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Abstract: There is a rich connection between classical error-correcting codes, Euclidean
lattices, and chiral conformal field theories. Here we show that quantum error-correcting
codes, those of the stabilizer type, are related to Lorentzian lattices and non-chiral CFTs.
More specifically, real self-dual stabilizer codes can be associated with even self-dual
Lorentzian lattices, and thus define Narain CFTs. We dub the resulting theories code
CFTs and study their properties. T-duality transformations of a code CFT, at the level
of the underlying code, reduce to code equivalences. By means of such equivalences, any
stabilizer code can be reduced to a graph code. We can therefore represent code CFTs
by graphs. We study code CFTs with small central charge c = n ≤ 12, and find many
interesting examples. Among them is a non-chiral E8 theory, which is based on the root
lattice of E8 understood as an even self-dual Lorentzian lattice. By analyzing all graphs
with n ≤ 8 nodes we find many pairs and triples of physically distinct isospectral theories.
We also construct numerous modular invariant functions satisfying all the basic properties
expected of the CFT partition function, yet which are not partition functions of any known
CFTs. We consider the ensemble average over all code theories, calculate the corresponding
partition function, and discuss its possible holographic interpretation. The paper is written
in a self-contained manner, and includes an extensive pedagogical introduction and many
explicit examples.
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1 Introduction

It has been recognized for many years that codes, lattices, and conformal field theories
(CFTs) are deeply intertwined. Perhaps the best known example of this relation is the
construction of the Leech lattice from the extended Golay code. The Leech lattice subse-
quently played a central role in the discovery of the monster group, which appears naturally
as the symmetry of the Monster CFT — a particular orbifold of the chiral CFT associated
with the Leech lattice [1, 2]. More generally, classical self-dual binary linear codes are
naturally associated with Euclidean even self-dual lattices, which in turn give rise to chiral
bosonic CFTs [3]. This relation is not exclusive — there are other known ways in which
classical codes are related to chiral theories [4, 5].

In view of the fruitful connections between classical codes, Euclidean lattices, and chiral
CFTs, one may wonder if there is a corresponding hierarchy based on quantum codes. After
all, conformal field theories are fundamentally quantum in nature, and so it is natural to
expect that their relation to codes extends to include quantum codes. In this paper we will
develop this idea, and show that there is indeed a natural and compelling correspondence
between an important class of quantum codes, real self-dual binary stabilizer codes, and
even self-dual Lorentzian lattices. These lattices define a class of nonchiral CFTs that
arise from toroidal compactifications of strings with quantized B-flux, a subset of the
family of Narain CFTs. In other words, real self-dual stabilizer codes are in one-to-one
correspondence with a family of CFTs of a particular kind, which we call code CFTs.

The connection between CFTs and quantum codes becomes most explicit at the level
of the partition function, or, in the case of the underlying code, at the level of the code’s
enumerator polynomial. Analogously to the classical case, the (refined) enumerator poly-
nomial of a real self-dual quantum code lifts to the Siegel theta function of the associated
Lorentzian lattice, which becomes the CFT partition function upon multiplication by the
appropriate power of |η(τ)|2 required for modular invariance. The constraints of modu-
lar invariance of the partition function reduce to a set of simple algebraic relations that
must be satisfied by the enumerator polynomial, making it possible to implement a “baby”
analogue of the CFT modular bootstrap for quantum codes. Thus, the maximization of
the spectral gap over CFTs of given c becomes with some nuances a modification of the
problem of maximizing error-correcting capacity, as measured by the number of qubits
whose decoherence a real self-dual quantum code of given length can detect. The number
“controlling” the spectral gap db can be bounded from above as a linear programming
optimization problem, which we solve numerically for codes of length n ≤ 32; we verify
explicitly that the bound is tight for n ≤ 8. It is worth noting that the problem of finding
codes with maximum error-correcting capacity (which maximize the Hamming distance
for a given code length) is closely related to the problem of finding the maximum possible
density of a lattice sphere packing in a given number of dimensions [6, 7]; essentially, it is
a version of the sphere-packing problem with respect to the distance measure appropriate
for quantum codes rather than the Euclidean metric. The sphere-packing problem has
recently been recast in terms the CFT modular bootstrap [8–10], and has been analyzed
numerically, leading to improved bounds at finite n. Our work complements these studies
of sphere packing by introducing a new relation between the modular bootstrap and codes.
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Another question on which the connection to codes sheds new light is that of the space
of solutions of the modular bootstrap constraints, namely modular invariant functions
Z(τ, τ̄) which are sums of characters with positive integer coefficients, but which are not
partition functions of any known CFTs. A family of chiral Z(τ) of this sort with central
charge c ≥ 24 has been previously discussed in [11]. There are also examples of rational
CFTs with just two characters [12–14]. Furthermore, there are simple examples of Z(τ)
discussed later in the text which do not correspond to any CFT at all. The connection to
codes leads to many such examples, both chiral and non-chiral, with small central charge in
the latter case, for which the CFT is not known or may not exist. At the level of codes, the
question of finding such Z(τ, τ̄) reduces to constructing multivariate polynomials obeying
all symmetry and positivity constraints that must be satisfied by enumerator polynomials,
yet which are not enumerators of any code. Solving a simple linear programming problem
yields many thousands of examples of “fake” enumerators, already for small central charge
c = c̄ ≤ 8.

Code CFTs form a discrete subset of the continuous moduli space of Narain CFTs.
We show that this subset, and hence the space of codes itself, can be described as a coset
of discrete groups. Acting on this coset are symmetries relating equivalent codes; code
CFTs that are T-dual to each other correspond to equivalent codes. By making use of
code equivalences, we are able to reduce a general code to an equivalent code of canonical
form. Each canonical representative is associated with an undirected graph, and equivalent
codes (i.e. T-dual code CFTs) map to graphs related by a particular graph transformation,
known as edge local complementation. The representation by graphs provides a convenient
way to classify the equivalence classes of codes of a given length. We do this for n ≤ 8,
and in the process find many interesting examples.

One striking finding is the multitude of inequivalent codes sharing the same enumer-
ator polynomial, which implies the existence of many examples of isospectral lattices and
inequivalent isospectral code CFTs. The first such example appears for n = 7; it corre-
sponds to a pair of isospectral even self-dual Lorentzian lattices in R7,7. This is the lowest-
dimensional example among lattices associated with the stabilizer codes, and in many ways
is analogous to Milnor’s example of the isospectral pair of even self-dual lattices in R16.
But unlike the Euclidean case, where the next example occurs in 24 dimensions, in the
Lorentzian case we find many dozens of pairs and even triplets of isospectral lattices in
R8,8, and correspondingly many isospectral CFTs with c = c̄ = n = 8.

One of our original motivations for the present work came from quantum gravity. In
the context of the AdS/CFT correspondence, information is understood to be stored at the
boundary of spacetime, in a highly nonlocal and redundant form strongly reminiscent of
error-correcting codes [15, 16]. This observation begs the question of exactly how informa-
tion is stored in the dual CFT, and in particular, how the form of error correction seen in
the bulk gravitational theory is implemented in the CFT. While we do not claim to have
a complete answer to this question at present, we have at least identified error-correcting
codes within an important class of CFTs. This same class of CFTs has recently been stud-
ied as a toy model of holography. In papers by two sets of authors [10, 17], it has been
shown that the average over moduli space of Narian CFTs can be reinterpreted as a sum
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over three-dimensional topologies. The authors conjecture that the moduli-averaged CFT
is dual to a three-dimensional gravitational theory with U(1)n × U(1)n gauge symmetry.
This suggests that if we are looking for a holographic version of our code construction, we
should consider what happens when we average over codes. We perform the average over
a class of codes to obtain the averaged partition function of the corresponding CFTs, and
note the possibility of reinterpreting the partition function as a sum over handlebodies.

Quantum code CFTs are a small subset of the space of all Narain CFTs, but our results
indicate that they might be representative in a certain sense. As evidence for this claim,
we cite the fact that our numerical bound on db/n is comparable to numerical bounds
on the ratio of the spectral gap to the central charge ∆/c [10], and also the observation
that the average over a class of code CFTs appears to have a holographic interpretation.
Future explorations may uncover further indications that code CFTs can provide a useful,
stripped-down setting for studying holographic phenomena.

This paper is organized as follows. It includes an extensive pedagogical introduc-
tion. Section 2 discusses classical codes, both binary codes (subsection 2.1) and codes
over GF(4) (subsection 2.2) as well as their relation to lattices, MacWilliams identities,
Hamming and Gilbert-Varshamov bounds, and other related questions. With some excep-
tions, most of the material presented in section 2 is not new, and can be skipped by a
reader with sufficient background. Section 3 contains both pedagogical and original ma-
terial. Subsection 3.1 introduces quantum error-correcting codes of the stabilizer type,
their relation to self-orthogonal classical codes over GF(4), and the quantum version of the
MacWilliams identities. Most of it can be skipped by the knowledgeable reader. Subsec-
tion 3.2 introduces a crucial new ingredient — the relation between quantum codes and
Lorentzian lattices. A reader with background in both classical and quantum codes can
start reading the paper from this subsection. Section 4 is similarly mixed. Subsection 4.1
introduces Narain CFTs, and is intended for readers with a background in classical or
quantum codes, but no prior exposure to String Theory. It can be skipped by anyone
familiar with toroidal compactifications. Subsection 4.2 is again crucial — it introduces
the basic elements of our construction relating quantum codes to CFTs. All subsequent
sections contain original material.

2 Classical error-correcting codes

We start by reviewing classical error-correcting codes, focusing on aspects important for
understanding quantum codes and their relation to CFTs. For a more in-depth treatment
we recommend Elkies’s comprehensive yet concise review [6, 7].

