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a new bound on quantum stabilizer codes, which is compatible with previously known
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1 Introduction

The conventional picture of the holographic correspondence equates quantum gravity in
AdS3 with a 2d CFT at the boundary. In this correspondence, an individual conformal
theory is dual to a particular theory of gravity, while many theories of gravity are expected
to be similar in the IR. A particularly interesting problem would be to find the holographic
dual to pure gravity in AdS3, a hypothetical UV completion of the quasi-classical Einstein
theory. An attempt to evaluate the partition function of this theory yields negative level
degeneracies and a continuous spectrum [1, 2], suggesting that it is not dual to any specific
CFT. More recently these problems have been at least partially addressed by adding
additional states to the bulk description [3–6]. This is consistent with the conventional
expectation that certain large central charge c � 1 theories would be described by a
combination of quasi-classical gravity and additional matter fields.

Using modular invariance of the CFT partition function, Hartman, Keller and Stoica [7]
have shown that as long as these additional states contribute at subleading order in 1/c to
the entropy at large temperatures β < 2π, the spectrum of CFT light states must be sparse

ρ(∆) ≤ e2π∆, 0 < ∆ ≤ c/12. (1.1)

– 1 –
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Conversely, if the sparseness condition (1.1) is satisfied, the density of states for ∆ > c/6
at leading order in 1/c is given by the Cardy formula

ρCardy(∆) = eπ
√

4c/3(∆−c/12), (1.2)

which matches the density of states of the BTZ black hole, suggesting that the gravity
dual is a theory of quasiclassical gravity plus o(c) additional matter fields. To reiterate,
the conventional picture is that sparse 2d CFTs with large central charge are expected to
be dual to quasiclassical gravity with some additional fields.

This simple picture immediately implies a bound on the maximal value of the spectral
gap in large-c CFTs, ∆1 ≤ c/12. Indeed, for ∆1 ≥ c/12, the theory is automatically sparse.
Once we assume it is dual to quasiclassical gravity, no additional matter can prevent
black hole formation at energies exceeding the BTZ threshold E = ∆ − c/12 > 0. Thus
for ∆ > c/12 there must be CFT states dual to black hole microstates and one obtains
ρ(∆) ≥ ρCardy > 0 for ∆ > c/12 in sparse large-c theories. We emphasize that this picture
is an unproven but widely expected hypothesis.

An indirect validation of this conventional picture could come from an indepen-
dent proof that ∆1 ≤ c/12 in large c theories. This problem has been attacked using
the modular conformal bootstrap approach, starting with the bound set by Hellerman
∆1 ≤ c/6 +O(1) [8–11]. So far the best asymptotic bound ∆1 . c/9.1 [12] falls short of
the desired value, which could indicate either a flaw in the general picture or the relevance
of other CFT consistency conditions beyond modular invariance to ensure a tight bound
on the spectral gap.

Recently a few novel examples of the holographic correspondence in the context of
JT gravity [13] and Narain CFTs [14, 15], suggest that gravity in the bulk is dual not
to a particular boundary theory, but to an average over an ensemble of such theories,
see [16–19] for related developments in 3D gravity. In retrospect this may explain the con-
tinuous spectrum of pure gravity in AdS3, which could arise from such an average. At the
same time there are other examples of holographic correspondences, starting from the orig-
inal N = 4 SYM in the 4d dual to IIB SUGRA on AdS5×S5, which seem to leave no room
for an ensemble interpretation.

In our opinion these two scenarios for holographic correspondences are not inconsistent.
Rather we will advocate a scenario in which each individual CFT is dual to some theory
of quantum gravity in the bulk, and moreover, averaging over particular ensembles of
boundary theories may also have a local description in the bulk. The goal of this paper
is to discuss the consistency of this picture for Narain theories — namely, that individual
Narian CFTs can be described as “pure” U(1) gravity plus additional matter fields, where by
pure U(1) gravity (in the notation of [14]) we mean the perturbative sector of U(1)c×U(1)c

Chern-Simons theory in the bulk, which is dual to the average over all Narain theories.
We repeat the analysis of Hartman, Keller and Stoica for Narain theories and find the
sparseness condition to be

%(∆) ≤ e2π∆, 0 < ∆ ≤ c/(4π), (1.3)

– 2 –
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where by %(∆) we understand the density of U(1)c × U(1)c primary states. Provided this
condition is satisfied, at leading order in 1/c the density of states is then given by the
analog of the Cardy formula [20]

N(∆) ≈ (2π∆)c

Γ(c+ 1) , N(∆) :=
∫ ∆

0
d∆ %(∆), (1.4)

for all ∆ ≥ c/(2π). As in the case of conventional gravity in AdS3, in the case of U(1)
gravity the Cardy formula (1.4) is valid for ∆ � 1. For consistency of simplest picture,
where in the large-c limit any individual Narain CFT is described in the IR by U(1)
gravity plus additional matter, we require that the density of states of the Narain CFT
should satisfy

1
c

lnN(∆) ≥ ln(2πeα), α = ∆/c > 0, c→∞. (1.5)

(This inequality should be understood strictly in the c → ∞ limit.) In particular, from
this condition follows a bound on the spectral gap for Narain theories, ∆1 ≤ c/(2πe). To
probe the consistency of this scenario and the hypothesis (1.5), we consider the code CFTs
of [21, 22] associated with quantum stabilizer codes as well as chiral theories associated
with even self-dual lattices. We show that (1.5) leads to a novel bound on quantum codes,
which is consistent with previously known results. Further, consistency of (1.5) requires
the mean value to be greater than or equal to all values in the ensemble, which is only
possible if the variance (and higher moments) vanish in the large-c limit. We calculate the
variance of lnN for the ensembles of code and chiral theories and find it to be exponentially
small e−O(c).

This paper is organized as follows. In the following section we remind the reader about
the basics of the Narain theories and the duality between the average over Narain theories
and U(1) gravity in the bulk. We also introduce code CFTs and calculate their density of
states in terms of the underlying quantum code. Section 3 repeats the analysis of Hartman,
Keller and Stoica for the Narain theories. We also formulate conjecture (1.5) there. We use
code and chiral theories to probe the consistency of the conjecture in section 4. Section 5
concludes the paper with a discussion of implications for quantum gravity and the sphere
packing problem.

