) Representative images of western blotting analysis are shown. 
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A)                                                                                                           B) 

 

C) 

 

Figure 5.8 Effect of Wnt13 forms on protein expression of Bcl-2 family members in 

stable transfection. BAECs were stably transfected with the PCR3 vector or Wnt13-Flag 

construct, followed by LPS treatment (100ng/ml). 16 hours later, whole cell exacts were 

prepared and Bax and β actin were analyzed by immunoblotting with specific antibodies. 

The relative protein levels after normalization with (A) basal or (B) LPS-treated PCR3 

values (set as 1) are represented in the graph (mean±SEM, n=6 independent transfection 

experiments; *<0.05). C) Representative images of western blotting analysis are shown. 
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A) 

 

B) 

 

Figure 5.9 Effect of Wnt13 isoforms on mRNA expression of Bcl-2 family members in 

transient transfection. BAECs were transiently transfected with the PCR3 vector or 

Wnt13-Flag constructs for 24 hours, followed by LPS treatment (100ng/ml). 6 hours 

later, cells were harvested and treated with Trizol prior to RNA extraction and real-time 

PCR analysis. The relative mRNA levels after normalization with A) basal or B) LPS 

treated PCR3 values (set as 1) are represented in the graph (mean±SEM, n=10 

independent transfection experiments; *<0.05; **<0.01). 
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Figure 5.10 Effect of Wnt13 forms on mRNA expression of Bcl-2 family members at 

basal levels in stable transfection. BAECs were stably transfected with the PCR3 vector 

or Wnt13-Flag constructs. Cells were harvested and treated with Trizol prior to RNA 

extraction and real-time PCR analysis. The relative mRNA levels after normalization 

with basal PCR3 values (set as 1) are represented in the graph (mean±SEM, n=6 

independent transfection experiments; *<0.05; **<0.01). 
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A) 

 

 

B) 

 

Figure 5.11 The Bax/Bcl-2 ratio remained unchanged by Wnt13 isoforms. BAECs were 

A) transiently transfected for 24 hours or B) stably transfected with the PCR3 vector or 

Wnt13-Flag constructs, followed by LPS treatment (100ng/ml). 16 hours later, whole cell 

exacts were prepared and Bax, Bcl-2, and β actin were analyzed by immunoblotting with 

specific antibodies. The relative ratio levels after normalization with basal or LPS treated 

PCR3 values (set as 1) are represented in the graph (mean±SEM, n=6-10 independent 

transfection experiments). 
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A) 

 

B) 

 

Figure 5.12 Effect of Wnt13 forms on the mRNA levels of extrinsic apoptotic factors in 

transiently-transfected BAECs. BAECs were transiently transfected with the PCR3 vector 

or Wnt13-Flag constructs for 40 hours. Subsequently, cells were harvested and treated 

with Trizol prior to RNA extraction and real-time PCR analysis. The relative mRNA 

levels after normalization with basal PCR3 values (set as 1) are represented in the graph 

(mean±SEM, n=5 independent transfection experiments.). 
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Figure 5.13 Effect of Wnt13 forms on the mRNA levels of inflammatory caspases in 

transiently-transfected BAECs. BAECs were transiently transfected with the PCR3 vector 

or Wnt13-Flag constructs for 40 hours. Subsequently, cells were harvested and treated 

with Trizol prior to RNA extraction and real-time PCR analysis. The relative mRNA 

levels after normalization with basal PCR3 values (set as 1) are represented in the graph 

(mean±SEM, n=5 independent transfection experiments.). 
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A)                                                                               B) 

 

C) 

 

Figure 5.14 Effect of Wnt13 forms on phosphorylation of Akt and GSK3β.  BAECs were 

transiently transfected with the PCR3 vector or Wnt13-Flag constructs for 40 hours. 

Whole cell exacts were prepared, and A) Akt, and P-Akt (Ser473) or B) GSK3β and P-

GSK3β (Ser9) were analyzed by immunoblotting with specific antibodies. The relative 

phosphorylation levels after normalization with basal or LPS treated PCR3 values (set as 

1) are represented in the graph (mean±SEM, n=6-8 independent transfection 

experiments.). 
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Figure 5.15 Effect of Wnt13 isoforms on the production of reactive oxygen species 

(ROS) in transiently-transfected BAECs. BAECs were transiently transfected with the 

PCR3 vector or Wnt13-Flag construct for 40 hours, followed by DHE staining and CM-

H2DCFDA (DCF) staining. The relative fluorescence intensity levels after normalization 

with basal PCR3 values (set as 1) are represented in the graph (mean±SEM, n=8-20 

independent transfection experiments; *<0.05). 
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CHAPTER 6. SPECIFIC AIM 3 

To study whether Wnt13 forms have differential effects on the expression 

and activation of FOXOs that mediate the transcriptional regulation of FOXO 

target genes related to apoptosis and oxidative stress resistance. 

6.1 Summary 

Wnt proteins control cell fate during development and postnatal homeostasis by 

regulating cell proliferation, cell differentiation and cell apoptosis. In the previous 

chapter, we have shown that Wnt13 forms increase apoptosis in BAEC with different 

strengths: nuclear > mitochondrial> secreted forms, and Wnt13 forms increase the 

activation and expression of caspases possibly though upregulating Bim protein. 

Therefore, it is interesting to know what upstream factors mediate the effect of Wnt13 

forms on Bim and caspases as well as subsequent apoptosis. In this study, we found that 

in transient transfection, 1) nuclear Wnt13 forms increased the expression FOXO3a but 

not FOXO1; 2) Wnt13A and mitochondrial Wnt13 forms reduced the phosphorylation of 

FOXO3a at Ser253 which is a Akt site, but not FOXO1; 3) Wnt13A increased the nuclear 

localization of exogenous FOXO1 and endogenous FOXO3a, and M1L-Wnt13B also 

increased the nuclear localization of exogenous FOXO1 and FOXO3a; 4) M1L-Wnt13B 

upregulated the expression of a subset of FOXO target genes such as SOD2; 5) Wnt13 

forms did not have significant effect in luciferase activity of Forkhead responsive element 

(FHRE from FasL promoter) reporter system and SOD2 promoter; 6) however, M1L-

Wnt13B increased the  luciferase activity of SOD2 intron 2 element (I2E) upon LPS 

treatment; 7) also, a putative FOXO site was found in intron 2, which was responsive to 
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activated FOXO3a form. Therefore, our conclusions are that Wnt13 forms increase 

FOXO localization in nucleus through either upregulating FOXO3a expression (M1L-

Wnt13B) or decreasing FOXO3a phosphorylation (Wnt13A) and thereby upregulate the 

expression of a subset of FOXO target genes related to oxidative stress resistance; 

although it is not clear whether Wnt13 forms increase FOXO activity at Bim promoter, 

M1L-Wnt13B increased SOD2 transcription upon LPS treatment possibly through a 

putative FOXO site at intron 2 in SOD2 gene. 

 

6.2 Introduction 

Wnt signaling is recognized as one of the handful powerful pathways that control 

basic development and organism homeostasis (Clevers H. 2006 and Staal FJ et al. 2008). 

Wnts and Wnt signaling function in controlling cell fate, including cell proliferation or 

self-renewal, differentiation, senescence and apoptosis (Hayward P et al. 2008; Almeida 

M et al. 2005).  

Wnt13, also named Wnt2b, is one of the rare members in Wnt family, which is 

expressed in a dynamic pattern during embryogenesis and organogenesis, and the 

expression is related to human diseases, including cancer, diabetes. The complexity of 

human Wnt13 gene has been shown in human cells with three isoforms identified: the 

secreted Wnt13A, mitochondrial Wnt13B and nucleus Wnt13C, which differ in their N-

terminal sequences and generated through alternative promoter, alternative splicing and 

alternative start codons (Struewing IT et al. 2006; Bunaciu RP et al. 2008). Moreover, 

Wnt13 nuclear forms showed an increased sensitivity to LPS or TNF induced apoptosis 
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in primary endothelial cells (Struewing IT et al. 2006), and nuclear Wnt13C underwent 

translational regulation during apoptosis (Tang T et al. 2008). In the previous chapter 

(Aim 2), we have shown that Wnt13 forms increased EC sensitivity to LPS-induced 

apoptosis with different strengths: nuclear (robust) > mitochondrial (moderate) > secreted 

forms (weak), and Wnt13 forms increase the activation of caspases through upregulating 

the expression of caspases and pro-apoptotic Bcl-2 family member Bim which tips the 

balance of pro-apoptotic/anti-apoptotic factors in Bcl-2 family to pro-apoptosis. In this 

case, to discover the upstream factor, we started with FOXOs which are the common 

transcription factors that regulate both caspase-3 and Bim. 

FOXO proteins are a family of transcription factors with important roles in 

metabolism, cell cycle, stress tolerance and possibly lifespan (van der Horst A et al. 

2007). FOXO family consists of FOXO1, 3a, 4 and 6, and in differentiated endothelial 

cells, FOXO1 and 3a are the main forms of FOXO (Potente M et al. 2005). FOXO1-

deficient mice died at around embryonic day 11 due to branchial arch defects and 

abnormal vascular remodeling in the yolk sacs, indicating that FOXO1 is required for 

mouse vascular development (Furuyama T et al. 2004). FOXO proteins undergo post-

translational modifications like phophorylation, ubiquitination, acetylation and 

methylation, which either activate or inhibit the transcription activity of FOXOs (Huang 

H et al. 2007; Yamagata K et al. 2008). In the presence of growth factors, FOXOs located 

in the nucleus are phosphorylated by upstream kinases such as Akt and SGK on three 

conserved residues (Thr24, Ser256, and Ser319 for FOXO1; Thr32, Ser253, and Ser315 

for FOXO3a). Phosphorylated FOXOs bind 14-3-3 protein, resulting in the export out of 

nucleus and subsequent degradation by proteasome in cytoplasm (Greer EL et al. 2005). 



171 
 

However, activated FOXOs (like FOXO1-AAA or FOXO3a-TM, in which 3 

phosphorylation sites are mutated) stay in nucleus, and bind to the DNA binding element 

(DBE) of the target genes, initiating gene transcription. FOXO target genes include DNA 

repair-related Gadd45, oxidative detoxification-related SOD2 and catalase, cell cycle-

related p27KIP1, cyclin D1 and cylin D2 (Huang H et al. 2007).  In addition, FOXOs also 

target apoptosis-related genes such as caspase-3, Bim, as well as extrinsic pathway factors 

FasL and TRAIL (Bois PR et al. 2005; Huang H et al. 2007).  FOXO1, 3, 4 triple-

knockout mice developed thymic lymphomas and hemangiomas (endothelial cell tumor), 

suggesting that FOXOs are tumor suppressors and specifically important for endothelial 

cell homeostasis (Paik JH et al. 2007). The tumor suppressing effect of FOXOs may be 

related to their pro-apoptotic functions. Also, constitutively activated form FOXO1-TM 

has been shown to induce apoptosis in leukemia-derived cell lines via TRAIL (Kikuchi S 

et al. 2007); knock-down of FOXO3a by small interfering RNA abolished free fatty acid-

induced hepatocyte apoptosis and Bim induction (Barreyro FJ et al. 2007), further 

indicating the promoting role of FOXOs in cell apoptosis. 

In addition, FOXOs also converge with Wnt-signaling; in 2005, Essers MA 

discovered a functional interaction between FOXO and β-catenin under oxidative stress, 

so a new FOXO-Wnt model was then proposed:  upon Wnt signaling which turns TCF 

on, or upon insulin signaling that turns FOXOs off, β-catenin prefers interacting with 

TCF rather than FOXO to promote cell proliferation; in contrast, under oxidative stress 

conditions where FOXO activity is on, β-catenin preferentially binds to FOXOs to induce 

apoptosis or quiescence (Essers MA et al. 2005; Bowerman B. 2005). 
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The status of oxidative stress can regulate cell apoptosis because oxidative stress 

is one of the inducers of intrinsic apoptotic pathway by promoting the permeability of 

mitochondria (Garrido C et al. 2006). SOD2 and catalase are one of the subsets of FOXO 

target genes which belong to endogenous enzyme systems to defend oxidative stress. 

Superoxide (O2
-) can be converted by SOD to H2O2, which is in turn converted to H2O 

and O2 by catalase; in mitochondria, MnSOD (the protein product of SOD2), is 

specifically used to catalyze the superoxide conversion (Kamata H et al. 1999). In SOD2 

gene, the P7 fragment (-210 - +24) containing multiple Sp1- and AP-2 binding site, has a 

basal promoter function (Yeh CC et al. 1998). And two DBE sites for FOXO3a at 

promoter region were reported: one at -997 bp and the other one at -1, 249 bp, and only 

the latter one is critical for FOXO3a activity (Kops GJ et al. 2002). Also, several NF-κB 

sites in 5’- or 3’- flanking area were found to be irresponsive to the induction by TNF; 

however, the NF-κB site located in intron 2 element (I2E) is critical for TNF/IL-1-

mediated induction (Xu Y et al. 1999), revealing the complexity of SOD2 regulation at 

transcriptional levels. 

To test the hypothesis that FOXOs are involved in increased caspases and Bim by 

Wnt13 forms, we studied whether Wnt13 forms affect the expression, phosphorylation, 

nuclear localization and other target gene expression of FOXOs, as well as FOXO 

transcription activity by using Forkhead responsive element (FHRE) of FasL gene, and 

the transcriptional regulation of different SOD2 regions (promoter or intron regions). 
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6.3 Material and Methods 

6.3.1 Materials 

The rabbit polyclonal anti-phospho-FOXO1 (Thr24)/FOXO3a (Thr32), phospho-

FOXO3a (Ser253), anti-FOXO1, anti-P27kip and anti-Creb as well as anti-COXIV 

antibodies were from Cell Signaling Technology. The rabbit polyclonal anti-MnSOD 

antibody was from Stressgene. The rabbit polyclonal anti-FOXO3a and the goat 

polyclonal anti-calnexin antibodies were purchased from Santa Cruz. The nuclear 

Extraction Kit was from Panomics. 5-(and-6)-chloromethyl-2',7'-

dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA),  Dihydroethidium 

(DHE), and th CyQuant® Cell Proliferation Assay kit were from Molecular Probes. The 

Dual Luciferase Reporter Assay System was from Promega and Galacto Light Plus was 

purchased from Tropix-Applied Biosystem. 

 

6.3.2 Cell culture and transfection 

Cell culture and transient transfection were described in 3.2 and 3.3. For stable 

transfection, please refer 5.3.2. 

 

6.3.3 Plasmid constructs 

Please refer 3.4 for Wnt13-Flag constructs. The plamids of pEGFP-N1-GFP- 

FOXO1, pEGFP-N1-GFP-FOXO1-AAA, pECE-HA-FOXO3a WT, pECE-HA-FOXO3a-

TM, pECE-HA-FOXO3a-WT DBM (H212R) and FHRE-luc were purchased from 



174 
 

Addgene, which were then recovered, grown and amplified by maxipreps in our 

laboratory. PGL3-SOD2-P7-luciferase, PGL3-SOD2-1.6K-luciferase, PGL3-SOD2-3K-

luciferase, and PGL3-SOD2-P7-I2E-luciferase constructs were kind gifts from Dr. Daret 

St Clair (University of Kentucky). 

 

6.3.4 RNA isolation and real-time PCR (refer 3.5) 

 

6.3.5 Cell extracts and western blot analysis (refer 3.6) 

 

6.3.6 Immunofluorescence microscopy (refer 3.8) 

 

6.3.7 Cell fractionation and nuclear extraction 

The protocol for cell fractionation and nuclear extraction was based on 

manufactures’ handbook and improved by our laboratory. Generally, for each sample, 106 

BAECs were used and transfected with Wnt13-Flag constructs. After 40 hours, media 

were removed from the dish and cells were washed with PBS twice before 500µl 

hypotonic Buffer A (10 mM HEPES, pH 7.9; 10 mM KCl; 0.1  mM EDTA. 1mM DTT, 

0.5 mM PMSF, 5 ul of protease inhibitor cocktail to 5 ml of buffer were added just before 

use) was added. Then the dish was placed on a rocker at 4oC for 10 minutes. After 

scrapped off from the dish, cells were transferred to a 1.5ml microcentrifuge tube, and 
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syringed 20 times to break the cells. 50µl of cell suspension was taken out and saved as 

whole cell extract. The rest of 450µl suspension was centrifuged at 14,000g for 3 minutes 

(4oC), and the supernatant was saved as the cytosol and the membrane. The pellet was 

then washed with Buffer A, and after the same centrifugation, the pellet was mixed with 

150µl high salt Buffer B (20 mM HEPES, pH 7.9; 0.4 M NaCl; 1 mM EDTA; 1M KCl; 

10% Glycerol; 1mM DTT, 0.5 mM PMSF, 5 ul of protease inhibitor cocktail to 5 ml of 

buffer were added just before use), followed by nuclear extraction on a shaker for 1 hour 

(4oC). After centrifuge at 14,000g for 10 minutes (4oC), the supernatant was isolated and 

stored as nuclear extracts while the pellet was stored as unextracted nuclear fraction. 

 

6.3.8 Dual luciferase reporter assay 

According to the manufacture’s instructions, each well (105 cells) of BAECs were 

co-transfected with 5 ng of pCMV-β-galactosidase construct for normalization purposes, 

and with 5 ng phRGTK (expressing Renilla luciferase to normalize for transfection 

efficiency), 250 ng PGL3 vector  or luciferase constructs, and with 0.4 µg Wnt13-Flag 

constructs as well as 0.4 µg PCR3 vector. After 40 hours, cells were lysed with 125 µl 

Passive Lysis Buffer supplemented with proteasome inhibitors, and scrapped off the 

plate. Cells were then transferred to a microcentrifuge tube and centrifuged at 25,000 g 

for 5 minutes (4oC). 20 µl of the supernatant was loaded into a 96-well microplate for 

luciferase assay with luciferase substrate for firefly activity and then Stop-Glo substrate 

for Renilla activity. Another 20 µl of the supernatant was loaded to another microplate 

for β-galactosidase activity assay, using Galacto Light Plus substrate for 30-minute 
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incubation prior to being added with accelerating reaction buffer. Both Renilla-firefly 

dual luciferase assay and β-galactosidase activity assay were performed using an LmaxII 

luminometer (Molecular Device). Although two internal controls (Renilla and β-

galactosidase) were used, the corrected reporter luciferase activity was calculated by 

firefly luciferase activity/ β-galactosidase activity due to more consistency in β-

galactosidase assay. All the transfection experiments were performed in duplicates. 

 

6.3.9 Statistical analysis 

All results are expressed as mean ± SEM. For the values represented by the 

relative levels over PCR3 control which was set as 1, One Sample T-test (hypothesized 

value = 1) was used when compared to PCR3 control. Statistical significance was 

accepted at a value of P<0.05. Otherwise, when the values of the control group fit normal 

distribution, One Way ANOVA analysis was used followed by Tukey’s test for 

comparison between different groups.  

 

6.4 Results 

6.4.1 Effect of Wnt13 forms on FOXO expression in BAECs 

Since increased FOXO expression may cause increased FOXO activity, we firstly 

investigated whether Wnt13 isoforms have an effect on the expression of FOXOs. In the 

experiments of transient transfection, we found that the expression of FOXO1 remained 

unchanged by Wnt13 forms (Figure 6.1A) at both protein levels and mRNA levels; 
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however, M1L-Wnt13B increased the protein expression of FOXO3a significantly, and 

all the intracellular isoforms upregulated the mRNA expression of FOXO3a by 2-2.5 fold 

(Figure 6.1B). In the experiments of stable transfection, Wnt13 forms did not show the 

significance in increasing FOXO1 expression either at protein levels or at mRNA levels 

(Figure 6.2A). But Wnt13 forms demonstrated a trend in increasing mRNA levels of 

FOXO3a, and M74L-Wnt13B was statistically significant (Figure 6.2B). And both 

graphs in Figure 6.2 showed that Wnt13B had less effect on the expression of FOXOs 

than all the other forms did, which can be explained by the expression pattern of Wnt13B 

which is the least among all the Wnt13 forms in stably-transfected BAECs as determined 

by imunofluoresence micoscopy. 

 

6.4.2 Effect of Wnt13 forms on FOXO phosphorylation in BAEC 

Post-translational modifications, such as phosphorylation, are regulatory events 

for FOXO activity. When FOXOs are phosphorylated by upstream kinases such as Akt 

and SGK on three conserved residues (Thr24, Ser256, and Ser319 for FOXO1; Thr32, 

Ser253, and Ser315 for FOXO3a), they bind 14-3-3 protein, resulting in the export out of 

nucleus and subsequent degradation by proteasome in cytoplasm (Greer EL et al. 2005). 

We used anti-phospho-FOXO1 (Thr24)/FOXO3a (Thr32) antibody which detects mainly 

FOXO1 phosphorylation because the expression of FOXO1 is 10 times more abundant 

than that of FOXO3a in BAECs (data not shown), and FOXO1 phosphorylation was 

shown unchanged by Wnt13 isoforms in transient transfection (Figure 6.3A). We also 

used specific anti-FOXO3a phosphorylation (Ser253) antibody and as shown in Figure 
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6.3A, Wnt13A and mitochondrial forms decreased FOXO3a phosphorylation at Ser253 

by 40-60%, and nuclear forms of Wnt13 showed a moderate reduction in FOXO3a 

phosphorylation by 30-40% which was not statistically significant. As FOXO 

phosphorylation at Ser253 is inhibitory for FOXO transcriptional activity, the decreased 

FOXO3a phosphorylation by Wnt13 forms suggests that Wnt13 forms possibly increase 

FOXO activity. 

 

6.4.3 Effect of Wnt13 forms on subcellular localization of FOXOs in BAEC 

6.4.3.1 Exogenous localization of FOXOs 

Decreased phosphorylation of FOXO3a may lead to less nuclear exclusion, so we 

then investigated the effect of Wnt13 forms on the subcellular localization of FOXOs in 

transient transfection. On one hand, we co-transfected GFP-FOXO1 or HA-FOXO3a 

with Wnt13-Flag into BAECs and detected the exogenous Wnt13-Flag forms and FOXOs 

by immunofluoresence microscopy. For PCR3 control (Figure 6.4), 50% exogenous 

FOXO1 was localized in the nucleus while 30% was localized in the cytosol. Wnt13A, 

Wnt13C, and M1L-Wnt13B were able to increase its nuclear localization up to more than 

60% and decrease its cytoplasmic localization under 10%. However, as shown in Figure 

6.5, PCR3 showed more exogenous FOXO3a in cytosol (45%) than in nucleus (40%). 

M1L-Wnt13B increased FOXO3a nuclear localization up to 80% and decreased its 

cytoplasmic localization down to 10%, and other Wnt13 forms such as Wnt13A and 

Wnt13B showed a trend in increasing the nuclear localization of FOXO3a, which was not 

statistically significant.  
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6.4.3.2 Endogenous localization of FOXOs 

On the other hand, we isolated different subcellular fractions of BAECs and 

extracted the nucleus to see whether Wnt13 forms had similar effects on endogenous 

FOXOs. First, we used different markers to show the quality of subcellular fractionation 

and very little contamination among cell fractions (Figure 6.6C): COXIV, a 

mitochondrial protein, was only found in the fraction of cytoplasm plus membrane; both 

β-catenin and calnexin were mainly in the fraction of cytoplasm plus membrane, with a 

small amount in nucleus; and Creb is a nuclear transcription factor, which was localized 

both in extracted nucleus and in unextracted nucleus (around 1:1).  

To our surprise, our data (Figure 6.6C) demonstrated that FOXO1 was totally 

absent in cytoplasm or membrane, but exclusively in the nuclear fraction (both in nuclear 

extracts and in unextracted pellet; around 1:6 in proportion). And Wnt13A or M1L-

Wnt13B did not show obvious effect on FOXO1 localization in either nuclear extracts or 

in unextrated pellet (Figure 6.6A). However, unlike endogenous FOXO1, endogenous 

FOXO3a was shown localized both in the nucleus and in the fraction of cytoplasm plus 

membrane (Figure 6.6C). Wnt13A increased FOXO3a localization in nuclear extracts by 

more than 2 fold (p=0.05), and M1L-Wnt13B had a weaker increase (by around 50%). 

Wnt13A and M1L-Wnt13B showed mild decreasing effect on FOXO3a localization in 

the fraction of cytoplasm plus membrane. These results suggest that Wnt13A increased 

the nuclear localization of endogenous FOXO3a. 
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6.4.4 Effect of Wnt13 forms on the expression of FOXO target genes in BAEC 

6.4.4.1 p27kip 

Since the expression of Bim and caspase-3 were shown upregulated by nuclear 

Wnt13 forms, we thereby tested whether Wnt13 isoforms increase the expression of other 

FOXO target genes, such as cell cycle-related p27kip. As illustrated in Figure 6.7, 

transiently-transfected Wnt13A (p<0.05) and M1L-Wnt13B were able to upregulate the 

protein expression of p27kip at basal levels by around 50%, and M1L-Wnt13B increased 

its mRNA expression by 5 fold. In stable transfection (Figure 6.8), Wnt13A (p<0.01) and 

M1L-Wnt13B increased the protein expression of p27kip by 2 folds at basal levels, and 

Wnt13A showed more effect in increasing mRNA expression of p27kip at basal levels 

than other isoforms, implying that Wnt13A may be related to cell quiescence.  

6.4.4.2 Oxidative stress resistance-related genes 

Another subset of FOXO target genes is oxidative stress resistance-related SOD2 

and catalase, and they are associated with the function of FOXOs in stress resistance. As 

shown in Figure 6.9A, Wnt13A, Wnt13B and M1L-Wnt13B increased the protein 

expression of MnSOD both at basal levels and after LPS treatment in transient 

transfection, and M1L-Wnt13B showed bigger effect (2.5 fold at basal levels and 70% 

after LPS treatment) than other forms. Wnt13 forms also showed a trend in upregulating 

mRNA levels of MnSOD at the basal levels, and M1L-Wnt13B had the statistical 

significance. In the experiments of stable transfection (Figure 6.10), Wnt13A had slightly 

higher increase in MnSOD protein at basal levels than other forms, and a similar 

phenomenon was also seen in mRNA levels of MnSOD: 5 fold increase by Wnt13A 
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while 2-3 fold by other isoforms. These results suggest that Wnt13 forms increased the 

expression of MnSOD with differential strengths. 

As for catalase, the intracellular Wnt13 forms increased the protein levels of 

catalase by 60-80% at basal levels in transient transfection, and M1L-Wnt13B had 

stronger effect (Figure 6.11A). But the Wnt13 isoforms did not show significant effect in 

increasing mRNA expression of catalase (Figure 6.11B). In stable transfection (Figure 

6.12), the protein levels of catalase were not obviously upregulated by Wnt13 forms 

either at basal levels or upon LPS treatment except M74L-Wnt13B, other Wnt13 forms 

increased mRNA levels of catalase by 2-3 fold, and M1L-Wnt13B was statistically 

significant (p<0.05). So Wnt13 forms, especially nuclear forms, increased catalase 

expression mainly at protein levels.  

 

6.4.5 Effect of Wnt13 forms on FHRE-luciferase activity in BAEC 

As Wnt13 forms decreased FOXO phosphorylation and increased their nuclear 

localization, we then studied the effect of Wnt13 forms on FOXO transcription activity 

by using FHRE-luc Reporter construct. Forkhead Responsive Element (FHRE) is the 

DNA element to bind FOXO factors in FasL promoter, the nucleotide sequence for 

FHRE is “TAAATAA” (Brunet A et al. 2002), which has one nucleotide difference than 

the core sequence of canonical FOXO site T/A AAAC A/C” (Biggs WH et al. 2001). The 

FHRE-luc reporter construct we used was provided by Addgene, which carries a small 

region of Fas Ligand promoter containing three canonical copies of FHREs (Brunet A et 

al. 1999).  
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As shown in Figure 6.13A, either FOXO1-WT or FOXO3a-WT was unable to 

induce FHRE luciferase activity, so we then used constitutive-activated (CA) or 

dominant-negative (DN) forms of FOXOs as positive or negative controls to test our 

system. CA form FOXO3a-TM contains three mutations at phosphorylation sites of Akt, 

which increased FHRE luciferase activity by 50%, and FOXO3a-H213R is a DN form 

due to the mutation at DNA binding domain, which reduced FHRE-luciferase activity by 

50%; interestingly, FOXO1-AAA did not show any increasing effect on this luciferase 

activity, suggesting that the FHRE luciferase system was responsive to FOXO3a 

activation but not FOXO1.  

When co-transfected with GFP-FOXO1 or HA-FOXO3a, Wnt13A was able to 

increase FHRE luciferase activity by 60% or 30%, respectively, but M1L-Wnt13B did 

not affect the transcriptional activity of exogenous FOXOs (Figure 6.13A). And this 

phenomenon is inconsistent with the result of FOXO3a localization: M1L-Wnt13B 

increased the nuclear localization of exogenous FOXO3a more than Wnt13A. Perhaps for 

FHRE, even though M1L-Wnt13B pushed exogenous FOXO3a into the nucleus, this 

nuclear FOXO3a-WT was not able to transactivate FHRE, which is supported by the fact 

that only active form of FOXO3a, not FOXO3a-WT increased the FHRE luciferase 

activity. For endogenous FOXO activity, none of Wnt13 forms were able to increase the 

FHRE luciferase activity either at basal levels (Figure 6.13B) or after LPS treatment (data 

not shown). Therefore, although Wnt13A increased exogenous FOXO transcription 

activity at FHRE, Wnt13 forms were unable to increase endogenous FOXO transcription 

activity at FHRE. 
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6.4.6 Effect of Wnt13 forms on SOD2 transcriptional regulation in BAECs 

6.4.6.1 SOD2 promoter region 

Since MnSOD expression was upregulated by Wnt13 forms at both mRNA levels and 

protein levels, we tried to determine whether Wnt13 forms function through increasing 

FOXO activity to promote SOD2 gene transcription. First, we used the 3 constructs with 

different lengths of fragments from human SOD2 promoter region: P7, 1.6K, and 3K 

(Figure 6.14). And the DNA binding element (DBE) of FOXOs is at -1,249 bp, so if 

FOXO transcription activity is increased, the luciferase activity of 1.6K or 3K should be 

greatly enhanced compared to P7. According to Figure 6.15A, without the co-transfection 

of exogenous FOXOs, Wnt13A had a 1.4 fold increase in P7 than PCR3 control, but not 

further increase when 1.6K and 3K luciferase constructs were used, suggesting that 

Wnt13A increase SOD2 gene transcription not through FOXO factors. Moreover, other 

Wnt13 forms including M1L-Wnt13B did not show obvious effect on the luciferase 

activity of 1.6K or 3K, indicating that intracellular Wnt13 forms did not enhance SOD2 

transcription at promoter region. 