2.1 Binary codes

A binary code C is a collection of binary “codewords,” vectors of length n consisting of zeros
and ones, C ⊂ Zn2 . Components of codewords c ∈ C are called bits. Each codeword encodes
a particular message. When sent over a noisy channel, a codeword may be corrupted, i.e.,
certain bits may be changed to their opposite values. The encoding procedure is designed
to make it possible to restore the original form of the codeword and thus recover the
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message. This is done by replacing the corrupted codeword c′ /∈ C with the closest proper
codeword, defined with some appropriate norm. The most widely used norm is known as
the Hamming distance. Given two vectors c1, c2 ∈ Zn2 , the Hamming distance between
them d(c1, c2) is the number of corresponding bits in c1 and c2 that are different. The
Hamming distance of a code d is the smallest Hamming distance between any two distinct
codewords

d(C) = min
c1 6=c2∈C

d(c1, c2). (2.1)

A code containing K codewords with Hamming distance d is said to be of type [n,K, d].
Such a code can correct an error corrupting up to t = [(d − 1)/2] bits, where [x] denotes
the greatest integer ≤ x.

Colloquially, an optimal code for given n and K is one with the maximum possible d,
i.e. one which can correct errors involving the maximum possible number of bits. When
n goes to infinity, with log2(K/2n) approaching a finite limit, the maximum possible ratio
d/n controls the amount of information which can be sent over a noisy channel. There are
numerous bounds on d/n, but the exact limiting value is not known.

Codewords can be visualized as vertices of a unit cube in n dimensions. To design
a good code, one should place as many points at the cube’s vertices as possible, making
sure they are located far away from each other. The distance d between two vertices is
calculated either with the Manhattan norm (the minimum distance an ant would need to
travel along the edges to get from one vertex to the other), or equivalently, the Euclidean
distance squared `2.

A code is linear if the sum of any two codewords c1, c2 ∈ C, obtained by adding the
components modulo 2, is also a codeword c1 + c2 ∈ C. In other words, a classical linear
code C is a vector space over the field F = Z2 consisting of two elements {0, 1}. There are
necessarily K = 2k distinct codewords for some nonnegative integer k, which counts the
number of “logical” bits. All codewords are specified by a binary n×k generator matrix G,

c(x) = Gx ∈ Fn, x ∈ F k, (2.2)

where matrix multiplication is performed over the field F . We use the notation [n, k, d]
to describe linear codes with Hamming distance d that encode k logical bits into n

physical bits.
A linear code can equivalently be specified by a “parity check” matrix H defined such

that Ker(H) = Im(G), so thatHG = 0, andHc = 0 if and only if c is a proper codeword (all
algebra is mod 2). The parity check matrix is an (n−k)×n binary matrix of maximal rank.

Linear codes always include the zero vector, i.e. the vector consisting of n zeros. We
introduce the Hamming weight w(c) as the sum of all elements of a code vector (with the
sum taken using conventional algebra, not mod 2). Then the Hamming distance is the
minimal Hamming weight of all non-trivial codewords

d(C) = min
c∈C,c 6=0

w(c). (2.3)
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If a codeword c has been corrupted by some error e, c → c′ = c + e, the error can be
detected by applying the parity check matrix

y(c′) = Hc′ = He. (2.4)

If y 6= 0, an error has occurred. However, the converse is not necessarily true. A vanishing
result y = 0 could mean that an undetectable error has occurred, one for which the error
vector e is a proper nonzero codeword, e ∈ C. Clearly, these undetectable errors must
simultaneously corrupt at least d(C) bits. Therefore, increasing d improves the quality of
the code by making it less likely for undetectable errors to occur.

The name of the parity check matrix comes from its role in detecting errors. Typical
architectures for semiconductor computer memory supplement each byte (8 bits) of memory
by an additional physical bit that has no effect on logical operations, which automatically
takes the value that makes the sum of all nine bits even [18]. A violation of that condition
is an indication that a hardware error has occurred.

Example: repetition code. The repetition code is perhaps the simplest example of a
code. It encodes k = 1 logical bit by repeating it n times:

GT = ~1 ≡ (1, . . . , 1︸ ︷︷ ︸
n

). (2.5)

This code, denoted as in, has two codewords and Hamming distance d = n. Its parity
check matrix is the (n− 1)× n matrix

H =


1 1 0 . . . 0
0 1 1 . . . 0
. . . . . . . . . . . . . . .

0 . . . 0 1 1

 . (2.6)

If an error occurs that corrupts [(n−1)/2] bits or fewer, one can restore the original message
by rounding w(c′)/n to the closest integer. This code has a small ratio of logical bits to
physical bits, k/n = 1/n, and is therefore not very efficient.

Example: Hamming [7, 4, 3] code. A more interesting example is the Hamming
[7, 4, 3] code, defined by the following parity check matrix

H =

 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 . (2.7)

It has d = 3 and therefore can detect and correct any one-bit error, t = [(d − 1)/2] = 1.
Indeed, let ei for 1 ≤ i ≤ 7 be a one-bit error, a vector consisting of 6 zeros and a one
in the i-th position. Such an error can be detected and uniquely identified via (2.4). For
c′ = c+ ei,

y(c′) = Hc′ = Hei (2.8)

– 5 –
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is simply a binary 3-vector whose components are equal to the digits of the number i
written in base 2. Thus the value of y(c′) unambiguously indicates which bit should be
flipped to restore the original message. All of the algebra above (except where explicitly
noted) is to be understood mod 2.

Let us assume that a code can correct any error affecting t = [(d− 1)/2] bits or fewer.
There are C ln = n!/l!(n − l)! errors affecting exactly l bits and therefore

∑t
l=1C

l
n such

errors overall. This number should not exceed the total number 2n−k − 1 of all possible
non-trivial values of y. Otherwise different errors would yield the same y making them
indistinguishable (and their sum, which would affect 2t < d bits, would be annihilated by
H, leading to a contradiction). We therefore find the following bound on t = [(d− 1)/2],

V (t, n) :=
t∑
l=0

n!
l!(n− l)! ≤ 2n−k. (2.9)

This is known as the Hamming bound. It constrains d in terms of n and k. A code satu-
rating the Hamming bound is called perfect. The Hamming [7, 4, 3] code is a perfect code;
the repetition code is not. The Hamming bound has a simple geometric interpretation.
We can define a ball in the space of codewords with radius t centered at the codeword c

to be the set of all codewords c′ with d(c, c′) ≤ t. Then V (t, n) is the volume of this ball,
i.e. the total number of codewords it contains. The bound (2.9) simply states that since
the balls of radius t = [(d− 1)/2] centered at each of the codewords of a given code should
not overlap, the total volume of all 2k balls can not exceed the total volume of the space
of codewords 2n.

It is useful to think of the elements of Z2 = {0, 1} as the equivalence classes of even
and odd integers. We can further view the set of all integers Z as a lattice in R1, with
the lattice 2Z of even integers being a sublattice. Then Z2 is the lattice quotient Z/(2Z),
i.e. equivalence classes of lattice vectors in Z modulo shifts by elements of the sublattice
2Z. For the sake of mathematical elegance (and for reasons explained below) we will rescale
both of these lattices by 1/

√
2. Then if Γ = Z/

√
2, Γ∗ =

√
2Z is its lattice dual, and Z2

can be thought of as the quotient Γ/Γ∗.
This identification is the basis for a construction of Leech and Sloane [19, 20], known

as Construction A, which associates a lattice to any binary linear code. A codeword is a
vector in c ∈ (Z2)n and therefore can be thought of as an equivalence class of lattice points
in Γ = (Z/

√
2)n modulo shifts by vectors in Γ∗ = (

√
2Z)n. All codewords of a given code

give rise to the following set of points in Γ:

Λ(C) = {v/
√

2 | v ∈ Zn, v ≡ c (mod 2), c ∈ C}, Γ∗ ⊂ Λ(C) ⊂ Γ. (2.10)

Provided C is a linear code, Λ(C) is a lattice. It is easy to see that Λ(C) uniquely charac-
terizes C. In other words, for given n, linear binary codes are in one to one correspondence
with lattices Λ satisfying Γ∗ ⊂ Λ ⊂ Γ.

For a given linear code of type [n, k, d], one can define its dual, which is an [n, n−k, d′]
code consisting of all codewords orthogonal to C mod 2,

C⊥ = {c̃ | c̃ ∈ Zn2 , c̃ · c ≡ 0 (mod 2) ∀ c ∈ C}. (2.11)

– 6 –
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The generator matrix of the dual code C⊥ is the parity matrix of C and vice versa. The
code dual to C⊥ is the original code C. Rescaling by the factor 1/

√
2 introduced above

is necessary for the following fundamental property: the lattice of the dual code Λ(C⊥) is
dual (in the lattice sense) to Λ(C),

Λ(C⊥) = Λ(C)∗. (2.12)

A linear code is called self-orthogonal if, as a linear space, it is a subcode of its dual,
C ⊂ C⊥. At the level of lattices, Λ(C) of a self-orthogonal code is an integral lattice.
A code is called self-dual if it is equal to its dual; its corresponding lattice is then self-
dual (unimodular). Self-orthogonality requires k ≤ n/2, and self-duality implies k = n/2.
Therefore self-dual codes can exist only for even values of n.

A binary code is called even if the Hamming weight w(c) of all of its 2k codewords is
even. Since all codewords of a self-dual code are self-orthogonal (mod 2), self-dual codes
are necessarily even. At the level of lattices, when the code is even, the norm-squared of
any lattice vector is integer.

A binary code is called doubly-even if the Hamming weights of all codewords are divis-
ible by four. The corresponding lattice is then even. It is then an elementary consequence,
both for codes and lattices, that any doubly-even code (any even lattice) is self-orthogonal
(lattice is integral), and vice versa. We therefore arrive at the following conclusion: doubly-
even self-dual codes are in one to one correspondence with even self-dual lattices, which
are sublattices of Γ ⊂ Rn.

Binary doubly-even self-dual codes, which correspond to even self-dual lattices, are
said to be of type II; the class of type II codes is denoted 2II. Even but not doubly-even
self-dual codes, which correspond to odd lattices, are of type I and are in the class 2I. In
some treatments, the class 2I is defined to include doubly-even codes as well, in which case
it corresponds to the set of all integral unimodular lattices.

The vector ~1 has the following special property. For any c ∈ Z2
n, its scalar product

with ~1 (taken using conventional algebra) is equal to the Hamming weight of c, ~1 ·c = w(c).
For any even code, ~1 is orthogonal to all codewords (with algebra mod 2) and therefore ~1
belongs to the dual code. If a code is doubly-even and self-dual, ~1 belongs to the code, and
hence n must be divisible by four. In fact, doubly-even self-dual codes can exist only for n
divisible by eight.