2 Preliminaries

2.1 Averaged Narain theories and U(1) gravity

A Narain CFT describes c ∈ N free scalar fields compactified on a c-dimensional torus.
Mathematically such a theory is parametrized by an even self-dual lattice Λ in Rc,c. The
CFT torus partition function is given by

ZΛ(τ, τ̄) = ΘΛ(τ, τ̄)
|η(τ)|2c , (2.1)

where the Siegel-Narain theta function is

ΘΛ =
∑

(pL,pR)∈Λ
qp

2
L/2 q̄p

2
R/2, q = e2πiτ , q̄ = e−2πiτ̄ . (2.2)

– 3 –
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Narain theories exhibit a U(1)c × U(1)c symmetry. By density of states %(∆) we will
understand density of U(1)c × U(1)c primaries, i.e. points of the Narain lattice. Instead
of the density %(∆) it is often convenient to study the cumulative number of states with
dimensions bounded by some ∆, which is the same as the number of points of Λ inside a
sphere of radius R, where R2/2 = ∆:

N(∆) =
∫ ∆

0
%(∆)d∆ =

∑
(pL,pR)∈Λ,
p2
L+p2

R≤2∆

1. (2.3)

Since Λ is unimodular, each lattice cell has unit volume and therefore for sufficiently large
∆ the cumulative number of states is equal to the volume of a 2c-dimensional sphere of
radius R,

NC(∆) ≈ (2π∆)c

Γ(c+ 1) , lnNC(∆) ≈ c ln(2πe∆/c). (2.4)

This is the analog of the Cardy formula for Narain theories, as can be deduced directly
from modular invariance [20]. It applies universally for ∆ � c but as we will see below,
in certain cases its validity extends to much smaller values of ∆. In what follows we will
work in large c limit and introduce

λ(α) := lim
c→∞

lnN(αc)
c

= lim
c→∞

ln %(αc)
c

, (2.5)

where the limit is taken with respect to a family of theories defined for arbitrarily large c.
In this notation the Cardy formula is simply

λC(α) = ln(2π eα). (2.6)

We advocate the point of view that each Narain theory, characterized by a lattice Λ,
is dual to some gauge theory in the bulk. We leave the details of the bulk microscopic
description to future work, and here only discuss provisional properties of such theories in
the IR, namely the possible behavior of λ(α).

It has been argued recently that averaging over the ensemble of all Narain theories is
dual to “U(1) gravity” — the pertubative sector of U(1)c ×U(1)c Chern-Simons theory in
the bulk. Because of averaging, density of states is a continuous function [14]

%U(1) grav(∆) = δ(∆) +
∑
|`|≤∆

2πcσ1−c(`)
Γ(c/2)2ζ(c)(∆− `2)c/2−1. (2.7)

For ∆ � 1 the summation over ` can be replaced by an integration, yielding (2.4) in the
c � 1 limit. Hence, for this U(1) gravity theory, the Cardy formula (2.6) is valid for all
values of ∆ > c/(2πe), i.e. when the number of states is exponential. This mirrors the
behavior of sparse holographic theories with Virasoro symmetry [7], see below.

To conclude this section we introduce chiral theories associated with even self-dual
lattices in Rc. In this case c is divisible by 8 and it is convenient to introduce k = c/2. For
a given lattice Λ ∈ Rc the partition function is

ZΛ(τ) = ΘΛ(τ)
η(τ)c , (2.8)

– 4 –
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where lattice theta-series is

ΘΛ(τ) =
∑
v∈Λ

qv
2/2, q = e2πiτ . (2.9)

As in the Narain case the Cardy formula is given by the volume of a c-dimensional sphere

N(∆) = (2π∆)k

Γ(k + 1) , (2.10)

which applies to any theory for ∆ � k. Averaging over the ensemble of all even self-dual
lattices (with the weight specified by the size of the lattice automorphism group) yields [23]

Θ = Ek(τ), (2.11)

where Ek is the Eisenstein series. By definition it has a representation as a sum over
Γ∞\SL(2,Z),

Z(τ) =
∑

γ∈Γ∞\SL(2,Z)

1
ηc(γτ) (2.12)

which can be interpreted as a sum over different handlebodies on the gravity side. This led
to a suggestion in [21] that the ensemble of chiral theories also has a holographic description,
similar to the one of the Narain case. The Fourier expansion of the Eisenstein series is

Ek = 1 + 2
ζ(1− k)

∑
m

σk−1(m)qm, (2.13)

where the divisor function σk−1(m) =
∑
d|m d

k−1. For large k � 1, σk−1(m) = mk−1

×
(
1 +O(e−O(k))

)
and

2
ζ(1− k) = (2π)k

Γ(k)ζ(k) = (2π)k

Γ(k)
(
1 +O(e−O(k))

)
(2.14)

leading to the density of states (dropping exponentially small corrections)

%(∆) = δ(∆) + (2π)k∆k−1

Γ(k) . (2.15)

In the chiral case ∆ assumes only integer values, i.e. the density of states is a sum of delta-
functions. When ∆� 1 we can approximate it by a continuous distribution by treating ∆
in (2.15) as a continuous variable.

Clearly (2.15) agrees with (2.10), which means that the Cardy formula applies for
∆ � 1. The number of states grows exponentially for ∆ > c/(4πe). By extending the
conjecture (1.5) to chiral theories, we can predicts the spectral gap in large c limit to be
bounded by ∆1 ≤ c/(4πe).

– 5 –
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2.2 Density of states of code CFTs

Code CFTs comprise a family of Narain CFTs associated with quantum stabilizer codes,
which was introduced in [21, 22]. Quantum codes are c-dimensional linear subspaces of Z2c

2
over Z2, self-orthogonal with respect to the metric

g =
(

0 I
I 0

)
. (2.16)

A code C is non-uniquely characterized by its refined enumerator

WC(x, y, z) =
∑
c∈C

xn−w(c)ywyczw(c)−wy(c), (2.17)

w(c) = 1T · c, wy(c) = (cT g c)/2, (2.18)

where ~1 is a vector of ones of length 2c. The sum in (2.18) goes over all 2c codewords of
the code C. Torus partition function of a code CFT is given by

ZC(τ, τ̄) =
WC

(
θ3(τ) θ3(τ) + θ4(τ) θ4(τ), θ3(τ) θ3(τ)− θ4(τ) θ4(τ), θ2(τ) θ2(τ)

)
2c|η(τ)|2c (2.19)

For pure imaginary τ = −τ̄ = iβ/2π corresponding Narain lattice theta function reduces to

ΘΛ(β) = 2−cWC
(
θ3(q2)2, θ2(q2)2, θ3(q2)θ2(q2)

)
. (2.20)

The Narain lattice of a code CFT is a union of 2c cubic “lattices” associated with the
codewords, each being a conventional cubic lattice of the size

√
2 with the origin shifted

to be at c/
√

2 for some c ∈ C. For each such cubic “lattice” the number of points inside a
sphere of radius R2 = 2αc in the c → ∞ limit was calculated by Mazo and Odlyzko [24]
(see appendix A for a simple derivation),

N(∆, c) ≈ ec λ+O(c1/2), ∆ = α c, p = w(c)/c, (2.21)
λ(α, p) = λ(α, p, q∗), (2.22)

where q∗ is chosen to minimize the value of

λ(α, p, q) = −α ln(q) + (2− p) ln θ3(q2) + p ln θ2(q2), ∂λ

∂q

∣∣∣∣
q∗

= 0. (2.23)

Depending on the value of 0 ≤ p ≤ 2, λ(α, p) approaches ln(πeα) from above or below for
large α. Strictly speaking λ(α, p) always differs from ln(πeα), but convergence is very fast
as can be see in figure 1. Summing over individual codewords and extracting the leading
exponent would give λ for a code CFT.