Also, as shown in Figure 6.15B, exogenous FOXO1-WT or FOXO3a-WT were 

unable to increase the luciferase activity of 1.6K. So FOXO activated forms, FOXO3a-

AAA and FOXO3a-TM, were used to test the system. And exogenous FOXO3a-AAA 

and FOXO3a-TM increased the PGL3-1.6K-Luciferase activity by 2 fold or 4 fold, 

respectively, indicating that the SOD2 1.6K promoter fragment is responsive to FOXO 

activation. Also, compared to PCR3, Wnt13A enhanced 1.6K luciferase activity up to 2 

fold when co-transfected with FOXO1-WT or FOXO3a-WT, indicating that Wnt13A 
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may increase exogenous FOXO transcription activity at SOD2-1.6K promoter region, 

which is consistent with the result that Wnt13A increased exogenous FOXO transcription 

activity at FHRE. However, M1L-Wnt13B did not show any increasing effect on either 

exogenous or endogenous FOXO transcription activity at SOD2 1.6K region.  

Then we investigated whether Wnt13 forms, especially M1L-Wnt13B, affect 

SOD2 promoter luciferase activity upon LPS treatment. Compared to the luciferase 

activity at basal levels, the activity of PGL3 vector, PGL3-P7 and PGL3-1.6K constructs 

was not induced by LPS challenge. As shown in Figure 6.16A and 6.16B, the luciferase 

activity of PGL3 vector, PGL3-P7 and PGL3-1.6K showed a small increase by transient 

transfection of Wnt13A after LPS treatment, which is similar to the result at basal levels. 

M1L-Wnt13B had a trend in increasing in luciferase activity of PGL3-P7 and PGL3-1.6K 

but not PGL3 vector after LPS treatment (Figure 6.16 B and C). Therefore, our results 

suggest that Wnt13A increase SOD2 transcription at promoter region at basal levels and 

after LPS treatment independent of FOXOs; M1L-Wnt13B had a very limited effect on 

increasing SOD2 transcription at promoter region. 

 

6.4.6.2 Intron 2 region 

Since the promoter region of SOD2 gene can not fully explain the increased 

SOD2 mRNA levels by Wnt13 forms, especially M1L-Wnt13B, we then tested whether 

the intron2 element (I2E), which are responsive to stress stimuli including TNF and IL-10 

because of the NF-κB site, could be regulated by Wnt13 forms. At the basal levels 

(Figure 6.17A), all the Wnt13 forms except Wnt13B showed slight increase in PGL3-P7-
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I2E-luciferase activity, but this was not significant. However, after LPS treatment, the 

activity of PGL3-P7-I2E was greatly induced (up to 12 fold) compared to that at basal 

levels, which is expected due to the existence of NF-κB site in the intron 2 region that is 

responsive for stress stimuli. Moreover, Wnt13A increased PGL3-P7-I2E activity by 50% 

at basal levels (Figure 6.17A), which is similar to the increase shown in PGL3-P7 and 

PGL3-1.6K, indicating that this increase may be more from the common fragment P7; 

and after LPS treatment, Wnt13A did not have further increase in PGL3-P7-I2E activity 

than basal levels, further suggesting that Wnt13A increases SOD2 transcription activity 

mainly through P7 fragment instead of I2E. M1L-Wnt13B enhanced PGL3-P7-I2E-

luciferase activity only by 30% at basal levels; however, this increase went up to 2 fold 

(p<0.05) after LPS treatment, which explains a similar increase of SOD2 mRNA levels 

upon LPS treatment (Figure 6.9). This result suggests that M1L-Wnt13B increases SOD2 

transcription activity mainly through I2E, especially when challenged by LPS. 

In order to find out which site in I2E is responsible for the increase by M1L-

Wnt13B dependent of LPS, we subsequently looked into the sequence of I2E for FOXO 

site. And, an “AAACA” was found from +2053 though + 2057, which is exactly the 

same as the core sequence of FOXO binding site. To test whether this putative FOXO site 

was responsive to both FOXO and M1L-Wnt13B, our labatory mutated this putative 

FOXO site “AAACA” to “AAAGA”, and made two maxipreps, I2E-M1, and I2E-M2. As 

shown in Figure 6.18A, PGL3-P7-I2E luciferase activity at basal levels was induced by 

the transfection of FOXO3a-TM, a constitutively activated form of FOXO3a by 3 fold. 

Compared to wildtype PGL3-P7- I2E, the basal luciferase activity of PGL3-P7-I2E-M1 

and -M2 was increased by 60% (p<0.05) and 30% (p<0.07), respectively. And FOXO3a-
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TM increased the luciferase activity of PGL3-P7-I2E-M1 and -M2 by 1.5 and 1.3 fold, 

respectively, which is less than the increase in I2E wildtype. After the treatment with 

LPS, the PGL3-P7-I2E luciferase activity was induced by 10 fold than that of basal 

levels, and transfection of FOXO3a-TM increased the activity by 1.2 fold. Also 

compared to wildtype PGL3-P7- I2E, the basal luciferase activity of both PGL3-P7-I2E-

M1 and -M2 was increased by 1 fold. But FOXO3a-TM showed much less increase of 

luciferase activity of these two mutants by 50% and 20%, respectively than I2E wildtype, 

showing mutation at this FOXO site can, at least partially, diminish the increase of 

PGL3-I2E-P7 luciferase activity dependent of LPS. All these data support that the 

putative FOXO site may be functional.  

Then we questioned whether this putative FOXO site is responsible for the 

increased I2E activity by Wnt13 forms. Figure 6.18C demonstrated that the increase of 

PGL3-P7-I2E luciferase activity by Wnt13 forms, especially by M1L-Wnt13B, was 

totally abolished through mutation of the FOXO site located at I2E. Therefore, this 

putative FOXO site is important for M1L-Wnt13B function, and M1L-Wnt13B enhanced 

PGL3-P7-I2E luciferase activity after LPS treatment possibly through this novel FOXO 

site at I2E, suggesting that M1L-Wnt13B may increase SOD2 transcription after LPS 

treatment mediated by FOXOs. 

 

6.5 Discussion 

FOXOs are a family of critical transcriptional integrators for the homeostasis of 

endothelial cells (Potente M et al. 2005). FOXO1 deficiency is embryonic lethal for mice 
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due to branchial arch defects and abnormal vascular remodeling in the yolk sacs 

(Furuyama T et al. 2004), and FOXO1, 3, 4 triple-knockout mice developed thymic 

lymphomas and hemangiomas (endothelial cell tumor), suggesting that FOXOs are 

specifically important for endothelial cell homeostasis (Paik JH et al. 2007). In HUVECs, 

FOXO1 and FOXO3a are the most abundant FOXO isoforms, and overexpression of 

constitutively active Foxo1 or Foxo3a significantly inhibits endothelial cell migration and 

tube formation in vitro (Potente M et al. 2005). Therefore, in our BAEC system, we 

focused on studying FOXO1 and FOXO3a, and we found distinct features between these 

two isoforms in BAECs: 1) FOXO1 is more abundant than FOXO3a; 2) for the 

subcellular localizations, the endogenous FOXO1 was exclusively found in the nucleus 

but not the cytoplasm (Figure 6.6C) whereas the endogenous FOXO3a was more evenly 

distributed to each fraction. The exogenous FOXO1 was also more localized in the 

nucleus (50%) than in the cytoplasm (30%) (Figure 6.4), whereas more FOXO3a is 

distributed in the cytosol (50%) than in the nucleus (40%) (Figure 6.5). 3) For 

transcription activity, the FOXO3a-TM (constitutively active form of FOXO3a) is more 

active than the FOXO1-AAA (constitutively active form of FOXO1), since FOXO3a-TM 

increased FHRE luciferase activity (by 60%) more than FOXO1-AAA (Figure 6.13), and 

FOXO3a-TM enhanced SOD2-1.6K luciferase activity (up to 4 fold) more than FOXO1-

AAA did (by 2 fold) (Figure 6.15). These data suggest that although both endogenous 

and exogenous FOXO1-WT is more abundant in BAECs and more FOXO1 stays in 

nucleus, the promoter assay results did not show FOXO1 is more active than FOXO3a. 

In this study, we have also shown the differential effect of Wnt13 forms on 

FOXOs in BAECs. In transient transfection, nuclear M1L-Wnt13B increased FOXO3a 
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expression both at mRNA levels and protein levels, but had no significant effect on 

FOXO3a phosporylation at Ser253, which is in agreement with the unaffected 

phosphorylation of Akt by M1L-Wnt13B; M1L-Wnt13B increased the nuclear 

localization of both exogenous FOXO1 and exogenous FOXO3a; M1L-Wnt13B 

upregulated the expression of other FOXO target genes, such as p27cip (mRNA), MnSOD 

(mRNA and protein), catalase (protein), which is in agreement with our hypothesis, so 

M1L-Wnt13B may increase the expression and activation of FOXO3a. However, 

Wnt13A decreased FOXO3a phosphorylation by 60% but did not increase FOXO3a 

expression significantly; Wnt13A increased exogenous FOXO1 nuclear localization; 

Wnt13A increased the nuclear localization of endogenous FOXO3a more than M1L-

Wnt13B did, which is in agreement of the increased luciferase activity of FHRE (with 

exogenous FOXOs) and SOD2 promoter; and Wnt13A increase the expression of FOXO 

target genes, like p27 (protein), MnSOD (mRNA and protein), indicating that Wnt13A 

might also increase FOXO activation. Altogether these results suggest that Wnt13A 

increased the nuclear localization of FOXO3a through decreasing FOXO3a 

phosphorylation while M1L-Wnt13B increased the nuclear localization of FOXO3a via 

upregulating the expression of FOXO3a.  

Although both Wnt13A and M1L-Wnt13B promote FOXOs to stay in nucleus, 

they differ in their effect on FOXO transcription activity. Wnt13A did enhance SOD2 

promoter activity, which explains the increased levels of MnSOD, but this effect was not 

through FOXO site, because there was no obvious difference between SOD2-P7 activity 

(40% increase) and SOD2-1.6K activity (50% increase) by Wnt13A. So Sp1 or AP-2 

sites may be involved in the increased P7 luciferase activity by Wnt13A. And a bigger 
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increase was seen in SOD-3K luciferase activity (2 fold) compared to SOD2-1.6K, 

implying that some other element(s) located between 1.6K and 3K is important for SOD2 

promoter activity. However, M1L-Wnt13B did not show any effect on SOD2 luciferase 

activity of its promoter region; yet, M1L-Wnt13B enhanced SOD2 luciferase activity 

through its intron 2 element possibly mediated by a novel FOXO-binding site. Similar 

differences were also described in the previous chapter that Wnt13A and M1L-Wnt13B 

increase EC apoptosis and Bim expression with different activity: M1L-Wnt13B 

displayed robust effect while Wnt13A had mild effect. Therefore, even though both 

Wnt13A and M1L-Wnt13B increased the FOXO nuclear localization, M1L-Wnt13B 

seems to exert bigger effect on FOXO activity (at least for SOD2) and expression as well 

as EC apoptosis while Wnt13A appears to have no significant increase in FOXO activity 

and in apoptosis induction. 

Both the FHRE of FasL gene and SOD2 promoter contain FOXO responsive 

elements, but none of Wnt13 forms (except Wnt13A) were able to increase luciferase 

activity of FHRE and SOD2 promoter (Figure 6.13). So we then looked at SOD2 region 

known to be regulated by LPS, i.e. intron 2 element which has reported to be induced up 

to 6 fold by TNF/IL-10 due to the existing NF-κB site (Xu Y et al. 1999). Surprisingly, in 

our experiment, the PGL3-P7-I2E was also responsive to FOXO3a-TM because the 

SOD2-P7-I2E luciferase activity at basal levels was induced by FOXO3a-TM up to 4 

fold; and after LPS treatment, FOXO3a-TM further induced SOD2-P7-I2E luciferase 

activity up to 2 fold. Therefore, we started to test if there was a consensus binding site, 

and we did find one located at +2053 - + 2057 at intron 2 element. Compared to the 

sequences of the FOXO sites in the other constructs (“TAAATAA” for FHRE and 
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“TAAACAA” for SOD2 promoter) (Brunet A et al. 2002; Kops GJ et al. 2002), the 

sequence of this FOXO at I2E is “AAAACAA”, which fits with the canonical conserved 

FOXO binding site “T/A AAAC A/C” (Biggs WH et al. 2001). To test if this FOXO site 

is functional, two mutants were made, and our results showed that by mutating the 

putative FOXO site,  the 4-fold increase of SOD2-P7-I2E luciferase activity by FOXO3a-

TM went down to 2.2 fold at basal levels, and after LPS treatment, the 2-fold increase by 

FOXO3a-TM were diminished to 20-50% (Figure 6.18), but the big standard errors in 

FOXO3a-TM groups due to the small size of data (n=2), abolished the significance of the 

increase by FOXO3a-TM. These findings support the possibility of a novel FOXO-

responsive site located in SOD2-I2E region.  

At basal levels, Wnt13 forms had a mild increase (20-30%) in SOD2-P7-I2E 

luciferase activity; after LPS treatment, this increase went up (2 fold for M1L-Wnt13B) 

(Figure 6.17). Figure 6.8 demonstrated that the increase in SOD2-P7-I2E luciferase 

activity (LPS treated) by M1L-Wnt13B, was absent when the putative FOXO site was 

mutated, suggesting that the putative FOXO site is essential for the increasing effect of 

M1L-Wnt13B on SOD2-P7-I2E activity. Compared to the DBE site of FOXOs (-1,249 

bp) at SOD2 promoter region which was not responsive to M1L-Wnt13B, the novel 

FOXO site at I2E region is responsible for the increased PGL3-P7-I2E luciferase activity 

by M1L-Wnt13B. Therefore, M1L-Wnt13B upregulated SOD2 expression at 

transcription levels possibly through the FOXO site at I2E. 

Also, the increase of PGL3-P7-I2E luciferase activity by M1L-Wnt13B was 

higher than the increase at basal levels. However, the effect of M1L-Wnt13B on 

upregulating of the expression of SOD2 as well as other pro-apoptotic factors (caspase-3, 
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Bim, etc) is similar between basal levels and LPS treatment. Also, Wnt13A increased 

SOD2 transcription and expression at basal levels independent of FOXOs. Thus, there 

may be other mechanisms besides FOXOs are responsible for the effect of Wnt13A and 

M1L-Wnt13B at basal levels. 

Besides SOD2, is the effect of Wnt13 forms on Bim also through FOXOs? In 

endothelial progenitor cells (EPCs), FOXO4 overexpression was shown to increase Bim 

promoter activity and Bim expression, resulting in increased EPC apoptosis (Urbich C et 

al. 2005); also in EPCs, silencing FOXO3a led to reduced Bim expression and less cell 

apoptosis (Zhu S et al. 2008), indicating the regulating role of FOXOs in Bim expression 

and subsequent cell apoptosis in EPCs. However, it is uncertain whether the effect of 

FOXOs on Bim regulation in EPCs can extend to differentiated BAECs, so whether 

Wnt13 forms, especially nuclear Wnt13 forms upregulated Bim expression also through 

increasing FOXO transcriptional activity still remains to be determined. It seems that 

Wnt13 forms have distinct effect on each specific target gene of FOXOs: no increase at 

all in FHRE of FasL gene; no increase by M1L-Wnt13B in SOD2 promoter region, while 

FOXO-dependent increase by M1L-Wnt13B in SOD2 I2E. So it is very difficult to 

predict whether Wnt13 forms function also through FOXOs to regulate Bim transcription 

in BAECs, unless Bim promoter is used. 
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A) 

 

B) 

 

Figure 6.1 Effect of Wnt13 forms on the expression of FOXOs in transient transfection: 

A) FOXO1 and B) FOXO3a. BAECs were transiently transfected with the PCR3 vector 

or Wnt13-Flag constructs for 40 hours, and cells were then harvested for immunoblotting 

with anti-FOXO1 and anti-FOXO3a antibodies or for RNA extraction and real-time PCR. 

The relative levels after normalization with basal PCR3 values (set as 1) are represented 

in the graph (mean±SEM, n=6-15 independent transfection experiments; *<0.05, 

**<0.01, ***<0.001). 



193 
 

A)                                                                         B) 

 

 

Figure 6.2 Effect of Wnt13 forms on FOXO expression in stable-transfected BAECs: A) 

FOXO1; B) FOXO3a. BAECs were stably transfected with the PCR3 vector or Wnt13-

Flag constructs, and cells were then harvested for the immunoblotting with anti-FOXO1 

antibody or for RNA extraction and real-time PCR. The relative levels after 

normalization with basal PCR3 values (set as 1) are represented in the graph 

(mean±SEM, n=5-6 independent transfection experiments; *<0.05). 
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A) 

 

B) 

 

Figure 6.3 Effect of Wnt13 forms on FOXO phosphorylation in transiently-transfected 

BAECs. A) BAECs were transiently transfected with the PCR3 vector or Wnt13-Flag 

constructs for 40 hours, and cells were then harvested for immunoblotting with P-FOXO1 

(Thr24)/FOXO3a (Thr32), P-FOXO3a (Ser253) and FOXO1 as well as FOXO3a 

antibodies. The relative phosphorylation levels after normalization with basal PCR3 

values (set as 1) are represented in the graph (mean±SEM, n=6-15 independent 

transfection experiments; *<0.05, **<0.01, ***<0.001). B) Representative images of 

western blotting analysis are shown. 
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A)  

 

B) 

 

Figure 6.4 Effect of Wnt13 forms on subcellular localizations of exogenous FOXO1 in 

transiently-transfected BAECs. BAECs were co-transfected with Wnt13-Flag constructs 

and GFP-FOXO1 for 40 hours, and then fixed with 4% formaldehyde, permeabilized in 

0.1% Triton, and stained with rabbit polyclonal anti-Flag (red) and mouse monoclonal 

anti-GFP (green) antibodies, followed by the incubation of Alexa goat anti-rabbit 488 and 
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Alexa goat anti-mouse 568 antibodies. A) Representative images are shown (Red: 

Wnt13-Flag; green: GFP-FOXO1; blue: DAPI); B) quantification of the relative 

percentage in the nucleus/nucleus and cytoplasm/ cytoplasm is represented in the graph 

(mean±SEM, n=5 independent transfection experiments; One Way ANOVA was used for 

comparison between groups, *<0.05). 
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A) 

 

B) 

 

Figure 6.5 Effect of Wnt13 forms on subcellular localizations of exogenous FOXO3a in 

transiently-transfected BAECs. BAECs were co-transfected with Wnt13-Flag constructs 

and HA-FOXO3a for 40 hours, and then fixed with 4% formaldehyde, permeabilized in 

0.1% Triton, and stained with rabbit polyclonal anti-Flag (red) and mouse monoclonal 

anti-HA (green) antibodies, followed by the incubation of Alexa goat anti-rabbit 488 and 
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Alexa goat anti-mouse 568 antibodies. A) Representative images are shown (Red: 

Wnt13-Flag; green: HA-FOXO3a; blue: DAPI); B) quantification of the relative 

percentage in the nucleus/nucleus and cytoplasm/ cytoplasm is represented in the graph 

(mean±SEM, n=6 independent transfection experiments; One Way Anova was used for 

comparison between groups, *<0.05). 
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A) B) 

 

C) 

 

Figure 6.6 Effect of Wnt13 forms on endogenous subcellular localizations of FOXOs in 

transiently-transfected BAECs. A) BAECs were transfected with Wnt13-Flag constructs 

for 40 hours, and cell fractions were isolated followed by immunoblotting. A) 

Quantification of the relative percentage of FOXO1 in each subcellular fraction is 

represented in the graph; B) quantification of the relative levels of FOXO3a over PCR3 

value (set as 1) in each subcellular fraction is represented in the graph (mean±SEM, n=4-

5 independent transfection experiments); C) representative images of western blotting 

analysis is shown. 
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A) 

 

B) 

 

Figure 6.7 Effect of Wnt13 forms on p27kip expression in transiently-transfected BAECs. 

BAECs were transiently transfected with the PCR3 vector or Wnt13-Flag constructs for 

24 hours, followed by 100ng/ml LPS treatment, A) 16 hours later, whole cell exacts were 

prepared and p27cip and β actin were analyzed by immunoblotting with specific 

antibodies; or B) 6 hours later, cells were harvested and treated with Trizol prior to RNA 

extraction and real-time PCR analysis. The relative protein or mRNA levels after 

normalization with basal or LPS treated PCR3 values (set as 1) are represented in the 

graph (mean±SEM, n=1-6 independent transfection experiments; *<0.05). 
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A)                                                                                    B) 

 

 

Figure 6.8 Effect of Wnt13 forms on p27kip expression in stably-transfected BAECs. 

BAECs were stably transfected with the PCR3 vector or Wnt13-Flag constructs, followed 

by 100ng/ml LPS treatment, A) 16 hours later, whole cell exacts were prepared and 

p27cip and β actin were analyzed by immunoblotting with specific antibodies; or B) 6 

hours later, cells were harvested and treated with Trizol prior to RNA extraction and real-

time PCR analysis. The relative protein or mRNA levels after normalization with basal or 

LPS treated PCR3 values (set as 1) are represented in the graph (mean±SEM, n=6 

independent transfection experiments; *<0.05). 
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A)                                                                                  B) 

 

 

Figure 6.9 Effect of Wnt13 isoforms on MnSOD expression in transiently-transfected 

BAECs. BAECs were transiently transfected with the PCR3 vector or Wnt13-Flag 

constructs for 24 hours, followed by 100ng/ml LPS treatment, A) 16 hours later, whole 

cell exacts were prepared and MnSOD and β actin were analyzed by immunoblotting 

with specific antibodies; or B) 6 hours later, cells were harvested and treated with Trizol 

prior to RNA extraction and real-time PCR analysis. The relative protein or mRNA levels 

after normalization with basal or LPS treated PCR3 values (set as 1) are represented in 

the graph (mean±SEM, n=2-18 independent transfection experiments; *<0.05; **<0.01). 
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A)                                                                            B) 

 

 

Figure 6.10 Effect of Wnt13 isoforms on MnSOD expression in stably-transfected 

BAECs. BAECs were stably transfected with the PCR3 vector or Wnt13-Flag construct, 

followed by 100ng/ml LPS treatment, A) 16 hours later, whole cell exacts were prepared 

and MnSOD and β actin were analyzed by immunoblotting with specific antibodies; or 

B) 6 hours later, cells were harvested and treated with Trizol prior to RNA extraction and 

real-time PCR analysis. The relative protein or mRNA levels after normalization with 

basal or LPS treated PCR3 values (set as 1) are represented in the graph (mean±SEM, 

n=6 independent transfection experiments; *<0.05). 
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A) 

 

Figure 6.11 Effect of Wnt13 isoforms on catalase expression in transiently-transfected 

BAECs. BAECs were transiently transfected with the PCR3 vector or Wnt13-Flag 

constructs for 24 hours, followed by 100ng/ml LPS treatment, A) 16 hours later, whole 

cell exacts were prepared and catalase and β actin were analyzed by immunoblotting with 

specific antibodies; or B) 6 hours later, cells were harvested and treated with Trizol prior 

to RNA extraction and real-time PCR analysis. The relative protein or mRNA levels after 

normalization with basal or LPS treated PCR3 values (set as 1) are represented in the 

graph (mean±SEM, n=2-10 independent transfection experiments; *<0.05; **<0.01). 
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A)                                                                               B) 

 

 

Figure 6.12 Effect of Wnt13 isoforms on catalase expression in stably-transfected 

BAECs. BAECs were stably transfected with the PCR3 vector or Wnt13-Flag constructs, 

followed by 100ng/ml LPS treatment, A) 16 hours later, whole cell exacts were prepared 

and catalase and β actin were analyzed by immunoblotting with specific antibodies; or B) 

6 hours later, cells were harvested and treated with Trizol prior to RNA extraction and 

real-time PCR analysis. The relative protein or mRNA levels after normalization with 

basal or LPS treated PCR3 values (set as 1) are represented in the graph (mean±SEM, 

n=6 independent transfection experiments; *<0.05). 
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A) 

 

B) 

 

Figure 6.13 Effect of Wnt13 forms on FHRE-luciferase activity in transiently-transfected 

BAECs: A) exogenous FOXO activity; B) endogenous FOXO activity. BAEC were 

transiently transfected with the PCR3 vector or Wnt13-Flag constructs and FHRE 

luciferase construct together A) with or B) without different forms of exogenous FOXO1 

or FOXO3a for 40 hours, followed by luciferase activity assay. The relative luciferase 

activity after normalization with basal PCR3 values (set as 1) are represented in the graph 

(mean±SEM, n=2-8 independent transfection experiments). 
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Figure 6.14 Schematic representations of the promoter region and intron region in human 

SOD2 gene and the constructs used in this chapter. In human SOD2 gene, the DNA 

binding site (DBE) of FOXO is located at -1,249. Three constructs with fragments (P7, 

1.6K, 3K) from the promoter region were used, and 1.6K as well as 3K contain the 

FOXO DBE. The intron 2 element (+1742-+2083) contains a NF-κB site, and the 

corresponding construct is PGL3-P7-I2E (modified from Xu Y et al. 2002 Figure 1).  
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A) 

 

B) 

 

Figure 6.15 Effect of Wnt13 forms on SOD2 promoter luciferase activity at basal levels 

in BAECs: A) endogenous FOXO activity; B) exogenous FOXO activity. BAECs were 

transiently transfected with the PCR3 vector or Wnt13-Flag constructs and SOD2-1.6K- 

luicferase constructs, together A) with or B) without different forms of exogenous 

FOXO1 or FOXO3a for 36 hours, followed by luciferase activity assay. The relative 

luciferase activity after normalization with basal PCR3 values (set as 1) are represented 

in the graph (mean±SEM, n=3-12 independent transfection experiments; *<0.05). 
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A)                                                                     B) 

 

C) 

 

Figure 6.16 Effect of Wnt13 forms on SOD2 promoter luciferase activity upon LPS 

treatment in BAECs. BAECs were transiently transfected with the PCR3 vector or 

Wnt13-Flag constructs and different luciferase constructs (A, PGL3 alone; B, PGL3-P7; 

C, PGL3-1.6K) for 24 hours, followed by LPS treatment (100ng/ml). 12 hours later, the 

dual luciferase activity assay was performed. The relative luciferase activity after 

normalization with basal or LPS treated PCR3 values (set as 1) are represented in the 

graph (mean±SEM, n=2-5 independent transfection experiments). 
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A)                                                                           B) 

 

Figure 6.17 Effect of Wnt13 forms on SOD2 P7- intron2 element (I2E) luciferase activity 

in BAECs. BAECs were transiently transfected with the PCR3 vector or Wnt13-Flag 

constructs and PGL3-SOD2-P7-I2E luciferase construct for 40 hours, A) without or B) 

with the 100ng/ml LPS treatment for 12 hours later, the dual luciferase activity assay was 

performed. The relative luciferase activity after normalization with basal PCR3 values 

(set as 1) are represented in the graph (mean±SEM, n=3-10 independent transfection 

experiments). For the relative luciferase activity after LPS treatment B), One Way 

ANOVA was used for comparison between groups; *<0.05. 
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A)  Basal levels                                                      B) LPS treated 

 

C) LPS treated 

 

Figure 6.18 Wnt13 forms increased PGL3-P7-I2E luciferase activity after LPS treatment 

possibly through a putative FOXO site. BAECs were transiently transfected with the 

PCR3 vector or FOXO3a-TM and different luciferase constructs (PGL3-P7-I2E or PGL3-

P7-I2EM1 or PGL3-P7-I2EM2) for 40 hours A) without or B) with LPS treatment for 12 

hours, followed by luciferase activity assay. C) BAECs were transiently transfected with 

the PCR3 vector or Wnt13-Flag constructs and different luciferase constructs (PGL3-P7-
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I2E or PGL3-P7-I2EM1 or PGL3-P7-I2EM2) for 24 hours, followed by LPS treatment 

(100ng/ml). 12 hours later, the dual luciferase activity assay was performed. The relative 

luciferase activity after normalization with basal PCR3 values (set as 1) are represented 

in the graph [mean±SEM, n=1-9 independent transfection experiments; *<0.05, **<0.01, 

compared to PCR3/I2E (basal); ##<0.01, compared to PCR3/I2E-M1 (basal); $<0.05, 

compared to PCR3/I2E-M2 (basal)]. For Figure 6.17B, One Way ANOVA was used for 

comparison between groups.  
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CHAPTER 7. GENERAL DISCUSSION 

 

7.1 Summary 

The purpose of this research was to test the hypothesis that in differentiated 

endothelial cells, 1) the expression of nuclear Wnt13 forms is regulated at translational 

levels during apoptosis; 2) the nuclear Wnt13 forms favor apoptosis through affecting the 

activity and/or expression of pro-apoptotic or anti-apoptotic factors; 3) different isoforms 

of Wnt13 may have differential effects on endothelial cell apoptosis and apoptosis-related 

factors. 