Two codes [n1, k1, d1] and [n2, k2, d2] can be combined together into a new [n1+n2, k1+
k2,min(d1, d2)] code. A code which is not a composition is called indecomposable. The
Construction A lattice of a decomposable code is a direct sum of two lattices.

Example: repetition code and checkerboard lattice. We apply Construction A to
the repetition code in (2.5). The corresponding lattice Λ includes the vector ~1/

√
2 and

n vectors 2ei/
√

2, where ei is a basis vector in Rn. One of these vectors, say 2en/
√

2, is
linearly dependent and can be dropped. Thus Λ is a linear span of the following n vectors,
~1/
√

2 and 2ei/
√

2, 1 ≤ i ≤ n− 1. This is the checkerboard lattice, isomorphic to the root
lattice of the Bn series rescaled by 1/

√
2.
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The lattice of the dual code includes vectors of the form (ei + ei+1)/
√

2, 1 ≤ i ≤
n − 1, coming from the rows of (2.6), and 2en/

√
2 (all other vectors 2ei/

√
2 are linearly

dependent). This is the root lattice of the Cn series rescaled by 1/
√

2. In the special case
n = 2, the lattices B2/

√
2 and C2/

√
2 coincide, reflecting that the repetition code i2 is

self-dual.

Example: Hamming [7, 3, 4] code and E7 lattice. The code dual to the Hamming
[7, 4, 3] code is known as the Hamming [7, 3, 4] code. Its generator matrix is given by the
transpose of (2.7). Its parity check matrix, besides the rows of (2.7), includes an additional
row (which can be chosen in more than one way),(

1 1 1 0 0 0 0
)
. (2.13)

Construction A applied to the Hamming [7, 3, 4] code yields the root lattice of Lie alge-
bra E7. The conventional basis of the E7 root lattice includes integer and half-integer
coordinates, which does not match the factors 1/

√
2 appearing via Construction A. These

lattices are isomorphic, meaning that they are equivalent up to a rotation. We establish
this isomorphism explicitly in appendix A.2.

The generator matrix of a code is not unique. It can be multiplied from the right by any
non-degenerate k×k binary matrix (all algebra mod 2) without changing the code. Usually
the particular order of the bits — the components of the codewords — does not matter.
Therefore two codes C and C′ are called equivalent if they are related by a permutation of
bits. At the level of generator matrices

G′ ∼ OGQ, O ∈ O(n,Z), det(Q) 6= 0, (2.14)

where the permutation matrix O is a binary n× n matrix with only one non-zero element
in each row, which is equal to 1, and O is non-degenerate. The matrix Q is an arbitrary
nondegenerate binary matrix. The full equivalence group has n! elements, but some of them
may act trivially. The automorphism group of a particular code Aut(C) is the subgroup of
permutation group which leaves the given code C invariant.

By using an equivalence transformation of the form (2.14), the generator matrix of any
code can be brought to the canonical form

GT = ( I |B) , (2.15)

where I is the k × k identity matrix and B is some k × (n − k) binary matrix. The
representation (2.15) is not unique; one can still simultaneously permute the rows and
columns of B. The equivalence transformations (2.14) which permute the first k and last
n− k bits act in a more complicated way, see appendix B.

Given a code with generator matrix of the canonical form (2.15), the binary matrix B
can be used to define an unoriented bipartite graph. At the level of graphs, code equiv-
alences (2.14) are mapped to equivalences of graphs under the operation of edge local
complementation [21]. The relation between codes and graphs provides useful way to ana-
lyze and design new codes [22, 23], and has been used to classify all inequivalent codes for
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n ≤ 24. A generalization of the relation between codes and graphs to the quantum case is
an important part of our discussion in section 4.2.

When n = 2k, the matrix B is square. In this case the parity check matrix is given by

H =
(
BT | I

)
. (2.16)

When the code is self-dual G and H must generate the same code, and therefore B BT = I,
understood mod 2. The same conclusion follows from the explicit form of the generator
matrix of the Construction A lattice,

Λ =
(

2 I BT

0 I

)
/
√

2. (2.17)

Example: extended Hamming [8, 4, 4] code and E8 lattice. The extended Ham-
ming [8, 4, 4] code is obtained from the Hamming [7, 4, 3] code by extending all rows of its
generator matrix GT by one bit, assigning it the value such that the Hamming weight of
each row is even. Starting from (2.7) and (2.13) we obtain

GT =


1 0 1 0 1 0 1 0
0 1 1 0 0 1 1 0
0 0 0 1 1 1 1 0
1 1 1 0 0 0 0 1

 ∼ (I |B) , B =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 , (2.18)

where we used the equivalence condition (2.14) to bring GT to the canonical form (2.15).
It can be easily checked that B BT = I.

The extended Hamming [8, 4, 4] code is denoted e8. It is the unique doubly-even self-
dual code with n = 8. Via Construction A, it gives rise to the unique even self-dual lattice
in eight dimensions — the root lattice of the Lie algebra E8.

A linear [n, k, d] code has 2k codewords. To summarize information about its spectrum
of Hamming weights it is convenient to define the enumerator polynomial

WC(x, y) =
∑
c∈C

xn−w(c)yw(c). (2.19)

WC is a homogeneous polynomial of degree n, with positive integer coefficients and
WC(1, 0) = 1, WC(1, 1) = 2k. Under the operation of code duality, the enumerator polyno-
mial transforms according to the MacWilliams identity

WC⊥(x, y) = 2n/2−kWC
(
x+ y√

2
,
x− y√

2

)
. (2.20)

In other words enumerator polynomial of a self-dual code must be invariant under

x→ x+ y√
2
, y → x− y√

2
. (2.21)

When the dual code C⊥ is not equal but is equivalent in the sense of (2.14) to the original
code, its enumerator polynomial must also be invariant under (2.21). Such a code is said
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to be isodual. At the level of lattices, Λ(C) of an isodual code is isomorphic to its dual,
i.e related to its dual by a rotation. Such lattices are called isodual, in contrast to self-dual
lattices. Finally, there are codes C which are not equivalent to C⊥ in any conventional way,
yet WC is invariant under (2.21). Such codes are called formally self-dual. All formally
self-dual codes are [n, k = n/2, d], i.e. they exist only when n is even. Schematically,

self-dual ⊂ iso-dual ⊂ formally self-dual.

Example: isodual [2, 1, 1] code. The simplest example of an isodual but not self-dual
code is the [2, 1, 1] code, which includes one trivial and one non-trivial codeword c = (1, 0).
This code is not even and therefore not self-dual. The corresponding lattice is a non-
integral lattice with a rectangular unit cell, with sides of length

√
2 and 1/

√
2. Its dual

lattice coincides with the original lattice after rotation by π/2. The enumerator polynomial
of this code, W = x2 + xy, is invariant under (2.21).

Any enumerator polynomial of a self-dual code must be invariant under (2.21) and also
under y → −y since the code is even. All polynomials invariant under these symmetries
are in the polynomial ring P(Wi2 ,We8) generated by

Wi2 = x2 + y2 and We8 = x8 + 14x4y4 + y8. (2.22)

This is known as Gleason’s theorem. The generator polynomials Wi2 and We8 are them-
selves the invariant enumerator polynomials of the self-dual repetition code i2 and the
extended Hamming [8, 4, 4] code, respectively.

Any doubly-even formally self-dual code, provided it is a linear code, is automatically
self-dual. This follows immediately from the fact that an even lattice is necessarily integral,
and hence is included in its dual Λ(C) ⊂ Λ(C⊥). The same argument applies to the dual
code, and its dual lattice, yielding Λ(C) = Λ(C⊥), C = C⊥. The enumerator polynomial of
a doubly-even code is invariant under (2.21) and y → iy. All such polynomials lie in the
polynomial ring P(We8 ,Wg24) generated by We8 and

Wg24 = x24 + 759x16y8 + 2576x12y12 + 759x8y16 + y24. (2.23)

Here Wg24 is enumerator polynomial of the extended [24, 12, 8] Golay code, introduced
below. Instead of We8 and Wg24 it is sometimes convenient to use We8 and (xy(x4− y4))4.

Not all polynomials invariant under appropriate symmetries are enumerator polyno-
mials of self-dual codes. The coefficients of bona fide enumerator polynomials are positive
integers and they additionally must satisfy WC(1, 0) = 1. (The condition WC(1, 1) = 2n/2

follows from WC(1, 0) = 1 when WC(x, y) is a polynomial in P(Wi2 ,We8) or P(We8 ,Wg24).)
In what follows we refer to polynomials that satisfy these additional conditions as invariant
polynomials.

An arbitrary lattice Λ is characterized by its theta-function,

ΘΛ(τ) =
∑
v∈Λ

q|v|
2/2, q = e2πiτ , (2.24)
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which is a holomorphic function of q. Using the Poisson resummation formula, and for
simplicity assuming the lattice is unimodular, one can express the theta function of the
dual lattice in terms of ΘΛ:

ΘΛ∗(τ) = (−iτ)−n/2 ΘΛ(−1/τ). (2.25)

When the lattice is even, ΘΛ(τ) is trivially invariant under τ → τ+1. For an even self-dual
lattice ΘΛ(τ) changes covariantly under the two generators of the modular group PSL(2,Z),

τ → τ + 1, τ → −1/τ, (2.26)

and therefore ΘΛ(τ) is a modular form of weight n/2.
For a lattice obtained via Construction A, the theta function can be evaluated as

follows. We split the sum in (2.24) into a sum over codewords, and for each codeword
c ∈ C we sum over vectors

~v = ~c+ 2~a√
2
∈ Λ(C), ~a ∈ Zn. (2.27)

The sum over each component ai ∈ Z can be performed independently in terms of Jacobi
theta-functions

θ3(q) :=
∞∑

n=−∞
qn

2/2, θ2(q) :=
∞∑

n=−∞
q(n+1/2)2/2, q = e2πiτ . (2.28)

Conventionally, Jacobi theta functions are understood as functions of τ . We define them
as functions of q to emphasize that their algebraic combinations can be expanded as power
series in q. We find that

ΘΛ(C)(τ) = WC(θ3(q2), θ2(q2)). (2.29)

Standard identities for the Jacobi theta functions imply that under τ → τ + 1 the function
θ3(q2) remains invariant while θ2(q2)→ iθ2(q2), and under τ → −1/τ they change as follows

θ2(q2) → θ2(q̃2) =
√
−iτ θ3(q2)− θ2(q2)√

2
, (2.30)

θ3(q2) → θ3(q̃2) =
√
−iτ θ3(q2) + θ2(q2)√

2
, q̃ = e−2πi/τ . (2.31)

These transformations match y → iy and (2.21), confirming the modular properties of the
theta function associated with the lattice Λ(C) of a doubly-even self-dual code C.