As an example we consider averaging over the ensemble of all code CFTs, characterized
by the averaged enumerator polynomial (see appendix B)

W (1, t2, t) = 1 + (1 + t)2c

2c + (1 + 2t− t2)c

2c − 2(1 + t)c

2c . (2.24)

– 6 –
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0.2 0.4 0.6 0.8 1.0
α

-0.5

0.5

1.0

1.5

2.0
λ(α)

0.05
α

0.3

λ(α)

Figure 1. Number of points of a cubic “lattice” of size
√

2 within a ball of radius 2αc. Blue line:
λ(α, 0). Orange line: λ(α, 2). Green line: ln(πeα). For α < p/4, formally λ(α, p) = −∞, which
means no lattice vectors lie within the sphere of radius 2αc < pc/2. Inset: λ(α, 0), blue line, vs
sparseness condition 2πα, black dashed line, see section 3.

For small α the first term (zero codeword) dominates, λ1 = λ(α, 0). For large α the second
term is dominant, yielding for the theta-function

Θ ≈ (θ3(q2) + θ2(q2))2c

2c . (2.25)

From here we find (see appendix A)

λ2 = −α ln q + 2 ln
(
θ3(q2) + θ2(q2)

)
− ln(2), (2.26)

where q is chosen to minimize λ2. The third and fourth terms are not dominant for any
value of α. The resulting density of states λ = max(λ1, λ2) is shown in figure 2. We expect
the ensemble of code theories to exhibit the same important features as the full Narain
ensemble, in particular self-averaging. Furthermore this ensemble may have a holographic
interpretation as we argued in [22].

3 HKS analysis for Narain theories

Using modular invariance, Hartman, Keller, and Stoica have shown that as long as the
full density of states of a 2d CFT is sparse (1.1), the Cardy formula (1.2) applies for any
∆ > c/6 in the large-c limit. Equivalently, the free energy of a sparse large-c theory for
β < 2π is given at leading in 1/c order by

lnZ =
{

cβ
12 , β > 2π

(2π)2

12β , β < 2π
, τ = iβ/2π. (3.1)

– 7 –
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0.05 0.10 0.15 0.20
α

-0.5

0.5

1.0

1.5
λ(α)

Figure 2. Density of primary states of averaged code theory. Dashed blue and orange lines: λ1
and λ2 correspondingly. Green line: λ = max(λ1, λ2). Brown line: Cardy formula λC = ln(2π eα).

Before proceeding to establish an analogous result for Narain theories, we note that no
Narain theory is sparse in the sense of (1.1). Indeed, for large β � 2π the theta function
can be approximated as ΘΛ = 1 + O(e−∆1β), where ∆1 is the dimension of the lightest
non-trivial U(1)c ×U(1)c primary. Therefore in this limit

lnZ = −2c ln(η(iβ/(2π))) +O(e−∆1β) = c β

12 + 2c e−β + . . . (3.2)

This differs from (3.1) by an amount that is exponentially small in β, but not by a 1/c-
suppressed factor.1 The exponentially small discrepancy between (3.1) and (3.2) at large β
implies that for ∆ & c the density of states would be described by the Cardy formula (1.2)
to exponential precision. For concreteness we focus on the averaged Narain theory (U(1)
gravity) for which, at leading order,

ΘU(1) grav = 1 +
(2π
β

)c
. (3.3)

This expression is manifestly covariant under β → (2π)2/β. For β > 2π the free energy of
U(1) gravity is dominated by (descendants of) the vacuum state. This is the contribution
of thermal AdS3 in the bulk. For β < 2π second term dominates — this is the contribution
of BTZ black hole geometry in the U(1) gravity theory. At β = 2π both contributions are
equal, marking the Hawking-Page transition.

We plot the entropy
S = lnZ + βE (3.4)

1The factor O(e−∆1β) coming from the theta function is manifestly non-negative and therefore cannot
cancel 2c e−β .

– 8 –
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-0.05 0.00 0.05 0.10 0.15 0.20
E/c

0.2

0.4

0.6

0.8

1.0

1.2

1.4

S/c=ln(ρ)/c

Figure 3. Full density of states of the averaged Narain theory — U(1) gravity. Blue lines: S1/c

and S2/c as functions of e = E/c, where the full density of states (entropy) of U(1) gravity is
S = max(S1, S2). S1 dominates for E < 0 and S2 for E > 0. Brown line: the sparseness condition
2π(e + 1/12). S1(e)/c violates sparseness condition at small e + 1/12. Red line: Cardy formula
ln(%)/c = π

√
4e/3 (1.2).

as a function of E = −∂ lnZ/∂β for

lnZ1/c = −2 ln η(iβ/2π), lnZ2/c = − ln(β/2π)− 2 ln η(iβ/2π) (3.5)

in figure 3, versus the Cardy formula (1.2) and the HKS sparseness condition (1.1). For
given E the largest of S1, S2 is the leading contribution to the entropy. They have the
same value for E = 0. It is clear that the full density of states S = S2(E) is numerically
very close to the Cardy formula for ∆ & c, but in fact never actually matches it. This is
consistent with S1 ≈ ∆ ln(∆/2c) for small ∆ = (E + c/12) > 0, violating the sparseness
condition S ≤ 2π∆ (1.1). As a final comment, we note that S2 becomes non-negative at
∆ = c/(2πe), which is exactly the threshold for new primary states, cf. (2.6).

From now on we will focus on the density of primary states for a given Narain theory.
Following HKS we split the theta series into two terms

ΘΛ(β) = ΘL + ΘH , ΘΛ(β′) = ΘΛ(β)
(
β

2π

)c
, β′ = (2π)2

β
, (3.6)

ΘL =
∑
∆<ε

e−β∆, ΘH =
∑
∆≥ε

e−β∆, (3.7)

where sum is over primaries. Then for β > 2π

ΘH(β) =
∑
∆≥ε

e(β′−β)∆e−β
′∆ ≤ e(β′−β)εΘH(β′). (3.8)

– 9 –
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Using modular covariance (3.6), positive-definiteness of ΘL and (3.8) we find(
β

2π

)c
ΘL(β) ≥

(
β

2π

)c
ΘL(β)−ΘL(β′) = (3.9)

ΘH(β′)−
(
β

2π

)c
ΘH(β) ≥

(
1−

(
β

2π

)c
e(β′−β)ε

)
ΘH(β′).