First, since the short form of Wnt13B, Wnt13C and M1L-Wnt13B displayed 

distinct expression patterns even though they encode the same protein translated form 

AUG+74, and nuclear Wnt13 forms increased endothelial cell sensitivity to apoptosis 

(Struewing IT et al. 2006), we were wondering whether the nuclear Wnt13 forms behave 

like other apoptosis-related factors such as Bcl-2 and c-myc, which undergo translational 

regulation during apoptosis. Our findings revealed that Wnt13C expression was increased 

in response to stress and apoptosis-inducers (including MG132), and appeared to be 

correlated with caspase-3 cleavage. This regulation did not seem to occur at the 

transcriptional level since there was no significant increase at mRNA level upon the 

treatment of MG132. And in BAEC, the insertion of Myc tag at the first AUG in Wnt13C 

mRNA not only inhibited the expression of exogenous Wnt13C at basal level, but also 

totally abolished the increase of Wnt13C expression by MG132 treatment (Figure 4.3), 

which indicated the RNA sequences or structures are critical for Wnt13C expression, 
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suggesting that nuclear Wnt13C can be regulated during apoptosis more likely at the 

translational levels than the transcriptional levels. Further studies in our laboratory have 

shown that the translational regulation of Wnt13C is not through internal ribosomal entry, 

a common cap-independent mechanism by which apoptotic factors initiate their 

translation during apoptosis, but more likely through upstream open reading frames 

(Tang T et al. 2008).  

Second, the nuclear forms of Wnt13C have been shown to increase endothelial 

cell susceptibility to apoptosis (Struewing IT et al. 2006), and we confirmed this result by 

showing the increase in caspase-3 like activity as well as the cleavage of caspase-3 and 7 

by the nuclear Wnt13 forms (M1L-Wnt13B) after LPS treatment. The increased cleavage 

of caspase-3 and 7 by may result, at least in part, from the increased expression of 

caspase-3 and -7 by M1L-Wnt13B after LPS treatment. M1L-Wnt13B was unable to 

significantly increase either other inflammatory caspases (caspase-4 and caspase-5) or 

apoptotic factors (TRAIL, DR5, and caspase8) in the extrinsic apoptotic pathway. 

However, for Bcl-2 family members, Wnt13 forms were unable to change Bax/Bcl-2 

ratio, but upregulated the pro-apoptotic Bim expression. 

To discover the underlying mechanisms and possible signaling pathway that the 

nuclear Wnt13 forms function through, we excluded the activation of Akt or GSK3β as 

the upstream event that responsible for the increased apoptosis by nuclear Wnt13 forms. 

We then suspected FOXO transcription factors due to the facts that 1) the nuclear Wnt13 

forms may have accessibility to certain transcription factors; 2) both caspase-3 and Bim, 

which mRNA expression was upregulated by the nuclear Wnt13 forms, are target genes 

of FOXOs. Subsequently, we demonstrated that nuclear Wnt13 forms upregulated the 
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expression of FOXO3a but not FOXO1, but the nuclear forms did not reduce the 

phosphorylation of FOXO1 at Thr24 or FOXO3a at Ser253. And the nuclear forms 

increased nuclear localization of exogenous both FOXO1 and FOXO3a, implying that 

enhanced FOXO activation by the nuclear forms. Our data also showed that the nuclear 

M1L-Wnt13B upregulated the expression of other FOXO target genes such as cell cycle 

arrest-related p27 and oxidative stress resistance-related SOD2, suggesting the increased 

FOXO transcription activity by the nuclear Wnt13 forms. Thereby, to confirm that the 

nuclear Wnt13 forms function via increasing FOXO transcription activity, we used FHRE 

(Forkhead responsive element from FasL promoter) reporter system and the luciferase 

constructs with SOD2 promoter or intron 2 for dual luciferase assay. And we showed that 

nuclear Wnt13 forms were unable to enhance luciferase activity using FHRE luciferase 

reporter from FasL gene and SOD2 promoter. However, the luciferase activity of SOD2 

intron 2 element (I2E) was increased by M1L-Wnt13B upon LPS treatment, which may 

explain the increased SOD2 expression by the nuclear Wnt13 forms. Interestingly, a 

novel putative FOXO site was found in intron 2, which was responsive to activated 

FOXO3a form (FOXO3a-TM), and found critical for increased I2E luciferase activity by 

M1L-Wnt13B (Figure 6.18), so M1L-Wnt13B increased SOD2 transcription upon LPS 

treatment possibly through a putative FOXO site (“AAACA”) from +2053 though + 2057 

at intron 2 in SOD2 gene. Although we have not confirmed increased FOXO activity at 

Bim promoter so far, it is still possible that M1L-Wnt13B increase FOXO-mediated Bim 

transcription though upregulating FOXO3a expression and increasing FOXO nuclear 

translocation, thereby upregulating Bim expression and tip the balance to pro-apoptosis, 
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resulting in increased caspase activity and more percentage of apoptotic nuclei in 

endothelial cells. 

Third, considering that Wnt13 isoforms have different subcellular localization, we 

assumed that Wnt13 forms may have differential effects on endothelial cell apoptosis and 

the expression/activity of apoptotic regulators. For EC apoptosis, exogenous 

mitochondrial Wnt13 forms increased cleavage and protein expression of caspase-3, 7 

rather than caspase-3 like activity, and secreted Wnt13A increase caspase-3 expression 

but not caspase-3 like activity or caspase-3 cleavage in BAECs. Therefore our data 

indicate that compared to nuclear Wnt13 forms, the mitochondrial forms and secreted 

Wnt13A had weaker action in increasing apoptosis in BAECs, and that the strengths that 

Wnt13 forms increase apoptosis in BAEC were nuclear (robust) > mitochondrial 

(moderate) > secreted forms (weak). All the Wnt13 forms did not significantly increase 

the levels of inflammatory caspases and regulators in extrinsic pathway. For Bcl-2 family 

members, like the nuclear Wnt13 forms, the mitochondrial and secreted Wnt13 forms did 

not affect Bax/Bcl-2 ratio but upregulated Bim expression; however, the effect on Bim 

expression by the mitochondrial or secreted forms was weaker than that by the nuclear 

forms. Like the nuclear forms, the mitochondrial forms and Wnt13A also did not show 

increasing effect on the activation of Akt and GSK3β. For FOXOs, unlike the nuclear 

M1L-Wnt13B, Wnt13A may increase the nuclear localization of endogenous FOXO3a 

by reducing FOXO3a phosphorylation at Ser253 which is an Akt site rather than 

upregulating FOXO3a expression. Interestingly, Wnt13A increased SOD2 expression 

moderately through SOD2 promoter region, which was independent on FOXO factors. 

However, although the mitochondrial Wnt13 forms had a moderate effect on upregulating 
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FOXO3a levels and decreasing FOXO3a phosphorylation, they did not affect either the 

nuclear localization of FOXOs or FOXO transcriptional activity using the FHRE-

luciferase reporter system, SOD2 promoter or SOD2 intron 2 element.  

Overall, our results suggest that during EC apoptosis, on the one hand, the nuclear 

Wnt13C is induced at translational level; and on the other hand, the nuclear Wnt13 forms 

may increase EC susceptibility to apoptosis via upregulating pro-apoptotic factors Bim 

and caspase-3/7 as well as FOXO3a, which forms a amplification loop further facilitating 

the completion of apoptotic program in endothelial cells. Besides, mitochondrial Wnt13 

forms and Wnt13A have similar but weaker effect on EC apoptosis than nuclear Wnt13 

forms do, which appears to be a FOXO-independent event.  

 

7.2 Insights from the regulation of Wnt13C during apoptosis 

In Aim1, our results indicated that the nuclear Wnt13C can be regulated during 

apoptosis more likely at translational levels than transcriptional levels. Under cell 

apoptosis, while the global rate of translation by classical cap-dependent mechanism is 

shunt down, alternative translational mechanisms are used to maintain protein synthesis. 

For example, the  pro-apototic protein c-myc (Adachi S et al. 2000), as well as the anti-

apoptotic protein Bcl-2 (Sherrill KW et al. 2004) allow cell fate decision towards either 

apoptosis or survival by employing internal ribosomal entry, which is one of the 

alternative cap-independent mechanisms. Hence, the presence of internal ribosomal entry 

site (IRES) in Wnt13C mRNA was firstly suspected to explain the regulation mechanism 

of Wnt13C. However, using dicistronic Renilla –firefly (FL) luciferase assay, the 5’-UTR 
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of Wnt13C did not display an IRES activity with or without the treatment of MG132 

(Tang T et al. 2008).  

Subsequently, other alternative mechanisms such as upstream opening reading 

frames (uORFs) were considered to be the possible explanation for the translational 

control of Wnt13C during apoptosis. Further studies in our laboratory suggest that uORFs 

may be responsible for reducing the translational efficiency in regulation of Wnt13C 

expression, because 1) the insertion of the 5’ leader sequences of Wnt13C into RL 

reporter led to a 95% and 85% inhibition of translation activity in vitro; 2) two uORFs 

were found in Wnt13C-leader sequences, and the expression of Wnt13C-Flag increased 

with the deletion of upstream AUG or CUG and the mutation of AUG (+1); 3) the 5’ 

leader sequences of Wnt13B harbor one less uORF than that of Wnt13C, and short 

Wnt13B showed  higher expression than Wnt13C. 

The structural features in UTRs are crucial for post-transcriptional regulation in 

gene expression. It is noteworthy that 5’- UTRs in 50% of human mRNAs and in 35% of 

mammalian mRNAs contain upstream AUG, and when the uAUG is followed by an in-

frame stop codon, it creates an uORF, which is found in around 10% of human or 

mammalian 5’-UTRs (Mignone F et al. 2002). The presence of uORFs in 5’-UTRs tightly 

controls the translation of various factors, such as growth factors, cytokines, proto-

oncogenes, and the deregulation of uORFs are involved in diseases including melanoma 

and Alzheimer’s disease (Chatterjee S et al. 2009). Moreover, uORFs are also found in 

the mRNAs of apoptosis-related factors like Bcl-2 (Harigai M et al. 1996), Bax 

(Salomons GS et al. 1998), and Bim (Gilley J et al. 2005).  
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A ribosome scanning an mRNA with multiple uORFs may have one of the 

following fates: 1) it may translate a short peptide (uORF), and remain associated with 

the mRNA, continuing scanning, resulting in re-initiation at a proximal or distal 

downstream AUG; 2) it may translate a short peptide (uORF), remaining associated with 

the mRNA, and  then continue scanning until recognize the AUG codon in the uORF in a 

suboptimal context and scan past it to initiate at a downstream ORF (leaky scanning); 3) 

it may translate a short peptide (uORF) and then dissociate prematurely at the stop codon; 

4)  it may be stalled during the elongation or termination phase to block the additional 

ribosomal scanning, which is mainly mediated by the peptide produced from the uORF 

through its interaction with some part of the translation machinery (Morris DR et al. 

2000). Overall, all these actions that uORFs take will end up inhibiting the translational 

rate of the mRNA. Additionally, the uORF may also be involved in the destabilization of 

its own mRNA by a nonsense-mediated mRNA decay (NMD) pathway to affect its gene 

expression, as evidenced by the uORF in CPA1 mRNA (encoding the small subunit of 

the arginine pathway carbamoylphosphate synthetase), which is critical for the sensitivity 

to NMD (Ruiz-Echevarría MJ et al. 2000). So far, it is still unclear which mechanism is 

responsible for the uORF-dependent regulation in Wnt13C; however, we can propose that 

the uORFs of Wnt13C 5’-UTR employ to control the mRNA translation possibly through 

one (or more) of above choices (re-initiation, leaky scanning, ribosomal dissociation, 

ribosomal stalling) in the fate of mRNA with uORFs during its translation.  
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7.3 Insights form the increased apoptosis by Wnt13 forms 

7.3.1 Possible mechanisms of increased apoptosis by the nuclear Wnt13 forms 

In our study, Wnt13 forms, especially the nuclear M1L-Wnt13B,  increase 

caspase-3 like activity and cleavage of caspase-3 and 7 possibly through 1) increased 

expression of executioner caspase 3 and 7; 2) upregulated expression of the pro-apoptotic 

Bcl-2 member Bim, suggesting the involvement of the intrinsic apoptotic pathway. 

7.3.1.1 Caspase-3 and -7 

How the nuclear Wnt13 forms upregulate the expression of pro-caspases has yet 

to be investigated. The regulation of caspase expression can take place at the 

transcriptional levels. One factor that influences pro-caspase gene expression is interferon 

regulatory factor (IRF)-1. Ectopic overexpression of IRF-1 was shown to transactivate 

the endogenous ICE/CED 3 gene (former name for inflammatory caspase-1) in 

lymphocytes (Tamura T et al. 1995). The same results were also seen in human U937 

cells which were treated  by γ-interferon resulting in the induction of ICE expression 

(Tamura T et al. 1996). In addition, γ-interferon was found to induce the upregulation of 

caspase 1, 2, 3, 6, 8, and 9 in human erythroid progenitor cells (Dai C et al. 1999). The 

up-regulation of caspases is associated with cell differentiation in all these models. 

Besides IRF-1, another transcription factor STAT1 is also required for constitutive 

caspase expression. In human fibroblasts, STAT1 deficiency (U3A cells) resulted in 10 

times lower levels of caspase-1, 2, and 3 at mRNA expression than control cells, and re-

introduction of STAT1 into U3A cells were able to restore the expression of caspase-1 

mRNA (Kumar A et al. 1997).  



221 
 

The promoter of caspases were also cloned and characterized for further study of 

the transcriptional regulation of caspases. The rat caspase-3 promoter lacks TATA box 

but contains a cluster of Sp1 sites, and an Ets-1 binding site is found between -1646 and -

1632, which is critical for sustained promoter activity, revealing that Est-1 like 

transcription factors may regulate the transcription of rat caspase-3 (Liu W et al. 2002).  

Hypoxia-inducible factor (HIF)-1 was shown to be increased with the same pattern as 

pro-caspase-3 in vivo after ischemia, and gel shift assay demonstrated a specific HIF-1 

binding activity to the promoter of caspase-3, suggesting that HIF-1 may regulate 

caspase-3 expression at the transcriptional levels (Van Hoecke M et al. 2007). The 

sequence of human caspase-3 promoter shares 60% homology with that of rat promoter: 

the similarity is the absence of TATA box and the presence of Sp-1 like sequences; 

however, the human caspase-3 promoter is shown to be activated by not only Sp1, but 

also p73 isoforms instead of p53, both (Sp1 and p73) mediated by Sp-1 like sequences 

(Sudhakar C et al. 2008). The murine caspase-3 promoter was also cloned and identified, 

with the finding of putative transcription factor binding sites, including elements of 

NFAT, E2F1, Myc, and p53 (Sabbagh L et al. 2006), but more studies are needed to 

confirm which transcription factor is involved in the regulation of murine caspase-3 

transcription. FOXO1 was found to activate caspase-3 transcription using mouse caspase-

3 promoter, which is mediated by direct binding of FOXO1 to the upstream regulatory 

sequences (Bois PR et al. 2005). As for the nuclear Wnt13 forms, increased caspase-3 

expression include both mRNA levels and protein levels, so it is more likely that the 

upregulation of caspase-3 expression by the nuclear Wnt13 forms occurs at the 

transcriptional levels. It is still possible that the nuclear Wnt13 increased caspase-3 
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expression through FOXOs, which needs to be confirmed in caspase-3 promoter assay. 

Otherwise, other mediators, such HIF-1, STAT-1 and p73, might be responsive for 

increased transcription of caspase-3 by nuclear Wnt13 forms. 

For caspase-7, its protein levels were induced in response to statin treatment in 

dose-dependent manner, and CHIP assay demonstrated that SREBP-1 and -2 could bind 

to the proximal promoter region of caspase-7 gene, whose expression was suppressed by 

silencing SREBP-1 or -2 (Gibot L et al. 2009). In addition, another study showed that 

human caspase-7 promoter contained a putative p53-binding site and its activity could be 

induced by p53 (Joshi B et al. 2007). Therefore, the upregulated caspase-7 expression by 

nuclear Wnt13 forms might be mediated by one of these transcription factors, and this 

hypothesis needs to be tested in further experiments. 

7.3.1.2 Bim 

Besides FOXOs, the transcription of Bim can be regulated by other factors. The 

mRNA levels of Bim was shown to be induced by cerebral ischemia in mice, while this 

induction was suppressed in RelA (a subunit of NF-κB) CNSKO mice; and a putative NF-

κB site was then found in Bim promoter, which could be responsive to RelA; gel shift 

assay also confirmed the RelA binds to Bim promoter to stimulate transcription (Inta I et 

al. 2006). In hepatic cells, TGFβ was found to activate Bim transcription by increasing 

the expression of Runx1 via the mechanism of IRES, which then binds FOXO3a as a co-

activator leading to the transcriptional up-regulation of Bim through FOXO binding site, 

revealing that both Runx1 and FOXO3a can regulate the activation of Bim transcription 

(Wildey GM et al. 2009). Unlike Runx1 which regulate Bim through FOXO site, Runx3 
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was shown to be responsible for transcriptional activation of Bim in gastric epithelial cell 

apoptosis induced by TGFβ by interacting with three Runx sites in human Bim promoter; 

one Smad site was identified from Bim promoter, which was also responsive to TGFβ-

induced Bim expression (Yano T et al. 2006). Moreover, the expression of Bim was able 

to be induced by nerve growth factor (NGF) withdrawal in neuronal cells, because the 

activation of cyclin-dependent kinase (cdk) 4 de-repressed transcription factor E2 

promoter binding factor (E2F), which targeted C-myb gene to induce Bim transcription 

via myb binding sites, so the Bim expression could be regulated during any step of cdk4-

E2F-myb pathway in response to NGF withdrawal (Biswas SC et al. 2005). Besides myb, 

c-Jun and FOXO were found to be required for transcriptional induction of Bim in 

response to NGF deprivation through interacting with AP-1 site and FOXO-binding site, 

respectively (Biswas SC et al. 2007). The human Bim promoter was also shown to be 

activated by E2F factor through the interaction with a putative E2F-binding site, 

indicating a direct regulation of E2F in Bim transcription (Gaviraghi M et al. 2008). 

Since the upreuglation of Bim expression occurred at the mRNA levels more 

prominently, the induction of Bim took place more possibly at transcriptional levels. 

Therefore, the Bim promoter is needed to define whether nuclear Wnt13 forms 

upregulated Bim expression through FOXO factors. If the effect of nuclear Wnt13 is in 

FOXO-independent manner, other factors that regulate Bim transcription, such as NF-κB, 

Runx family, E2F, could be considered as potential mediators for the action of nuclear 

Wnt13 forms. 

Also, Bim and caspase-3 can be regulated post-transcriptionally. Mitogen-

activated protein kinase kinase kinase kinase (MAP4K) 3 is a member of the Ste20 
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family of protein kinases and can be activated by UV radiation and the pro-inflammatory 

cytokine TNF-α, which was shown to modulate Bim expression at the posttranscriptional 

level dependent of its kinase activity (Lam D et al. 2009). In murine B lymphoma cell 

lines, anti-IgM induced prolonged activation of JNK which upregulated Bim expression 

posttranscriptionally, resulting in cell apoptosis (Takada E et al. 2006). Moreover, 

caspase-3 has been shown to undergo a unique post-transcriptionally regulation in mouse 

and rat during development of skeletal muscle, but not other tissues (Ruest LB et al. 

2002). However, which factor is responsible for the post-transcriptional regulation of 

caspase-3 is still to be investigated. Thus, it is possible that the expression of caspase-3 

and Bim is upregulated by Wnt13 forms at post-transcriptional levels. 

 

7.3.2 Insights from other Wnt13 forms 

Our data showed that mitochondrial Wnt13 forms had a moderate effect on 

increasing endothelial cell apoptosis and the expression of apoptotic factors including 

caspase-3, 7 and Bim, and this effect did not appear to be mediated by FOXOs, as the 

nuclear localization and the transcriptional activity of FOXOs in any luciferase constructs 

were unchanged by mitochondrial forms. One possibility is the mitochondrial forms 

might relay the signal from mitochondria to those nuclear transcription factors who are 

able to regulate caspase-3, 7 and Bim directly or indirectly. For example, under some 

circumstances like stress, p53 can translocate to mitochondria where it possibly interacts 

with mitochondrial Wnt13 forms, which might result in the activated or stabilized p53 

translocating to nucleus to 1) induce caspase-7 transcription; 2) induce apoptosis through 
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other pro-apoptotic factors such as Noxa, Bid. Another possibility is that due to the 

importance of mitochondrial permeability as well as a large scale of pro-apoptotic factors 

located in mitochondria, the mitochondria Wnt13 forms might exert certain positive 

effects on 1) MOMP formation by promoting Bax translocation to mitochondria or the 

opening of channels like VDAC; or 2) accelerating the release of pro-apoptotic factors 

like cytochrome c to cytoplasm. In addition, since the amount of ROS (mainly 

superoxide) was increased significantly by the mitochondrial Wnt13 forms as evidenced 

by DHE staining, the mitochondria Wnt13 forms might affect MOMP and apoptosis 

through regulate ROS production. All theses proposed mechanisms need to be testified in 

further experiments. 

However, Wnt13A showed a weak effect on EC apoptosis and a moderate 

increasing effect on the expression of caspase-3, 7 and Bim. Wnt13A reduced FOXO3a 

phosphorylation at Ser253 (an Akt/SGK site), and Wnt13A did not affect Akt 

phosphorylation at Ser473, suggesting that other kinases like SGK may be responsible for 

the decreased FOXO3a phosphorylation at Ser253. Wnt13A also increased the nuclear 

localization of endogenous FOXO3a; however, Wnt13A did not appear to increase 

FOXO activity in either FHRE-luc or SOD2 promoter –luc. Instead, it seems that the P7 

fragment is more likely to be involved in the increased SOD2 transcription. The P7 

fragment is featured by multiple Sp1 and AP-2 binding sites, so Wnt13A might regulate 

the luciferase activity of P7 through Sp1 or AP-2 factors. In addition, Wnt13A has been 

demonstrated to be the ligand for Fz7 receptor in BAECs (Struewing IT et al. 2007). Fz7 

was also proved to interact with Wnt11 to control cell contact persistence at the plasma 

membrane, suggesting the cross-talk between Wnt/PCP pathway and cell-cell adhension 
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(Witzel S et al. 2006). Hence, it is possible that Fz7 affect JNK signaling which is a key 

pathway in Wnt/PCP signaling. So we propose that Wnt13A might stimulate JNK 

signaling through Fz7 receptor and then activate c-Jun to upregulate MnSOD expression 

via AP-1 site located between -1.6K and 3K of SOD2 gene.  

 

7.4 Clinical implications 

The vascular endothelium is an active, dynamic tissue controlling many important 

functions, including regulation of vascular tone and maintenance of blood circulation, 

fluidity, coagulation, and responses to leukocytes and inflammatory factors (Gonzalez 

MA et al. 2003). Neovascularization and vessel regression are determined by the balance 

between proliferation and apoptosis of ECs, which is tightly controlled to maintain vessel 

homeostasis (Mallat Z et al. 2000).  

During normal vessel development and remodeling, EC apoptosis have been 

shown to be required for vessel regression. Failure of EC apoptosis in vessel regression 

can cause severe pathological change. Familial exudative vitreoretinopathy (FEVR) is a 

hereditary ocular disorder characterized by supernumerous vascular branching due to 

failure of vessel regression, retina detachments and leaky vasculature (Miyakubo H et al. 

1982; Masckauchán TN et al. 2006). Another human disorder, called persistent 

hyperplastic primary vitreous (PHPV), is caused by defective regressing of hyaloid 

vascular system, resulting in the persistence of structures of the primary vitreous and the 

development of a fibro-vascular retrolental plaque. Indeed, some components in Wnt 

signaling have been shown to be correlated with such diseases. For example, Fz4 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=PubMed&Cmd=Search&Term=%22Gonzalez%20MA%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstractPlus�
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=PubMed&Cmd=Search&Term=%22Gonzalez%20MA%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstractPlus�
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=PubMed&Cmd=Search&Term=%22Gonzalez%20MA%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstractPlus�
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mutations was found in association with familial exudative vitreoretinopathy (FEVR) 

(Robitaille J et al. 2002; Omoto S et al. 2004); and Fz5 retina-specific knockout mice 

developed a phonotype similar to PHPV, characterized by accumulation of retrolental 

tissue, failure of vessel regression, and abnormal retina morphogenesis (Zhang J et al. 

2008). Wnt13 isoforms, especially the nuclear forms, increased the sensitivity of EC to 

apoptosis both at basal levels and after challenged by stimulus (LPS treatment). 

Moreover, the expression of Wnt13 is tightly controlled during the development of 

chicken eye, and Wnt13 has been shown to function in control cell fate in retina, and play 

critical role in the formation of laminar structure, ciliary marginal zone (CMZ) and 

iris/ciliary epithelium in the retina (Kubo F et al. 2003; Kubo F et al. 2009). Thus, all this 

information gives a hint that Wnt13 forms might play a role in vessel regression, and 

defects in Wnt13 forms might be involved in the pathogenesis of vascular disorders such 

as PHPV and FEVR.  

Besides, endothelial cell apoptosis appears to be involved in other vascular 

disorders such as atherosclerosis and angiogenesis (Mallat Z et al. 2000; Dimmeler S et 

al. 2000).  

Atherosclerosis is a multifactorial disorder which develops in the arterial wall in 

response to numerous pathological insults and results in excessive inflammatory injury 

and fibro-proliferative plaque (Sima AV et al.2009). An increasing size of evidence 

shows increased EC apoptosis in atherosclerotic plaques compared with normal tissues 

(Choy JC et al. 2001). In the early stage of atherosclerosis, EC apoptosis induces loss of 

EC number and EC integrity, leading to enhanced vascular permeability, SMC migration 

and increased blood coagulation (Choy JC et al. 2001). EC apoptosis may be induced by 
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oxLDL, CTL, cytokines, ROS or local inflammatory mediators (Sima AV et al.2009). In 

our research, we used pro-inflammatory LPS to challenge BAECs and EC induce 

apoptosis, and the nuclear Wnt13 forms further potentiate LPS-induced apoptosis by 

upregulating pro-apoptotic factors. Thus, two possible scenarios would be generated by 

Wnt13 forms: 1) more EC apoptosis in atherosclerotic lesion by Wnt13 forms might 

promote EC dysfunction and vascular permeability, resulting in aggravating lesion at 

vessel wall; 2) increased susceptibility to stimuli might help the injured cell to complete 

apoptosis and self-removal in a quicker pace, possibly leading to the reduction of 

inflammation. Therefore, whether Wnt13 is good guy or bad guy during pathogenesis of 

atherosclerosis needs to be confirmed in atherosclerotic models. 

Angiogenesis is the process of postnatal neovasuclarization, mediated by 

proliferation, migration and remodeling of differentiated endothelial cells. Unlike being 

mainly deleterious in atherosclerosis, EC apoptosis, counteracting proliferation, has an 

inhibitory function in tumor angiogenesis (Dimmeler S et al. 2000), endothelial cell 

apoptosis is believed to be a target to interfere tumor angiogenesis.  In this case, the 

increasing effect of Wnt13 on ECs may imply that Wnt13 forms might have inhibitory 

action on tumor angiogenesis. However, this hypothesis is in need of more experiments 

performed in endothelial cells from smaller vessels. 

 

7.5 Future directions 

Our findings reveal that the nuclear Wnt13C is regulated at translational levels 

during apoptosis, and the nuclear Wnt13 forms increase EC sensitivity to apoptosis by 
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upregulating pro-apoptotic factors such as caspase-3, 7 and Bim; also, the nuclear Wnt13 

forms increase SOD2 transcription through intron 2 element of SOD2 gene, which is 

possibly mediated by FOXOs. Hence, further studies include: 1) how nuclear Wnt13C 

undergo regulation through uORFs; 2) whether FOXOs are responsible for the 

upregulation of caspase-3, 7 and Bim by the nuclear Wnt13, which can be confirmed by 

using promoters of caspase-3/7 and Bim; 3) whether other factors are responsible for the 

upregulation of caspase-3, 7 and Bim by the nuclear Wnt13 (the possible candidate 

regulators were described above); 4) whether the increased apoptosis by the nuclear 

Wnt13 is correlated in the development of diseases, which needs to be defined in disease 

models. 

Moreover, Wnt13A and mitochondrial Wnt13 forms show less increase in EC 

apoptosis and the expression of apoptosis-related factors, and they do not seem to 

function through FOXOs. Therefore, more studies can be centered on: 1) which pathway 

that mitochondria forms of Wnt13 signal from mitochondria to nucleus; 2) whether 

Wnt13A function through Fz-7- JNK – AP-1- SOD2 pathway. 

In conclusion, the findings of this research point to the interplay between Wnt13 

forms and cell apoptosis. Specifically, the nuclear Wnt13C is induced at translational 

levels during EC apoptosis; and the nuclear Wnt13 forms increase EC susceptibility to 

apoptosis by upregulating the expression of pro-apoptotic factors, which suggests that the 

expression and functions of the nuclear Wnt13 may form a positive feedback during 

apoptosis, resulting in accelerating the completion of the apoptosis process (Figure 7). 

Therefore, the interplay between the expression and functions of Wnt13 forms, especially 
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nuclear forms, is important for EC homeostasis, which might also be involved in vessel 

development and vessel pathogenesis.  
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Figure 7 A possible model demonstrating the interplay between expression and functions 

of Wnt13 forms during cell apoptosis. Specifically, the nuclear Wnt13C is induced at 

translational levels during EC apoptosis. The nuclear Wnt13 forms increase FOXO 

activity to upregulate SOD2 expression, as well as the expression of caspase-3 and Bim 

leading to increased EC susceptibility to apoptosis. And this interplay between the 

expression and functions of the nuclear Wnt13 may form a positive feedback during 

apoptosis, resulting in accelerating the completion of the apoptotic program.  

 

 

 

Copyright © Tao Tang 2009 



232 
 

 REFERENCES 

Adachi S, Obaya AJ, Han Z, Ramos-Desimone N, Wyche JH, Sedivy JM. c-Myc is 
necessary for DNA damage-induced apoptosis in the G(2) phase of the cell cycle. Mol 
Cell Biol. 2001 Aug;21(15):4929-37. 

Adhikary S, Eilers M. Transcriptional regulation and transformation by Myc proteins. 
Nat Rev Mol Cell Biol. 2005 Aug;6(8):635-45. 