Example: theta function of the E8 root lattice. The root lattice E8 is also the
Construction A lattice of the e8 code. Therefore, its theta function is given by

ΘE8(τ) = We8(θ3(q2), θ2(q2)), We8 = x8 + 14x4y4 + y8. (2.32)

The corresponding code is doubly-even self-dual (so the lattice is even self-dual), and
therefore ΘE8(τ) is a modular form of weight 4. There is a unique modular form of weight
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4, the Eisenstein series E4(τ), and therefore ΘE8(τ) = E4. The overall coefficient can
be fixed by noting that both ΘE8(τ) and E4 for small q behave as 1 + O(q). In fact
E4 = 1 + 240q + O(q2), indicating that the E8 lattice has 240 roots. There are many
ways ΘE8(τ) = E4 can be expressed in terms of Jacobi theta-functions. It is customary to
introduce

θ4(q) :=
∞∑

n=−∞
(−1)qn2/2, (2.33)

and a = θ2(q), b = θ3(q), c = θ4(q). They satisfy a4 + c4 = b4. Then

E4(τ) = a8 + b8 + c8

2 . (2.34)

The analog of Gleason’s theorem for theta functions of even unimodular lattices is the
following. All theta functions for even self-dual lattices are polynomials in theta functions
for the E8 lattice and the Construction A lattice of the Golay code. This formulation is the
direct analog of (2.22), but it is not completely conventional in the choice of generators.
Upon substitution x→ θ3(q), y → θ2(q), the combination (xy(x4 − y4))4 becomes

(xy(x4 − y4))4 → 16 η24 = a8b8c8

16 . (2.35)

Correspondingly the theta series of any even self-dual lattice can be written as a polynomial
in E4 and η24. This is of course a well-known result in the theory of modular forms. Since
1728η24 = E3

4−E2
6 , this is simply a consequence of the statement that all modular forms of

weight n/2 for n divisible by 8 are polynomials in E4 and E2
6 . Another conventional choice

of generators is provided by E4 and the theta series of the Leech lattice introduced below.
There is a close relation between codes and sphere packing. An optimal lattice sphere

packing requires a lattice with a fundamental cell of unit volume and a shortest vector of
maximum possible length. Codes of maximal Hamming distance for a given n naturally lead
to such lattices. Thinking of codewords as points on the unit cube, such codes maximize
the distance from the origin to all codewords. Via Construction A this should lead to
a good lattice sphere packing, and indeed the E8 lattice is the optimal sphere packing in
eight dimensions [24]. The discussion above is intuitive but it has a serious flaw: all lattices
obtained via Construction A include vectors of the form

√
2~a with arbitrary ~a ∈ Zn. Thus,

no matter how good a code might be, the corresponding lattice Λ(C) would necessarily
have vectors of length `2 = 2. It so happens that `2 = 2 is the largest possible length
of the shortest vector in eight dimensions, but this observation renders Construction A
an unsuitable approach for finding good lattice sphere packings in higher dimensions. To
design good lattice packings starting from a good code with n > 8, it is desirable to leave
lattice vectors of the form ~c/

√
2, c ∈ C, intact because they have sufficient length, but

remove short vectors of the form
√

2(±1, 0, . . . , 0),
√

2(0,±1, . . . , 0), . . . . There are several
different ways (constructions) to achieve that result. Here we focus on a construction of
particular physical relevance.
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Let us start with an even self-dual lattice Λ and consider a vector δ such that 2δ ∈ Λ.
We demand that δ2 be an integer. The lattice Λ can be represented as the disjoint union
of two sets

Λ0 = {v | 2 δ · v = 0 mod 2, v ∈ Λ}, (2.36)
Λ1 = {v | 2 δ · v = 1 mod 2, v ∈ Λ}. (2.37)

Since the original lattice Λ is integral, 2δ · v is an integer and therefore Λ = Λ0 ∪ Λ1. It is
easy to see that Λ0 is closed under addition and therefore it is a lattice, while Λ1 is not.
We now shift all vectors in Λ1 by δ,

Λ′1 = Λ1 + δ ≡ {v + δ | v ∈ Λ1}, (2.38)

and define a new lattice via

Λ′ = Λ0 ∪ Λ′1. (2.39)

It is easy to check that Λ′ is a lattice: the sum of two vectors in Λ′ belongs to Λ′. Further-
more if δ2 is odd, the lattice is even and self-dual. This procedure can also be applied to
odd self-dual lattices, yielding a new odd self-dual lattice, in which case the condition that
δ2 be odd is not necessary and is replaced by ~δ /∈ Λ.

We will call the above construction of a new lattice Λ′ a “twist” (by a half-lattice
vector), following the nomenclature adopted in the context of 2d conformal theories [25].
The twist can be used to construct new lattices with longer shortest vectors than the
original ones. Since any self-dual code includes the codeword ~1, any Construction A lattice
includes the vector 2~δ = ~1/

√
2. Choosing this δ removes the vectors

√
2(±1, 0, . . . , 0) from

the lattice; they are instead replaced by (−3/2, 1/2, . . . , 1/2)
√

2 and (5/2, 1/2, . . . , 1/2)
√

2)
which have length `2 ≥ 1 + n/8. The “codeword” vectors ~c/

√
2, c ∈ C, still belong to the

lattice provided w(c) is divisible by four.
The theta function of the new lattice, obtained from the Construction A lattice by

the twist with ~δ = ~1/(2
√

2), can be calculated in full generality. Because of permutation
symmetry, the contribution of all vectors associated with a given codeword depends only on
w(c). There are several cases to consider: w(c) = 0, w(c)/2 is odd, and w(c)/2 is positive
and even. We spare the reader the details and simply present the answer,

ΘΛ′(C) =
ΘΛ(C) + (ab)n/2 + (bc)n/2 − 2−n/2WC(1, i)(ac)n/2

2 . (2.40)

If the code is doubly even, 2−n/2WC(1, i) = 1. Under the modular transformation τ → τ+1,
the functions a, b, c change as follows: a → i1/2a, b ↔ c. Under τ → −1/τ they change
as a→

√
−iτc, c→

√
−iτa, and b→

√
−iτb. Therefore ΘΛ′(C) always changes covariantly

under τ → −1/τ , reflecting that the twist does not affect self-duality; however, modular
invariance under τ → τ + 1 requires the code to be doubly-even and n/8 to be odd, to
ensure that Λ(C) is even, δ2 is odd, and therefore that Λ′(C) is even as well.

– 13 –



J
H
E
P
0
3
(
2
0
2
1
)
1
6
0

Example: twist of the E8 lattice. The Construction A lattice of e8 is invariant under
the twist by ~δ = ~1/(2

√
2) in the sense that the new lattice is isomorphic to the old one.

As a consistency check one can verify using identity a4 + c4 = b4 that the theta functions
of the original and new lattices are equal

E4 = a8 + b8 + c8

2 = (ab)4 + (bc)4 − (ac)4. (2.41)

Example: extended Golay [24, 12, 8] code and Leech lattice. The extended Golay
[24, 12, 8] code is the unique n = 24, d = 8 code (up to equivalences). It is denoted g24. In
the canonical form (2.15) it is specified by the matrix B given in (B.1).

It is a matter of a few minutes of computer algebra to verify that B BT = I, confirming
that the code is self-dual, and to evaluate its enumerator polynomial Wg24 (2.23). The
explicit form of Wg24 confirms that g24 is doubly-even. The theta function of Λ(g24) is
given by

ΘΛ(g24) = E3
4 − 672 η24, (2.42)

which follows from the explicit form of Wg24 and (2.35).
Applying the twist ~δ = ~1/(2

√
2) to Λ(g24) produces the Leech lattice, with theta

function

ΘLeech = E3
4 − 720 η24 =

ΘΛ(g24) + (ab)12 + (bc)12 − (ac)12

2 . (2.43)

Its small q expansion reads

ΘLeech = 1 + 196560q2 + 16773120q3 +O(q8), (2.44)

which indicates that the Leech lattice (famously) has no roots — vectors of length 0 <

`2 ≤ 2 — and its shortest vector has length `2 = 4.
The analog of Gleason’s theorem for modular forms from above guarantees that ΘLeech

can be expressed as an “enumerator polynomial,” i.e. a polynomial in x, y invariant un-
der (2.21) and y → iy,

WLeech = x24 − 3x20y4 + 771x16y8 + 2558x12y12 + 771x8y16 − 3x4y20 + y24,

ΘLeech = WLeech(θ3(q2), θ2(q2)). (2.45)

We emphasize that while some coefficients of WLeech(x, y) are negative, all coefficients in
the q-expansion of WLeech(θ3(q2), θ2(q2)) are positive integers.

To summarize, there is a close relation between codes and their enumerator polynomi-
als, and lattices and their theta functions. A natural question to ask is whether this relation
is exclusive. The answer is no. Enumerator polynomials characterize codes, but not in a
unique way: inequivalent codes may share the same polynomial. Accordingly, different
non-isomorphic lattices can be isospectral, i.e. have the same theta series. There are also
invariant polynomials which are not enumerator polynomials of any code. Likewise, there
are self-dual lattices not related to any code via Construction A, and so on. To see how this
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works we discuss the most restrictive case of doubly-even self-dual codes for n = 8, 16, 24.
For even but not doubly-even self-dual codes the situation is even more complex.

