Description of *Leucaena* On-Offer Browse at Different *Leucaena* Density

Enrique Cortés-Díaz
Universidad Autónoma Chapingo, Mexico

Laura Karen Trejo Arista
Universidad Autónoma Chapingo, Mexico

Giovani Tonatiuh González Bonilla
Universidad Autónoma Chapingo, Mexico

Pedro A. Martínez-Hernández
Universidad Autónoma Chapingo, Mexico

Follow this and additional works at: https://uknowledge.uky.edu/igc

Part of the Plant Sciences Commons, and the Soil Science Commons

This document is available at https://uknowledge.uky.edu/igc/23/2-2-2/6

The XXIII International Grassland Congress (Sustainable use of Grassland Resources for Forage Production, Biodiversity and Environmental Protection) took place in New Delhi, India from November 20 through November 24, 2015.

Published by Range Management Society of India

This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Description of *Leucaena* on-offer browse at different *Leucaena* density

Enrique Cortés Díaz, Laura Karen Trejo Arista, Giovani Tonatiuh González Bonilla, Pedro A. Martínez-Hernández
Universidad Autónoma Chapingo, Texcoco, Mexico
Corresponding author e-mail: ecodia@yahoo.com.mx

Keywords: Browsing, Fodder, Leaves, Tree legume

Introduction

Leucaena (*Leucaena leucocephala* (Lam.) de Wit) is a tree legume widely used to establish silvopastoral systems along with different tropical grasses. The relation of *Leucaena* density to browse available at the start of each grazing period in a rotational grazing management is important information when designing a silvopastoral pasture (Anguiano *et al.*, 2013). Then the objective of the study was to determine *Leucaena* on-offer browse at different *Leucaena* density.

Materials and Methods

Three *Leucaena* densities: 2050, 3928 and 6250 plants/ha during three grazing cycles were evaluated under a split-plot design (Steel and Torrie, 1988) main plots were *Leucaena* densities and sub-plot the grazing cycles; there were three replications, the experimental unit was a plot with 13 *Leucaena* plants, each plot was of 26.4, 58.3 and 95.3 m² for the highest to the lowest *Leucaena* density, respectively. For all plant densities *Leucaena* rows were 2 m apart, target plant densities were reached by changing plant distance within the row. Massai grass was sown between *Leucaena* rows. Experiment was done in the Ejido El Limón, state Morelos, México and lasted from late July to early November 2012. Grazing was done by replications, within each grazing cycle only three replications were grazed at the time. Grazing periods were of 8, 10 and 9 days for the first, second and third grazing cycles, respectively. Grazers were ewes at a stocking density of 150, 268 and 375 ewes/ha. *Leucaena* on-offer browse was determined by removing all leaves from one plant per plot, leaves were weighed after drying at 60°C for 72 h, in each sampling a different plant was selected, no estimation of residual *Leucaena* browse was done as there were no leaves left at the end of each grazing period. Statistical analysis was by analysis of variance, mean separation was by Tukey at α=0.05.

Results and Discussion

The interaction *Leucaena* density X grazing cycle and grazing cycle showed influence (P<0.05) on on-offer browse with no effect (P>0.05) of *Leucaena* density (Table 1). At the first grazing cycle the higher the *Leucaena* density so it was on-offer browse; however, as the grazing season went on, on-offer browse was the same across the three *Leucaena* densities. In the first grazing *Leucaena* on-offer browse was 2.5 times higher at the highest *Leucaena* density in relation to the lowest; however, the highest *Leucaena* density was 3 times higher than the lowest. From the first to the last grazing cycle *Leucaena* on-offer browse decreased 64%.

Table 1. *Leucaena* on-offer browse (kg DM/ha) at three grazing cycles and three *Leucaena* plant densities.

<table>
<thead>
<tr>
<th>Grazing cycle</th>
<th>2050</th>
<th>3928</th>
<th>6250</th>
<th>Grazing cycle mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>167.2 ± 6.7 ab</td>
<td>319.5 ± 72.2 ab</td>
<td>417.6 ± 135.4 a</td>
<td>301.4 ± 57.3 A</td>
</tr>
<tr>
<td>Second</td>
<td>83.2 ± 28.9 b</td>
<td>119.2 ± 25.7 b</td>
<td>267.5 ± 92.1 ab</td>
<td>156.6 ± 40.3 B</td>
</tr>
<tr>
<td>Third</td>
<td>72.5 ± 44.3 b</td>
<td>135.5 ± 26.4 b</td>
<td>117.0 ± 9.6 b</td>
<td>108.3 ± 17.8 B</td>
</tr>
<tr>
<td>Season mean</td>
<td>107.6 ± 21.4</td>
<td>191.4 ± 39.7</td>
<td>267.3 ± 64.2</td>
<td></td>
</tr>
</tbody>
</table>

From the first to the last grazing cycle there was a gradual reduction of on-offer browse, at the same time there were no more differences among *Leucaena* densities. At the early part of the grazing season on-offer browse was dependent of *Leucaena* density, after that on-offer browse could be determined by climate factors as lower night temperatures and available soil moisture rather than *Leucaena* density.
Conclusion
Early in the season, Leucaena on-offer browse increases as Leucaena density is higher, after that Leucaena density shows no influence on on-offer browse.

References