Aguilera O, Fraga MF, Ballestar E, Paz MF, Herranz M, Espada J, García JM, Muñoz A, 
Esteller M, González-Sancho JM. Epigenetic inactivation of the Wnt antagonist 
DICKKOPF-1 (DKK-1) gene in human colorectal cancer. Oncogene. 2006 Jul 
6;25(29):4116-21.  

Aichberger KJ, Mayerhofer M, Krauth MT, Vales A, Kondo R, Derdak S, Pickl WF, 
Selzer E, Deininger M, Druker BJ, Sillaber C, Esterbauer H, Valent P. Low-level 
expression of proapoptotic Bcl-2-interacting mediator in leukemic cells in patients with 
chronic myeloid leukemia: role of BCR/ABL, characterization of underlying signaling 
pathways, and reexpression by novel pharmacologic compounds. Cancer Res. 2005 Oct 
15;65(20):9436-44. 

Allen RT, Hunter WJ 3rd, Agrawal DK. Morphological and biochemical characterization 
and analysis of apoptosis. J Pharmacol Toxicol Methods. 1997 Jun;37(4):215-28. 

Almeida M, Han L, Bellido T, Manolagas SC, Kousteni S. Wnt proteins prevent 
apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by 
beta-catenin-dependent and -independent signaling cascades involving Src/ERK and 
phosphatidylinositol 3-kinase/AKT. J Biol Chem. 2005 Dec 16;280(50):41342-51. 

Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, 
Yuan J. Human ICE/CED-3 protease nomenclature. Cell. 1996 Oct 18;87(2):171. 

Alvarez AR, Godoy JA, Mullendorff K, Olivares GH, Bronfman M, Inestrosa NC.Wnt-
3a overcomes beta-amyloid toxicity in rat hippocampal neurons. Exp Cell Res. 2004 Jul 
1;297(1):186-96. 

Amundson SA, Myers TG, Fornace AJ Jr. Roles for p53 in growth arrest and apoptosis: 
putting on the brakes after genotoxic stress. Oncogene. 1998 Dec 24;17(25):3287-99.  

Arnoult D, Rismanchi N, Grodet A, Roberts RG, Seeburg DP, Estaquier J, Sheng M, 
Blackstone C. Bax/Bak-dependent release of DDP/TIMM8a promotes Drp1-mediated 
mitochondrial fission and mitoptosis during programmed cell death. Curr Biol. 2005 Dec 
6;15(23):2112-8. 

http://www.ncbi.nlm.nih.gov/pubmed/11438650?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11438650?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16064138?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16491118?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16491118?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16491118?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16230407?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16230407?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16230407?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16230407?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9279777?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9279777?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9279777?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16251184?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16251184?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16251184?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16251184?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16251184?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8861900?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15194435?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15194435?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9916991?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9916991?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16332536?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16332536?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


233 
 

Askew DS, Ashmun RA, Simmons BC, Cleveland JL. Constitutive c-myc expression in 
an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates 
apoptosis. Oncogene. 1991 Oct;6(10):1915-22. 

Azmi TI, O'Shea JD. Mechanism of deletion of endothelial cells during regression of the 
corpus luteum. Lab Invest. 1984 Aug;51(2):206-17. 

Bachelor MA, Bowden GT. Ultraviolet A-induced modulation of Bcl-XL by p38 MAPK 
in human keratinocytes: post-transcriptional regulation through the 3'-untranslated region. 
J Biol Chem. 2004 Oct 8;279(41):42658-68.  

Bafico A, Gazit A, Pramila T, Finch PW, Yaniv A, Aaronson SA. Interaction of frizzled 
related protein (FRP) with Wnt ligands and the frizzled receptor suggests alternative 
mechanisms for FRP inhibition of Wnt signaling. J Biol Chem. 1999 Jun 
4;274(23):16180-7. 

Bannerman DD, Goldblum SE. Mechanisms of bacterial lipopolysaccharide-induced 
endothelial apoptosis. Am J Physiol Lung Cell Mol Physiol. 2003 Jun;284(6):L899-914. 

Bänziger C, Soldini D, Schütt C, Zipperlen P, Hausmann G, Basler K. Wntless, a 
conserved membrane protein dedicated to the secretion of Wnt proteins from signaling 
cells. Cell. 2006 May 5;125(3):509-22. 

Barreyro FJ, Kobayashi S, Bronk SF, Werneburg NW, Malhi H, Gores GJ. 
Transcriptional regulation of Bim by FoxO3A mediates hepatocyte lipoapoptosis. J Biol 
Chem. 2007 Sep 14;282(37):27141-54. 

Barthélémy C, Henderson CE, Pettmann B. Foxo3a induces motoneuron death through 
the Fas pathway in cooperation with JNK. BMC Neurosci. 2004 Nov 29;5:48. 

Basu S, Kolesnick R. Stress signals for apoptosis: ceramide and c-Jun kinase. Oncogene. 
1998 Dec 24;17(25):3277-85.  

Bechard M, Dalton S. Subcellular localization of glycogen synthase kinase 3beta controls 
embryonic stem cell self-renewal. Mol Cell Biol. 2009 Apr;29(8):2092-104.  

Bejsovec A. Wnt pathway activation: new relations and locations. Cell. 2005 Jan 
14;120(1):11-4. 

Benhaj K, Akcali KC, Ozturk M. Redundant expression of canonical Wnt ligands in 
human breast cancer cell lines. Oncol Rep. 2006 Mar;15(3):701-7. 

Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD, MacDougald 
OA. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci U S 
A. 2005 Mar 1;102(9):3324-9. 

http://www.ncbi.nlm.nih.gov/pubmed/1923514?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/1923514?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/1923514?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/6748614?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/6748614?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/6748614?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15292226?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15292226?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10347172?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10347172?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10347172?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10347172?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12736186?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12736186?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16678095?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16678095?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16678095?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16678095?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17626006?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15569384?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15569384?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9916990?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19223464?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19223464?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19223464?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15652476?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16465433?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16465433?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16465433?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15728361?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


234 
 

Bennett CN, Ouyang H, Ma YL, Zeng Q, Gerin I, Sousa KM, Lane TF, Krishnan V, 
Hankenson KD, MacDougald OA. Wnt10b increases postnatal bone formation by 
enhancing osteoblast differentiation. J Bone Miner Res. 2007 Dec;22(12):1924-32. 

Beurel E, Jope RS. The paradoxical pro- and anti-apoptotic actions of GSK3 in the 
intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol. 2006 Jul;79(4):173-
89. Epub 2006 Aug 28. 

Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP, Andrew D, Nathans J, 
Nusse R. A new member of the frizzled family from Drosophila functions as a Wingless 
receptor. Nature. 1996 Jul 18;382(6588):225-30. 

Bhattacharya K, Samanta SK, Tripathi R, Mallick A, Chandra S, Pal BC, Shaha C, 
Mandal C. Apoptotic effects of mahanine on human leukemic cells are mediated through 
crosstalk between Apo-1/Fas signaling and the Bid protein and via mitochondrial 
pathways. Biochem Pharmacol. 2009 Sep 12.  

Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling. Cell. 2000 Oct 
13;103(2):311-20.  

Biggs WH 3rd, Cavenee WK, Arden KC. Identification and characterization of members 
of the FKHR (FOX O) subclass of winged-helix transcription factors in the mouse. 
Mamm Genome. 2001 Jun;12(6):416-25. 

Bijur GN, Jope RS. Proapoptotic stimuli induce nuclear accumulation of glycogen 
synthase kinase-3 beta. J Biol Chem. 2001 Oct 5;276(40):37436-42.  

Bisgaard AM, Rasmussen LN, Møller HU, Kirchhoff M, Bryndorf T. Interstitial deletion 
of the short arm of chromosome 1 (1p13.1p21.1) in a girl with mental retardation, short 
stature and colobomata. Clin Dysmorphol. 2007 Apr;16(2):109-12. 

Biswas SC, Liu DX, Greene LA. Bim is a direct target of a neuronal E2F-dependent 
apoptotic pathway. J Neurosci. 2005 Sep 14;25(37):8349-58. 

Biswas SC, Shi Y, Sproul A, Greene LA. Pro-apoptotic Bim induction in response to 
nerve growth factor deprivation requires simultaneous activation of three different death 
signaling pathways. J Biol Chem. 2007 Oct 5;282(40):29368-74. 

Blank M, Shiloh Y. Programs for cell death: apoptosis is only one way to go. Cell Cycle. 
2007 Mar 15;6(6):686-95.  

Blankesteijn WM, van de Schans VA, ter Horst P, Smits JF. The Wnt/frizzled/GSK-3 
beta pathway: a novel therapeutic target for cardiac hypertrophy. Trends Pharmacol Sci. 
2008 Apr;29(4):175-80. 

http://www.ncbi.nlm.nih.gov/pubmed/17708715?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17708715?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17708715?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16935409?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16935409?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8717036?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8717036?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8717036?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19751707?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19751707?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19751707?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19751707?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11057903?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11353388?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11353388?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11353388?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11495916?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11495916?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11495916?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17351355?ordinalpos=12&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17351355?ordinalpos=12&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17351355?ordinalpos=12&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17351355?ordinalpos=12&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16162916?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16162916?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17702754?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17702754?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17702754?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17361099?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18342376?ordinalpos=11&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18342376?ordinalpos=11&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


235 
 

Bodine PV, Zhao W, Kharode YP, Bex FJ, Lambert AJ, Goad MB, Gaur T, Stein GS, 
Lian JB, Komm BS. The Wnt antagonist secreted frizzled-related protein-1 is a negative 
regulator of trabecular bone formation in adult mice. Mol Endocrinol. 2004 
May;18(5):1222-37.  

Bois PR, Izeradjene K, Houghton PJ, Cleveland JL, Houghton JA, Grosveld GC. 
FOXO1a acts as a selective tumor suppressor in alveolar rhabdomyosarcoma. J Cell Biol. 
2005 Sep 12;170(6):903-12. 

Boland GM, Perkins G, Hall DJ, Tuan RS. Wnt 3a promotes proliferation and suppresses 
osteogenic differentiation of adult human mesenchymal stem cells. J Cell Biochem. 2004 
Dec 15;93(6):1210-30. 

Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW, Köntgen F, Adams JM, 
Strasser A. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, 
leukocyte homeostasis, and to preclude autoimmunity. Science. 1999 Nov 
26;286(5445):1735-8. 

Bovolenta P, Esteve P, Ruiz JM, Cisneros E, Lopez-Rios J. Beyond Wnt inhibition: new 
functions of secreted Frizzled-related proteins in development and disease. J Cell Sci. 
2008 Mar 15;121(Pt 6):737-46. 

Bowerman B. Cell biology. Oxidative stress and cancer: a beta-catenin convergence. 
Science. 2005 May 20;308(5725):1119-20. 

Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA. Increased Wnt 
signaling during aging alters muscle stem cell fate and increases fibrosis. Science. 2007 
Aug 10;317(5839):807-10. 

Bradley RS, Cowin P, Brown AM. Expression of Wnt-1 in PC12 cells results in 
modulation of plakoglobin and E-cadherin and increased cellular adhesion. J Cell Biol. 
1993 Dec;123(6 Pt 2):1857-65. 

Bradbury JM, Niemeyer CC, Dale TC, Edwards PA. Alterations of the growth 
characteristics of the fibroblast cell line C3H 10T1/2 by members of the Wnt gene 
family. Oncogene. 1994 Sep;9(9):2597-603. 

Brenner C, Cadiou H, Vieira HL, Zamzami N, Marzo I, Xie Z, Leber B, Andrews D, 
Duclohier H, Reed JC, Kroemer G. Bcl-2 and Bax regulate the channel activity of the 
mitochondrial adenine nucleotide translocator. Oncogene. 2000 Jan 20;19(3):329-36. 

Brooks C, Wei Q, Feng L, Dong G, Tao Y, Mei L, Xie ZJ, Dong Z. Bak regulates 
mitochondrial morphology and pathology during apoptosis by interacting with 
mitofusins. Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11649-54.  

http://www.ncbi.nlm.nih.gov/pubmed/14976225?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14976225?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16157701?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15486964?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15486964?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15486964?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10576740?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10576740?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18322270?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18322270?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18322270?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15905385?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17690295?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17690295?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17690295?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8276903?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8276903?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8058323?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8058323?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8058323?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8058323?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10656679?ordinalpos=14&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10656679?ordinalpos=14&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17606912?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17606912?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17606912?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17606912?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


236 
 

Brown AM, Wildin RS, Prendergast TJ, Varmus HE. A retrovirus vector expressing the 
putative mammary oncogene int-1 causes partial transformation of a mammary epithelial 
cell line. Cell. 1986 Sep 26;46(7):1001-9. 

Brunet A, Park J, Tran H, Hu LS, Hemmings BA, Greenberg ME. Protein kinase SGK 
mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 
(FOXO3a). Mol Cell Biol. 2001 Feb;21(3):952-65. 

Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, 
Blenis J, Greenberg ME. Akt promotes cell survival by phosphorylating and inhibiting a 
Forkhead transcription factor. Cell. 1999 Mar 19;96(6):857-68. 

Bunaciu RP, Tang T, Mao CD. Differential expression of Wnt13 isoforms during 
leukemic cell differentiation. Oncol Rep. 2008 Jul;20(1):195-201. 

Buscarlet M, Stifani S. The 'Marx' of Groucho on development and disease. Trends Cell 
Biol. 2007 Jul;17(7):353-61.  

Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes 
Dev. 1997 Dec 15;11(24):3286-305. 

Caldwell GM, Jones C, Gensberg K, Jan S, Hardy RG, Byrd P, Chughtai S, Wallis Y, 
Matthews GM, Morton DG. The Wnt antagonist sFRP1 in colorectal 
tumorigenesis.Cancer Res. 2004 Feb 1;64(3):883-8. 

Campbell MT, Dagher P, Hile KL, Zhang H, Meldrum DR, Rink RC, Meldrum KK. 
Tumor necrosis factor-alpha induces intrinsic apoptotic signaling during renal obstruction 
through truncated bid activation. J Urol. 2008 Dec;180(6):2694-700. 

Cao J, Xu D, Wang D, Wu R, Zhang L, Zhu H, He Q, Yang B. ROS-driven Akt 
dephosphorylation at Ser-473 is involved in 4-HPR-mediated apoptosis in NB4 cells. 
Free Radic Biol Med. 2009 Sep 1;47(5):536-47. 

Carmon KS, Loose DS. Secreted frizzled-related protein 4 regulates two Wnt7a signaling 
pathways and inhibits proliferation in endometrial cancer cells. Mol Cancer Res. 2008 
Jun;6(6):1017-28. a 

Carmon KS, Loose DS. Wnt7a interaction with Fzd5 and detection of signaling activation 
using a split eGFP. Biochem Biophys Res Commun. 2008 Apr 4;368(2):285-91. b 

Carreira-Barbosa F, Concha ML, Takeuchi M, Ueno N, Wilson SW, Tada M. Prickle 1 
regulates cell movements during gastrulation and neuronal migration in zebrafish. 
Development. 2003 Sep;130(17):4037-46. 

http://www.ncbi.nlm.nih.gov/pubmed/3019559?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/3019559?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/3019559?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/3019559?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11154281?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11154281?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11154281?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11154281?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10102273?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10102273?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10102273?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18575737?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18575737?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17643306?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9407023?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14871816?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14871816?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14871816?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18951565?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18951565?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19482076?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19482076?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18567805?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18567805?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18230341?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18230341?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18230341?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12874125?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12874125?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12874125?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


237 
 

Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP. Wnt9b plays a central role 
in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the 
mammalian urogenital system. Dev Cell. 2005 Aug;9(2):283-92. 

Cattelino A, Liebner S, Gallini R, Zanetti A, Balconi G, Corsi A, Bianco P, Wolburg H, 
Moore R, Oreda B, Kemler R, Dejana E. The conditional inactivation of the beta-catenin 
gene in endothelial cells causes a defective vascular pattern and increased vascular 
fragility. J Cell Biol. 2003 Sep 15;162(6):1111-22. 

Cavodeassi F, Carreira-Barbosa F, Young RM, Concha ML, Allende ML, Houart C, Tada 
M, Wilson SW. Early stages of zebrafish eye formation require the coordinated activity 
of Wnt11, Fz5, and the Wnt/beta-catenin pathway. Neuron. 2005 Jul 7;47(1):43-56. 

Cha KB, Douglas KR, Potok MA, Liang H, Jones SN, Camper SA. WNT5A signaling 
affects pituitary gland shape. Mech Dev. 2004 Feb;121(2):183-94. 

Chakravortty D, Koide N, Kato Y, Sugiyama T, Kawai M, Fukada M, Yoshida T, 
Yokochi T. Cytoskeletal alterations in lipopolysaccharide-induced bovine vascular 
endothelial cell injury and its prevention by sodium arsenite. Clin Diagn Lab Immunol. 
2000 Mar;7(2):218-25. 

Chandra J, Samali A, Orrenius S. Triggering and modulation of apoptosis by oxidative 
stress. Free Radic Biol Med. 2000 Aug;29(3-4):323-33.  

Chang HY, Yang X. Proteases for cell suicide: functions and regulation of caspases. 
Microbiol Mol Biol Rev. 2000 Dec;64(4):821-46.  

Chatterjee S, Pal JK. Role of 5'- and 3'-untranslated regions of mRNAs in human 
diseases. Biol Cell. 2009 May;101(5):251-62.  

Chen WS, Antic D, Matis M, Logan CY, Povelones M, Anderson GA, Nusse R, Axelrod 
JD. Asymmetric homotypic interactions of the atypical cadherin flamingo mediate 
intercellular polarity signaling. Cell. 2008 Jun 13;133(6):1093-105. 

Chen X, Shevtsov SP, Hsich E, Cui L, Haq S, Aronovitz M, Kerkelä R, Molkentin JD, 
Liao R, Salomon RN, Patten R, Force T. The beta-catenin/T-cell factor/lymphocyte 
enhancer factor signaling pathway is required for normal and stress-induced cardiac 
hypertrophy.Mol Cell Biol. 2006 Jun;26(12):4462-73. 

Ching W, Hang HC, Nusse R. Lipid-independent secretion of a Drosophila Wnt protein.J 
Biol Chem. 2008 Jun 20;283(25):17092-8. 

Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR. PUMA couples 
the nuclear and cytoplasmic proapoptotic function of p53. Science. 2005 Sep 
9;309(5741):1732-5. 

http://www.ncbi.nlm.nih.gov/pubmed/16054034?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16054034?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16054034?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16054034?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12975353?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12975353?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12975353?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15996547?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15996547?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15996547?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15037319?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15037319?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15037319?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10702496?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10702496?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11035261?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11035261?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11104820?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19275763?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19275763?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18555784?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18555784?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18555784?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16738313?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16738313?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16738313?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18430724?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16151013?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16151013?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16151013?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


238 
 

Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green 
DR. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization 
and apoptosis. Science. 2004 Feb 13;303(5660):1010-4. 

Cho SH, Cepko CL. Wnt2b/beta-catenin-mediated canonical Wnt signaling determines 
the peripheral fates of the chick eye. Development. 2006 Aug;133(16):3167-77.  

Choi KB, Wong F, Harlan JM, Chaudhary PM, Hood L, Karsan A. Lipopolysaccharide 
mediates endothelial apoptosis by a FADD-dependent pathway. J Biol Chem. 1998 Aug 
7;273(32):20185-8. 

Chowdhury I, Tharakan B, Bhat GK. Caspases - an update. Comp Biochem Physiol B 
Biochem Mol Biol. 2008 Sep;151(1):10-27. 

Choy JC, Granville DJ, Hunt DW, McManus BM. Endothelial cell apoptosis: 
biochemical characteristics and potential implications for atherosclerosis. J Mol Cell 
Cardiol. 2001 Sep;33(9):1673-90.  

Christman MA 2nd, Goetz DJ, Dickerson E, McCall KD, Lewis CJ, Benencia F, Silver 
MJ, Kohn LD, Malgor R. Wnt5a is expressed in murine and human atherosclerotic 
lesions. Am J Physiol Heart Circ Physiol. 2008 Jun;294(6):H2864-70.  

Christodoulides C, Laudes M, Cawthorn WP, Schinner S, Soos M, O'Rahilly S, Sethi JK, 
Vidal-Puig A The Wnt antagonist Dickkopf-1 and its receptors are coordinately regulated 
during early human adipogenesis. J Cell Sci. 2006 Jun 15;119(Pt 12):2613-20. 

Ciani L, Salinas PC. WNTs in the vertebrate nervous system: from patterning to neuronal 
connectivity. Nat Rev Neurosci. 2005 May;6(5):351-62. 

Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006 Nov 
3;127(3):469-80.  

Cohen P, Frame S. The renaissance of GSK3. Nat Rev Mol Cell Biol. 2001 
Oct;2(10):769-76. 

Colnot S, Decaens T, Niwa-Kawakita M, Godard C, Hamard G, Kahn A, Giovannini M, 
Perret C. Liver-targeted disruption of Apc in mice activates beta-catenin signaling and 
leads to hepatocellular carcinomas. Proc Natl Acad Sci U S A. 2004 Dec 
7;101(49):17216-21. 

Constantinou T, Baumann F, Lacher MD, Saurer S, Friis R, Dharmarajan A. SFRP-4 
abrogates Wnt-3a-induced beta-catenin and Akt/PKB signalling and reverses a Wnt-3a-
imposed inhibition of in vitro mammary differentiation. J Mol Signal. 2008 May 2;3:10. 

http://www.ncbi.nlm.nih.gov/pubmed/14963330?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14963330?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14963330?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16854977?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16854977?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9685365?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9685365?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9685365?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18602321?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11549346?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11549346?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11549346?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18456733?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18456733?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18456733?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16763196?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16763196?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15832199?ordinalpos=9&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15832199?ordinalpos=9&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15832199?ordinalpos=9&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17081971?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11584304?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15563600?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15563600?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18452624?ordinalpos=19&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18452624?ordinalpos=19&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18452624?ordinalpos=19&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


239 
 

Cong F, Schweizer L, Varmus H. Wnt signals across the plasma membrane to activate 
the beta-catenin pathway by forming oligomers containing its receptors, Frizzled and 
LRP. Development. 2004 Oct;131(20):5103-15. 

Coudreuse D, Korswagen HC. The making of Wnt: new insights into Wnt maturation, 
sorting and secretion. Development. 2007 Jan;134(1):3-12. 

Da Forno PD, Pringle JH, Hutchinson P, Osborn J, Huang Q, Potter L, Hancox RA, 
Fletcher A, Saldanha GS. WNT5A expression increases during melanoma progression 
and correlates with outcome. Clin Cancer Res. 2008 Sep 15;14(18):5825-32. 

Dai C, Krantz SB. Interferon gamma induces upregulation and activation of caspases 1, 
3, and 8 to produce apoptosis in human erythroid progenitor cells. Blood. 1999 May 
15;93(10):3309-16. 

Danial NN. BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin 
Cancer Res. 2007 Dec 15;13(24):7254-63. 

Damcott CM, Pollin TI, Reinhart LJ, Ott SH, Shen H, Silver KD, Mitchell BD, Shuldiner 
AR. Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene are associated 
with type 2 diabetes in the Amish: replication and evidence for a role in both insulin 
secretion and insulin resistance. Diabetes. 2006 Sep;55(9):2654-9. 

Damianitsch K, Melchert J, Pieler T. XsFRP5 modulates endodermal organogenesis in 
Xenopus laevis. Dev Biol. 2009 May 15;329(2):327-37.  

De Ferrari GV, Inestrosa NC. Wnt signaling function in Alzheimer's disease.Brain Res 
Brain Res Rev. 2000 Aug;33(1):1-12. 

De Ferrari GV, Papassotiropoulos A, Biechele T, Wavrant De-Vrieze F, Avila ME, 
Major MB, Myers A, Sáez K, Henríquez JP, Zhao A, Wollmer MA, Nitsch RM, Hock C, 
Morris CM, Hardy J, Moon RT. Common genetic variation within the low-density 
lipoprotein receptor-related protein 6 and late-onset Alzheimer's disease. Proc Natl Acad 
Sci U S A. 2007 May 29;104(22):9434-9. 

Dehner M, Hadjihannas M, Weiske J, Huber O, Behrens J. Wnt signaling inhibits 
Forkhead box O3a-induced transcription and apoptosis through up-regulation of serum- 
and glucocorticoid-inducible kinase 1. J Biol Chem. 2008 Jul 11;283(28):19201-10.  

Dejana E, Orsenigo F, Lampugnani MG.The role of adherens junctions and VE-cadherin 
in the control of vascular permeability. J Cell Sci. 2008 Jul 1;121(Pt 13):2115-22.  

Del Poeta G, Venditti A, Del Principe MI, Maurillo L, Buccisano F, Tamburini A, Cox 
MC, Franchi A, Bruno A, Mazzone C, Panetta P, Suppo G, Masi M, Amadori S. Amount 
of spontaneous apoptosis detected by Bax/Bcl-2 ratio predicts outcome in acute myeloid 
leukemia (AML). Blood. 2003 Mar 15;101(6):2125-31. 

http://www.ncbi.nlm.nih.gov/pubmed/15459103?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15459103?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15459103?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15459103?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17138665?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17138665?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17138665?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18794093?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18794093?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18794093?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10233883?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10233883?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10233883?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18094405?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16936218?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16936218?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16936218?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19285490?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19285490?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19285490?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10967351?ordinalpos=14&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17517621?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17517621?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18487207?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18487207?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18487207?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18487207?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18565824?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18565824?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12424199?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12424199?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12424199?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12424199?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


240 
 

Diamantis A, Magiorkinis E, Sakorafas GH, Androutsos G. A brief history of apoptosis: 
from ancient to modern times. Onkologie. 2008 Dec;31(12):702-6. Epub 2008 Nov 20.  

Dietrich C, Scherwat J, Faust D, Oesch F. Subcellular localization of beta-catenin is 
regulated by cell density. Biochem Biophys Res Commun. 2002 Mar 22;292(1):195-9.  

Dillon RL, White DE, Muller WJ. The phosphatidyl inositol 3-kinase signaling network: 
implications for human breast cancer. Oncogene. 2007 Feb 26;26(9):1338-45 

Dimmeler S, Zeiher AM. Endothelial cell apoptosis in angiogenesis and vessel 
regression. Circ Res. 2000 Sep 15;87(6):434-9.  

Dissanayake SK, Wade M, Johnson CE, O'Connell MP, Leotlela PD, French AD, Shah 
KV, Hewitt KJ, Rosenthal DT, Indig FE, Jiang Y, Nickoloff BJ, Taub DD, Trent JM, 
Moon RT, Bittner M, Weeraratna AT. The Wnt5A/protein kinase C pathway mediates 
motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an 
epithelial to mesenchymal transition. J Biol Chem. 2007 Jun 8;282(23):17259-71.  

Djiane A, Riou J, Umbhauer M, Boucaut J, Shi D. Role of frizzled 7 in the regulation of 
convergent extension movements during gastrulation in Xenopus laevis. Development. 
2000 Jul;127(14):3091-100. 

Donnini M, Lapucci A, Papucci L, Witort E, Tempestini A, Brewer G, Bevilacqua A, 
Nicolin A, Capaccioli S, Schiavone N. Apoptosis is associated with modifications of bcl-
2 mRNA AU-binding proteins. Biochem Biophys Res Commun. 2001 Oct 
12;287(5):1063-9. 

Donnini M, Lapucci A, Papucci L, Witort E, Jacquier A, Brewer G, Nicolin A, 
Capaccioli S, Schiavone N. Identification of TINO: a new evolutionarily conserved BCL-
2 AU-rich element RNA-binding protein. J Biol Chem. 2004 May 7;279(19):20154-66.  

Donovan M, Cotter TG. Control of mitochondrial integrity by Bcl-2 family members and 
caspase-independent cell death. Biochim Biophys Acta. 2004 Mar 1;1644(2-3):133-47.  

Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, 
substrates, and functions during apoptosis. Annu Rev Biochem. 1999;68:383-424.  

Eberl DF, Hilliker AJ. Genetics. 1988 Jan;118(1):109-20. Characterization of X-linked 
recessive lethal mutations affecting embryonic morphogenesis in Drosophila 
melanogaster. 

Ellies DL, Viviano B, McCarthy J, Rey JP, Itasaki N, Saunders S, Krumlauf R. Bone 
density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate 
Wnt activity. J Bone Miner Res. 2006 Nov;21(11):1738-49. 

http://www.ncbi.nlm.nih.gov/pubmed/19060510?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19060510?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19060510?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11890692?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11890692?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17322919?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17322919?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10988233?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10988233?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17426020?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17426020?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17426020?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17426020?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10862746?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10862746?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10862746?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11587529?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11587529?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14769789?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14769789?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14996498?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14996498?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10872455?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10872455?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10872455?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8608920?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8608920?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8608920?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17002572?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17002572?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17002572?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17002572?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


241 
 

Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 
2007;35(4):495-516.  

Essers MA, de Vries-Smits LM, Barker N, Polderman PE, Burgering BM, Korswagen 
HC. Functional interaction between beta-catenin and FOXO in oxidative stress signaling. 
Science. 2005 May 20;308(5725):1181-4. 

Esposito LA, Melov S, Panov A, Cottrell BA, Wallace DC. Mitochondrial disease in 
mouse results in increased oxidative stress. Proc Natl Acad Sci U S A. 1999 Apr 
27;96(9):4820-5. 

Ettinger R, Panka DJ, Wang JK, Stanger BZ, Ju ST, Marshak-Rothstein A. Fas ligand-
mediated cytotoxicity is directly responsible for apoptosis of normal CD4+ T cells 
responding to a bacterial superantigen. J Immunol. 1995 May 1;154(9):4302-8. 

Fanto M, McNeill H. Planar polarity from flies to vertebrates. J Cell Sci. 2004 Feb 
1;117(Pt 4):527-33. 

Fear MW, Kelsell DP, Spurr NK, Barnes MR. Wnt-16a, a novel Wnt-16 isoform, which 
shows differential expression in adult human tissues. Biochem Biophys Res Commun. 
2000 Nov 30;278(3):814-20. 