For n = 8, e8 is the unique self-dual doubly-even code, and there is a unique invariant
polynomial We8 . There is also a unique even self-dual lattice in eight dimensions, the root
lattice of E8, which is related to e8 via Construction A. The theta series of that lattice,
E4, is the unique modular form of weight 4. Thus for n = 8 the story is simple: there is
a perfect correspondence between self-dual doubly-even codes, even self-dual lattices, and
invariant polynomials. For n = 16, there is still a unique invariant polynomial W 2

e8 , but
there are two inequivalent self-dual doubly-even codes, a decomposable code e8 ⊕ e8 and
an indecomposable code d+

16 [26, 27]. Construction A applied to the latter yields the even
self-dual lattice D+

16 = D16 ∪ (D16 + ~1/2), where D+
16 is the root lattice of Spin(32)/Z2.

The Construction A lattice of the former code is E8 ⊕ E8, which is not isomorphic to
D+

16. Both codes have the same enumerator polynomial, and thus both lattices have the
same theta function, the unique modular form of weight eight, E2

4 . We conclude that
these two non-isomorphic lattices are isospectral, since their theta series coincide. This
is Milnor’s famous example of distinct compact spaces (the tori defined by these lattices)
with equivalent Laplacian spectra. An excellent nontechnical discussion of this point can
be found in J. Conway’s book [28]. The isospectral lattices E8 ⊕ E8 and D+

16 define two
different heterotic string theories, related by duality [29–31]. The situation is even more
nuanced for n = 24. In this case there are 9 doubly-even self-dual codes, and overall 24
non-isomorphic even self-dual lattices. There is no simple way to assign each lattice to
a particular code besides those nine obtained via Construction A. In our discussion, and
historically, the Leech lattice is associated with the g24 code, but other lattices are related
to each other in a similar manner [20]. For n = 24, all invariant polynomials can be written
as W 3

e8 + r(xy(x4 − y4))4 with r an integer −42 ≤ r ≤ 147 to ensure all coefficients are
positive. (The Golay code g24 corresponds to the smallest allowed value of r = −42.)
Most of these polynomials are not enumerator polynomials for any code. We refer to such
code-less invariant polynomials as “fake.”

The relations between codes and lattices can be extended to CFTs and their vertex
operator algebras [3, 4, 32–36]. (We refer the reader interested in a quick summary of these
relations to table 1 of [3].) In particular, Euclidean even self-dual lattices can be used to
define chiral CFTs, which play a prominent role in string theory and mathematical physics.
The connection to codes provides a new angle to probe various aspects of 2d chiral theories.
In particular, the fake enumerator polynomials mentioned above give rise to “would-be”
CFT partition functions, modular invariant functions satisfying positive conditions, at least
some of which are not partition functions of any theory.1 Speaking colloquially, our paper
extends the relations between codes, lattices, and CFTs to include quantum codes and
non-chiral CFTs.

One of the central questions of code theory is to understand the maximum possible
value of d/n for fixed k/n when n goes to infinity. Analogous questions can be asked about
lattices and sphere packing. While the optimal value of d/n is not known there are various

1We thank Xi Yin for a discussion on this point.
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upper and lower bounds. For self-dual codes n = 2k the Hamming bound (2.9) readily
provides an upper bound,

d

n
≤ 2p∗, n→∞, H(p∗) = ln(2)

2 , p∗ ≈ 0.11, (2.46)

whereH(p) = −p ln(p)−(1−p) ln(1− p) is the Shannon entropy. This bound is suboptimal.
One can derive stronger bounds using linear programming techniques. For instance, for
even self-dual codes the space of invariant polynomials is the linear space of all polynomials
inWi2 ,We8 subject to linear constraints and inequalities. If we additionally require that the
hypothetical enumerator polynomial describes a code of Hamming distance d, that would
impose additional linear constrains ∂kyW (x, y)

∣∣∣
y=0

= 0 for 1 ≤ k < d. If the corresponding
discrete linear programming problem is infeasible, there is no such code and d must be
reduced. For small n, but not in general, the bounds obtained this way are tight: the
largest d for which the problem of finding invariant polynomials is feasible is also achievable
as the Hamming distance of a code. Codes for which d saturates the linear programming
bound are called extremal. The linear programming bounds are not constructive — they
may yield invariant polynomials, but most of these are fake, and reconstructing a code from
a polynomial is algorithmically hard. Nevertheless one can establish asymptotic bounds
on d/n in this way, which for type I and II self-dual codes read d/n ≤ n/5 and d/n ≤ n/6,
respectively [37–39]. These bounds can be further improved [40, 41] and it is expected
that additional systematic improvements are possible. The linear programming bounds for
codes are parallel to linear programming bounds on the length of the shortest vector of a
unimodular lattice [38, 39]. They can be thought of as simpler, more restricted versions of
linear programming bounds on sphere packing [24, 42–45], which, remarkably, are related
to modular bootstrap bounds [8–10].

Besides upper bounds, there is a lower bound on d/n known as the Gilbert-Varshamov
bound, which is closely related to the Hamming bound (2.9). The idea is to fix d and n
and put a bound on the number of codewords K. Since d is the minimal distance between
any two codewords, the ball of radius d− 1 centered at a given codeword does not include
any other codeword. We consider balls of radius d − 1 centered at all K codewords and
ask if they cover the whole space. If they do not, K can be increased. Thus for a linear
code we find the maximal d for which the following inequality is satisfied

V (d− 1, n) < 2n−k. (2.47)

This bound can be improved by noticing that for even codes the sum over l in (2.9) should
go only over even values. Furthermore, the full space of even codewords has volume 2n−1.
Similar improvements are possible also for doubly-even codes. In the considerations above
we disregarded self-duality, but a generalization to self-dual codes is possible [46].

There is a conceptually different way to obtain a Gilbert-Varshamov bound, suitable
for self-dual codes, which leads to essentially the same results. For even n there are

1
2

n/2−1∏
j=0

(2j + 1) (2.48)
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type I self-dual codes (if n is divisible by 8, this number includes type II codes) and

n/2−2∏
j=0

(2j + 1) (2.49)

type II self-dual codes, when n is divisible by 8. One can calculate the enumerator poly-
nomial averaged over all such codes [27, 47, 48]

W I(x, y) = 2n/2(xn + yn) + (x+ y)n + (x− y)n

2(2n/2−1 + 1)
, (2.50)

W II(x, y) = 2n/2(xn + yn) + (x− y)n + (x+ y)n + (x+ iy)n + (x− iy)n

4(2n/2−2 + 1)
. (2.51)

So if the sum of the coefficients of xn−kyk, for 1 ≤ k < d, is smaller than one, then there
is a code with Hamming distance d.

Asymptotically, the lower bound on d/n is given by the value of d for which the
coefficient of xn−dyd becomes of order one when n → ∞, yielding d/n ≥ p∗ ≈ 0.11. In
section (5) we will relate (2.51) to the averaged partition function of a certain class of
chiral CFTs. The value of the Gilbert-Varshamov bound p∗ ≈ 0.11 would then define the
spectral gap in a random CFT from that class.

2.2 Codes over GF(4)

Analogously to binary codes, one can define codes over any field F . We are specifically
interested in codes over F = GF(4) — the unique field with four elements — because of
their relevance to quantum codes. The Galois field GF(4) consists of four elements 0, 1, ω, ω̄
subject to the following relations

∀ x ∈ F, 0 + x = x, 0× x = 0, 1× x = x, x+ x = 2x = 0, (2.52)

and ω̄ = ω2 = 1 + ω. There is a conjugation operation which leaves 0, 1 invariant and
exchanges ω ↔ ω̄. With the exception of 2x = 0, all other relations are automatically
satisfied if we take ω = e2πi/3 and ω̄ = e−2πi/3. For example 1+ ω̄ = −ω = ω−2ω → ω. To
impose the condition 2x = 0 we first consider the triangular lattice in the complex plane

ΓE = A2/
√

2 = {a+ b ω | a, b ∈ Z} ⊂ C. (2.53)

This is the root lattice A2 rescaled by 1/
√

2, the lattice of the so-called Eisenstein integers.
If we define a new lattice 2 ΓE by requiring that both a and b be even, then GF(4) =
ΓE/(2ΓE). In contrast to the binary case, 2 ΓE is not dual to ΓE , a fact which will have
consequences later.

Now we are ready to define codes over F = GF(4). A code C ⊆ Fn is called additive if
C is a vector space over F , meaning that the sum of two codewords is a codeword. Additive
codes always include the trivial codeword consisting of n zeros. The Hamming weight w(c)
for c ∈ Fn is the number of non-zero elements of c. As before, the Hamming distance
of a code is the minimal Hamming weight of all non-trivial codewords, and a code with
Hamming distance d and size K = 4k is said to be of type [n, k, d].
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A code is called linear if it is a vector space over F , which requires that for any
codeword c ∈ C, c′ = ωc must also be a codeword c′ ∈ C. All linear codes are additive but
not vice versa. For binary codes, the two notions coincide, but not for other fields. The
length of a linear code is always K = 4k for some k ≤ n. An additive code with K = 4k

can be specified by an n× k generator matrix G with all codewords given by

c(x) = Gx ∈ Fn, x ∈ F k. (2.54)

For each additive code we can define a lattice in Cn = R2n as the pre-image of the
code under the map (ΓE)n/(2ΓE)n, or explicitly

Λ(C) = {~a+~b ω |~a,~b ∈ Zn, ~a+~b ω ≡ c (mod 2), c ∈ C} ⊂ ΓE ⊂ R2n. (2.55)

This is the analog of Construction A for codes over GF(4).
To define duality on the space of codes, we need to introduce a scalar product. There

are several natural choices. First, the so-called Euclidean scalar product of x, y ∈ Fn is
(x, y) =

∑
i xi yi. There is also a Hermitian version, (x, y)H =

∑
i x̄i yi. These two versions

are homogeneous and can be used to define duality on the space of linear codes. There is
a third, physically relevant scalar product,

x · y =
∑
i

x̄i yi + xi ȳi, x, y ∈ Fn. (2.56)

In all cases the algebra is over F . The dual code C⊥ consists of all codewords orthogonal
(with respect to a given inner product) to all codewords of C. The code is called self-
orthogonal if C ⊂ C⊥ and self-dual if C = C⊥. Linear self-dual codes under the Euclidean
( , ) and Hermitian ( , )H products form the code families known as 4E and 4H. Additive
codes self-dual under the Hermitian product (2.56) make up to family 4H+. It is easy to
see that 4H ⊂ 4H+.