Using (3.8) one more time and assuming f(β) < 1 we find

ΘL(β) f(β)
1− f(β) ≥ ΘH(β), f(β) :=

(
β

2π

)c
e(β′−β)ε. (3.10)

Finally we have
ΘL(β) ≤ ΘΛ(β) ≤ ΘL(β) 1

1− f(β) . (3.11)

To make sure f(β) < 1 for all β > 2π, ε/c must be larger than

ln(β/2π)
β − β′

(3.12)

for all β > 2π. The minimum of (3.12) is achieved at β = 2π and is equal to 1/(4π). Hence

ε = c

4π + ε (3.13)

where ε is some positive constant, which should be chosen such that ε/c → 0. With this
choice of ε for any β ≥ 2π,

f(β) ≤ e(β′−β)ε, (3.14)

and we arrive at the analog of the HKS result for Narain theories

ln(ΘL(β)) ≤ ln(ΘΛ(β)) ≤ ln(ΘL(β))− ln
(
1− e(β′−β)ε

)
, β > 2π. (3.15)

With the conventional procedure of taking ε to zero, we recognize the logarithmic term
in (3.15) to be of subleading order o(c).2

Now we can introduce the notion of a sparse Narain theory, a theory for which

ln(ΘL(β)) (3.16)

is of order O(1) in the 1/c expansion. In such a theory ΘΛ is given at leading order by
(compare with (3.3))

ln(ΘΛ) = ln
{

1 +
(2π
β

)c}
+ o(c) (3.17)

for all values of β, as follows from modular covariance. In terms of the density of primaries
the sparseness condition is (compare with (1.1))

%(∆) ≤ e2π∆, 0 < ∆ ≤ c

4π . (3.18)

2Exactly as in the original paper [7] this argument works as long as (β − 2π) is sufficiently large and
− ln((β − 2π)ε) � c.
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Sparseness is necessary and sufficient for

ln(ΘΛ(β)) = c ln(2π/β) +O(1), β < 2π, (3.19)

and for the validity of the Cardy formula (2.6)3

ln % = c ln(2πe∆/c) +O(1), ∆ ≥ c

2π . (3.20)

To summarize, the emergent picture is completely analogous to the analysis of [7]:
sparse theories are those for which the free energy matches the free energy of pure gravity
(U(1) gravity in our case) for all β at leading order in 1/c. For such theories the Cardy
formula applies already for ∆/c of order one.

While the averaged Narain theory is sparse, we do not know of any explicit example
of an individual (non-averaged) large-c Narain theory with this property. This echoes the
situation described in the introduction, that no explicit example of an HKS-sparse CFT
with a weakly coupled gravity dual is known, although hypothetically such CFTs dominate
the ensemble of all theories. In particular, none of the code CFTs introduced in section 2.2
are sparse. Indeed, any code includes the trivial codeword c = 0 and hence the density of
primary states at small ∆ is given by

ln % = c λ(α, 0), (3.21)

which violates the sparseness condition, as shown in the inset of figure 1.
The HKS analysis also applies to chiral theories. Since the averaged chiral lattice CFT

is obviously sparse, given a typical chiral theory (of which no explicit examples are known)
we can construct a sparse Narain CFT as follows: every even self-dual lattice Λ ⊂ Rc gives
rise to a Narain lattice Λ = ΛL ⊕ΛR ⊂ Rc,c. Its partition function is simply

Z = ΘΛ(τ)ΘΛ(τ̄)
|η|2c

. (3.22)

Then the spectral density at leading order can be obtained by the convolution of (2.15)
with itself (because the variance is vanishingly small, as will be shown below)

N(∆) = 1 + 2 (2π∆)c/2

Γ(c/2 + 1) + (2π∆)c

Γ(c+ 1) . (3.23)

In terms of λ there are two contributions,

λch(α) = ln(4πeα)
2 (3.24)

coming from the second term and λC = ln(2πeα) coming from the last term. It is clear
that λch satisfies the sparseness condition as is shown in figure 4.

As a side comment we notice that the averaged chiral CFT has spectral gap of
∆1 = c/(4πe), i.e. a Narain CFT based on a random Euclidean even self-dual lattice would
have this value of spectral gap. This agrees with the analogous result of [14].

3An analogous result was independently derived by T. Hartman (private communication).
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Figure 4. Sparseness condition 2πα (blue line) vs. density of states of averaged chiral theory,
λch(α) (orange) and λC(α) (green).

4 Main hypothesis and its consistency

In thinking about the bulk description of conventional (Virasoro) large c holographic the-
ories, we usually take pure quasiclassical gravity to be the minimal “core” theory which
can be combined with other states (potentially described by matter fields) in the bulk. We
would like to probe the consistency of this picture for Narain theories, with U(1) gravity
playing the role of the minimal “core.” We emphasize that our discussion refers not to
a hypothetical microscopic bulk description, but to effective IR behavior. Provided this
picture is correct, we arrive at the following main hypothesis: the density of primary states
of any Narain theory is bounded from below by the density of states of U(1) gravity — the
Cardy formula (2.6),

ln %
c
≥ λC = ln(2πeα), α = ∆/c. (4.1)

Since, by assumption, this inequality applies to all Narain theories and λC is obtained by
averaging over all Narain theories, the inequality (4.1) applies only in the strict c → ∞
limit. The l.h.s. of (4.1) should be understood as a limit taken with respect to any family of
Narain theories defined for arbitrarily large c, provided the limit converges. This hypothesis
immediately implies an asymptotic value of the maximal spectral gap of primary states

max ∆1 = c

2πe. (4.2)

Here we define ∆1 as the minimal value for which the density of states is exponentially
large. The conventional spectral gap, i.e. the dimension of the lightest non-trivial primary,
is less than or equal to ∆1 and therefore satisfies ∆1 ≤ c/2πe. As we will argue below,
the distribution of the density % around the mean value eλC is vanishingly narrow in the
large-c limit, hence for nearly all large-c theories ∆1 = c/2πe.
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An immediate question is to assess the consistency of our hypothesis (4.2) with the
behavior of ∆1 for small and intermediate c theories, coming from the numerical modular
bootstrap. The results of the spinning modular bootstrap for c ≤ 15 [14] suggest the
behavior ∆1 ≈ c/8 + 1/2,4 seemingly in stark disagreement with (4.2). It should be
immediately noted this behavior is an artifact of small c. Indeed, ∆1 is bounded from
above by the spinless modular bootstrap of [20], which uses numerical results for c ≤ 2000 to
estimate a stronger asymptotic bound of c/9.869. For smaller values of c, the bounds on ∆1
following from the spinless bootstrap are conservative; hence one can safely conclude that
any asymptotic behavior satisfying ∆1 ≤ c/9.869 is consistent with the available numerics.