Fodde R, Brabletz T. Wnt/beta-catenin signaling in cancer stemness and malignant 
behavior. Curr Opin Cell Biol. 2007 Apr;19(2):150-8. 

Fokina VM, Frolova EI. Expression patterns of Wnt genes during development of an 
anterior part of the chicken eye. Dev Dyn. 2006 Feb;235(2):496-505. 

Forde JE, Dale TC. Glycogen synthase kinase 3: a key regulator of cellular fate. Cell Mol 
Life Sci. 2007 Aug;64(15):1930-44.  

Forrester WC, Dell M, Perens E, Garriga G. A C. elegans Ror receptor tyrosine kinase 
regulates cell motility and asymmetric cell division. Nature. 1999 Aug 26;400(6747):881-
5. 

Franch-Marro X, Wendler F, Griffith J, Maurice MM, Vincent JP. In vivo role of lipid 
adducts on Wingless. J Cell Sci. 2008 May 15;121(Pt 10):1587-92. 

Fu Z, Tindall DJ. FOXOs, cancer and regulation of apoptosis. Oncogene. 2008 Apr 
7;27(16):2312-9. 

Fujino T, Asaba H, Kang MJ, Ikeda Y, Sone H, Takada S, Kim DH, Ioka RX, Ono M, 
Tomoyori H, Okubo M, Murase T, Kamataki A, Yamamoto J, Magoori K, Takahashi S, 
Miyamoto Y, Oishi H, Nose M, Okazaki M, Usui S, Imaizumi K, Yanagisawa M, Sakai 
J, Yamamoto TT. Low-density lipoprotein receptor-related protein 5 (LRP5) is essential 

http://www.ncbi.nlm.nih.gov/pubmed/17562483?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15905404?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10220377?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10220377?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10220377?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/7536768?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/7536768?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/7536768?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14730010?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11095990?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11095990?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17306971?ordinalpos=11&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17306971?ordinalpos=11&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16258938?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16258938?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17530463?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10476968?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10476968?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10476968?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18430784?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18430784?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18430784?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18391973?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12509515?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


242 
 

for normal cholesterol metabolism and glucose-induced insulin secretion. Proc Natl Acad 
Sci U S A. 2003 Jan 7;100(1):229-34. 

Fulda S, Debatin KM. Biochim Exploiting death receptor signaling pathways for tumor 
therapy. Biophys Acta. 2004 Dec 10;1705(1):27-41.  

Forde JE, Dale TC. Glycogen synthase kinase 3: a key regulator of cellular fate. Cell Mol 
Life Sci. 2007 Aug;64(15):1930-44.  

Furuyama T, Kitayama K, Shimoda Y, Ogawa M, Sone K, Yoshida-Araki K, Hisatsune 
H, Nishikawa S, Nakayama K, Nakayama K, Ikeda K, Motoyama N, Mori N. Abnormal 
angiogenesis in Foxo1 (Fkhr)-deficient mice. J Biol Chem. 2004 Aug 13;279(33):34741-
9.  

 Galli LM, Barnes TL, Secrest SS, Kadowaki T, Burrus LW. Porcupine-mediated lipid-
modification regulates the activity and distribution of Wnt proteins in the chick neural 
tube. Development. 2007 Sep;134(18):3339-48.  

Galluzzi L, Morselli E, Vicencio JM, Kepp O, Joza N, Tajeddine N, Kroemer G. Life, 
death and burial: multifaceted impact of autophagy. Biochem Soc Trans. 2008 Oct;36(Pt 
5):786-90.  

Gao X, Wen J, Zhang L, Li X, Ning Y, Meng A, Chen YG. Dapper1 is a 
nucleocytoplasmic shuttling protein that negatively modulates Wnt signaling in the 
nucleus.J Biol Chem. 2008 Dec 19;283(51):35679-88.  

Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G. Mechanisms of 
cytochrome c release from mitochondria. Cell Death Differ. 2006 Sep;13(9):1423-33.  

Garriock RJ, Warkman AS, Meadows SM, D'Agostino S, Krieg PA. Census of vertebrate 
Wnt genes: isolation and developmental expression of Xenopus Wnt2, Wnt3, Wnt9a, 
Wnt9b, Wnt10a, and Wnt16. Dev Dyn. 2007 May;236(5):1249-58. 

Gartel AL, Shchors K. Mechanisms of c-myc-mediated transcriptional repression of 
growth arrest genes. Exp Cell Res. 2003 Feb 1;283(1):17-21.  

Gat U, DasGupta R, Degenstein L, Fuchs E. De Novo hair follicle morphogenesis and 
hair tumors in mice expressing a truncated beta-catenin in skin. Cell. 1998 Nov 
25;95(5):605-14. 

Gavathiotis E, Suzuki M, Davis ML, Pitter K, Bird GH, Katz SG, Tu HC, Kim H, Cheng 
EH, Tjandra N, Walensky LD. BAX activation is initiated at a novel interaction site. 
Nature. 2008 Oct 23;455(7216):1076-81. 

http://www.ncbi.nlm.nih.gov/pubmed/15585171?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15585171?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15585171?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17530463?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15184386?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15184386?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15184386?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17720697?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17720697?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17720697?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18793137?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18793137?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18793137?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18936100?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18936100?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18936100?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18936100?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16676004?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16676004?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16676004?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17436276?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17436276?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17436276?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12565816?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12565816?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9845363?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9845363?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9845363?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18948948?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


243 
 

Gaviraghi M, Caricasole A, Costanzo C, Diamanti D, Dandrea M, Donadelli M, Scarpa 
A, Palmieri M. Identification of a candidate alternative promoter region of the human 
Bcl2L11 (Bim) gene. BMC Mol Biol. 2008 Jun 12;9:56. 

Gazit A, Yaniv A, Bafico A, Pramila T, Igarashi M, Kitajewski J, Aaronson SA.Human 
frizzled 1 interacts with transforming Wnts to transduce a TCF dependent transcriptional 
response. Oncogene. 1999 Oct 28;18(44):5959-66. 

Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V, Ferrara N. Vascular 
endothelial growth factor regulates endothelial cell survival through the 
phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-
1/KDR activation. J Biol Chem. 1998 Nov 13;273(46):30336-43. 

Gerstein AV, Almeida TA, Zhao G, Chess E, Shih IeM, Buhler K, Pienta K, Rubin MA, 
Vessella R, Papadopoulos N. APC/CTNNB1 (beta-catenin) pathway alterations in human 
prostate cancers. Genes Chromosomes Cancer. 2002 May;34(1):9-16. 

Ghosh MC, Collins GD, Vandanmagsar B, Patel K, Brill M, Carter A, Lustig A, Becker 
KG, Wood WW 3rd, Emeche CD, French AD, O'Connell MP, Xu M, Weeraratna AT, 
Taub DD. Activation of Wnt5A signaling is required for CXC chemokine ligand 12-
mediated T-cell migration. Blood. 2009 Aug 13;114(7):1366-73.  

Gibot L, Follet J, Metges JP, Auvray P, Simon B, Corcos L, Le Jossic-Corcos C. Human 
caspase 7 is positively controlled by SREBP-1 and SREBP-2. Biochem J. 2009 May 
27;420(3):473-83. 

Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. 
Biochim Biophys Acta. 2003 Jun 5;1653(1):1-24. 

Gilley J, Coffer PJ, Ham J. FOXO transcription factors directly activate bim gene 
expression and promote apoptosis in sympathetic neurons. J Cell Biol. 2003 Aug 
18;162(4):613-22. 

Gilley J, Ham J. Evidence for increased complexity in the regulation of Bim expression 
in sympathetic neurons: involvement of novel transcriptional and translational 
mechanisms. DNA Cell Biol. 2005 Sep;24(9):563-73. 

Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy 
T, Glorieux FH, Lev D, Zacharin M, Oexle K, Marcelino J, Suwairi W, Heeger S, 
Sabatakos G, Apte S, Adkins WN, Allgrove J, Arslan-Kirchner M, Batch JA, Beighton P, 
Black GC, Boles RG, Boon LM, Borrone C, Brunner HG, Carle GF, Dallapiccola B, De 
Paepe A, Floege B, Halfhide ML, Hall B, Hennekam RC, Hirose T, Jans A, Jüppner H, 
Kim CA, Keppler-Noreuil K, Kohlschuetter A, LaCombe D, Lambert M, Lemyre E, 
Letteboer T, Peltonen L, Ramesar RS, Romanengo M, Somer H, Steichen-Gersdorf E, 
Steinmann B, Sullivan B, Superti-Furga A, Swoboda W, van den Boogaard MJ, Van Hul 
W, Vikkula M, Votruba M, Zabel B, Garcia T, Baron R, Olsen BR, Warman ML; 

http://www.ncbi.nlm.nih.gov/pubmed/18549468?ordinalpos=11&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18549468?ordinalpos=11&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18549468?ordinalpos=11&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10557084?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10557084?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10557084?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10557084?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9804796?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9804796?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9804796?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9804796?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11921277?ordinalpos=13&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11921277?ordinalpos=13&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19520808?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19520808?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19323650?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19323650?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19323650?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22van%20Es%20JH%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Clevers%20H%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
http://www.ncbi.nlm.nih.gov/pubmed/12913110?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12913110?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12913110?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16153157?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16153157?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16153157?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


244 
 

Osteoporosis-Pseudoglioma Syndrome Collaborative Group. LDL receptor-related 
protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001 Nov 
16;107(4):513-23. 

Gonzalez MA, Selwyn AP. Endothelial function, inflammation, and prognosis in 
cardiovascular disease. Am J Med. 2003 Dec 8;115 Suppl 8A:99S-106S. 

Goodwin AM, Sullivan KM, D'Amore PA. Cultured endothelial cells display endogenous 
activation of the canonical Wnt signaling pathway and express multiple ligands, 
receptors, and secreted modulators of Wnt signaling. Dev Dyn. 2006 Nov;235(11):3110-
20. 

Goss AM, Tian Y, Tsukiyama T, Cohen ED, Zhou D, Lu MM, Yamaguchi TP, Morrisey 
EE. Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung 
progenitors in the foregut. Dev Cell. 2009 Aug;17(2):290-8. 

Graber TE, Holcik M. Cap-independent regulation of gene expression in apoptosis. Mol 
Biosyst. 2007 Dec;3(12):825-34.  

Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, 
Helgason A, Stefansson H, Emilsson V, Helgadottir A, Styrkarsdottir U, Magnusson KP, 
Walters GB, Palsdottir E, Jonsdottir T, Gudmundsdottir T, Gylfason A, Saemundsdottir J, 
Wilensky RL, Reilly MP, Rader DJ, Bagger Y, Christiansen C, Gudnason V, Sigurdsson 
G, Thorsteinsdottir U, Gulcher JR, Kong A, Stefansson K. Variant of transcription factor 
7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006 Mar;38(3):320-
3. 

Green JL, Kuntz SG, Sternberg PW. Ror receptor tyrosine kinases: orphans no 
more.Trends Cell Biol. 2008 Nov;18(11):536-44. 

Greenhalgh DG. The role of apoptosis in wound healing. Int J Biochem Cell Biol. 1998 
Sep;30(9):1019-30. 

Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and 
tumor suppression. Oncogene. 2005 Nov 14;24(50):7410-25.  

Gros J, Serralbo O, Marcelle C. WNT11 acts as a directional cue to organize the 
elongation of early muscle fibres. Nature. 2009 Jan 29;457(7229):589-93.  

Guo Z, Dose M, Kovalovsky D, Chang R, O'Neil J, Look AT, von Boehmer H, Khazaie 
K, Gounari F. Beta-catenin stabilization stalls the transition from double-positive to 
single-positive stage and predisposes thymocytes to malignant transformation. Blood. 
2007 Jun 15;109(12):5463-72. 

http://www.ncbi.nlm.nih.gov/pubmed/11719191?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11719191?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14678874?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14678874?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14678874?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17013885?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17013885?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17013885?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17013885?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19686689?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19686689?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18000559?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16415884?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16415884?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16415884?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18848778?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18848778?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18848778?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9785465?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16288288?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16288288?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18987628?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18987628?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18987628?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17317856?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17317856?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


245 
 

Gupta K, Kshirsagar S, Li W, Gui L, Ramakrishnan S, Gupta P, Law PY, Hebbel RP. 
VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects 
on MAPK/ERK and SAPK/JNK signaling. Exp Cell Res. 1999 Mar 15;247(2):495-504. 

Hall AC, Lucas FR, Salinas PC. Axonal remodeling and synaptic differentiation in the 
cerebellum is regulated by WNT-7a signaling. Cell. 2000 Mar 3;100(5):525-35. 

Hall JL, Chatham JC, Eldar-Finkelman H, Gibbons GH. Upregulation of glucose 
metabolism during intimal lesion formation is coupled to the inhibition of vascular 
smooth muscle cell apoptosis. Role of GSK3beta. Diabetes. 2001 May;50(5):1171-9. 

Han H, Long H, Wang H, Wang J, Zhang Y, Wang Z. Progressive apoptotic cell death 
triggered by transient oxidative insult in H9c2 rat ventricular cells: a novel pattern of 
apoptosis and the mechanisms. Am J Physiol Heart Circ Physiol. 2004 
Jun;286(6):H2169-82. 

Hanada M, Delia D, Aiello A, Stadtmauer E, Reed JC. bcl-2 gene hypomethylation and 
high-level expression in B-cell chronic lymphocytic leukemia. Blood. 1993 Sep 
15;82(6):1820-8. 

Hao C, Beguinot F, Condorelli G, Trencia A, Van Meir EG, Yong VW, Parney IF, Roa 
WH, Petruk KC. Induction and intracellular regulation of tumor necrosis factor-related 
apoptosis-inducing ligand (TRAIL) mediated apotosis in human malignant glioma cells. 
Cancer Res. 2001 Feb 1;61(3):1162-70. 

Hardt SE, Sadoshima J. Glycogen synthase kinase-3beta: a novel regulator of cardiac 
hypertrophy and development. Circ Res. 2002 May 31;90(10):1055-63. 

Harigai M, Miyashita T, Hanada M, Reed JC. A cis-acting element in the BCL-2 gene 
controls expression through translational mechanisms. Oncogene. 1996 Mar 
21;12(6):1369-74. 

Harms KL, Chen X. The C terminus of p53 family proteins is a cell fate determinant. Mol 
Cell Biol. 2005 Mar;25(5):2014-30. 

Harris KE, Beckendorf SK. Different Wnt signals act through the Frizzled and RYK 
receptors during Drosophila salivary gland migration. Development. 2007 
Jun;134(11):2017-25. 

Hayashi T, Mizuno N, Takada R, Takada S, Kondoh H. Determinative role of Wnt 
signals in dorsal iris-derived lens regeneration in newt eye. Mech Dev. 2006 
Nov;123(11):793-800.  

Hayward P, Kalmar T, Arias AM. Wnt/Notch signalling and information processing 
during development. Development. 2008 Feb;135(3):411-24. 

http://www.ncbi.nlm.nih.gov/pubmed/10066377?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10066377?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10721990?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10721990?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10721990?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11334423?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11334423?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11334423?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11334423?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14739138?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14739138?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14739138?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14739138?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8104532?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8104532?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11221847?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11221847?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12039794?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12039794?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8649841?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8649841?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15713654?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17507403?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17507403?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17507403?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17030116?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17030116?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18192283?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18192283?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18192283?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


246 
 

He L, Kim SO, Kwon O, Jeong SJ, Kim MS, Lee HG, Osada H, Jung M, Ahn JS, Kim 
BY. ATM blocks tunicamycin-induced endoplasmic reticulum stress. FEBS Lett. 2009 
Mar 4;583(5):903-8.  

He X, Saint-Jeannet JP, Wang Y, Nathans J, Dawid I, Varmus H. A member of the 
Frizzled protein family mediating axis induction by Wnt-5A. Science. 1997 Mar 
14;275(5306):1652-4. 

He X, Semenov M, Tamai K, Zeng X. LDL receptor-related proteins 5 and 6 in 
Wnt/beta-catenin signaling: arrows point the way. Development. 2004 Apr;131(8):1663-
77. 

Heisenberg CP, Tada M. Wnt signalling: a moving picture emerges from van gogh.Curr 
Biol. 2002 Feb 19;12(4):R126-8.  

Hendrickx M, Leyns L. Dev Growth Differ. 2008 May;50(4):229-43. Non-conventional 
Frizzled ligands and Wnt receptors. 

Hengartner MO. The biochemistry of apoptosis. Nature. 2000 Oct 12;407(6805):770-6. 

Henis-Korenblit S, Shani G, Sines T, Marash L, Shohat G, Kimchi A. The caspase-
cleaved DAP5 protein supports internal ribosome entry site-mediated translation of death 
proteins. Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5400-5. 

Henis-Korenblit S, Strumpf NL, Goldstaub D, Kimchi A. A novel form of DAP5 protein 
accumulates in apoptotic cells as a result of caspase cleavage and internal ribosome entry 
site-mediated translation. Mol Cell Biol. 2000 Jan;20(2):496-506. 

Herman M. Development. 2001 Feb;128(4):581-90. C. elegans POP-1/TCF functions in a 
canonical Wnt pathway that controls cell migration and in a noncanonical Wnt pathway 
that controls cell polarity.  

Herrant M, Jacquel A, Marchetti S, Belhacène N, Colosetti P, Luciano F, Auberger P. 
Cleavage of Mcl-1 by caspases impaired its ability to counteract Bim-induced apoptosis. 
Oncogene. 2004 Oct 14;23(47):7863-73. 

Herz J, Strickland DK. LRP: a multifunctional scavenger and signaling receptor. J Clin 
Invest. 2001 Sep;108(6):779-84.  

Hino S, Kishida S, Michiue T, Fukui A, Sakamoto I, Takada S, Asashima M, Kikuchi A. 
Inhibition of the Wnt signaling pathway by Idax, a novel Dvl-binding protein. Mol Cell 
Biol. 2001 Jan;21(1):330-42. 

Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR. Requirement for glycogen 
synthase kinase-3beta in cell survival and NF-kappaB activation. Nature. 2000 Jul 
6;406(6791):86-90. 

http://www.ncbi.nlm.nih.gov/pubmed/19302790?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9054360?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9054360?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9054360?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15084453?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15084453?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11864583?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18366384?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18366384?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11048727?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11943866?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11943866?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11943866?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10611228?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10611228?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10611228?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10611228?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11171341?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11171341?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11171341?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15378010?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11560943?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11113207?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10894547?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10894547?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


247 
 

Hoffman B, Liebermann DA. Apoptotic signaling by c-MYC. Oncogene. 2008 Oct 
27;27(50):6462-72. 

Hoffman B, Liebermann DA. The proto-oncogene c-myc and apoptosis. Oncogene. 1998 
Dec 24;17(25):3351-7.  

Holcik M, Lefebvre C, Yeh C, Chow T, Korneluk RG. A new internal-ribosome-entry-
site motif potentiates XIAP-mediated cytoprotection. Nat Cell Biol. 1999 Jul;1(3):190-2.  

Holcik M, Sonenberg N. Translational control in stress and apoptosis. Nat Rev Mol Cell 
Biol. 2005 Apr;6(4):318-27.  

Holmen SL, Salic A, Zylstra CR, Kirschner MW, Williams BO. A novel set of Wnt-
Frizzled fusion proteins identifies receptor components that activate beta -catenin-
dependent signaling. J Biol Chem. 2002 Sep 20;277(38):34727-35.  

Hovens CM, Stacker SA, Andres AC, Harpur AG, Ziemiecki A, Wilks AF. RYK, a 
receptor tyrosine kinase-related molecule with unusual kinase domain motifs. Proc Natl 
Acad Sci U S A. 1992 Dec 15;89(24):11818-22. 

Hsieh JC, Kodjabachian L, Rebbert ML, Rattner A, Smallwood PM, Samos CH, Nusse 
R, Dawid IB, Nathans J. A new secreted protein that binds to Wnt proteins and inhibits 
their activities. Nature. 1999 Apr 1;398(6726):431-6. a 

Hsieh JC, Rattner A, Smallwood PM, Nathans J. Biochemical characterization of Wnt-
frizzled interactions using a soluble, biologically active vertebrate Wnt protein. Proc Natl 
Acad Sci U S A. 1999 Mar 30;96(7):3546-51. b 

Huang H, Tindall DJ. Dynamic FoxO transcription factors. J Cell Sci. 2007 Aug 1;120(Pt 
15):2479-87.  

Huang Z, Wang R, Xie H, Shang W, Manicassamy S, Sun Z. Stabilized beta-catenin 
potentiates Fas-mediated T cell apoptosis. J Immunol. 2008 May 15;180(10):6586-92. 

Iglesias DM, Hueber PA, Chu L, Campbell R, Patenaude AM, Dziarmaga AJ, Quinlan J, 
Mohamed O, Dufort D, Goodyer PR. Canonical WNT signaling during kidney 
development. Am J Physiol Renal Physiol. 2007 Aug;293(2):F494-500.  

Inoue T, Oz HS, Wiland D, Gharib S, Deshpande R, Hill RJ, Katz WS, Sternberg PW. C. 
elegans LIN-18 is a Ryk ortholog and functions in parallel to LIN-17/Frizzled in Wnt 
signaling. Cell. 2004 Sep 17;118(6):795-806. 

Inta I, Paxian S, Maegele I, Zhang W, Pizzi M, Spano P, Sarnico I, Muhammad S, 
Herrmann O, Inta D, Baumann B, Liou HC, Schmid RM, Schwaninger M. Bim and Noxa 
are candidates to mediate the deleterious effect of the NF-kappa B subunit RelA in 
cerebral ischemia. J Neurosci. 2006 Dec 13;26(50):12896-903. 

http://www.ncbi.nlm.nih.gov/pubmed/18955973?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9916997?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10559907?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10559907?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15803138?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12121999?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12121999?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12121999?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/1334548?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/1334548?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/1334548?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10201374?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10201374?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10201374?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10097073?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10097073?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17646672?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18453577?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18453577?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17494089?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17494089?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17494089?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15369677?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15369677?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15369677?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15369677?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17167080?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17167080?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17167080?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17167080?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


248 
 

Ishikawa T, Tamai Y, Zorn AM, Yoshida H, Seldin MF, Nishikawa S, Taketo MM. 
Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. 
Development. 2001 Jan;128(1):25-33. 

Itasaki N, Jones CM, Mercurio S, Rowe A, Domingos PM, Smith JC, Krumlauf R. Wise, 
a context-dependent activator and inhibitor of Wnt signalling. Development. 2003 
Sep;130(18):4295-305. 

Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, Gotlib J, Li K, 
Manz MG, Keating A, Sawyers CL, Weissman IL. Granulocyte-macrophage progenitors 
as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004 Aug 
12;351(7):657-67. 

Jasoni C, Hendrickson A, Roelink H. Analysis of chicken Wnt-13 expression 
demonstrates coincidence with cell division in the developing eye and is consistent with a 
role in induction. Dev Dyn. 1999 Jul;215(3):215-24. 

Jeays-Ward K, Dandonneau M, Swain A. Wnt4 is required for proper male as well as 
female sexual development. Dev Biol. 2004 Dec 15;276(2):431-40. 

Jia L, Miao C, Cao Y, Duan EK. Effects of Wnt proteins on cell proliferation and 
apoptosis in HEK293 cells. Cell Biol Int. 2008 Jul;32(7):807-13.  

Jiang BH, Liu LZ. PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochim 
Biophys Acta. 2008 Jan;1784(1):150-8.  

Jin Z, El-Deiry WS. Overview of cell death signaling pathways. Cancer Biol Ther. 2005 
Feb;4(2):139-63. 

Joshi B, Rastogi S, Morris M, Carastro LM, DeCook C, Seto E, Chellappan SP. 
Differential regulation of human YY1 and caspase 7 promoters by prohibitin through 
E2F1 and p53 binding sites. Biochem J. 2007 Jan 1;401(1):155-66. 

Jue SF, Bradley RS, Rudnicki JA, Varmus HE, Brown AM. Mol Cell Biol. 1992 
Jan;12(1):321-8. The mouse Wnt-1 gene can act via a paracrine mechanism in 
transformation of mammary epithelial cells.  

Kamata H, Hirata H. Redox regulation of cellular signalling. Cell Signal. 1999 
Jan;11(1):1-14.  

Kannan K, Amariglio N, Rechavi G, Jakob-Hirsch J, Kela I, Kaminski N, Getz G, 
Domany E, Givol D. DNA microarrays identification of primary and secondary target 
genes regulated by p53. Oncogene. 2001 Apr 26;20(18):2225-34. 

Kanazawa A, Tsukada S, Sekine A, Tsunoda T, Takahashi A, Kashiwagi A, Tanaka Y, 
Babazono T, Matsuda M, Kaku K, Iwamoto Y, Kawamori R, Kikkawa R, Nakamura Y, 

http://www.ncbi.nlm.nih.gov/pubmed/11092808?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12900447?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12900447?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12900447?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15306667?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15306667?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10398532?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10398532?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10398532?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15581876?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15581876?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18462958?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18462958?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18462958?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17964232?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15725726?ordinalpos=10&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16918502?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16918502?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/1530877?ordinalpos=10&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/1530877?ordinalpos=10&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10206339?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11402317?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11402317?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11402317?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


249 
 

Maeda S. Association of the gene encoding wingless-type mammary tumor virus 
integration-site family member 5B (WNT5B) with type 2 diabetes. Am J Hum Genet. 
2004 Nov;75(5):832-43. 

Karasawa T, Yokokura H, Kitajewski J, Lombroso PJ. Frizzled-9 is activated by Wnt-2 
and functions in Wnt/beta -catenin signaling. J Biol Chem. 2002 Oct 4;277(40):37479-86. 

Katanaev VL, Buestorf S. Frizzled Proteins are bona fide G Protein-Coupled Receptors. 
Nature Precedings: hdl:10101/npre.2009.2765.1 : Posted 8 Jan 2009 

Katoh M. Differential regulation of WNT2 and WNT2B expression in human cancer. Int 
J Mol Med. 2001 Dec;8(6):657-60. 

Katoh M. Molecular cloning and characterization of ST7R (ST7-like, ST7L) on human 
chromosome 1p13, a novel gene homologous to tumor suppressor gene ST7 on human 
chromosome 7q31. Int J Oncol. 2002 Jun;20(6):1247-53. 

Katoh M. Molecular evolution of Wnt2b orthologs. Int J Oncol. 2005 Apr;26(4):1135-9. 

Katoh M. WNT2B: comparative integromics and clinical applications (Review). Int J 
Mol Med. 2005 Dec;16(6):1103-8. 

Katoh M, Hirai M, Sugimura T, Terada M. Cloning, expression and chromosomal 
localization of Wnt-13, a novel member of the Wnt gene family. Oncogene. 1996 Aug 
15;13(4):873-6. 

Katoh M, Katoh M. Comparative genomics on Wnt8a and Wnt8b genes. Int J Oncol. 
2005 Apr;26(4):1129-33. 

Katoh M, Katoh M. WNT signaling pathway and stem cell signaling network. Clin 
Cancer Res. 2007 Jul 15;13(14):4042-5. 

Katoh M, Kirikoshi H, Saitoh T, Sagara N, Koike J. Alternative splicing of the WNT-
2B/WNT-13 gene. Biochem Biophys Res Commun. 2000 Aug 18;275(1):209-16. 

Katoh M, Kirikoshi H, Terasaki H, Shiokawa K. WNT2B2 mRNA, up-regulated in 
primary gastric cancer, is a positive regulator of the WNT- beta-catenin-TCF signaling 
pathway. Biochem Biophys Res Commun. 2001 Dec 21;289(5):1093-8. 

Kawakami Y, Capdevila J, Büscher D, Itoh T, Rodríguez Esteban C, Izpisúa Belmonte 
JC. WNT signals control FGF-dependent limb initiation and AER induction in the chick 
embryo. Cell. 2001 Mar 23;104(6):891-900. 

Kawakami Y, Wada N, Nishimatsu S, Nohno T. Involvement of frizzled-10 in Wnt-7a 
signaling during chick limb development. Dev Growth Differ. 2000 Dec;42(6):561-9. 

http://www.ncbi.nlm.nih.gov/pubmed/15386214?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15386214?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12138115?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12138115?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11712082?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12012006?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12012006?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12012006?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15754012?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16273293?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8761309?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8761309?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15754011?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17634527?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10944466?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10944466?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11741304?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11741304?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11741304?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11290326?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11290326?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11142678?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11142678?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


250 
 

Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway.J Cell Sci. 2003 
Jul 1;116(Pt 13):2627-34. 

Keckler MS. Dodging the CTL response: viral evasion of Fas and granzyme induced 
apoptosis. Front Biosci. 2007 Jan 1;12:725-32. 

 Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-
ranging implications in tissue kinetics. Br J Cancer. 1972 Aug;26(4):239-57.  

Khan NI, Bradstock KF, Bendall LJ. Activation of Wnt/beta-catenin pathway mediates 
growth and survival in B-cell progenitor acute lymphoblastic leukaemia. Br J Haematol. 
2007 Aug;138(3):338-48. 

Kikuchi S, Nagai T, Kunitama M, Kirito K, Ozawa K, Komatsu N. Active FKHRL1 
overcomes imatinib resistance in chronic myelogenous leukemia-derived cell lines via the 
production of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Sci. 2007 
Dec;98(12):1949-58. 

Kikuchi A, Yamamoto H. Regulation of Wnt signalling by receptor-mediated 
endocytosis. J Biochem. 2007 Apr;141(4):443-51.  

Kikuchi A, Yamamoto H, Kishida S. Multiplicity of the interactions of Wnt proteins and 
their receptors. Cell Signal. 2007 Apr;19(4):659-71.  

Kim CA, Honjo R, Bertola D, Albano L, Oliveira L, Jales S, Siqueira J, Castilho A, 
Balemans W, Piters E, Jennes K, Van Hul W. A known SOST gene mutation causes 
sclerosteosis in a familial and an isolated case from Brazilian origin. Genet Test. 2008 
Dec;12(4):475-9. 

Kim GH, Han JK. JNK and ROKalpha function in the noncanonical Wnt/RhoA signaling 
pathway to regulate Xenopus convergent extension movements. Dev Dyn. 2005 
Apr;232(4):958-68. 