The Construction A lattice of an additive self-dual code 4H+ is an integral lattice in
R2n. It is not self-dual because ΓE is not self-orthogonal, and (ΓE)∗ includes points outside
of ΓE, although 2 ΓE ⊂ (ΓE)∗. If the Hamming weight w(c) of all codewords c ∈ C is even,
the code is called even. The Construction A lattice Λ(C) of an even code is even. Even
self-dual codes are said to be of type II, and belong to the family 4H+

II . Otherwise, if some
of the weights w(c) are odd, the codes are referred to as odd, or type I, and are in the
family 4H+

I .
For codes over GF(4) one can introduce an enumerator polynomial exactly as in the

binary case via (2.19), with the Hamming weight w(c) defined above. The MacWilliams
identity relates the weight enumerators of the original and dual additive codes; it takes the
same form for 4E, 4H, and 4H+ [47–49]:

WC⊥(x, y) = 2n−kWC
(
x+ 3y

2 ,
x− y

2

)
. (2.57)

Enumerator polynomials of self-dual codes are invariant under

x→ x+ 3y
2 , y → x− y

2 (2.58)
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and therefore are in the polynomial ring P(W1,W2) generated by [50]

W1 = x+ y and Wi2 = x2 + 3y2. (2.59)

Here W1 is easy to recognize as the enumerator polynomial of the simplest [1, 1, 1] self-dual
additive code with only one non-trivial codeword c = (1), while Wi2 is the enumerator
polynomial of a linear “repetition” code over F with the generator matrix GT = (1, 1).

If the self-dual code is even, the enumerator polynomial is additionally invariant under
y → −y, in which case it is a polynomial in Wi2 and

Wh6 = x6 + 45x2y4 + 18y6. (2.60)

Here Wh6 is the weight enumerator of the hexacode, introduced below.
Additive codes over GF(4) are defined to be equivalent if they are related to each other

by a permutation of their “letters” (components of the codewords), conjugation of some
“letters” ω ↔ ω̄, and multiplication of some “letters” by ω or ω̄. The same operation
should be applied to all codewords of the code. In terms of the corresponding lattice Λ(C)
these are isomorphisms which permute C planes inside R2n, and within each plane permute
1, ω = e2πi/3, ω = e−2πi/3 in an arbitrary order. There are a total of 3!n! elements in the
equivalence group.

To calculate the theta series for Λ(C), it is sufficient to consider each C plane inside
R2n individually and sum either over the triangular lattice {2(a + bω) | a, b,∈ Z} or over
the triangular lattice shifted by half-vector {1 + 2(a+ bω) | a, b,∈ Z},

φ0(τ) = θ3(q)θ3(q3) + θ4(q)θ4(q3)
2 ,

φ1(τ) = θ3(q)θ3(q3)− θ4(q)θ4(q3)
2 , (2.61)

ΘΛ(C)(τ) = WC(φ0, φ1), q = e2πiτ . (2.62)

Under modular transformation τ → τ + 1, φ0 is invariant while φ1 changes sign. Hence
ΘΛ(C) is invariant under τ → τ + 1 if and only if the code (and corresponding lattice)
is even. The functions φ0, φ1 also change covariantly under the modular transformation
τ → −1/τ ,

φ0(−1/τ) = −iτ√
3
φ0(τ/3) + 3φ1(τ/3)

2 , (2.63)

φ1(−1/τ) = −iτ√
3
φ0(τ/3)− φ1(τ/3)

2 . (2.64)

These transformations coincide with (2.58) after rescaling τ → τ/
√

3. Upon rescaling the
argument to t =

√
3τ , the theta function for a self-dual C would be covariant under

Θ̃(−1/t) = (−it)nΘ̃(t) where Θ̃(t) := ΘΛ(C)(t/
√

3), (2.65)

which reflects that the rescaled lattice Λ(C)/31/4 is isodual, i.e. it is equal to its dual
(Λ(C)/31/4)∗ after a rotation by π/2 in each C plane. Alternatively, one can characterize
Λ(C) of a self-dual code C as a 3-modular lattice [39].
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Hexacode and Coxeter-Todd lattice. The hexacode is the unique linear even self-dual
[6, 3, 4] code of type 4H defined by the following generator matrix

GT =

 1 0 0 1 ω ω

0 1 0 ω 1 ω

0 0 1 ω ω 1

 . (2.66)

As an additive self-dual code from 4H+ it would be denoted as [6, 6, 4]. Later in the text
we will refer to it as h6. Its enumerator polynomial is given by (2.60). Since it is a linear
code, all coefficients of Wh6 except for the first one are divisible by three.

The Construction A lattice Λ(h6) ⊂ R12 is the Coxeter-Todd lattice K12, an even
lattice with no roots (vectors of length 0 < `2 ≤ 2) in twelve dimensions. This follows from
the theta series

ΘK12(τ) = φ6
0 + 45φ2

0φ
4
1 + 18φ6

1 = 1 + 756q2 + 4032q3 +O
(
q4
)
. (2.67)

There are many other results concerning codes over GF(4), analogous to results about
binary codes, including a series of linear programming bounds. We will present these
bounds later in the text after making the connection between classical codes over GF(4)
and binary quantum stabilizer codes.

3 Quantum error-correcting codes

In this section we introduce quantum stabilizer codes and establish their relation to
Lorentzian integer lattices. Subsection 3.1 is mostly pedagogical; it introduces quantum
stabilizer codes and explains their relation to classical codes over GF(4). Only the very
last part of this section, where we discuss real self-dual stabilizer codes and their refined
enumerator polynomials, is original. Subsection 3.2 explains the relation of stabilizer codes
to Lorentzian lattices, which is the central ingredient in our construction.

3.1 Quantum additive codes

Let us consider a system consisting of n quantum spins, or qubits. Initially the system is
in some state ψ ∈ H. Because of unwanted interactions with the environment the system
changes its quantum state ψ → ψ′ in some unpredictable way. This is quantum error.
We would like to devise a protocol to return the system to its original state. That would
be quantum error correction. Clearly this can not be done in full generality, so we must
restrict to quantum errors of a particular type. For a system consisting of n distinct physical
qubits, one usually assumes a random interaction with the environment that affects at most
t qubits at once. Furthermore, the correction of quantum errors is possible only for certain
states that belong to a special code subspace ψ ∈ HC ⊂ H.

Interactions with the environment can be described as linear operations acting on ψ.
More accurately, one should speak of a quantum channel acting on a density matrix, but for
simplicity we will assume the system always remains in a pure state. Operators describing
interactions with the environment form a linear space. We can choose a basis Ei for this
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space, a basis of quantum errors. Crucially, to ensure reversibility of quantum errors due
to an arbitrary linear combination of the Ei, it is necessary and sufficient that each Ei,
restricted to HC , be nondegenerate (reversible) and that the images of HC do not overlap,

EiHC ∩ EjHC = 0, i 6= j. (3.1)

This is the Knill-Laflamme condition [51]. The reduction of all possible errors to a handful
of linear operators Ei is called a discretization of quantum errors [52].

The Knill-Laflamme condition has a classical counterpart: correctable errors of a linear
classical code must produce different results. Consider two codewords of a binary classical
code c1, c2 ∈ C, and assume they are subject to errors, c′1 = c1 + ei, c′2 = c2 + ej . For both
errors ei, ej , to be correctable, c′1 and c′2 must always be distinct, which is the classical
analog of (3.1). Indeed, if c′1 = c′2 (all algebra is mod 2),

ei + ej = c1 + c2 ∈ C. (3.2)

In this case the error ei+ej is annihilated by the parity check matrix, meaning that both ei
and ej will yield the same error correction protocol, which will fail to undo at least one of
errors. The similarity of the quantum case comes from the linearity of quantum mechanics,
i.e. the possibility to represent any quantum error as a linear combination of the Ei.

There is one important exception when (3.1) does not have to apply — when two
distinct errors act identically on HC . In the classical case that would mean that the errors
are the same, but in the quantum case the errors could act differently on H\HC . A code
for which all correctable errors satisfy (3.1) is called non-degenerate.

The condition c′1 6= c′2 in section (2.1) leads to the classical Hamming bound (2.9).
There is a quantum version of the Hamming bound, which is as follows. The linear space
of quantum errors which affect exactly l qubits is spanned by 3l tensor products of Pauli
matrices (the identity being excluded, as we want all l qubits to be affected). Hence the
total number of errors Ei, including the trivial one E1 = I, affecting up to t qubits is

Vq(t, n) =
t∑
l=0

n!
l!(n− l)!3

l. (3.3)

Each error Ei restricted to HC is reversible, and therefore dim(EiHC) = dim(HC). Assum-
ing the code is nondegenerate, the images EiHC must not overlap. The total dimension of
all images can not exceed the dimension of full Hilbert space, yielding

dim(HC)Vq(t, n) ≤ dim(H) = 2n. (3.4)

This is the quantum Hamming bound for codes correcting arbitrary quantum errors af-
fecting up to t qubits [53]. A code saturating this bound is called perfect. Often the code
subspace HC will describe k logical qubits, in which case dim(HC) = 2k. From (3.4) it
follows that to encode k = 1 logical qubit and to be able to recover the state after any
quantum error affecting t = 1 physical qubit, one needs n = 5 physical qubits. For ex-
ample, the 5-qubit protocol of Laflamme at el. [54] introduced below is a perfect quantum
error-correcting code.
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The quantum Hamming distance d is the minimal number of physical qubits which
need to be affected to map a state from HC into HC . A quantum error-correcting code
characterized by n, k, and d is denoted [[n, k, d]]. Such a code can correct for any error
affecting up to t = [(d− 1)/2] qubits.