Next, we would like to study the implications of our hypothesis for code theories. The
inequality (1.5) implies an upper bound on the binary distance db of any real self-dual
stabilizer code. The density of states of a code theory is dominated by the contribution of
the zero codeword for small α, but contributions of other codewords appear for α ≥ db/(4c).
To make sure that λ(α) of a given code theory does not dip below λC(α), new primary
states must appear at or below the value of α∗ ≈ 0.08993 where the contribution of the
zero codeword is equal to the Cardy formula (intersection of the blue and brown lines in
figure 2)

λ(α∗, 0) = λC(α∗). (4.3)

This implies a new asymptotic inequality

db
c
≤ 4α∗ ≈ 0.3597. (4.4)

Since the conventional Hamming distance is bounded by the binary one, d ≤ db, we find
d/c ≤ 0.3597 which is consistent with, close to, but weaker than the linear programming
bound d/c ≤ 1/3 [25]. On the other hand, real self-dual stabilizer codes, via the Gray map
discussed in [22], can be understood as binary isodual [2n, n, db] codes. Therefore db/c is
bounded from above by the linear programming bound for formally self-dual binary codes,
db/c ≤ (1 − 3−1/2) ≈ 0.4226 [26]. Again, this is consistent with (4.4). Finally, isodual
codes include even self-dual codes as a particular subclass, for which the bound is stronger
db/c ≤ (1 − 5−1/4) ≈ 0.3313 [26]. In other words the new bound (4.4) is consistent with
other bounds found in the literature, which serves as an indirect consistency check of the
main conjecture.

Finally, in order for the main conjecture to hold, a necessary condition is for the
variance of % around its mean value to be vanishingly small in the large c limit,
δ%2(∆)/(%(∆))2 → 0, where

δ%(∆) := %(∆)− %(∆), (4.5)

and the bar stands for averaging over the ensemble of Narain theories. In lieu of this
calculation5 we make use of the similarity between the problems of maximizing the CFT

4Strictly speaking [14] calculates the bound on ∆1, but for c ≤ 8 the authors also conjectured the
maximal value of ∆1.

5Certain contributions to variance in the Narain case were calculated in [15, 19]. They are e−O(c)

suppressed, which is consistent with our expectations.
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spectral gap for both Narain and chiral theories, finding sphere packings of maximal density,
and finding optimal classical and quantum codes (all three problems can be understood
as finding a lattice from a given class with the largest possible shortest vector), and first
perform an average over the space of code CFTs. The underlying assumption here is that
in all these cases the qualitative behavior is the same. The average spectral density of code
theories was found in section 2.2,

%(∆) = ecλ(α) = ecλ1(α) + ecλ2(α), α = ∆/c, (4.6)

in the large-c limit. In appendix B we calculate the variance of the averaged refined
enumerator polynomial, see eq. (B.23), which gives

δΘ(β1)δΘ(β2) =
(
θ3(q2

1)θ3(q2
2) + θ3(q2

1)θ3(q2
2)√

2

)2c

, (4.7)

δΘ(β) = Θ(β)−Θ(β), q1 = e−β1 , q2 = e−β2 .

To calculate the connected two-point correlation function we need to perform an inverse
Laplace transformation

δ%(∆1)δ%(∆2) = ecf+β1∆1+β2∆2 , (4.8)

where βi is fixed by

∂f

∂βi
= −αi, f = 2 ln

(
θ3(q2

1)θ3(q2
2) + θ3(q2

1)θ3(q2
2)
)
− ln(2). (4.9)

For equal ∆1 = ∆2 we plot µ(α) where

δ%2(αc) = e2cµ(α) (4.10)

in figure 5, superimposed with λ1,2. It is clear that for code theories the variance is
exponentially suppressed for all ∆

δ%2(∆)
(%(∆))2 = e2c(µ−λ) ∝ e−O(c), (4.11)

confirming the overall picture.
Next we perform a similar calculation for the ensemble of chiral theories. Our starting

point is the two-point correlator

Θ(τ1)Θ(τ2) =
∑
n,m

cnm q
n
1 q

m
2 . (4.12)

Here the integers n,m should be interpreted as dimensions and

%(n)%(m) = cnm. (4.13)

An explicit expression for cnm was obtained in [27, 28]

cnm = 2
ζ(1− k)

∑
d|(n,m)

dk−1 ∑
r2≤ 4nm

d2

H

(
k − 1, 4nm

d2 − r
2
)
. (4.14)
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Figure 5. Leading (exponential) contribution to the square root of the variance of the density of
states (blue line) vs. mean density of states (orange line).

After certain manipulations we arrive at the following representation for the functions H,
convenient for taking the large-k limit,

H(k − 1, N) =
∑
d|N

h(k − 1, N/d2), (4.15)

h(r,N) =
{
h̃, (−1)rN mod 4 = 0, 1,
0, (−1)rN mod 4 = 2, 3.

h̃ = 2 Γ(r)N−1/2

(2π)rζ(1− 2r)

N∑
l=1

(N |l) ζ(r, l/N).

Here (N |k) is Kronecker symbol. We have checked this representation by reproducing the
numerical values of H(k − 1, N) given in the appendix of [29].

In the limit r = k − 1� 1 Hurwitz zeta function ζ(r, k/N) drastically simplifies

ζ(r, l/N) ≈
(
N

l

)r
. (4.16)

From here it follows that the l = 1 term in the sum contributes at leading order, while the
contributions with l ≥ 2 are exponentially suppressed, e−O(r),

h̃(k − 1, N) ≈ (2π)k−1Γ(k − 1)Nk−3/2

Γ(2k − 2) , (4.17)

where we have approximated ζ(3− 2k) ≈ 1 with exponential precision. Our next step is to
sum over r in (4.14), which can be substituted by integration with exponential precision
in the regime of interest, k → ∞ for fixed n/k,m/k, as follows from the Euler-Maclaurin
formula (see appendix C),

∑
r2≤N

H(k − 1, N − r2) ≈
∫ D1/2

−D1/2
dr(N − r2)k−3/2 (2π)k−1Γ(k − 1)

Γ(2k − 2) = 22−kπk

Γ(k) Nk−1.
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Finally we notice that in both (4.14) and (4.15) only d = 1 contributes at leading order,
while the contributions of other terms are exponentially suppressed, as 1/dk. Thus we find

cnm = (2π)2k

Γ(k)2 (nm)k−1
(
1 + e−O(k)

)
. (4.18)

Comparing with (2.15) confirms that the connected two point function is exponentially
suppressed

ρ(∆1)ρ(∆2) = %(∆1) · %(∆2)
(
1 + e−O(k)

)
. (4.19)

Certainly, a vanishing variance, provided that an analogous result holds for the en-
semble of all Narain theories, does not guarantee the validity of (4.1). For that, a much
stronger property is required: that the distribution of % around the mean has no fat tails,
which would allow substantial deviations from the mean even as c → ∞. Studying the
higher moments of δ% could provide additional consistency checks, but not a proof, unless
one gains theoretical control over arbitrarily high moments, similarly to [30].