Kim GH, Her JH, Han JK. Ryk cooperates with Frizzled 7 to promote Wnt11-mediated 
endocytosis and is essential for Xenopus laevis convergent extension movements. J Cell 
Biol. 2008 Sep 22;182(6):1073-82. 

Kim H, Cheong SM, Ryu J, Jung HJ, Jho EH, Han JK. Xenopus Wntless and the retromer 
complex cooperate to regulate XWnt4 secretion. Mol Cell Biol. 2009 Apr;29(8):2118-28. 

Kim HS, Skurk C, Thomas SR, Bialik A, Suhara T, Kureishi Y, Birnbaum M, Keaney JF 
Jr, Walsh K. Regulation of angiogenesis by glycogen synthase kinase-3beta. J Biol 
Chem. 2002 Nov 1;277(44):41888-96. 

Kim M, Lee HC, Tsedensodnom O, Hartley R, Lim YS, Yu E, Merle P, Wands JR. 
Functional interaction between Wnt3 and Frizzled-7 leads to activation of the Wnt/beta-

http://www.ncbi.nlm.nih.gov/pubmed/12775774?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17127333?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17127333?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17127333?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/4561027?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/4561027?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17614820?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17614820?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17900262?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17900262?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17900262?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17900262?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17317692?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17317692?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17188462?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17188462?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19072561?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19072561?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19072561?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15739222?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15739222?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15739222?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18809723?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18809723?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19223472?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19223472?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19223472?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12167628?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18313787?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


251 
 

catenin signaling pathway in hepatocellular carcinoma cells. J Hepatol. 2008 
May;48(5):780-91. 

Kim SD, Yang SI, Kim HC, Shin CY, Ko KH. Inhibition of GSK-3beta mediates 
expression of MMP-9 through ERK1/2 activation and translocation of NF-kappaB in rat 
primary astrocyte. Brain Res. 2007 Dec;1186:12-20. 

 Kim SH, Shin J, Park HC, Yeo SY, Hong SK, Han S, Rhee M, Kim CH, Chitnis AB, 
Huh TL. Specification of an anterior neuroectoderm patterning by Frizzled8a-mediated 
Wnt8b signalling during late gastrulation in zebrafish. Development. 2002 
Oct;129(19):4443-55. 

Klaus A, Birchmeier W. Nat Rev Cancer. 2008 May;8(5):387-98. Wnt signalling and its 
impact on development and cancer. 

Klein D, Demory A, Peyre F, Kroll J, Augustin HG, Helfrich W, Kzhyshkowska J, 
Schledzewski K, Arnold B, Goerdt S. Wnt2 acts as a cell type-specific, autocrine growth 
factor in rat hepatic sinusoidal endothelial cells cross-stimulating the VEGF pathway. 
Hepatology. 2008 Mar;47(3):1018-31. 

Klingensmith J, Nusse R, Perrimon N. Genes Dev. 1994 Jan;8(1):118-30. The Drosophila 
segment polarity gene dishevelled encodes a novel protein required for response to the 
wingless signal.  

Kobune M, Chiba H, Kato J, Kato K, Nakamura K, Kawano Y, Takada K, Takimoto R, 
Takayama T, Hamada H, Niitsu Y. Wnt3/RhoA/ROCK signaling pathway is involved in 
adhesion-mediated drug resistance of multiple myeloma in an autocrine mechanism. Mol 
Cancer Ther. 2007 Jun;6(6):1774-84. 

Kohn AD, Moon RT. Wnt and calcium signaling: beta-catenin-independent pathways. 
Cell Calcium. 2005 Sep-Oct;38(3-4):439-46.  

Kotliarova S, Pastorino S, Kovell LC, Kotliarov Y, Song H, Zhang W, Bailey R, Maric 
D, Zenklusen JC, Lee J, Fine HA. Glycogen synthase kinase-3 inhibition induces glioma 
cell death through c-MYC, nuclear factor-kappaB, and glucose regulation. Cancer Res. 
2008 Aug 15;68(16):6643-51. 

Komekado H, Yamamoto H, Chiba T, Kikuchi A. Glycosylation and palmitoylation of 
Wnt-3a are coupled to produce an active form of Wnt-3a. Genes Cells. 2007 
Apr;12(4):521-34.  

Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, Huang TT, Bos 
JL, Medema RH, Burgering BM. Forkhead transcription factor FOXO3a protects 
quiescent cells from oxidative stress. Nature. 2002 Sep 19;419(6904):316-21. 

Korsmeyer SJ. Regulators of cell death. Trends Genet. 1995 Mar;11(3):101-5. 

http://www.ncbi.nlm.nih.gov/pubmed/17996850?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17996850?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17996850?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12223403?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12223403?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18432252?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18432252?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18432252?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18302287?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18302287?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8288125?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8288125?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8288125?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8288125?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17575106?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17575106?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17575106?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16099039?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18701488?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18701488?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17397399?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17397399?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17397399?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12239572?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12239572?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12239572?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/7732571?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


252 
 

Kozak M. Translational regulation in mammalian cells. Gene transfer and expression in 
mammalian cells. 2003 

Krammer PH, Arnold R, Lavrik IN. Life and death in peripheral T cells. Nat Rev 
Immunol. 2007 Jul;7(7):532-42. 

Kremenevskaja N, von Wasielewski R, Rao AS, Schöfl C, Andersson T, Brabant G. Wnt-
5a has tumor suppressor activity in thyroid carcinoma. Oncogene. 2005 Mar 
24;24(13):2144-54. 

Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, 
Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, 
Kumar S, Lipton SA, Malorni W, Nuñez G, Peter ME, Tschopp J, Yuan J, Piacentini M, 
Zhivotovsky B, Melino G; Nomenclature Committee on Cell Death 2009. Classification 
of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell 
Death Differ. 2009 Jan;16(1):3-11.  

Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling.J 
Clin Invest. 2006 May;116(5):1202-9.  

Kubo F, Nakagawa S. Hairy1 acts as a node downstream of Wnt signaling to maintain 
retinal stem cell-like progenitor cells in the chick ciliary marginal zone. Development. 
2009 Jun;136(11):1823-33.  

Kubo F, Takeichi M, Nakagawa S. Wnt2b controls retinal cell differentiation at the 
ciliary marginal zone. Development. 2003 Feb;130(3):587-98. 

Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P, Flavell RA. 
Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. 
Nature. 1996 Nov 28;384(6607):368-72. 

Kumar A, Commane M, Flickinger TW, Horvath CM, Stark GR. Defective TNF-alpha-
induced apoptosis in STAT1-null cells due to low constitutive levels of caspases. 
Science. 1997 Nov 28;278(5343):1630-2. 

Kurayoshi M, Yamamoto H, Izumi S, Kikuchi A. Post-translational palmitoylation and 
glycosylation of Wnt-5a are necessary for its signalling. Biochem J. 2007 Mar 
15;402(3):515-23.  

Lam D, Dickens D, Reid EB, Loh SH, Moisoi N, Martins LM. MAP4K3 modulates cell 
death via the post-transcriptional regulation of BH3-only proteins. Proc Natl Acad Sci U 
S A. 2009 Jul 21;106(29):11978-83. 

Lang RA, Bishop JM. Macrophages are required for cell death and tissue remodeling in 
the developing mouse eye. Cell. 1993 Aug 13;74(3):453-62. 

http://www.ncbi.nlm.nih.gov/pubmed/17589543?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15735754?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15735754?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18846107?ordinalpos=35&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18846107?ordinalpos=35&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18846107?ordinalpos=35&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16670761?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19386663?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19386663?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19386663?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12490564?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12490564?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12490564?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8934524?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9374464?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9374464?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17117926?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17117926?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19587239?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19587239?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19587239?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8348612?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8348612?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


253 
 

Lee JH, Jeon MH, Seo YJ, Lee YJ, Ko JH, Tsujimoto Y, Lee JH. CA repeats in the 3'-
untranslated region of bcl-2 mRNA mediate constitutive decay of bcl-2 mRNA. J Biol 
Chem. 2004 Oct 8;279(41):42758-64. 

Lee SH, Demeterco C, Geron I, Abrahamsson A, Levine F, Itkin-Ansari P. Islet specific 
Wnt activation in human type II diabetes. Exp Diabetes Res. 2008;2008:728763. 

Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villén J, Becker EB, DiBacco S, de la Iglesia 
N, Gygi S, Blackwell TK, Bonni A. A conserved MST-FOXO signaling pathway 
mediates oxidative-stress responses and extends life span. Cell. 2006 Jun 2;125(5):987-
1001. 

Leist M, Nicotera P. The shape of cell death. Biochem Biophys Res Commun. 1997 Jul 
9;236(1):1-9. 

Lemon B, Tjian R. Orchestrated response: a symphony of transcription factors for gene 
control. Genes Dev. 2000 Oct 15;14(20):2551-69. 

Levine B, Sinha S, Kroemer G. Bcl-2 family members: dual regulators of apoptosis and 
autophagy. Autophagy. 2008 Jul 1;4(5):600-6. Epub 2008 May 12.  

Li C, Xiao J, Hormi K, Borok Z, Minoo P. Wnt5a participates in distal lung 
morphogenesis. Dev Biol. 2002 Aug 1;248(1):68-81. 

Li M, Wang X, Meintzer MK, Laessig T, Birnbaum MJ, Heidenreich KA. Cyclic AMP 
promotes neuronal survival by phosphorylation of glycogen synthase kinase 3beta. Mol 
Cell Biol. 2000 Dec;20(24):9356-63. 

Li Q, Wang X, Wu X, Rui Y, Liu W, Wang J, Wang X, Liou YC, Ye Z, Lin SC. Daxx 
cooperates with the Axin/HIPK2/p53 complex to induce cell death. Cancer Res. 2007 Jan 
1;67(1):66-74. 

Li X, Liu YH, Zhang YP, Zhang S, Pu X, Gardner TA, Jeng MH, Kao C. Fas ligand 
delivery by a prostate-restricted replicative adenovirus enhances safety and antitumor 
efficacy. Clin Cancer Res. 2007 Sep 15;13(18 Pt 1):5463-73. 

Liang H, Chen Q, Coles AH, Anderson SJ, Pihan G, Bradley A, Gerstein R, Jurecic R, 
Jones SN. Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in 
hematopoietic tissue. Cancer Cell. 2003 Nov;4(5):349-60. 

Liang H, Coles AH, Zhu Z, Zayas J, Jurecic R, Kang J, Jones SN. Noncanonical Wnt 
signaling promotes apoptosis in thymocyte development. J Exp Med. 2007 Dec 
24;204(13):3077-84. 

http://www.ncbi.nlm.nih.gov/pubmed/15294893?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15294893?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19165345?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19165345?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19165345?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16751106?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16751106?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9223415?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11040209?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11040209?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11040209?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18497563?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18497563?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12142021?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12142021?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11094086?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11094086?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11094086?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17210684?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17210684?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17210684?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17875776?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17875776?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17875776?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14667502?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14667502?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14667502?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18070933?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18070933?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18070933?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


254 
 

Lillis AP, Mikhailenko I, Strickland DK. Beyond endocytosis: LRP function in cell 
migration, proliferation and vascular permeability. J Thromb Haemost. 2005 
Aug;3(8):1884-93.  

Lim J, Norga KK, Chen Z, Choi KW. Control of planar cell polarity by interaction of 
DWnt4 and four-jointed. Genesis. 2005 Jul;42(3):150-61. 

Lin CJ, Gong HY, Tseng HC, Wang WL, Wu JL. miR-122 targets an anti-apoptotic gene, 
Bcl-w, in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun. 
2008 Oct 24;375(3):315-20. 

Lin SC, Li Q. Axin bridges Daxx to p53. Cell Res. 2007 Apr;17(4):301-2.  

Linker C, Lesbros C, Gros J, Burrus LW, Rawls A, Marcelle C. beta-Catenin-dependent 
Wnt signalling controls the epithelial organisation of somites through the activation of 
paraxis. Development. 2005 Sep;132(17):3895-905. 

Linker C, Lesbros C, Stark MR, Marcelle C. Intrinsic signals regulate the initial steps of 
myogenesis in vertebrates. Development. 2003 Oct;130(20):4797-807.  

Lisovsky M, Itoh K, Sokol SY. Frizzled receptors activate a novel JNK-dependent 
pathway that may lead to apoptosis. Curr Biol. 2002 Jan 8;12(1):53-8. 

Liu C, Wang Y, Smallwood PM, Nathans J. An essential role for Frizzled5 in neuronal 
survival in the parafascicular nucleus of the thalamus. J Neurosci. 2008 May 
28;28(22):5641-53. 

Liu H, Fergusson MM, Castilho RM, Liu J, Cao L, Chen J, Malide D, Rovira II, Schimel 
D, Kuo CJ, Gutkind JS, Hwang PM, Finkel T. Augmented Wnt signaling in a mammalian 
model of accelerated aging. Science. 2007 Aug 10;317(5839):803-6. 

Liu P, Wakamiya M, Shea MJ, Albrecht U, Behringer RR, Bradley A. Requirement for 
Wnt3 in vertebrate axis formation. Nat Genet. 1999 Aug;22(4):361-5. 

Liu W, Wang G, Yakovlev AG. Identification and functional analysis of the rat caspase-3 
gene promoter. J Biol Chem. 2002 Mar 8;277(10):8273-8.  

Lin Y, Liu A, Zhang S, Ruusunen T, Kreidberg JA, Peltoketo H, Drummond I, Vainio S. 
Induction of ureter branching as a response to Wnt-2b signaling during early kidney 
organogenesis. Dev Dyn. 2001 Sep;222(1):26-39. 

Lo Celso C, Prowse DM, Watt FM. Transient activation of beta-catenin signalling in 
adult mouse epidermis is sufficient to induce new hair follicles but continuous activation 
is required to maintain hair follicle tumours. Development. 2004 Apr;131(8):1787-99. 

http://www.ncbi.nlm.nih.gov/pubmed/16102056?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16102056?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15986451?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15986451?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15986451?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18692484?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18692484?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17404597?ordinalpos=9&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16100089?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16100089?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16100089?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12917295?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12917295?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12917295?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11790303?ordinalpos=21&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11790303?ordinalpos=21&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18509025?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18509025?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17690294?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17690294?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17690294?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10431240?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10431240?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10431240?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11773055?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11773055?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11507767?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11507767?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15084463?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15084463?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15084463?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


255 
 

Lobov IB, Rao S, Carroll TJ, Vallance JE, Ito M, Ondr JK, Kurup S, Glass DA, Patel 
MS, Shu W, Morrisey EE, McMahon AP, Karsenty G, Lang RA. WNT7b mediates 
macrophage-induced programmed cell death in patterning of the vasculature. Nature. 
2005 Sep 15;437(7057):417-21. 

Lomonosova E, Chinnadurai G. BH3-only proteins in apoptosis and beyond: an 
overview. Oncogene. 2008 Dec;27 Suppl 1:S2-19. 

Longo KA, Kennell JA, Ochocinska MJ, Ross SE, Wright WS, MacDougald OA. Wnt 
signaling protects 3T3-L1 preadipocytes from apoptosis through induction of insulin-like 
growth factors. J Biol Chem. 2002 Oct 11;277(41):38239-44. 

Longo KA, Wright WS, Kang S, Gerin I, Chiang SH, Lucas PC, Opp MR, MacDougald 
OA. J Biol Chem. 2004 Aug 20;279(34):35503-9. Wnt10b inhibits development of white 
and brown adipose tissues. Ross SE et al. Science. 2000 Aug 11;289(5481):950-3 

Loos B, Engelbrecht AM. Cell death: a dynamic response concept. Autophagy. 2009 
Jul;5(5):590-603. 

Lu W, Yamamoto V, Ortega B, Baltimore D. Mammalian Ryk is a Wnt coreceptor 
required for stimulation of neurite outgrowth. Cell. 2004 Oct 1;119(1):97-108. 

Luo J. Glycogen synthase kinase 3beta (GSK3beta) in tumorigenesis and cancer 
chemotherapy. Cancer Lett. 2009 Jan 18;273(2):194-200.  

Lyons JP, Mueller UW, Ji H, Everett C, Fang X, Hsieh JC, Barth AM, McCrea PD. Wnt-
4 activates the canonical beta-catenin-mediated Wnt pathway and binds Frizzled-6 CRD: 
functional implications of Wnt/beta-catenin activity in kidney epithelial cells. Exp Cell 
Res. 2004 Aug 15;298(2):369-87. 

Lyuksyutova AI, Lu CC, Milanesio N, King LA, Guo N, Wang Y, Nathans J, Tessier-
Lavigne M, Zou Y. Anterior-posterior guidance of commissural axons by Wnt-frizzled 
signaling. Science. 2003 Dec 12;302(5652):1984-8. 

Maderna P, Godson C. Phagocytosis of apoptotic cells and the resolution of 
inflammation. Biochim Biophys Acta. 2003 Nov 20;1639(3):141-51.  

Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP.Wnt11 and Ret/Gdnf 
pathways cooperate in regulating ureteric branching during metanephric kidney 
development. Development. 2003 Jul;130(14):3175-85. 

Malaguarnera L. Implications of apoptosis regulators in tumorigenesis. Cancer Metastasis 
Rev. 2004 Aug-Dec;23(3-4):367-87. 

Malbon CC, Wang HY. Dishevelled: a mobile scaffold catalyzing development.Curr Top 
Dev Biol. 2006;72:153-66.  

http://www.ncbi.nlm.nih.gov/pubmed/16163358?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16163358?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16163358?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19641503?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19641503?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12154096?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12154096?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12154096?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12154096?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15190075?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15190075?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15190075?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19363298?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15454084?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15454084?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15454084?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18606491?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18606491?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18606491?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15265686?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15265686?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15265686?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14671310?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14671310?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14636945?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14636945?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14636945?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12783789?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12783789?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12783789?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12783789?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15197336?ordinalpos=8&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16564334?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


256 
 

Mallat Z, Tedgui A. Apoptosis in the vasculature: mechanisms and functional 
importance. Br J Pharmacol. 2000 Jul;130(5):947-62.  

Mani A, Radhakrishnan J, Wang H, Mani A, Mani MA, Nelson-Williams C, Carew KS, 
Mane S, Najmabadi H, Wu D, Lifton RP. LRP6 mutation in a family with early coronary 
disease and metabolic risk factors. Science. 2007 Mar 2;315(5816):1278-82. 

Maniati E, Potter P, Rogers NJ, Morley BJ. Control of apoptosis in autoimmunity. J 
Pathol. 2008 Jan;214(2):190-8.  

Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, Niehrs C. LDL-receptor-related 
protein 6 is a receptor for Dickkopf proteins. Nature. 2001 May 17;411(6835):321-5. 

Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler BM, Delius H, Hoppe D, Stannek 
P, Walter C, Glinka A, Niehrs C. Kremen proteins are Dickkopf receptors that regulate 
Wnt/beta-catenin signalling. Nature. 2002 Jun 6;417(6889):664-7. 

Mao CD, Hoang P, DiCorleto PE. Lithium inhibits cell cycle progression and induces 
stabilization of p53 in bovine aortic endothelial cells. J Biol Chem. 2001 Jul 
13;276(28):26180-8.  

Marash L, Kimchi A. DAP5 and IRES-mediated translation during programmed cell 
death. Cell Death Differ. 2005 Jun;12(6):554-62. 

Marani M, Tenev T, Hancock D, Downward J, Lemoine NR. Identification of novel 
isoforms of the BH3 domain protein Bim which directly activate Bax to trigger apoptosis. 
Mol Cell Biol. 2002 Jun;22(11):3577-89. 

Martins LM, Iaccarino I, Tenev T, Gschmeissner S, Totty NF, Lemoine NR, Savopoulos 
J, Gray CW, Creasy CL, Dingwall C, Downward J. The serine protease Omi/HtrA2 
regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem. 2002 Jan 
4;277(1):439-44. 

Masckauchán TN, Kitajewski J. Wnt/Frizzled signaling in the vasculature: new 
angiogenic factors in sight.Physiology (Bethesda). 2006 Jun;21:181-8.  

Matsumoto K, Miki R, Nakayama M, Tatsumi N, Yokouchi Y.Wnt9a secreted from the 
walls of hepatic sinusoids is essential for morphogenesis, proliferation, and glycogen 
accumulation of chick hepatic epithelium. Dev Biol. 2008 Jul 15;319(2):234-47.  

Mazieres J, You L, He B, Xu Z, Lee AY, Mikami I, McCormick F, Jablons DM. 
Inhibition of Wnt16 in human acute lymphoblastoid leukemia cells containing the t(1;19) 
translocation induces apoptosis. Oncogene. 2005 Aug 11;24(34):5396-400. 

McKay RM, Peters JM, Graff JM. The casein kinase I family in Wnt signaling. Dev Biol. 
2001 Jul 15;235(2):388-96. 

http://www.ncbi.nlm.nih.gov/pubmed/10882378?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10882378?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10882378?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17332414?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17332414?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17332414?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18161756?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11357136?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11357136?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12050670?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12050670?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12050670?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11337498?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11337498?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15818401?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15818401?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11997495?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11997495?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11997495?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11602612?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11602612?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11602612?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16714476?ordinalpos=9&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16714476?ordinalpos=9&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16714476?ordinalpos=9&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18513713?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18513713?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18513713?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18513713?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16007226?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16007226?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11437445?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


257 
 

Meeson A, Palmer M, Calfon M, Lang R. A relationship between apoptosis and flow 
during programmed capillary regression is revealed by vital analysis. Development. 1996 
Dec;122(12):3929-38. 

Meijer HA, Thomas AA. Control of eukaryotic protein synthesis by upstream open 
reading frames in the 5'-untranslated region of an mRNA. Biochem J. 2002 Oct 1;367(Pt 
1):1-11.  

Melino G, Knight RA, Nicotera P. How many ways to die? How many different models 
of cell death? Cell Death Differ. 2005 Nov;12 Suppl 2:1457-62.  

Michaelidis TM, Lie DC. Wnt signaling and neural stem cells: caught in the Wnt web. 
Cell Tissue Res. 2008 Jan;331(1):193-210.  

Mignone F, Gissi C, Liuni S, Pesole G. Untranslated regions of mRNAs. Genome Biol. 
2002;3(3):REVIEWS0004. 

Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM. p53 has a 
direct apoptogenic role at the mitochondria. Mol Cell. 2003 Mar;11(3):577-90. 

Mikels A, Minami Y, Nusse R. The Ror2 receptor requires tyrosine kinase activity to 
mediate Wnt5a signaling. J Biol Chem. 2009 Aug 31. [Epub ahead of print] 

Miller C, Sassoon DA. Wnt-7a maintains appropriate uterine patterning during the 
development of the mouse female reproductive tract. Development. 1998 
Aug;125(16):3201-11. 

Mirkes PE. 2001 Warkany lecture: to die or not to die, the role of apoptosis in normal and 
abnormal mammalian development. Teratology. 2002 May;65(5):228-39. 

Miyakubo H, Inohara N, Hashimoto K. Retinal involvement in familial exudative 
vitreoretinopathy. Ophthalmologica. 1982;185(3):125-35. 

Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the 
human bax gene. Cell. 1995 Jan 27;80(2):293-9. 

Monkley SJ, Delaney SJ, Pennisi DJ, Christiansen JH, Wainwright BJ. Targeted 
disruption of the Wnt2 gene results in placentation defects. Development. 1996 
Nov;122(11):3343-53. 

Monks J, Rosner D, Geske FJ, Lehman L, Hanson L, Neville MC, Fadok VA. Epithelial 
cells as phagocytes: apoptotic epithelial cells are engulfed by mammary alveolar 
epithelial cells and repress inflammatory mediator release. Cell Death Differ. 2005 
Feb;12(2):107-14. 

http://www.ncbi.nlm.nih.gov/pubmed/9012513?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9012513?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9012513?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12117416?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12117416?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12117416?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16247490?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16247490?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17828608?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11897027?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12667443?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12667443?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12667443?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19720827?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19720827?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19720827?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9671592?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9671592?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11967922?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11967922?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11967922?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/7133626?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/7133626?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/7133626?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/7834749?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/7834749?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/7834749?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8951051?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8951051?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8951051?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15647754?ordinalpos=23&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15647754?ordinalpos=23&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15647754?ordinalpos=23&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15647754?ordinalpos=23&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


258 
 

Montcouquiol M, Crenshaw EB 3rd, Kelley MW. Noncanonical Wnt signaling and 
neural polarity. Annu Rev Neurosci. 2006;29:363-86. 

Moon RT, Brown JD, Torres M. WNTs modulate cell fate and behavior during vertebrate 
development. Trends Genet. 1997 Apr;13(4):157-62.  

Moroni MC, Hickman ES, Lazzerini Denchi E, Caprara G, Colli E, Cecconi F, Müller H, 
Helin K. Apaf-1 is a transcriptional target for E2F and p53. Nat Cell Biol. 2001 
Jun;3(6):552-8. 

Morris DR, Geballe AP. Upstream open reading frames as regulators of mRNA 
translation. Mol Cell Biol. 2000 Dec;20(23):8635-42. 

Müller-Tidow C, Steffen B, Cauvet T, Tickenbrock L, Ji P, Diederichs S, Sargin B, 
Köhler G, Stelljes M, Puccetti E, Ruthardt M, deVos S, Hiebert SW, Koeffler HP, Berdel 
WE, Serve H. Translocation products in acute myeloid leukemia activate the Wnt 
signaling pathway in hematopoietic cells. Mol Cell Biol. 2004 Apr;24(7):2890-904. 

Naito AT, Akazawa H, Takano H, Minamino T, Nagai T, Aburatani H, Komuro I. 
Phosphatidylinositol 3-kinase-Akt pathway plays a critical role in early cardiomyogenesis 
by regulating canonical Wnt signaling. Circ Res. 2005 Jul 22;97(2):144-51.  

Nakajima T. Signaling cascades in radiation-induced apoptosis: roles of protein kinase C 
in the apoptosis regulation. Med Sci Monit. 2006 Oct;12(10):RA220-4.  

Nakagawa S, Takada S, Takada R, Takeichi M. Identification of the laminar-inducing 
factor: Wnt-signal from the anterior rim induces correct laminar formation of the neural 
retina in vitro. Dev Biol. 2003 Aug 15;260(2):414-25. 

Nakamura T, Nakamura T, Matsumoto K. The functions and possible significance of 
Kremen as the gatekeeper of Wnt signalling in development and pathology. J Cell Mol 
Med. 2008 Apr;12(2):391-408. 

Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell. 
2001 Mar;7(3):683-94. 

Narita T, Nishimatsu S, Wada N, Nohno T. A Wnt3a variant participates in chick apical 
ectodermal ridge formation: distinct biological activities of Wnt3a splice variants in chick 
limb development. Dev Growth Differ. 2007 Aug;49(6):493-501.  

Ng JK, Kawakami Y, Büscher D, Raya A, Itoh T, Koth CM, Rodríguez Esteban C, 
Rodríguez-León J, Garrity DM, Fishman MC, Izpisúa Belmonte JC. The limb identity 
gene Tbx5 promotes limb initiation by interacting with Wnt2b and Fgf10. Development. 
2002 Nov;129(22):5161-70. 

http://www.ncbi.nlm.nih.gov/pubmed/16776590?ordinalpos=8&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16776590?ordinalpos=8&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9097727?ordinalpos=8&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9097727?ordinalpos=8&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9097727?ordinalpos=8&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11389439?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11073965?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11073965?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11073965?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15024077?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15024077?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15024077?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15994435?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15994435?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17006414?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17006414?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12921742?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12921742?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12921742?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18088386?ordinalpos=11&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18088386?ordinalpos=11&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18088386?ordinalpos=11&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11463392?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17488271?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17488271?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17488271?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17488271?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12399308?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12399308?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12399308?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


259 
 

Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, 
Griffin PR, Labelle M, Lazebnik YA, et al. Identification and inhibition of the ICE/CED-
3 protease necessary for mammalian apoptosis. Nature. 1995 Jul 6;376(6535):37-43. 

Nijhawan D, Honarpour N, Wang X. Apoptosis in neural development and disease. Annu 
Rev Neurosci. 2000;23:73-87. 

Nusse R. Cancer. Converging on beta-catenin in Wilms tumor. Science. 2007 May 
18;316(5827):988-9.  

Nusse R, Varmus HE. Cell. 1982 Nov;31(1):99-109. Many tumors induced by the mouse 
mammary tumor virus contain a provirus integrated in the same region of the host 
genome. 

Nusse R, Brown A, Papkoff J, Scambler P, Shackleford G, McMahon A, Moon R, 
Varmus H. Cell. 1991 Jan 25;64(2):231.A new nomenclature for int-1 and related genes: 
the Wnt gene family.  

Nusse R. Wnt signaling and stem cell control. Cell Res. 2008 May;18(5):523-7. 

Nüsslein-Volhard C, Wieschaus E. Nature. 1980 Oct 30;287(5785):795-801. Mutations 
affecting segment number and polarity in Drosophila.  

Ober EA, Verkade H, Field HA, Stainier DY. Mesodermal Wnt2b signalling positively 
regulates liver specification. Nature. 2006 Aug 10;442(7103):688-91.  

Oishi I, Suzuki H, Onishi N, Takada R, Kani S, Ohkawara B, Koshida I, Suzuki K, 
Yamada G, Schwabe GC, Mundlos S, Shibuya H, Takada S, Minami Y. The receptor 
tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes 
Cells. 2003 Jul;8(7):645-54. 

Omoto S, Hayashi T, Kitahara K, Takeuchi T, Ueoka Y. Autosomal dominant familial 
exudative vitreoretinopathy in two Japanese families with FZD4 mutations (H69Y and 
C181R). Ophthalmic Genet. 2004 Jun;25(2):81-90. 

Osborne BA. Apoptosis and the maintenance of homoeostasis in the immune system. 
Curr Opin Immunol. 1996 Apr;8(2):245-54.  

Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell 
death. Apoptosis. 2007 May;12(5):913-22. 