To illustrate how quantum error-correcting codes work, we consider an oversimplified
situation in which k logical qubits are implemented as k physical qubits, which are isolated
in a lab as part of a perfect noiseless quantum computer. We additionally consider n − k
auxiliary qubits located in a different lab in an imperfect environment. States of all k +
(n − k) = n qubits can be represented in the conventional binary basis (0 = spin up, 1 =
spin down)

|a1 . . . an〉 = |a1 . . . ak〉 ⊗ |ak+1 . . . an〉 ∈ H, ai = {0, 1}. (3.5)

Auxiliary qubits will be initialized in the state |0n−k〉, and will be left intact, while the
quantum computer performs unitary evolution of the first k “logical” qubits

ψ = ψl ⊗ |0n−k〉. (3.6)

Because the auxiliary lab is imperfect, after some time the state of the last n − k qubits
will evolve to

ψ = ψl ⊗ ψa, (3.7)

where ψl is the desired result of unitary evolution produced by the quantum computer, while
ψa is some unknown random state resulting from interactions with the environment. This
example may appear unrealistic because we have physically isolated the logical qubits from
the environment, the systems are not entangled, and therefore state of the auxiliary qubits
does not matter. All measurements performed in the first lab will be insensitive to ψa, and
our insistence on including the auxiliary qubits in our considerations is inconsequential.
Nevertheless, it is instructive to ask a question: can one devise a protocol to bring the
corrupted state (3.7) to the desired form (3.6). This is easy to do: one simply needs
to re-initialize the auxiliary system. This can be done by first measuring the state of
auxiliary qubits in the computational up-down basis, which will project the total state
onto ψl ⊗ |ak+1 . . . an〉, and then applying the recovery operator

R = I2k×2k ⊗ ((σz)ak+1 ⊗ · · · ⊗ (σz)an) , (σz)0 ≡ I. (3.8)

Measuring ψa in the computational basis, called syndrome measurement, and then applying
R, is analogous to evaluating (2.4) in classical case and using it to reconstruct the original
codeword.

In our example, the code subspace HC includes all states of the form ψl ⊗ |0n−k〉, and
has dimension 2k. It can be defined as the subspace invariant under the action of σz acting
on any of the auxiliary spins,

gi = I⊗ · · · ⊗ I︸ ︷︷ ︸
k+i−1

⊗σz ⊗ I⊗ · · · ⊗ I︸ ︷︷ ︸
n−k−i

, 1 ≤ i ≤ n− k, (3.9)

giHC = HC . (3.10)
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We additionally notice that gi are unitary, nilpotent, traceless, and commute with
each other,

gi gj = gj gi, (gi)2 = I, (gi)†gi = I, Tr(gi) = 0. (3.11)

They form an abelian group, which acts trivially on HC . The group generated by the gi is
called the stabilizer of HC . Crucially, the generators gi define the basis |ak+1 . . . an〉 in the
quotient H/HC as the mutual eigenbasis of the gi with eigenvalues 1− 2ak+i.

The code described above is degenerate. Different nontrivial combinations of Pauli
matrices acting on the n− k auxiliary qubits may act trivially on |0n−k〉. This can be seen
differently. The dimension of HC is 2k while the total dimension is 2n. Thus naively only
2n−k errors are correctable, while in fact all

∑n−k
t=0 Vq(t, n− k) = 4n−k operators acting on

the auxiliary qubits are correctable.
The discussion above applies to the trivial case when the logical qubits are isolated

from the environment. Now we want to consider the situation when all n physical qubits
are subject to noise, and we want to use them to encode k logical qubits with the possibility
to recover at least some errors. To that end we perform a unitary transformation on H, and
define new stabilizer group via gi → UgiU †. Our code subspace is an image of ψl ⊗ |0n−l〉
under U . If U is nontrivial, all states in the code subspace will be highly entangled. To
correct the error, we can perform projective measurements of the gi, identify corresponding
eigenvalues λi = 1− 2ak+i and then act by

R =
n−k∏
i=1

gak+i

i (3.12)

on the projected state. As a result of these operations we are guaranteed to obtain a state
from the code subspace. We will discuss later which errors can be corrected in this way.

The class of quantum error-correcting codes known as additive or stabilizer codes
exploits the idea outlined above with the following restriction. The generators of the
stabilizer group gi are chosen to be tensor products of Pauli operators and identity operators
acting on individual spins

g(ν) = ε (σν1 ⊗ · · · ⊗ σνn) , νi ∈ {0, 1, 2, 3}, 1 ≤ i ≤ n. (3.13)

Here σ0 is the identity matrix, σ1,2,3 are Pauli matrices and ε = ±1 or ε = ±i to ensure g2 =
I. With this definition all properties are automatically satisfied except for commutativity.
The form of (3.13) can be understood as a restriction on the unitary transformation U . It
is customary to rewrite (3.13) in a slightly different form, using two binary vectors α, β of
length n,

g(α, β) = iα·βε ((σx)α1 ⊗ · · · ⊗ (σx)αn)
(
(σz)β1 ⊗ · · · ⊗ (σz)βn

)
, α, β ∈ (Z2)n. (3.14)

The coefficient ε = ±1 can be chosen at will. To describe k logical qubits we would need
n − k generators of the stabilizer group, or n − k vectors (αi, βi) for 1 ≤ i ≤ n − k.
Commutativity of a pair of generators requires

gi gj = gj gi ⇔ αi · βj − αj · βi ≡ 0 mod 2. (3.15)
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Because we are working mod 2, the minus sign in front of the second term can be flipped. It
is convenient to combine the vectors (αi, βi) into an (n−k)×n binary “parity check” matrix

H =

 α1 β1
. . . . . .

αn−k βn−k

 , (3.16)

and introduce a 2n× 2n matrix

g =
(

0 I
I 0

)
. (3.17)

Then the commutativity condition (3.15) is HgHT = 0. Multiplying H by an invertible
binary matrix from the left would not change the stabilizer group but only the choice of
the generators gi. All operations with H are to be understood mod 2.

The operators on H commuting with the full stabilizer group are operators acting
on ψl in our example above. These are “logical operations” — they change states from
the code subspace into other states in the code subspace. Considering operators of the
form (3.14), there are exactly 2k generators of such transformations corresponding to 2k
linearly independent vectors (α, β). In the example above those would be operators σz and
σx acting on individual logical qubits.

We introduce the binary “generator matrix” G as a matrix of maximal rank satisfying

H gG ≡ 0 mod 2. (3.18)

Its transpose GT will have n+ k rows, n− k of which span the same space as the rows of
H, while the remaining 2k rows are generators of logical operations on HC ,

GT =

 α1 β1
. . . . . .

αn+k βn+k

 . (3.19)

The similarity with classical codes is striking at this point. We can identify rows of GT as
codewords c ∈ Z2n

2 . Assuming algebra over Z2, acting on G from the right by any invertible
(n+ k)× (n+ k) binary matrix would not change the code, exactly as in the classical case.
That is why we can always assume that the first n− k rows of GT coincide with H.

At this point we would like to introduce the quantum Hamming weight w(c) = w(α, β)
as the number of qubits affected by g(α, β). For binary vectors (α, β) this can be written
as follows

w(α, β) = α2 + β2 − α · β. (3.20)

In the classical case we would define the Hamming distance of the code as the minimal
weight of all 2n+k − 1 linear combinations of the rows of GT understood mod 2, with the
exception of the trivial one. In the quantum case the situation is more nuanced. The
rows of H and their linear combinations, understood in the sense of (3.14), are elements
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of the stabilizer group. They do not introduce errors as they do not affect states from the
code subspace. Therefore the Hamming distance of a quantum stabilizer code is defined
as follows:

d = min w(c), c = Gx, x ∈ (Z2)n+k, c /∈ Im(H). (3.21)

A quantum stabilizer code of Hamming distance d is said to be of type [[n, k, d]]. It will
protect against any quantum error affecting at most t = [(d− 1)/2] qubits. Indeed for any
two such errors Ei, Ej their linear combination Ei − Ej would affect strictly fewer than d
qubits and therefore either (3.1) will be satisfied or Ei and Ej will act identically on HC .

Since the stabilizer generators are nilpotent, g2 = I, summing them up yields a pro-
jector on HC ,

P =
n−k∏
i=1

I + gi
2 = 1

2n−k
∑

~x∈Zn−k
2

n−k∏
i=1

gxi
i . (3.22)

In practice, to find states from HC in terms of the computational basis, it suffices to act
by P on |0n〉.

In the literature, stabilizer codes are often specified by writing down stabilizer gener-
ators as products of Pauli matrices, denoted simply as X,Y,Z, and the identity I.

Example: perfect LMPZ [[5, 1, 3]] code. The [[5, 1, 3]] code was introduced by
Laflamme, Miquel, Paz and Zurek [54]. We use an equivalent representation from [55],
which specifies the code through the following four stabilizers.

g1 X Z Z X I
g2 I X Z Z X
g3 X I X Z Z
g4 Z X I X Z

(3.23)

The corresponding parity check and generator matrices are

H =


1 0 0 1 0 0 1 1 0 0
0 1 0 0 1 0 0 1 1 0
1 0 1 0 0 0 0 0 1 1
0 1 0 1 0 1 0 0 0 1

 , GT =

 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0
. . . . . . . . . .

 . (3.24)

For the generator matrix GT , we only explicitly write the two additional rows linearly
independent from H. Linear combinations of the rows of GT include many vectors of
minimal Hamming weight 3, e.g. (1, 1, 1, 0, 0 | 05).

The code subspace is spanned by two vectors |0〉l and |1〉l, with two algebraically-
independent logical operators Xl,Zl represented by X⊗X⊗X⊗X⊗X and Z⊗Z⊗Z⊗Z⊗Z.
In terms of the physical basis

|0〉l = 1
4
(
|00000〉+ |01010〉+ |10100〉 − |11110〉 (3.25)

+ |01001〉 − |00011〉 − |11101〉 − |10111〉
+ |10010〉 − |11000〉 − |00110〉 − |01100〉
− |11011〉 − |10001〉 − |01111〉+ |00101〉

)
.
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It can be checked that all four generators gi leave |0〉l invariant. The state |1〉l can be
obtained by flipping all spins in (3.25). Many other details, including the circuit represen-
tation of the recovery protocol, can be found in the pedagogical review [55].

