Effect of Mineral Supplementation on Rumen Metabolites and Enzymes in Sheep Fed Sorghum Stover Based Diets

Shweta Singh
Indian Grassland and Fodder Research Institute, India

S. K. Mahanta
Indian Grassland and Fodder Research Institute, India

Rishi Saxena
Bundelkhand University, India

Follow this and additional works at: https://uknowledge.uky.edu/igc

Part of the [Plant Sciences Commons](https://uknowledge.uky.edu/plantsciences), and the [Soil Science Commons](https://uknowledge.uky.edu/soils)

This document is available at https://uknowledge.uky.edu/igc/23/2-1-2/15

The 23rd International Grassland Congress (Sustainable use of Grassland Resources for Forage Production, Biodiversity and Environmental Protection) took place in New Delhi, India from November 20 through November 24, 2015.

Published by Range Management Society of India

This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Effect of mineral supplementation on rumen metabolites and enzymes in sheep fed sorghum stover based diets

Shweta Singh1*, S.K. Mahanta1, Rishi Saxena2
1Indian Grassland and Fodder Research Institute, Jhansi, India
2Bundelkhand university, Jhansi, India
corresponding author e-mail : shimpy92@gmail.com

Keywords: Mineral supplementation, Rumen enzymes, Rumen metabolites, Sheep, Sorghum stovers

Introduction
Supplementation of area specific mineral mixture (ASMM) containing Ca, P, Na, Cu, and Zn to producing animals showed noticeable improvement in growth, milk production and reproductive performances. However, there was paucity of information on rumen metabolites and enzymes in animals supplemented with ASMM. Therefore, the present investigation was conducted to study the effect of mineral supplementation (ASMM) on rumen metabolites and enzymes in sheep fed sorghum stover based diets.

Materials and Methods
Sixteen female Jalauni sheep were taken and they were distributed randomly in to 4 groups (T1 to T4) of 4 animals each. These animals were offered required amount of sorghum stover and concentrate mixture fortified with different levels of mineral mixture (ASMM) viz., T1-0%, T2-1%, T3-2% and T4-2% (T4 standard mineral mixture available from market containing all mineral elements). Experimental animals were continued under this feeding regime for 30 days. Rumen liquor sample were then collected and processed for the estimation of rumen metabolites and enzymes.

Results and Discussion
There was a significant (P<0.01) differences in pH and total volatile fatty acids (TVFA) in rumen liquor of supplemented and un-supplemented groups (T1 to T4) (Table 1). The values for mean concentration of total nitrogen, TCA precipitable nitrogen and ammonia nitrogen were also comparatively higher in SRL of mineral supplemented animals. Ammonia nitrogen and total nitrogen in the present study were in the range of values reported by Pandey et al. (2009). Better rumen environment in terms of VFA and nitrogen metabolite products due to mineral supplementation was observed by Tiwari et al. (2000). The average cellulose and xylanase activity (µg sugar/h/day) were significantly higher in ASMM supplemented dietary regimen than control. Upadhye and Kashavamurthy (1982) also found higher enzymatic activity in mineral supplemented animals.

Table 1. Rumen metabolites and enzyme activities in sheep supplemented with ASMM

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Treatment groups</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH**</td>
<td></td>
<td>6.54</td>
<td>6.44</td>
<td>6.29</td>
<td>6.48</td>
</tr>
<tr>
<td>TVFA** (meq/dl)</td>
<td></td>
<td>10.98b</td>
<td>11.98b</td>
<td>13.53b</td>
<td>11.33b</td>
</tr>
<tr>
<td>Ammonia-N (mg/dl)</td>
<td></td>
<td>12.84</td>
<td>13.48</td>
<td>15.36</td>
<td>13.90</td>
</tr>
<tr>
<td>Total N (mg/dl)</td>
<td></td>
<td>87.25</td>
<td>91.50</td>
<td>96.85</td>
<td>88.63</td>
</tr>
<tr>
<td>TCA ppt. N (mg/dl)</td>
<td></td>
<td>67.33</td>
<td>70.50</td>
<td>75.95</td>
<td>65.95</td>
</tr>
<tr>
<td>CMCase *(µg sugar/h/day)</td>
<td></td>
<td>782b</td>
<td>813b</td>
<td>919b</td>
<td>790b</td>
</tr>
<tr>
<td>Xylanase *(µg sugar/h/day)</td>
<td></td>
<td>1209b</td>
<td>1259b</td>
<td>1370b</td>
<td>1182b</td>
</tr>
</tbody>
</table>

*(P<0.05); **(P<0.01)

Conclusion
From the above study it is concluded that supplementation of mineral mixture @ 2% resulted significant improvement in pH and TVFA and other rumen metabolites and enzymatic activity in strained rumen liquor.
References

Acknowledgement
Authors are thankful to the Director, Indian Grassland and Fodder Research Institute, Jhansi, for providing the facilities to carry out this piece of work.