5 Discussion

In this paper we have discussed a scenario in which the holographic dual of a given Narian
CFT in the infinite c limit is effectively described as “U(1) gravity” of [14, 15] together
with some additional states (fields). This simple picture, if correct, would imply that pure
U(1) gravity has the lowest possible density of states, leading to our main conjecture (4.1).
We have tested this hypothesis by noting that it is consistent with available numerics; it
leads to new bounds on quantum codes which are consistent with previously known ones;
and we have argued the variance of the density %(∆) is vanishingly small, as is required
by (4.1), by considering two related ensembles. Our analysis amounts to a series of indirect
consistency checks and thus can not directly establish the validity of (4.1).

More direct evidence could come from the numerical conformal bootstrap in the form
of a bound on the maximal spectral gap (4.2). One would need to extend the numerical
analysis of [14] to higher values of c until the asymptotic slope emerges. While the result
could turn out to be overly conservative (as is currently believed to be the case with the
bound on the spectral gap of Virasoro theories), the problem of finding the maximal spectral
gap can be formulated as a quadratic optimization problem, which makes it plausible that
this question could be studied numerically.

Another potential way to confirm the scenario in question could come from the bulk
microscopic description, e.g. in terms of Chern-Simons gauge fields with additional mat-
ter, dual to a given Narain theory. The microscopic description by itself will likely be
insufficient: it will presumably depend on the metric G and B-field parameterizing Narain
moduli space, but evaluating, for example, the spectral gap ∆1(G,B) for given G and B
would likely be as complicated on the bulk side as it is in the boundary theory. A crucial
new ingredient necessary on the bulk side would be an analog of the Bekenstein-Hawking
entropy formula for gauge fields [31, 32], obtained potentially via embedding gauge theory
into bona fide gravity in AdS3 [33]. Presumably, if this formula were applied to the “BTZ”
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configuration discussed in section 3 it would yield the Cardy formula (1.4), mirroring the
conventional analysis for Virasoro theories and establishing the validity of (4.1).

The underlying assumption we relied on in section 4 is that the spaces of Narain
theories, of chiral CFTs defined by even self-dual Euclidean lattices, of Narain theories
associated with quantum codes, and of lattice sphere packings (arbitrary lattices with the
unit cell volume) are not only closely related (as discussed in [11, 21]), but in fact share
crucial features. Thus, we expect that the vanishing variance of the level densities of
code and chiral theories will extend to the ensemble of all Narain theories. By extending
this reasoning to lattice sphere packings we arrive at the well-known lore that a random
sphere packing is as effective as the averaged one [34]. Furthermore, in asymptotically
large dimensions a random sphere packing is conceivably the densest one [34], mirroring
our conjecture for the maximal spectral gap (4.2). Should our scenario get confirmed,
possibly as outlined above, that would in turn solidify the expectation for the sphere packing
problem, providing non-trivial feedback from quantum gravity to discrete geometry.

Confirming the scenario of our paper would also support the expectation that pure
gravity in AdS3 is dual not to a particular theory but to an appropriately defined ensemble.
An important difference between the original analysis of Hartman, Keller and Stoica and
the analysis of section 3 is that in the Virasoro case the upper limit of the range of the
sparseness condition c/12 (1.1) coincides with the lowest value of ∆ for which Cardy formula
yields positive level density. In other words, Virasoro theories with maximal spectral gap
are automatically sparse. This is not the case for Narain theories, as the upper limit of
the sparseness condition c/(2π) exceeds the hypothetical maximal spectral gap c/(2πeα).
In other words, there are likely non-sparse Narain theories with maximal spectral gap. We
interpret this as an indication that there are different classes of Narain theories, not only
those satisfying the sparseness condition, which can be described holographically using
quasi-classical fields in the bulk. On the contrary, in the Virasoro case there seems to be
only one class of sparse theories with a weakly-coupled bulk description.

We thank O. Aharony, T. Hartman, A. Levin, A. Maloney, and E. Perlmutter for
discussions. This paper benefited from the talks and discussions of the Simons Center for
Geometry and Physics workshop Sphere Packing and the Conformal Bootstrap. A.D. is
grateful to Weizmann Institute of Science for hospitality and acknowledges sabbatical sup-
port of the Schwartz/Reisman Institute for Theoretical Physics, and support by the NSF
under grant PHY-2013812.

A Density of states of code theories

In this section we derive the key result of Mazo and Odlyzko [24] (2.22), (2.23) at a
physicist’s level of rigor. Starting from the definition of the Jacobi theta functions

θ3(q) =
∑
n

qn
2/2, θ2(q) =

∑
n

q(n+1/2)2/2, q = e2πiτ , (A.1)

we easily calculate the contribution of a given codeword c ∈ C to the lattice theta-function
provided C is understood as a binary [2c, c, db] code,

Θ(c) = θ3(q2)2c−w(c)θ2(q2)w(c). (A.2)
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This is of course the same as (2.19) after the substitution τ = −τ̄ = iβ/(2π). For conve-
nience we introduce p = w(c)/c and represent Z(c) as

Θ(c) =
∑
∆
%(∆)e−β∆. (A.3)

Using the saddle point approximation we immediately find

∆(β)
c

= −∂ ln Θ
c ∂β

= − ∂

∂β

(
(2− p) ln θ3(q2) + p ln θ2(q2)

)
, q = e−β . (A.4)

Upon redefinition q2 → q and ∆/c = α this becomes (2.23). The density of states follows
from here

ln %
c

= ln Θ(c) + β∆
c

, (A.5)

which gives (2.22).
As an illustration of consistency we calculate λ2 — the contribution of the term

(1 + t)2c/2c from (2.24) toward the full density of primaries,

N(∆) ≈ 1
2c

2c∑
k=0

Ck2c e
cλ(α,k/c). (A.6)

The leading (saddle point) contribution is given by the value of k such that 0 ≤ p∗ = k/c ≤ 2
maximizes

λ(α, p) + 2H(p/2)− ln(2), H(p) = −p ln(p)− (1− p) ln(1− p), (A.7)

and

λ2 = λ(α, p∗) + 2H(p∗/2)− ln(2). (A.8)

The condition
∂

∂p
(λ(α, p) + 2H(p/2)) = 0 (A.9)

can be solved analytically

p∗ = 2θ2(q2)
θ3(q2) + θ2(q2) . (A.10)

After substituting this back into (A.8) we recover (2.26).