Ouji Y, Yoshikawa M, Shiroi A, Ishizaka S. Wnt-10b secreted from lymphocytes 
promotes differentiation of skin epithelial cells. Biochem Biophys Res Commun. 2006 
Apr 21;342(4):1063-9 

http://www.ncbi.nlm.nih.gov/pubmed/7596430?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/7596430?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10845059?ordinalpos=10&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17510350?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/6297757?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/6297757?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/6297757?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/6297757?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/1846319?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/1846319?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18392048?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/6776413?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/6776413?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/6776413?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16799568?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16799568?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12839624?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12839624?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12839624?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15370539?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15370539?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15370539?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8725948?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17453160?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17453160?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17453160?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16510119?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16510119?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


260 
 

Ouko L, Ziegler TR, Gu LH, Eisenberg LM, Yang VW. Wnt11 signaling promotes 
proliferation, transformation, and migration of IEC6 intestinal epithelial cells. J Biol 
Chem. 2004 Jun 18;279(25):26707-15. 

Owens DM, Watt FM. Contribution of stem cells and differentiated cells to epidermal 
tumours. Nat Rev Cancer. 2003 Jun;3(6):444-51. 

Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z, Miao L, Tothova Z, Horner JW, 
Carrasco DR, Jiang S, Gilliland DG, Chin L, Wong WH, Castrillon DH, DePinho RA. 
FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell 
homeostasis. Cell. 2007 Jan 26;128(2):309-23. 

Park JK, Song JH, He TC, Nam SW, Lee JY, Park WS. Overexpression of Wnt-2 in 
colorectal cancers. Neoplasma. 2009;56(2):119-23. 

Parr BA, Cornish VA, Cybulsky MI, McMahon AP. Wnt7b regulates placental 
development in mice.Dev Biol. 2001 Sep 15;237(2):324-32. 

Parr BA, McMahon AP. Dorsalizing signal Wnt-7a required for normal polarity of D-V 
and A-P axes of mouse limb. Nature. 1995 Mar 23;374(6520):350-3. 

Pearl LH, Barford D. Regulation of protein kinases in insulin, growth factor and Wnt 
signalling. Curr Opin Struct Biol. 2002 Dec;12(6):761-7.  

Pegoraro L, Palumbo A, Erikson J, Falda M, Giovanazzo B, Emanuel BS, Rovera G, 
Nowell PC, Croce CM. A 14;18 and an 8;14 chromosome translocation in a cell line 
derived from an acute B-cell leukemia. Proc Natl Acad Sci U S A. 1984 
Nov;81(22):7166-70. 

Perlman H, Zhang X, Chen MW, Walsh K, Buttyan R. An elevated bax/bcl-2 ratio 
corresponds with the onset of prostate epithelial cell apoptosis. Cell Death Differ. 1999 
Jan;6(1):48-54. 

Petropoulos K, Arseni N, Schessl C, Stadler CR, Rawat VP, Deshpande AJ, Heilmeier B, 
Hiddemann W, Quintanilla-Martinez L, Bohlander SK, Feuring-Buske M, Buske C. A 
novel role for Lef-1, a central transcription mediator of Wnt signaling, in 
leukemogenesis. J Exp Med. 2008 Mar 17;205(3):515-22.  

Phelps RA, Chidester S, Dehghanizadeh S, Phelps J, Sandoval IT, Rai K, Broadbent T, 
Sarkar S, Burt RW, Jones DA. A two-step model for colon adenoma initiation and 
progression caused by APC loss. Cell. 2009 May 15;137(4):623-34. 

Phiel CJ, Wilson CA, Lee VM, Klein PS. GSK-3alpha regulates production of 
Alzheimer's disease amyloid-beta peptides. Nature. 2003 May 22;423(6938):435-9. 

http://www.ncbi.nlm.nih.gov/pubmed/15084607?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15084607?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15084607?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12778134?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12778134?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12778134?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17254969?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17254969?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19239325?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19239325?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11543617?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11543617?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11543617?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/7885472?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/7885472?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12504681?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12504681?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12504681?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/6334305?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/6334305?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/6334305?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10200547?ordinalpos=9&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10200547?ordinalpos=9&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18316418?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18316418?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18316418?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18316418?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19450512?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19450512?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12761548?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12761548?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


261 
 

Pickering BM, Willis AE. The implications of structured 5' untranslated regions on 
translation and disease. Semin Cell Dev Biol. 2005 Feb;16(1):39-47.  

Pidgeon GP, Barr MP, Harmey JH, Foley DA, Bouchier-Hayes DJ. Vascular endothelial 
growth factor (VEGF) upregulates BCL-2 and inhibits apoptosis in human and murine 
mammary adenocarcinoma cells. Br J Cancer. 2001 Jul 20;85(2):273-8. 

Polakis P. The adenomatous polyposis coli (APC) tumor suppressor. Biochim Biophys 
Acta. 1997 Jun 7;1332(3):F127-47. 

Potente M, Urbich C, Sasaki K, Hofmann WK, Heeschen C, Aicher A, Kollipara R, 
DePinho RA, Zeiher AM, Dimmeler S. Involvement of Foxo transcription factors in 
angiogenesis and postnatal neovascularization. J Clin Invest. 2005 Sep;115(9):2382-92.  

Prager K, Wang-Eckhardt L, Fluhrer R, Killick R, Barth E, Hampel H, Haass C, Walter J. 
A structural switch of presenilin 1 by glycogen synthase kinase 3beta-mediated 
phosphorylation regulates the interaction with beta-catenin and its nuclear signaling. J 
Biol Chem. 2007 May 11;282(19):14083-93. 

Puthalakath H, Huang DC, O'Reilly LA, King SM, Strasser A. The proapoptotic activity 
of the Bcl-2 family member Bim is regulated by interaction with the dynein motor 
complex. Mol Cell. 1999 Mar;3(3):287-96. 

CM, Rogers SA, Korsmeyer SJ, Hammerman MR. Fulminant metanephric apoptosis and 
abnormal kidney development in bcl-2-deficient mice. Am J Physiol. 1995 Jan;268(1 Pt 
2):F73-81. 

Radtke F, Clevers H. Self-renewal and cancer of the gut: two sides of a coin.Science. 
2005 Mar 25;307(5717):1904-9. 

Raisova M, Hossini AM, Eberle J, Riebeling C, Wieder T, Sturm I, Daniel PT, Orfanos 
CE, Geilen CC. The Bax/Bcl-2 ratio determines the susceptibility of human melanoma 
cells to CD95/Fas-mediated apoptosis. J Invest Dermatol. 2001 Aug;117(2):333-40. 

Rajagopal J, Carroll TJ, Guseh JS, Bores SA, Blank LJ, Anderson WJ, Yu J, Zhou Q, 
McMahon AP, Melton DA. Wnt7b stimulates embryonic lung growth by coordinately 
increasing the replication of epithelium and mesenchyme. Development. 2008 
May;135(9):1625-34.  

Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC, Perucho M. Somatic 
frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator 
phenotype. Science. 1997 Feb 14;275(5302):967-9. 

Rao AS, Kremenevskaja N, Resch J, Brabant G. Lithium stimulates proliferation in 
cultured thyrocytes by activating Wnt/beta-catenin signalling. Eur J Endocrinol. 2005 
Dec;153(6):929-38. 

http://www.ncbi.nlm.nih.gov/pubmed/15659338?ordinalpos=18&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15659338?ordinalpos=18&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15659338?ordinalpos=18&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11461089?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11461089?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11461089?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11461089?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9196022?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16100571?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16100571?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16100571?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17360711?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17360711?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10198631?ordinalpos=10&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10198631?ordinalpos=10&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10198631?ordinalpos=10&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10198631?ordinalpos=10&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/7840250?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/7840250?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15790842?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11511312?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11511312?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18367557?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18367557?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18367557?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9020077?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9020077?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9020077?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9020077?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16322400?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16322400?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16322400?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


262 
 

Reichel MB, Ali RR, D'Esposito F, Clarke AR, Luthert PJ, Bhattacharya SS, Hunt DM. 
High frequency of persistent hyperplastic primary vitreous and cataracts in p53-deficient 
mice. Cell Death Differ. 1998 Feb;5(2):156-62. 

Renvoizé C, Biola A, Pallardy M, Bréard J. Apoptosis: identification of dying cells. Cell 
Biol Toxicol. 1998 Mar;14(2):111-20.  

Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005 Apr 
14;434(7035):843-50. 

Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, Hintz L, Nusse R, 
Weissman IL. A role for Wnt signalling in self-renewal of haematopoietic stem cells. 
Nature. 2003 May 22;423(6938):409-14.  

Rhee CS, Sen M, Lu D, Wu C, Leoni L, Rubin J, Corr M, Carson DA. Wnt and frizzled 
receptors as potential targets for immunotherapy in head and neck squamous cell 
carcinomas. Oncogene. 2002 Sep 26;21(43):6598-605. 

Ricken A, Lochhead P, Kontogiannea M, Farookhi R. Wnt signaling in the ovary: 
identification and compartmentalized expression of wnt-2, wnt-2b, and frizzled-4 
mRNAs. Endocrinology. 2002 Jul;143(7):2741-9. 

Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D, Nusse R. Cell. 1987a Aug 
14;50(4):649-57. The Drosophila homolog of the mouse mammary oncogene int-1 is 
identical to the segment polarity gene wingless. 

Rijsewijk F, van Deemter L, Wagenaar E, Sonnenberg A, Nusse R. EMBO J. 1987b 
Jan;6(1):127-31. Transfection of the int-1 mammary oncogene in cuboidal RAC 
mammary cell line results in morphological transformation and tumorigenicity.  

Robitaille J, MacDonald ML, Kaykas A, Sheldahl LC, Zeisler J, Dubé MP, Zhang LH, 
Singaraja RR, Guernsey DL, Zheng B, Siebert LF, Hoskin-Mott A, Trese MT, Pimstone 
SN, Shastry BS, Moon RT, Hayden MR, Goldberg YP, Samuels ME. Mutant frizzled-4 
disrupts retinal angiogenesis in familial exudative vitreoretinopathy. Nat Genet. 2002 
Oct;32(2):326-30.  

Rodionova E, Conzelmann M, Maraskovsky E, Hess M, Kirsch M, Giese T, Ho AD, 
Zöller M, Dreger P, Luft T. GSK-3 mediates differentiation and activation of 
proinflammatory dendritic cells. Blood. 2007 Feb 15;109(4):1584-92. 

Rodriguez J, Esteve P, Weinl C, Ruiz JM, Fermin Y, Trousse F, Dwivedy A, Holt C, 
Bovolenta P. SFRP1 regulates the growth of retinal ganglion cell axons through the Fz2 
receptor.Nat Neurosci. 2005 Oct;8(10):1301-9.  

http://www.ncbi.nlm.nih.gov/pubmed/10200460?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10200460?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9553722?ordinalpos=12&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12717450?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12242657?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12242657?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12242657?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12242657?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12072409?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12072409?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12072409?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12072409?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/3111720?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/3111720?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/3034569?ordinalpos=12&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/3034569?ordinalpos=12&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12172548?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12172548?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17032918?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17032918?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16172602?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16172602?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16172602?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


263 
 

Rose SL, Robertson AD, Goodheart MJ, Smith BJ, DeYoung BR, Buller RE. The impact 
of p53 protein core domain structural alteration on ovarian cancer survival. Clin Cancer 
Res. 2003 Sep 15;9(11):4139-44. 

Ruest LB, Khalyfa A, Wang E. Development-dependent disappearance of caspase-3 in 
skeletal muscle is post-transcriptionally regulated. J Cell Biochem. 2002;86(1):21-8. 

Ruiz-Echevarría MJ, Peltz SW. The RNA binding protein Pub1 modulates the stability of 
transcripts containing upstream open reading frames. Cell. 2000 Jun 23;101(7):741-51. 

Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AM. Mechanisms 
of cell death in oxidative stress. Antioxid Redox Signal. 2007 Jan;9(1):49-89.  

Sabbagh L, Bourbonnière M, Denis F, Sékaly RP. Cloning and functional 
characterization of the murine caspase-3 gene promoter. DNA Cell Biol. 2006 
Feb;25(2):104-15. 

Sabbagh L, Kaech SM, Bourbonnière M, Woo M, Cohen LY, Haddad EK, Labrecque N, 
Ahmed R, Sékaly RP. The selective increase in caspase-3 expression in effector but not 
memory T cells allows susceptibility to apoptosis. J Immunol. 2004 Nov 1;173(9):5425-
33. 

Saikumar P, Dong Z, Mikhailov V, Denton M, Weinberg JM, Venkatachalam MA. 
Apoptosis: definition, mechanisms, and relevance to disease. Am J Med. 1999 
Nov;107(5):489-506.  

Salomons GS, Buitenhuis CK, Martínez Muñoz C, Verwijs-Jassen M, Behrendt H, Zsiros 
J, Smets LA. Mutational analysis of Bax and Bcl-2 in childhood acute lymphoblastic 
leukaemia. Int J Cancer. 1998 Jun 19;79(3):273-7. 

Samarzija I, Sini P, Schlange T, Macdonald G, Hynes NE. Wnt3a regulates proliferation 
and migration of HUVEC via canonical and non-canonical Wnt signaling pathways. 
Biochem Biophys Res Commun. 2009 Aug 28;386(3):449-54.  

Sanchez JF, Sniderhan LF, Williamson AL, Fan S, Chakraborty-Sett S, Maggirwar SB. 
Glycogen synthase kinase 3beta-mediated apoptosis of primary cortical astrocytes 
involves inhibition of nuclear factor kappaB signaling. Mol Cell Biol. 2003 
Jul;23(13):4649-62. 

Saraste A, Pulkki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc 
Res. 2000 Feb;45(3):528-37. 

Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa N, Nishiwaki T, Kawasoe T, Ishiguro H, 
Fujita M, Tokino T, Sasaki Y, Imaoka S, Murata M, Shimano T, Yamaoka Y, Nakamura 
Y. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer 
cells by virus-mediated transfer of AXIN1. Nat Genet. 2000 Mar;24(3):245-50. 

http://www.ncbi.nlm.nih.gov/pubmed/14519637?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14519637?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12112012?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12112012?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10892745?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10892745?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10892745?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17115887?ordinalpos=27&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17115887?ordinalpos=27&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17115887?ordinalpos=27&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16460234?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16460234?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16460234?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15494489?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15494489?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10569305?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9645350?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9645350?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19523451?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19523451?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19523451?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12808104?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12808104?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10728374?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10700176?ordinalpos=8&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10700176?ordinalpos=8&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


264 
 

Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer 
PH, Peter ME. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 1998 Mar 
16;17(6):1675-87. 

Schiavone N, Rosini P, Quattrone A, Donnini M, Lapucci A, Citti L, Bevilacqua A, 
Nicolin A, Capaccioli S. A conserved AU-rich element in the 3' untranslated region of 
bcl-2 mRNA is endowed with a destabilizing function that is involved in bcl-2 down-
regulation during apoptosis. FASEB J. 2000 Jan;14(1):174-84. 

Schwabe RF, Brenner DA. Role of glycogen synthase kinase-3 in TNF-alpha-induced 
NF-kappaB activation and apoptosis in hepatocytes. Am J Physiol Gastrointest Liver 
Physiol. 2002 Jul;283(1):G204-11. 

Schug ZT, Gottlieb E. Cardiolipin acts as a mitochondrial signalling platform to launch 
apoptosis. Biochim Biophys Acta. 2009 May 18. 

Schuler M, Green DR. Transcription, apoptosis and p53: catch-22. Trends Genet. 2005 
Mar;21(3):182-7.  

Schulte G, Bryja V, Rawal N, Castelo-Branco G, Sousa KM, Arenas E. Purified Wnt-5a 
increases differentiation of midbrain dopaminergic cells and dishevelled 
phosphorylation.J Neurochem. 2005 Mar;92(6):1550-3. 

Schultz DR, Harrington WJ Jr. Apoptosis: programmed cell death at a molecular level. 
Semin Arthritis Rheum. 2003 Jun;32(6):345-69.  

Sears KT, Daino H, Carey GB. Reactive oxygen species-dependent destruction of MEK 
and Akt in Manumycin stimulated death of lymphoid tumor and myeloma cell lines. Int J 
Cancer. 2008 Apr 1;122(7):1496-505. 

Semenov MV, He X. LRP5 mutations linked to high bone mass diseases cause reduced 
LRP5 binding and inhibition by SOST. J Biol Chem. 2006 Dec 15;281(50):38276-84.  

Semënov M, Tamai K, He X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling 
inhibitor. J Biol Chem. 2005 Jul 22;280(29):26770-5. 

Sentman CL, Shutter JR, Hockenbery D, Kanagawa O, Korsmeyer SJ. bcl-2 inhibits 
multiple forms of apoptosis but not negative selection in thymocytes. Cell. 1991 Nov 
29;67(5):879-88. 

Sharma RP, Chopra VL.Dev Biol. 1976 Feb;48(2):461-5.Effect of the Wingless (wg1) 
mutation on wing and haltere development in Drosophila melanogaster. 

Shen HM, Liu ZG. JNK signaling pathway is a key modulator in cell death mediated by 
reactive oxygen and nitrogen species. Free Radic Biol Med. 2006 Mar 15;40(6):928-39.  

http://www.ncbi.nlm.nih.gov/pubmed/9501089?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10627292?ordinalpos=8&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10627292?ordinalpos=8&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10627292?ordinalpos=8&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12065308?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12065308?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19450542?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19450542?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19450542?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15734577?ordinalpos=8&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15748172?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15748172?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15748172?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12833244?ordinalpos=8&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17985347?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17985347?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17052975?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17052975?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17052975?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15908424?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15908424?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/1835668?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/1835668?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/815114?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/815114?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/815114?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16540388?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16540388?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16540388?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


265 
 

Shen L, Zhou S, Glowacki J. Effects of age and gender on WNT gene expression in 
human bone marrow stromal cells. J Cell Biochem. 2009 Feb 1;106(2):337-43. 

Sherrill KW, Byrd MP, Van Eden ME, Lloyd RE. BCL-2 translation is mediated via 
internal ribosome entry during cell stress. J Biol Chem. 2004 Jul 9;279(28):29066-74. 

Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell. 2002 
Mar;9(3):459-70. 

Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, 
Tsujimoto Y. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death 
dependent on autophagy genes. Nat Cell Biol. 2004 Dec;6(12):1221-8. 

Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of 
apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature. 1999 Jun 
3;399(6735):483-7.  

Shnitsar I, Borchers A. PTK7 recruits dsh to regulate neural crest 
migration.Development. 2008 Dec;135(24):4015-24. 

Shu W, Jiang YQ, Lu MM, Morrisey EE. Wnt7b regulates mesenchymal proliferation 
and vascular development in the lung. Development. 2002 Oct;129(20):4831-42. 

Sima AV, Stancu CS, Simionescu M. Vascular endothelium in atherosclerosis. Cell 
Tissue Res. 2009 Jan;335(1):191-203.  

Slusarski DC, Corces VG, Moon RT. Interaction of Wnt and a Frizzled homologue 
triggers G-protein-linked phosphatidylinositol signalling. Nature. 1997 Nov 
27;390(6658):410-3. 

Smolich BD, McMahon JA, McMahon AP, Papkoff J. Wnt family proteins are secreted 
and associated with the cell surface. Mol Biol Cell. 1993 Dec;4(12):1267-75. 

Sorenson CM, Rogers SA, Korsmeyer SJ, Hammerman MR. Fulminant metanephric 
apoptosis and abnormal kidney development in bcl-2-deficient mice. Am J Physiol. 1995 
Jan;268(1 Pt 2):F73-81. 

Später D, Hill TP, O'sullivan RJ, Gruber M, Conner DA, Hartmann C. Wnt9a signaling is 
required for joint integrity and regulation of Ihh during chondrogenesis. Development. 
2006 Aug;133(15):3039-49. 

Spriggs KA, Bushell M, Mitchell SA, Willis AE. Internal ribosome entry segment-
mediated translation during apoptosis: the role of IRES-trans-acting factors. Cell Death 
Differ. 2005 Jun;12(6):585-91.  

http://www.ncbi.nlm.nih.gov/pubmed/19115259?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19115259?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19115259?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15123638?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15123638?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11931755?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15558033?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15558033?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10365962?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10365962?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19004858?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19004858?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19004858?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12361974?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12361974?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12361974?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18797930?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9389482?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9389482?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9389482?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8167409?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8167409?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8167409?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/7840250?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/7840250?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/7840250?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16818445?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16818445?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16818445?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15900315?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15900315?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


266 
 

Spierings D, McStay G, Saleh M, Bender C, Chipuk J, Maurer U, Green DR. Connected 
to death: the (unexpurgated) mitochondrial pathway of apoptosis. Science. 2005 Oct 
7;310(5745):66-7. 

Srinivasula SM, Gupta S, Datta P, Zhang Z, Hegde R, Cheong N, Fernandes-Alnemri T, 
Alnemri ES. Inhibitor of apoptosis proteins are substrates for the mitochondrial serine 
protease Omi/HtrA2. J Biol Chem. 2003 Aug 22;278(34):31469-72. 

Staal FJ, Luis TC, Tiemessen MM. WNT signalling in the immune system: WNT is 
spreading its wings. Nat Rev Immunol. 2008 Aug;8(8):581-93.  

Stark K, Vainio S, Vassileva G, McMahon AP. Epithelial transformation of metanephric 
mesenchyme in the developing kidney regulated by Wnt-4. Nature. 1994 Dec 
15;372(6507):679-83. 

Stenman JM, Rajagopal J, Carroll TJ, Ishibashi M, McMahon J, McMahon AP. 
Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS 
vasculature. Science. 2008 Nov 21;322(5905):1247-50. 

Stoneley M, Chappell SA, Jopling CL, Dickens M, MacFarlane M, Willis AE. c-Myc 
protein synthesis is initiated from the internal ribosome entry segment during apoptosis. 
Mol Cell Biol. 2000 Feb;20(4):1162-9. 

Struewing IT, Barnett CD, Zhang W, Yadav S, Mao CD. Frizzled-7 turnover at the 
plasma membrane is regulated by cell density and the Ca(2+) -dependent protease 
calpain-1. Exp Cell Res. 2007 Oct 1;313(16):3526-41. 

Struewing IT, Durham SN, Barnett CD, Mao CD. Enhanced endothelial cell senescence 
by lithium-induced matrix metalloproteinase-1 expression. J Biol Chem. 2009 Jun 
26;284(26):17595-606.  

Struewing IT, Toborek A, Mao CD. Mitochondrial and nuclear forms of Wnt13 are 
generated via alternative promoters, alternative RNA splicing, and alternative translation 
start sites. J Biol Chem. 2006 Mar 17;281(11):7282-93.  

Sudhakar C, Jain N, Swarup G. Sp1-like sequences mediate human caspase-3 promoter 
activation by p73 and cisplatin. FEBS J. 2008 May;275(9):2200-13. 

Suzuki Y, Nakabayashi Y, Takahashi R. Ubiquitin-protein ligase activity of X-linked 
inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and 
enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci U S A. 
2001 Jul 17;98(15):8662-7.  

Tada M, Concha ML, Heisenberg CP. Non-canonical Wnt signalling and regulation of 
gastrulation movements. Semin Cell Dev Biol. 2002 Jun;13(3):251-60. 

http://www.ncbi.nlm.nih.gov/pubmed/16210526?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16210526?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16210526?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12835328?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12835328?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12835328?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18617885?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18617885?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18617885?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/7990960?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/7990960?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/7990960?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19023080?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19023080?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10648601?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10648601?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17716656?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17716656?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17716656?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19407340?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19407340?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19407340?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16407296?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16407296?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16407296?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18384375?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18384375?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11447297?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11447297?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11447297?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12137734?ordinalpos=12&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12137734?ordinalpos=12&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


267 
 

Takada E, Hata K, Mizuguchi J. Requirement for JNK-dependent upregulation of BimL 
in anti-IgM-induced apoptosis in murine B lymphoma cell lines WEHI-231 and CH31. 
Exp Cell Res. 2006 Nov 15;312(19):3728-38. 

Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, Kondoh H, Takao T, Takada S. 
Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev 
Cell. 2006 Dec;11(6):791-801. 

Takada S, Stark KL, Shea MJ, Vassileva G, McMahon JA, McMahon AP. Wnt-3a 
regulates somite and tailbud formation in the mouse embryo. Genes Dev. 1994 
Jan;8(2):174-89. 

Tamura T, Ishihara M, Lamphier MS, Tanaka N, Oishi I, Aizawa S, Matsuyama T, Mak 
TW, Taki S, Taniguchi T. An IRF-1-dependent pathway of DNA damage-induced 
apoptosis in mitogen-activated T lymphocytes. Nature. 1995 Aug 17;376(6541):596-9. 

Tamura T, Ueda S, Yoshida M, Matsuzaki M, Mohri H, Okubo T. Interferon-gamma 
induces Ice gene expression and enhances cellular susceptibility to apoptosis in the U937 
leukemia cell line. Biochem Biophys Res Commun. 1996 Dec 4;229(1):21-6. 

Tanaka A, Leung PS, Kenny TP, Au-Young J, Prindiville T, Coppel RL, Ansari AA, 
Gershwin ME. Genomic analysis of differentially expressed genes in liver and biliary 
epithelial cells of patients with primary biliary cirrhosis. J Autoimmun. 2001 
Aug;17(1):89-98. 

Tanaka S, Louie DC, Kant JA, Reed JC. Frequent incidence of somatic mutations in 
translocated BCL2 oncogenes of non-Hodgkin's lymphomas. Blood. 1992 Jan 
1;79(1):229-37. 

Tang T, Rector K, Barnett CD, Mao CD. Upstream open reading frames regulate the 
expression of the nuclear Wnt13 isoforms. Biochem Biophys Res Commun. 2008 Feb 
22;366(4):1081-8. 

Thomas KR, Capecchi MR. Targeted disruption of the murine int-1 proto-oncogene 
resulting in severe abnormalities in midbrain and cerebellar development. Nature. 1990 
Aug 30;346(6287):847-50. 

Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy JD Jr. The role 
of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in 
multiple myeloma.N Engl J Med. 2003 Dec 25;349(26):2483-94. 

Toledo EM, Colombres M, Inestrosa NC. Wnt signaling in neuroprotection and stem cell 
differentiation. Prog Neurobiol. 2008 Nov;86(3):281-96.  

Tsujimoto Y, Shimizu S. VDAC regulation by the Bcl-2 family of proteins. Cell Death 
Differ. 2000 Dec;7(12):1174-81. 

http://www.ncbi.nlm.nih.gov/pubmed/17007835?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17007835?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17141155?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8299937?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8299937?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/7637809?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/7637809?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8954078?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8954078?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8954078?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11488641?ordinalpos=8&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11488641?ordinalpos=8&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11488641?ordinalpos=8&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/1339299?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/1339299?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/1339299?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18155664?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18155664?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18155664?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/2202907?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/2202907?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14695408?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14695408?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14695408?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14695408?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18786602?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18786602?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18786602?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11175254?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


268 
 

Uemura K, Kuzuya A, Shimozono Y, Aoyagi N, Ando K, Shimohama S, Kinoshita A. 
GSK3beta activity modifies the localization and function of presenilin. J Biol Chem. 
2007 May 25;282(21):15823-32. 

Ungureanu NH, Cloutier M, Lewis SM, de Silva N, Blais JD, Bell JC, Holcik M. Internal 
ribosome entry site-mediated translation of Apaf-1, but not XIAP, is regulated during 
UV-induced cell death. J Biol Chem. 2006 Jun 2;281(22):15155-63.  

Urbich C, Knau A, Fichtlscherer S, Walter DH, Brühl T, Potente M, Hofmann WK, de 
Vos S, Zeiher AM, Dimmeler S. FOXO-dependent expression of the proapoptotic protein 
Bim: pivotal role for apoptosis signaling in endothelial progenitor cells. FASEB J. 2005 
Jun;19(8):974-6.  

Vainio S, Heikkilä M, Kispert A, Chin N, McMahon AP. Female development in 
mammals is regulated by Wnt-4 signalling. Nature. 1999 Feb 4;397(6718):405-9. 

van Amerongen R, Berns A. Re-evaluating the role of Frat in Wnt-signal 
transduction.Cell Cycle. 2005 Aug;4(8):1065-72.  

van Amerongen R, Berns A. Knockout mouse models to study Wnt signal transduction. 
Trends Genet. 2006 Dec;22(12):678-89. 

van Amerongen R, Mikels A, Nusse R. Sci Signal. 2008 Sep 2;1(35):re9.Alternative wnt 
signaling is initiated by distinct receptors. 

van de Schans VA, Smits JF, Blankesteijn WM. The Wnt/frizzled pathway in 
cardiovascular development and disease: friend or foe? Eur J Pharmacol. 2008 May 
13;585(2-3):338-45. 

Van Den Berg DJ, Sharma AK, Bruno E, Hoffman R. Role of members of the Wnt gene 
family in human hematopoiesis. Blood. 1998 Nov 1;92(9):3189-202. 

van der Horst A, Burgering BM. Stressing the role of FoxO proteins in lifespan and 
disease. Nat Rev Mol Cell Biol. 2007 Jun;8(6):440-50.  

van Gijn ME, Snel F, Cleutjens JP, Smits JF, Blankesteijn WM. Overexpression of 
components of the Frizzled-Dishevelled cascade results in apoptotic cell death, mediated 
by beta-catenin. Exp Cell Res. 2001 Apr 15;265(1):46-53. 

Van Hoecke M, Prigent-Tessier AS, Garnier PE, Bertrand NM, Filomenko R, Bettaieb A, 
Marie C, Beley AG. Evidence of HIF-1 functional binding activity to caspase-3 promoter 
after photothrombotic cerebral ischemia. Mol Cell Neurosci. 2007 Jan;34(1):40-7.  

van Ooyen A, Nusse R. Cell. 1984 Nov;39(1):233-40.Structure and nucleotide sequence 
of the putative mammary oncogene int-1; proviral insertions leave the protein-encoding 
domain intact. 

http://www.ncbi.nlm.nih.gov/pubmed/16595687?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16595687?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16595687?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16595687?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15824087?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15824087?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9989404?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9989404?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9989404?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16082208?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16082208?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17045694?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18765832?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18765832?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18765832?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18417121?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18417121?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18417121?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9787155?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9787155?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9787155?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17522590?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17522590?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17522590?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11281642?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11281642?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11281642?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17101276?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17101276?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/6091914?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/6091914?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/6091914?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/6091914?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


269 
 

Vaseva AV, Moll UM. The mitochondrial p53 pathway. Biochim Biophys Acta. 2009 
May;1787(5):414-20.  