B Averaging over code theories

In this section we denote c by n, which means we are considering self-dual [[n, 0, d]] quan-
tum codes.
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B.1 Averaged enumerator polynomial

We consider the ensemble of all B-form codes introduced in [22]. The codes are parametrized
by binary symmetric n × n matrices B with zeroes on the diagonal. The space of all
such matrices will be denoted as Mn. For a given B the 2n codewords are given by
c(B, x) := (x1, . . . , xn, B~x) where ~x is an arbitrary binary vector of length n. Hence, for
pure imaginary τ the averaged refined enumerator polynomial is given by

W (1, t2, t) =
∑
x∈Zn2

1
2n(n−1)/2

∑
B∈Mn

tw(B,x), (B.1)

w(c(B, x)) = w(B, x) = ~1 · ~x+~1 · (B~x)2, (B.2)

where (B~x)2 is the binary vector congruent to (B~x) mod 2. Without loss of generality we
can assume that ~x is ordered, ~x = (1, . . . , 1︸ ︷︷ ︸

a

, 0, . . . , 0) and ~1 · ~x = a, for 0 ≤ a ≤ n. We

would like to calculate
Qa(t) = 1

2n(n−1)/2

∑
B∈Mn

t
~1·(B~x)2 , (B.3)

Obviously Qa(t) = (1 + t)n−a/2n−aPa(t) where

Pa(t) = 1
2a(a−1)/2

∑
B∈Ma

t
~1·(B~1)2 , (B.4)

unless a = 0 in which case Q0(t) = 1. We can calculate Pa iteratively by adding one more
row and column to matrix B. Assuming a particular configuration of B would yield a term
tk, adding an additional row and column to B would turn it into ti((1+ t)+(−1)i(1− t))/2
if k were even or ti((1 + t)− (−1)i(1− t))/2 if k were odd. (Here of course we need to sum
over all possible i with the weight Cia/2a.) In other words

tk → 1
2a

a∑
i=0

Ciat
i((1 + t) + (−1)i+k(1− t))/2 = (1 + t)a+1 + (−1)k(1− t)a+1

2a+1 . (B.5)

We therefore arrive at the following iterative relation

Pa+1(t) = Pa(1)(1 + t)a+1 + Pa(−1)(1− t)a+1

2a+1 . (B.6)

From here and P0(t) = 1 we find

Pa(t)→
(1 + t)a + (1− t)a

2a − δa,0. (B.7)

Now we are ready to calculate

W (1, t2, t) = 1 +
n∑
a=1

Can t
aQa(t) = (B.8)

1 + (1 + t)2n

2n + (1 + 2t− t2)n

2n − 2(1 + t)n

2n , (B.9)

matching the general result of [22].
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B.2 Averaged square of enumerator polynomial

Now we would like to find

W (1, t21, t1)W (1, t22, t2) =
∑

x,y∈Zn2

1
2n(n−1)/2

∑
B∈Mn

t
w(B,x)
1 t

w(B,y)
2 . (B.10)

We can first assume that ~x=(1, . . . , 1︸ ︷︷ ︸
m

, 1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
l

) and ~y=(1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
l

),

while the matrix B is n× n and n = m+ k + l. We want to calculate

Pm,k,l(t1, t̃1, t̂1, t2, t̃2, t̂2) = 1
2n(n−1)/2

∑
B∈Mn

t
~em·(Bx)2
1 t̃

~ek·(Bx)2
1 t̂

~el·(Bx)2
1 t

~em·(By)2
2 t̃

~ek·(By)2
2 t̂

~el·(By)2
2

where ~em = (1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
l

), ~ek = (0, . . . , 0︸ ︷︷ ︸
m

, 1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
l

) and finally ~el =

(0, . . . , 0︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
l

) such that x = em + ek and y = em + el.

We can find Pm,k,l iteratively by increasing l by one (adding one additional row and
column to B). Any monomial ta1 t̃ã1 t̂â1 tb2 t̃b̃2 t̂b̂2 will turn into

1
2n

m∑
i=0

k∑
ĩ=0

l∑
î=0

CimC
ĩ
kC

î
l t
a
1 t̃
ã
1 t̂
â
1t
i
2t̃
ĩ
2t̂
î
2×

(1 + t̂1) + (−1)b+i+b̃+ĩ mod 2(1− t̂1)
2 × (1 + t̂2) + (−1)b+i+b̂+î mod 2(1− t̂2)

2 . (B.11)

From here we find

Pm,k,l+1 = 1
23

∑
ε=±1

∑
ν=±1

∑
µ=±1

1∑
r=0

1∑
r̃=0

1∑
r̂=0

εrν r̃µr̂Pm,k,l(t1, t̃1, t̂1, (−1)r, (−1)r̃, (−1)r̂)×

1
2n

m∑
i=0

k∑
ĩ=0

l∑
î=0

CimC
ĩ
kC

î
l t
i
2t̃
ĩ
2t̂
î
2×

(1 + t̂1) + (−1)i+ĩεν(1− t̂1)
2 × (1 + t̂2) + (−1)i+îεµ(1− t̂2)

2 =
1

2m+k+l+2Pm,k,l(t1, t̃1, t̂1, 1, 1, 1)(1 + t2)m(1 + t̃2)k(1 + t̂2)l+1(1 + t̂1) +
1

2m+k+l+2Pm,k,l(t1, t̃1, t̂1,−1,−1, 1)(1− t2)m(1− t̃2)k(1 + t̂2)l+1(1− t̂1) +
1

2m+k+l+2Pm,k,l(t1, t̃1, t̂1,−1, 1,−1)(1− t2)m(1 + t̃2)k(1− t̂2)l+1(1 + t̂1) +
1

2m+k+l+2Pm,k,l(t1, t̃1, t̂1, 1,−1,−1)(1 + t2)m(1− t̃2)k(1− t̂2)l+1(1− t̂1) .

The following expression is a solution

Pm,k,l(t1, t̃1, t̂1, t2, t̃2, t̂2) = (B.12)
1

22(m+k+l)

∑
ε=±1

∑
ν=±1

∑
µ=±1

(1 + εt1)m(1 + εµt̃1)k(1 + µt̂1)l(1 + νt2)m(1 + µt̃2)k(1 + µνt̂2)l.
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from where follows

Pm,k,l(t1, t1, t1, t2, t2, t2) = (B.13)
1

22(m+k+l)

∑
ε=±1

∑
ν=±1

∑
µ=±1

(1 + εt1)m(1 + εµt1)k(1 + µt1)l(1 + νt2)m(1 + µt2)k(1 + µνt2)l.