Vaux DL, Silke J. Mammalian mitochondrial IAP binding proteins. Biochem Biophys 
Res Commun. 2003 May 9;304(3):499-504.  

Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ. Bcl-2-deficient mice demonstrate 
fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell. 1993 
Oct 22;75(2):229-40. 

Verkaar F, van Rosmalen JW, Smits JF, Blankesteijn WM, Zaman GJ. Stably 
overexpressed human Frizzled-2 signals through the beta-catenin pathway and does not 
activate Ca2+-mobilization in Human Embryonic Kidney 293 cells. Cell Signal. 2009 
Jan;21(1):22-33. 

Vertino AM, Taylor-Jones JM, Longo KA, Bearden ED, Lane TF, McGehee RE Jr, 
MacDougald OA, Peterson CA. Wnt10b deficiency promotes coexpression of myogenic 
and adipogenic programs in myoblasts. Mol Biol Cell. 2005 Apr;16(4):2039-48.  

Vider BZ, Zimber A, Chastre E, Prevot S, Gespach C, Estlein D, Wolloch Y, Tronick SR, 
Gazit A, Yaniv A. Evidence for the involvement of the Wnt 2 gene in human colorectal 
cancer.Oncogene. 1996 Jan 4;12(1):153-8. 

Villa P, Kaufmann SH, Earnshaw WC. Caspases and caspase inhibitors. Trends Biochem 
Sci. 1997 Oct;22(10):388-93.  

Wada A. Lithium and neuropsychiatric therapeutics: neuroplasticity via glycogen 
synthase kinase-3beta, beta-catenin, and neurotrophin cascades. J Pharmacol Sci. 2009 
May;110(1):14-28. 

Wada H, Okamoto H. Roles of noncanonical Wnt/PCP pathway genes in neuronal 
migration and neurulation in zebrafish. Zebrafish. 2009 Mar;6(1):3-8.  

Wallingford JB, Habas R. The developmental biology of Dishevelled: an enigmatic 
protein governing cell fate and cell polarity. Development. 2005 Oct;132(20):4421-36. 

Wang HL, Akinci IO, Baker CM, Urich D, Bellmeyer A, Jain M, Chandel NS, Mutlu 
GM, Budinger GR. The intrinsic apoptotic pathway is required for lipopolysaccharide-
induced lung endothelial cell death. J Immunol. 2007 Aug 1;179(3):1834-41. 

Wang J, Etheridge L, Wynshaw-Boris A. The Wnt-signaling pathways in mammalian 
patterning and morphogenesis. Advances in Developmental Biology. 2007. 17: 111-145. 

Wang J, Shackleford GM. Murine Wnt10a and Wnt10b: cloning and expression in 
developing limbs, face and skin of embryos and in adults. Oncogene. 1996 Oct 
3;13(7):1537-44. 

http://www.ncbi.nlm.nih.gov/pubmed/19007744?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12729584?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8402909?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8402909?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18929644?ordinalpos=11&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18929644?ordinalpos=11&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18929644?ordinalpos=11&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18929644?ordinalpos=11&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15673614?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15673614?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15673614?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8552386?ordinalpos=10&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8552386?ordinalpos=10&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8552386?ordinalpos=10&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9357314?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19423950?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19423950?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19250033?ordinalpos=18&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19250033?ordinalpos=18&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19250033?ordinalpos=18&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16192308?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16192308?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16192308?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17641050?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17641050?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8875992?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8875992?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8875992?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


270 
 

Wang X, Xing D, Liu L, Chen WR. BimL directly neutralizes Bcl-xL to promote Bax 
activation during UV-induced apoptosis. FEBS Lett. 2009 Jun 18;583(12):1873-9. 

Wang Y, Huang WC, Wang CY, Tsai CC, Chen CL, Chang YT, Kai JI, Lin CF. 
Inhibiting glycogen synthase kinase-3 reduces endotoxaemic acute renal failure by down-
regulating inflammation and renal cell apoptosis. Br J Pharmacol. 2009 Jul;157(6):1004-
13.  

Wang YK, Samos CH, Peoples R, Pérez-Jurado LA, Nusse R, Francke U. A novel human 
homologue of the Drosophila frizzled wnt receptor gene binds wingless protein and is in 
the Williams syndrome deletion at 7q11.23. Hum Mol Genet. 1997 Mar;6(3):465-72. 

Wang Z, Shu W, Lu MM, Morrisey EE. Wnt7b activates canonical signaling in epithelial 
and vascular smooth muscle cells through interactions with Fzd1, Fzd10, and LRP5. Mol 
Cell Biol. 2005 Jun;25(12):5022-30. 

Wang ZB, Liu YQ, Cui YF. Pathways to caspase activation. Cell Biol Int. 2005 
Jul;29(7):489-96.  

Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblasts and bone 
diseases. Gene. 2004 Oct 27;341:19-39.  

Welters HJ, Kulkarni RN. Wnt signaling: relevance to beta-cell biology and diabetes. 
Trends Endocrinol Metab. 2008 Dec;19(10):349-55.  

Wexler EM, Geschwind DH, Palmer TD. Lithium regulates adult hippocampal progenitor 
development through canonical Wnt pathway activation. Mol Psychiatry. 2008 
Mar;13(3):285-92. 

Wildey GM, Howe PH. Runx1 is a co-activator with FOXO3 to mediate transforming 
growth factor beta (TGFbeta)-induced Bim transcription in hepatic cells. J Biol Chem. 
2009 Jul 24;284(30):20227-39.  

Wieschaus E, Riggleman R. Cell. 1987 Apr 24;49(2):177-84. Autonomous requirements 
for the segment polarity gene armadillo during Drosophila embryogenesis.  

Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR 3rd, 
Nusse R. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature. 
2003 May 22;423(6938):448-52. 

Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, Chung DC, Sahani 
DV, Kalva SP, Kozin SV, Mino M, Cohen KS, Scadden DT, Hartford AC, Fischman AJ, 
Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Chen HX, Shellito PC, Lauwers GY, 
Jain RK. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular 
effects in human rectal cancer. Nat Med. 2004 Feb;10(2):145-7. Epub 2004 Jan 25.  

http://www.ncbi.nlm.nih.gov/pubmed/19427863?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19427863?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19508392?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19508392?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9147651?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9147651?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9147651?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9147651?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15923619?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15923619?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15939633?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15474285?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15474285?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15474285?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18926717?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17968353?ordinalpos=12&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17968353?ordinalpos=12&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17968353?ordinalpos=12&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19494111?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19494111?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/3105892?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/3105892?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/3105892?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12717451?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14745444?ordinalpos=14&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/14745444?ordinalpos=14&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


271 
 

Willis AE. Translational control of growth factor and proto-oncogene expression. Int J 
Biochem Cell Biol. 1999 Jan;31(1):73-86. 

Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE, Ierino H, Lee 
EF, Fairlie WD, Bouillet P, Strasser A, Kluck RM, Adams JM, Huang DC. Apoptosis 
initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science. 
2007 Feb 9;315(5813):856-9. 

Wilson NS, Dixit V, Ashkenazi A. Death receptor signal transducers: nodes of 
coordination in immune signaling networks. Nat Immunol. 2009 Apr;10(4):348-55.  

Witze ES, Litman ES, Argast GM, Moon RT, Ahn NG. Wnt5a control of cell polarity 
and directional movement by polarized redistribution of adhesion receptors. Science. 
2008 Apr 18;320(5874):365-9. 

Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev 
Biol. 1998;14:59-88. 

Wong GT, Gavin BJ, McMahon AP. Mol Cell Biol. 1994 Sep;14(9):6278-86.Differential 
transformation of mammary epithelial cells by Wnt genes. 

Wolda SL, Moon RT. Cloning and developmental expression in Xenopus laevis of seven 
additional members of the Wnt family. Oncogene. 1992 Oct;7(10):1941-7. 

Wright WS, Longo KA, Dolinsky VW, Gerin I, Kang S, Bennett CN, Chiang SH, 
Prestwich TC, Gress C, Burant CF, Susulic VS, MacDougald OA. Wnt10b inhibits 
obesity in ob/ob and agouti mice. Diabetes. 2007 Feb;56(2):295-303. 

Wu J, Jenny A, Mirkovic I, Mlodzik M. Frizzled-Dishevelled signaling specificity 
outcome can be modulated by Diego in Drosophila. Mech Dev. 2008 Jan-Feb;125(1-
2):30-42.  

Xavier FC, Rodini CO, Ramalho LM, Mantesso A, Nunes FD. WNT-5A, but not matrix 
metalloproteinase 3 or beta-catenin protein, expression is related to early stages of lip 
carcinogenesis. J Oral Pathol Med. 2009 Mar 11. 

Xie H, Huang Z, Sadim MS, Sun Z. Stabilized beta-catenin extends thymocyte survival 
by up-regulating Bcl-xL. J Immunol. 2005 Dec 15;175(12):7981-8. 

Xu Q, Wang Y, Dabdoub A, Smallwood PM, Williams J, Woods C, Kelley MW, Jiang L, 
Tasman W, Zhang K, Nathans J. Vascular development in the retina and inner ear: 
control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell. 2004 Mar 
19;116(6):883-95. 

Xu Y, Kiningham KK, Devalaraja MN, Yeh CC, Majima H, Kasarskis EJ, St Clair DK. 
An intronic NF-kappaB element is essential for induction of the human manganese 

http://www.ncbi.nlm.nih.gov/pubmed/10216945?ordinalpos=10&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17289999?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17289999?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17289999?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19295631?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19295631?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19295631?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18420933?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18420933?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18420933?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9891778?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8065359?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8065359?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8065359?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/1408135?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/1408135?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/1408135?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17259372?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17259372?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17259372?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18065209?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18065209?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19473452?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19473452?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19473452?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16339534?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16339534?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15035989?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15035989?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10492402?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


272 
 

superoxide dismutase gene by tumor necrosis factor-alpha and interleukin-1beta. DNA 
Cell Biol. 1999 Sep;18(9):709-22. 

Xu Y, Porntadavity S, St Clair DK. Transcriptional regulation of the human manganese 
superoxide dismutase gene: the role of specificity protein 1 (Sp1) and activating protein-2 
(AP-2). Biochem J. 2002 Mar 1;362(Pt 2):401-12. 

Yamagata K, Daitoku H, Takahashi Y, Namiki K, Hisatake K, Kako K, Mukai H, Kasuya 
Y, Fukamizu A. Arginine methylation of FOXO transcription factors inhibits their 
phosphorylation by Akt. Mol Cell. 2008 Oct 24;32(2):221-31. 

Yamaguchi TP, Bradley A, McMahon AP, Jones S. A Wnt5a pathway underlies 
outgrowth of multiple structures in the vertebrate embryo. Development. 1999 
Mar;126(6):1211-23. 

Yamamoto S, Nishimura O, Misaki K, Nishita M, Minami Y, Yonemura S, Tarui H, 
Sasaki H. Cthrc1 selectively activates the planar cell polarity pathway of Wnt signaling 
by stabilizing the Wnt-receptor complex. Dev Cell. 2008 Jul;15(1):23-36. 

Yang DQ, Halaby MJ, Zhang Y. The identification of an internal ribosomal entry site in 
the 5'-untranslated region of p53 mRNA provides a novel mechanism for the regulation 
of its translation following DNA damage. Oncogene. 2006 Aug 3;25(33):4613-9. 

Yang-Snyder J, Miller JR, Brown JD, Lai CJ, Moon RT. A frizzled homolog functions in 
a vertebrate Wnt signaling pathway. Curr Biol. 1996 Oct 1;6(10):1302-6. 

Yano T, Ito K, Fukamachi H, Chi XZ, Wee HJ, Inoue K, Ida H, Bouillet P, Strasser A, 
Bae SC, Ito Y. The RUNX3 tumor suppressor upregulates Bim in gastric epithelial cells 
undergoing transforming growth factor beta-induced apoptosis. Mol Cell Biol. 2006 
Jun;26(12):4474-88. 

Yates KE. Demineralized bone alters expression of Wnt network components during 
chondroinduction of post-natal fibroblasts. Osteoarthritis Cartilage. 2004 Jun;12(6):497-
505. 

Yeh CC, Wan XS, St Clair DK. Transcriptional regulation of the 5' proximal promoter of 
the human manganese superoxide dismutase gene. DNA Cell Biol. 1998 Nov;17(11):921-
30. 

Yi H, Nakamura RE, Mohamed O, Dufort D, Hackam AS. Characterization of Wnt 
signaling during photoreceptor degeneration. Invest Ophthalmol Vis Sci. 2007 
Dec;48(12):5733-41. 

Yin C, Knudson CM, Korsmeyer SJ, Van Dyke T. Bax suppresses tumorigenesis and 
stimulates apoptosis in vivo. Nature. 1997 Feb 13;385(6617):637-40. 

http://www.ncbi.nlm.nih.gov/pubmed/11853549?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11853549?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11853549?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11853549?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18951090?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18951090?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10021340?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10021340?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/10021340?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18606138?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18606138?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16607284?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16607284?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16607284?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16607284?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8939578?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8939578?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8939578?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16738314?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16738314?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/16738314?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15135146?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15135146?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15135146?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9839801?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9839801?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9839801?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18055826?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18055826?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18055826?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9024662?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9024662?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9024662?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


273 
 

Yoshikawa S, Bonkowsky JL, Kokel M, Shyn S, Thomas JB. The derailed guidance 
receptor does not require kinase activity in vivo. J Neurosci. 2001 Jan 1;21(1):RC119. 

Yoshikawa S, McKinnon RD, Kokel M, Thomas JB. Wnt-mediated axon guidance via 
the Drosophila Derailed receptor. Nature. 2003 Apr 10;422(6932):583-8. 

You J, Nguyen AV, Albers CG, Lin F, Holcombe RF. Wnt pathway-related gene 
expression in inflammatory bowel disease. Dig Dis Sci. 2008 Apr;53(4):1013-9.  

Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell 
death. Nat Rev Mol Cell Biol. 2008 Jan;9(1):47-59. 

Yu WR, Liu T, Fehlings TK, Fehlings MG. Involvement of mitochondrial signaling 
pathways in the mechanism of Fas-mediated apoptosis after spinal cord injury. Eur J 
Neurosci. 2009 Jan;29(1):114-31. 

Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain RK. Time-dependent vascular 
regression and permeability changes in established human tumor xenografts induced by 
an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc 
Natl Acad Sci U S A. 1996 Dec 10;93(25):14765-70. 

Zakin LD, Mazan S, Maury M, Martin N, Guénet JL, Brûlet P. Structure and expression 
of Wnt13, a novel mouse Wnt2 related gene. Mech Dev. 1998 Apr;73(1):107-16. 

Zaldivar V, Magri ML, Zárate S, Jaita G, Eijo G, Radl D, Ferraris J, Pisera D, Seilicovich 
A. Estradiol Increases the Bax/Bcl-2 Ratio and Induces Apoptosis in the Anterior 
Pituitary Gland. Neuroendocrinology. 2009 Aug 14. [Epub ahead of print] 

Zerlin M, Julius MA, Kitajewski J. Wnt/Frizzled signaling in angiogenesis. 
Angiogenesis. 2008;11(1):63-9. 

Zhai L, Chaturvedi D, Cumberledge S. Drosophila wnt-1 undergoes a hydrophobic 
modification and is targeted to lipid rafts, a process that requires porcupine. J Biol Chem. 
2004 Aug 6;279(32):33220-7.  

Zhang J, Fuhrmann S, Vetter ML. A nonautonomous role for retinal frizzled-5 in 
regulating hyaloid vitreous vasculature development. Invest Ophthalmol Vis Sci. 2008 
Dec;49(12):5561-7. 

Zhang LY, Ye J, Zhang F, Li FF, Li H, Gu Y, Liu F, Chen GS, Li Q. Axin induces cell 
death and reduces cell proliferation in astrocytoma by activating the p53 pathway. Int J 
Oncol. 2009 Jul;35(1):25-32. 

Zhang Y, Xing D, Liu L. PUMA promotes Bax translocation by both directly interacting 
with Bax and by competitive binding to Bcl-X L during UV-induced apoptosis. Mol Biol 
Cell. 2009 Jul;20(13):3077-87.  

http://www.ncbi.nlm.nih.gov/pubmed/11150355?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11150355?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/11150355?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12660735?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/12660735?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17939044?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/17939044?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18097445?ordinalpos=27&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18097445?ordinalpos=27&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19120440?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19120440?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19120440?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8962129?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8962129?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/8962129?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9545553?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9545553?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/9545553?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19684383?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19684383?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18253847?ordinalpos=12&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15166250?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/15166250?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18791178?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18791178?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19513548?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19513548?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19513548?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19439449?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19439449?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19439449?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


274 
 

Zhang Z, Deb A, Zhang Z, Pachori A, He W, Guo J, Pratt R, Dzau VJ. Secreted frizzled 
related protein 2 protects cells from apoptosis by blocking the effect of canonical Wnt3a. 
J Mol Cell Cardiol. 2009 Mar;46(3):370-7.  

Zhao Y, Li R, Xia W, Neuzil J, Lu Y, Zhang H, Zhao X, Zhang X, Sun C, Wu K. Bid 
integrates intrinsic and extrinsic signaling in apoptosis induced by alpha-tocopheryl 
succinate in human gastric carcinoma cells. Cancer Lett. 2009 Jul 27.  

Zhu S, Evans S, Yan B, Povsic TJ, Tapson V, Goldschmidt-Clermont PJ, Dong C. 
Transcriptional regulation of Bim by FOXO3a and Akt mediates scleroderma serum-
induced apoptosis in endothelial progenitor cells. Circulation. 2008 Nov 
18;118(21):2156-65. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © Tao Tang 2009 

http://www.ncbi.nlm.nih.gov/pubmed/19109969?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19109969?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19109969?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19640637?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19640637?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19640637?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/19640637?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18981303?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�
http://www.ncbi.nlm.nih.gov/pubmed/18981303?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum�


275 
 

 VITA 

Name    Tao Tang 

Date of Birth   Aug 19, 1981 

Place of Birth   Hunan, P.R. China 

 

EDUCATION 

2002- 2005   M.S. 

Institute of Material Medica, Peking Union Medical College & 
Chinese Academy of Medical Sciences 

Beijing, P.R. China 

1998-2002   B.S. 

Beijing University of Chinese Medicine Chinese  

Beijing, P.R. China 

 

EXPERIENCE 

2005- 2009   Research Assistant 

Graduate Center for Nutritional Sciences, University of Kentucky 

Lexington, Kentucky 

2002- 2005   Research Assistant 

Institute of Material Medica, Peking Union Medical College & 
Academy of Medical Sciences 

Beijing, P.R. China 

 

AWARDS 

2009     Dissertation Year Fellowship, University of Kentucky  

2006- 2008   University of Kentucky Academic Fellowship 

2000    Outstanding Student Award, Beijing Student Union 

 

bzhan5
Typewritten Text

bzhan5
Typewritten Text

bzhan5
Typewritten Text

bzhan5
Typewritten Text



276 
 

PUBLICATIONS 

Bunaciu RP, Tang T, Mao CD. Differential expression of Wnt13 isoforms during 
hematopoietic cell differentiation. Oncol Rep, 2008 Jul; 20(1):195-201. 

 

Tang T, Rector K, Barnett CD, Mao CD. Upstream open reading frames regulate the 
expression of the nuclear Wnt13 isoforms. Biochem Biophys Res Commun, 2008 Feb; 
366:1081–1088. 

 

Struewing IT, Barnett CD, Tang T, and Mao CD. Lithium induces PGC-1alpha 
expression and mitochondrial biogenesis in bovine aortic endothelial cells. FEBS J. 2007 
Jun; 274(11):2749-65. 

 

Tang T, Li Y. Sterol regulatory element-binding proteins and lipid metabolism. Sheng Li 
Ke Xue Jin Zhan (Progress in Physilogical Sciences). 2005; 36(1):29-34.  

 

 

 

 

 

 

 

 

 

 

Copyright © Tao Tang 2009 


	THE INTERPLAY BETWEEN THE EXPRESSION AND FUNCTIONS OF WNT13 ISOFORMS DURING APOPTOSIS IN BOVINE AORTIC ENDOTHELIAL CELLS
	Recommended Citation

	TITLE PAGES
	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1. INTRODUCTION
	1.1 Wnts and Wnt signaling
	1.1.1 Overview
	1.1.1.1 Brief history
	1.1.1.2 Wnt protein family
	1.1.1.3 Receptors and ligands in Wnt signaling
	1.1.1.3.1 Frizzeled (Fz) receptors
	1.1.1.3.2 Coreceptors
	1.1.1.3.3 Alternative ligands for Fz/LRP
	1.1.1.3.4 Alternative receptors or coreceptors for Wnt proteins

	1.1.1.4 Wnt signaling
	1.1.1.4.1 Canonical β-catenin pathway
	1.1.1.4.1.1 Overview
	1.1.1.4.1.2	Glycogen synthase kinase (GSK) 3β and Akt
	1.1.1.4.1.3	β-catenin

	1.1.1.4.2	Wnt-PCP pathway
	1.1.1.4.3	Wnt- Ca2+ pathway
	1.1.1.4.4	Other Wnt signaling pathways
	1.1.1.4.5	Dishevelled  
	1.1.1.4.6 The activation/inhibition of Wnt signaling


	1.1.2 Functions of Wnts and Wnt signaling
	1.1.3 Wnt and diseases
	1.1.3.1 Cancer
	1.1.3.1.1 Colon cancer
	1.1.3.1.2 Skin cancer
	1.1.3.1.3 Leukemia

	1.1.3.2 Alzheimer’s Disease (AD)
	1.1.3.3 Metabolic syndrome
	1.1.3.4 Cardiovascular diseases
	1.1.3.5 Bone diseases

	1.1.4 Wnt and vasculature
	1.1.4.1 Wnt and vascular biology
	1.1.4.2 Wnts and vascular diseases


	1.2 Wnt13
	1.2.1 General background
	1.2.2 Human Wnt13 isoforms
	1.2.3 Wnt13 expression and function
	1.2.3.1 In humans
	1.2.3.1.1 Human hematopoiesis
	1.2.3.1.2 Human cancers
	1.2.3.1.3 Human type II diabetes
	1.2.3.1.4 Inflammation in gastrointestinal tract
	1.2.3.1.5 Others

	1.2.3.2 In animals
	1.2.3.2.1 Embryogenesis and organogenesis
	1.2.3.2.2 Retinal development and degeneration
	1.2.3.2.3 Limb initiation
	1.2.3.2.4 Liver specification
	1.2.3.2.5 Kidney development
	1.2.3.2.6 Vasculature
	1.2.3.2.7 Other organ development



	1.3 Cell apoptosis
	1.3.1 Definition and features
	1.3.2 Apoptotic pathways and mechanisms
	1.3.2.1 Intrinsic pathway
	1.3.2.1.1 Overview
	1.3.2.1.2 Inducers of intrinsic pathways
	1.3.2.1.3 Regulators of intrinsic pathways
	1.3.2.1.3.1 B cell leukemia/lymphoma (Bcl) -2 family
	1.3.2.1.3.2 Reactive oxygen species (ROS)
	1.3.2.1.3.3 Others


	1.3.2.2 Extrinsic pathway
	1.3.2.2.1 Overview
	1.3.2.2.2 Inducers and regulators of the extrinsic pathway

	1.3.2.3 Effectors of apoptotic cascade (caspases)
	1.3.2.4 Other apoptotic features
	1.3.2.4.1 DNA fragmentation
	1.3.2.4.2 Phosphatidylserine translocation

	1.3.2.5 Apoptotic detection/quantification

	1.3.3 Regulation of apoptosis
	1.3.3.1 Transcription levels
	1.3.3.1.1 Forkhead box O (FOXO) factors
	1.3.3.1.2 p53

	1.3.3.2 mRNA stability
	1.3.3.3 Translational regulation

	1.3.4 Biological significance
	1.3.4.1 Development
	1.3.4.2 Immune system
	1.3.4.3 Wound healing
	1.3.4.4 Carcinogenesis
	1.3.5 Endothelial cell apoptosis
	1.3.5.1 Physiological importance
	1.3.5.2 Pathological importance

	1.3.6 Wnts/wnt signaling and cell apoptosis
	1.3.6.1 Wnt proteins and cell apoptosis
	1.3.6.2 GSK-3β and cell apoptosis
	1.3.6.3 C-myc and cell apoptosis
	1.3.6.4 Other Wnt signaling components and cell apoptosis




	CHAPTER 2. CENTRAL HYPOTHESIS AND SPECIFIC AIMS
	CHAPTER 3. GENERAL METHODS
	3.1 Materials
	3.2 Cell culture
	3.3 Transient transfection
	3.4 Plasmid constructs
	3.5 RNA isolation and real-time PCR
	3.5.1 RNA isolation
	3.5.2 Reverse Transcription
	3.5.3 Real-time PCR

	3.6 Cell extracts and western blot analysis
	3.7 Plasmid DNA purification
	3.7.1 Minipreps
	3.7.2 Maxipreps

	3.8 Immunofluorescence microscopy
	3.9 Statistical analysis
	3.10 Wnt13-Flag-expressing system
	3.10.1 Transient transfection
	3.10.2 Stable transfection


	CHAPTER 4. SPECIFIC AIM 1
	4.1 Summary
	4.2 Introduction
	4.3 Materials and methods
	4.3.1 Materials
	4.3.2 Cell culture and transfection
	4.3.3 Myc-Wnt13C-Flag plasmid constructs
	4.3.4 RNA isolation and real-time PCR
	4.3.5 Cell extracts and western blot analysis
	4.3.6 Statistical analysis

	4.4 Results
	4.4.1 Short form of Wnt13B, Wnt13C and M1L-Wnt13B express differently when transfected into BAEC
	4.4.2 The expression of Wnt13C increased in response to apoptotic inducers
	4.4.3 The regulation of Wnt13C by apoptosis may be at translational levels

	4.5 Discussion

	CHAPTER 5. SPECIFIC AIM 2
	5.1 Summary
	5.2 Introduction
	5.3 Materials and methods
	5.3.1 Materials
	5.3.2 Cell culture and transfection
	5.3.3 Plasmid constructs
	5.3.4 RNA isolation and real-time PCR
	5.3.5 Cell extracts and western blot analysis
	5.3.6 Caspase-3 like activity assay
	5.3.7 Protein determination
	5.3.8 Determination of reactive oxygen species
	5.3.8.1 CM-H2DCFDA assay for intracellular ROS (peroxide, peroxyl radical, peroxynitrite, and nitric oxide)
	5.3.8.2 Dihydroethidium (DHE) assay for superoxide
	5.3.8.3 CyQuant assay

	5.3.9 Statistical analysis

	5.4 Results
	5.4.1 The effect of Wnt13 isoforms on caspases in BAECs
	5.4.1.1 Caspase-3 activation
	5.4.1.2 Caspase-3 expression
	5.4.1.3 Caspase-7 cleavage and expression

	5.4.2 The effect of Wnt13 forms on Bcl-2 family members in BAEC
	5.4.2.1 Bax/Bcl-2
	5.4.2.2 Bim expression
	5.4.3 The extrinsic pathway and inflammatory caspases
	5.4.4 Akt-GSK signaling and ROS production
	5.5 Discussion
	5.5.1 BAECs are sensitive to LPS-induced apoptosis
	5.5.2 Wnt13 forms do not induce apoptosis at basal levels, but increase the susceptibility of BAECs to LPS-induced apoptosis
	5.5.3 The nuclear forms of Wnt13 have stronger pro-apoptotic effect in BAECs than other forms of Wnt13
	5.5.4 The difference of expression patterns in transient transfection and stable transfection
	5.5.5 The putative significance of Wnt13 forms in apoptosis
	5.5.6 Wnt13, Akt/GSK signaling and ROS




	CHAPTER 6. SPECIFIC AIM 3
	6.1 Summary
	6.2 Introduction
	6.3 Material and Methods
	6.3.1 Materials
	6.3.2 Cell culture and transfection
	6.3.3 Plasmid constructs
	6.3.4 RNA isolation and real-time PCR
	6.3.5 Cell extracts and western blot analysis
	6.3.6 Immunofluorescence microscopy
	6.3.7 Cell fractionation and nuclear extraction
	6.3.8 Dual luciferase reporter assay
	6.3.9 Statistical analysis

	6.4 Results
	6.4.1 Effect of Wnt13 forms on FOXO expression in BAECs
	6.4.2 Effect of Wnt13 forms on FOXO phosphorylation in BAEC
	6.4.3 Effect of Wnt13 forms on subcellular localization of FOXOs in BAEC
	6.4.3.1 Exogenous localization of FOXOs
	6.4.3.2 Endogenous localization of FOXOs

	6.4.4 Effect of Wnt13 forms on the expression of FOXO target genes in BAEC
	6.4.4.1 p27kip
	6.4.4.2 Oxidative stress resistance-related genes

	6.4.5 Effect of Wnt13 forms on FHRE-luciferase activity in BAEC
	6.4.6 Effect of Wnt13 forms on SOD2 transcriptional regulation in BAECs
	6.4.6.1 SOD2 promoter region
	6.4.6.2 Intron 2 region

	6.5 Discussion

	CHAPTER 7. GENERAL DISCUSSION
	7.1 Summary
	7.2 Insights from the regulation of Wnt13C during apoptosis
	7.3 Insights form the increased apoptosis by Wnt13 forms
	7.3.1 Possible mechanisms of increased apoptosis by the nuclear Wnt13 forms
	7.3.1.1 Caspase-3 and -7
	7.3.1.2 Bim

	7.3.2 Insights from other Wnt13 forms

	7.4 Clinical implications
	7.5 Future directions

	REFERENCES
	VITA