This expression is correct only if k + l > 0. Otherwise

Pm,0,0(t1, t2) = Pm(t1t2) = (1 + t1t2)m + (1− t1t2)m

2m − δm,0 (B.14)

as follows from (B.7).
Now, if n < m + k + l the expression for 1

2n(n−1)/2
∑
B t

w(B,x)
1 t

w(B,y)
2 where x, y are

characterized by m, k, l is given by

Qm,k,l = 1
22(n−m−k−l) t

m+k
1 (1 + t1)n−m−k−ltm+l

2 (1 + t2)n−m−k−lPm,k,l(t1, t2), (B.15)

unless k = l = 0 in which case we get

Q0,0,l = (t1t2)m(1 + t1t2)n−mPm,0,0(t1, t2), (B.16)

when m > 0 and similarly for m = l = 0, k > 0

Q0,k,0(t1)k(1 + t1)n−kPm(t1), (B.17)

and m = k = 0, l > 0 with the substitution t1 ↔ t2. Finally we need to sum over ~x and ~y,
which is equivalent to summing over m, k, l with the weight

∑
n≥m+k+l≥0

n!
m!k!l!(n−m−k−l)! ,

∑
n≥m+k+l≥0

n!
m!k!l!(n−m− k − l)! t

m+k
1 (1 + t1)n−m−k−ltm+l

2 (1 + t2)n−m−k−lPm,k,l(t1, t2).

This is a naive expression because we included the full range of m, k, l. Instead we should
subtract

n!
m!(n−m)! t

m
1 (1 + t1)n−mtm2 (1 + t2)n−mPm,k,l(t1, t2)δk+l=0 + (B.18)

n!
k!(n− k)! t

k
1(1 + t1)n−k(1 + t2)n−kPm,k,l(t1, t2)δm+l=0 + (B.19)

n!
l!(n− l)! (1 + t1)n−ltl2(1 + t2)n−lPm,k,l(t1, t2)δm+k=0 (B.20)

and add terms (B.16), (B.17) and similarly for m = k = 0,

W (1, t21t22, t1t2) +W (1, t21, t1) +W (1, t22, t2). (B.21)

Here we need to be careful: the first term in (B.21) stands for the sum over m while
k = l = 0, the second term for the sum over k with m = l = 0, and the third for the sum
over l while m = k = 0. We have therefore calculated the contribution of m = k = l = 0
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three times instead of once. When m = k = l = 0 this means that ~x = ~y = 0 and hence
the contribution is simply 1. We therefore must subtract −2.

We made a similar mistake above when subtracting (B.18), (B.19), (B.20) — we
counted the contribution of m = k = l three times instead of one. We therefore should
subtract it twice with a minus sign

2
∑
ε=±1

∑
ν=±1

∑
µ=±1

(1 + t1)n(1 + t2)n

4n = 16(1 + t1)n(1 + t2)n

4n . (B.22)

Finally we get

W (1, t21, t1)W (1, t22, t2) =W (1, t21t22, t1t2)+W (1, t21, t1)+W (1, t22, t2)−2+16(1+t1)n(1+t2)n

4n +∑
ε,ν,µ=±1

((1+t1)(1+t2)+t1t2(1+εt1)(1+νt2)+t1(1+εµt1)(1+µt2)+t2(1+µt1)(1+µνt2))n

4n

−2
∑

ε,ν=±1

((1+t1)(1+t2)+t1t2(1+εt1)(1+νt2))n

4n

−2
∑

ε,ν=±1

((1+t1)(1+t2)+t1(1+εt1)(1+νt2))n

4n

−2
∑

ε,ν=±1

((1+t1)(1+t2)+t2(1+εt1)(1+νt2))n

4n .

From here follows that variance, at leading order, is given by

W (1, t21, t1)W (1, t22, t2)−W (1, t21, t1) ·W (1, t22, t2) =
(

(1 + t1t2)2

2

)n
, (B.23)

where we dropped all exponentially-suppressed terms.

C Approximating sums by integrals

We consider the sum over r from the equation (4.14), which in the appropriate limit k � 1
becomes

I =
p∑

r=−p

(
N − r2

)k−3/2
, (C.1)

where p is the largest integer number such that p2 ≤ N . We are interested in the relative
error, which would arise if we substitute summation for integration. It is convenient to
divide the integral by a power of N , redefine k → k + 3/2, and change the lower bound of
r by one (this introduces an error of order p−k ∼ e−O(k))

Ĩ =
p∑

r=−p+1
f(r), f(x) =

(
1− x2

N

)k
. (C.2)

Furthermore we assume that N scales as k2, i.e. p is of order k. The difference between
the sum (C.2) and the integral (changing the limits of integration from N1/2 to p also
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introduces an error of order e−O(k))

J̃ =
∫ p

−p
dxf(x) (C.3)

is given by the Euler-Maclaurin formula

Ĩ − J̃ = f(p)− f(−p)
2 − 2

a∑
l=1

ζ(2l)
(2πi)2l

(
f2l−1(p)− f2l−1(−p)

)
+R2a. (C.4)

Our goal is to show that all terms on the r.h.s. of (C.4) are exponentially suppressed.
We start with f(p) = (1 − p2/N)k. Since p is the largest integer such that p2 < N , we
can estimate f(p) to be of order p−k. Next, f ′(p) is of order 2kp/N(1/p)k−1 ∝ 2k/pk.
Differentiating iteratively we find at leading order f (l)(p) ∝ (2k)l/pk, with each term
contributing more to the sum. The contribution of the last (largest) term is of order
k2a/pk (all numerical coefficients are neglected). Finally, the term R2a can be bounded by

|R2a| ≤
2ζ(2a)
(2π)2a

∫ p

−p
dx
∣∣∣f (2a)(x)

∣∣∣ . (C.5)

To estimate it, we calculate maximum value of
∣∣∣f (2a)(x)

∣∣∣, which occurs at x = 0,

f (2a)(0) = (−1)a22a−1

p2a
Γ(a+ 1/2)Γ(k + 1)
Γ(1/2)Γ(k + 1− a) . (C.6)

After dropping all numerical coefficients we find at leading order (ak/p2)a. We will choose
a to make the discrepancy between Ĩ and J̃

k2a

pk
+ (ak)a

p2a . (C.7)

sufficiently small. Taking into account that p scales as k, such that α = p/k is fixed we
can take a to be a = εk where ε is chosen such that ε/α2 would be (much) smaller than
one. Then in the limit k → ∞ the first term in (C.7) would scale as e−k(1−2ε) ln(k) and
the second term would scale as e−k 2ε ln(α2/ε). In other words the discrepancy would be
exponentially smaller than J̃ ∼ p/k1/2. This estimate is likely to be non-optimal and can
be improved.
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