The formulation of stabilizer codes given above was developed in [56] and is reviewed
in the textbook by Nielsen and Chuang [52]. It suggests a close relation between quantum
stabilizer codes and classical linear codes. This relation was further developed in a seminal
paper by Calderbank, Rains, Shor and Sloane [50] who reformulated quantum binary stabi-
lizer codes as classical additive self-orthogonal codes over GF(4). There is an isomorphism
under addition between GF(4) and Z2

2, called the Gray map,

0↔ (0, 0), 1 ↔ (1, 1),
ω ↔ (1, 0), ω̄ ↔ (0, 1). (3.26)

By combining the i-th component of α ∈ Zn2 and β ∈ Zn2 we can rewrite (α, β) as a vector
with n components, c ∈ GF(4)n. Then a straightforward check confirms that

α1 · β2 + α2 · β1 = 0 ⇔ c̄1 · c2 + c1 · c̄2 = 0, (3.27)

where the first equation is understood in terms of algebra over GF(2) = Z2 while the second
equation is over GF(4). Any vector c ∈ GF(4)n is orthogonal to itself. Therefore stabilizer
codes of the form (3.14), (3.16) are in one-to-one correspondence with self-orthogonal ad-
ditive codes over GF(4) with the scalar product (2.56). This class of codes is denoted by
4H+ in section 2.2. A quantum [[n, k, d]] code corresponds to a classical [n, n− k, d̃] code,
but the relation between d and d̃ is nontrivial. The quantum Hamming distance d is the
smallest Hamming weight of the GF(4) code [n, n+k,

≈
d], which is dual to [n, n−k, d̃], after

removing all codewords of [n, n− k, d̃] ⊂ [n, n+ k,
≈
d] from consideration.

Self-dual classical codes [n, n, d] over GF(4) are a special case. They correspond to
stabilizer codes with k = 0, which means that the code subspace is one-dimensional. In
this case the quantum state ψC ∈ HC contains no information and one can not speak of
quantum error correction. Rather k = 0 stabilizer codes should be interpreted as quantum
error detection protocols: they can detect any error acting on up to d − 1 qubits, where
d is the largest quantum Hamming weight of all linear combinations of H (except the
trivial one),

d = min w(c), c = Gx, x ∈ Zn2 , x 6= 0n, G = HT . (3.28)

In this case the classical and quantum Hamming distances coincide and self-dual stabilizer
[[n, 0, d]] codes are non-degenerate. They are in one-to-one correspondence with classical
self-dual [n, n, d] codes of type 4H+.

The equivalence group of classical codes over GF(4) can be understood quantum me-
chanically as the group of unitary transformations acting on individual qubits in such a way
that the stabilizer generators remain of the form (3.14). This group of transformations is
called the Clifford group or local Clifford group (LC). The generators of the Clifford group
include permutations of qubits, cyclic permutations of Pauli operators (multiplication by
ω in GF(4) language), and the exchange of σx and σz generated by the Hadamard matrix
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(conjugation ω ↔ ω̄). Assuming that the physical qubits are subject to uncorrelated noise,
these are natural symmetries, which define the group of equivalences of stabilizer codes.

The connection to classical codes over GF(4) enables many results developed for clas-
sical codes to be applied to the quantum case, and vice versa. In what follows we mostly
focus on self-dual stabilizer codes, or equivalently on self-dual 4H+ classical codes over
GF(4). In addition to the (total) Hamming weight w introduced in section 2.2 we can
introduce weights that count the number of individual “letters” in the codeword. Instead
of using the GF(4) “alphabet” 1, ω, ω̄ we will use the labels of the Pauli matrices σx,y,z of
the corresponding stabilizer element g(α, β). Using the Gray map c = (α, β) (3.26) we can
write down explicit formulas for the weights

wx(c) = ~1 · α, wy(c) = α · β, wz(c) = ~1 · β, (3.29)

and w(c) = wx(c) + wy(c) + wz(c). Then, in addition to the enumerator polynomial (2.19),
we can define the refined enumerator polynomial (REP)

WC(x, y, z) =
∑
c∈C

xn−w(c)ywy(c)zwx(c)+wz(c). (3.30)

One can also define the full enumerator polynomial WC(t, x, y, z) =∑
c∈C t

n−w(c)xwx(c)ywy(c)zwz(c), but this will not play an important role in what fol-
lows. Under a duality transformation, the refined enumerator polynomial of an [n, k, d]
code changes as follows:

WC⊥(x, y, z) = 2n−kWC
(
x+ y + 2z

2 ,
x+ y − 2z

2 ,
x− y

2

)
. (3.31)

Thus for self-dual codes the refined enumerator polynomial is invariant under

x→ 1
2(x+ y + 2z), y → 1

2(x+ y − 2z), z → x− y
2 . (3.32)

Setting z = y reduces (3.31) and (3.32) to (2.57) and (2.58). Enumerator polynomials and
the MacWilliams identity (3.31) can also be defined at the level of quantum stabilizer codes
without any reference to codes over GF(4) [57–59].

Focusing on self-dual codes 4H+, their total number is [27, 50]

n∏
j=1

(2j + 1). (3.33)

In section 2.2 we introduced even codes 4H+
II , those whose codewords all have even Hamming

weight. They exist only when n is even, and their total number is

n−1∏
j=0

(2j + 1), n ≡ 0 (mod 2). (3.34)

Real codes make up another class of codes, which is central to our considerations. A
stabilizer code is called real if all generators g(c), c ∈ C, of the stabilizer group are real.
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This nomenclature was introduced in the context of quantum codes in [59], where it was
shown that any stabilizer code has an equivalent real code. Equivalence is defined with
respect to the Clifford group defined above. This result is crucial, because it shows that
modulo equivalences, real codes encompass all codes. Since the Pauli matrices σx, σz are
real and σy is purely imaginary, a code is real if and only if wy(c) of all codewords is even.
We denote the space of real self-dual codes over GF(4) by 4H+

R . Their total number is

n−1∏
j=0

(2j + 1). (3.35)

While this formula is the same as (3.34), the spaces 4H+
II and 4H+

R are not isomorphic.
The former is defined for even n, while the latter exists for any n. Refined enumerator
polynomials of real self-dual codes, besides being invariant under (3.32), must also be
invariant under y → −y. They are polynomials in the ring P(W1,W2,W3) generated by

W1 = x+ z, W2 = x2 + y2 + 2z2, W3 = x3 + 3xz2 + 3y2z + z3, (3.36)

which satisfy W (1, 0, 0) = 1 and have positive integer coefficients. The polynomials
W1,W2,W3 are refined enumerator polynomials of three particular codes introduced below
in section 6. In practice, instead of W3 it is convenient to use R = (x − z)(y2 − z2).
The rings of invariant refined enumerator polynomials for 4H+ and 4H+

II can similarly be
described explicitly.

3.2 New construction A: Lorentzian lattices

The connection to classical codes over GF(4) provides a way to associate a stabilizer
[[n, k, d]] code to an integral Euclidean lattice in R2n, as described in section 2.2. This
lattice is not in general self-dual, even when the underlying code is self-dual, and for this
reason it is not connected in any obvious way to a CFT. To obtain a self-dual lattice from
a self-dual code over GF(4), we introduce a new version of Construction A for 4H+ codes.

Starting from a code of type 4H+ and rewriting its codewords as vectors c = (α, β) ∈
C ⊂ Z2n

2 using the Gray map, we define a corresponding lattice using Construction A for
binary codes,

Λ(C) = {v/
√

2 | v ∈ Z2n, v = c, (mod 2), c ∈ C}, Γ∗ ⊂ Λ(C) ⊂ Γ = (Z/
√

2)2n.

The lattice Λ(C) should be understood as a lattice in Lorentzian space Rn,n with the
metric (3.17). Then the following crucial results follow. The lattice of a dual code Λ(C⊥)
is equal to the dual lattice, Λ(C⊥) = Λ(C)∗. If C is self-orthogonal, the lattice is integral,
Λ(C) ⊂ Λ(C)∗. If C is self-dual, then Λ(C) is self-dual. There is a one-to-one correspondence
between lattices Λ(C) ⊂ (Z/

√
2)2n ⊂ Rn,n and codes C of type 4H+.

Stabilizer codes are self-orthogonal codes of type 4H+ and therefore correspond to
integral lattices. This correspondence provides a geometric way to interpret various aspects
of stabilizer codes. Suppose C is an Abelian stabilizer group generated by the rows of (3.16)
(or equivalently, C is a self-orthogonal code from 4H+). The corresponding lattice Λ(C) ⊂
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(Z/
√

2)2n ⊂ Rn,n is then integral. The number of logical qubits k is equal to half the
number of generators in the abelian group Λ(C)∗/Λ(C) (i.e. the number of dimensions of
the torus Λ(C)∗/Λ(C)). We define the quantum Hamming norm on the space of vectors
~v = (α, β) ∈ Rn,n via (3.20), |v|2q = α2 + β2 − α · β. The quantum Hamming distance of
the [[n, k, d]] code C is

d = min
v∈Λ(C)∗/Λ(C)

v 6=0

|v|2q , (3.37)

where the norm on the quotient is understood to be the minimal value of the norm on all
elements in the preimage.

A particular class of stabilizer codes, the Calderbank-Shor-Steane (CSS) codes, can
easily be understood geometrically. In this case the Lorentzian lattice Λ(C) is the direct
sum of two Euclidean lattices Λ(C) = Λ2 ⊕ (Λ1)∗, which additionally satisfy Λ2 ⊂ Λ1.
Furthermore, Λ(C) is automatically integral, Λ∗(C) = Λ1 ⊕ (Λ2)∗ ⊃ Λ(C). We additionally
require (

√
2Z)n ⊂ Λ1,Λ2 ⊂ (Z/

√
2)n such that Λ1,2 are the Construction A lattices of some

classical binary codes [n, k1,2, d1,2]. The number of logical qubits k = k1−k2 is equal to the
dimension of the torus Λ∗1/Λ2 and the quantum Hamming distance of the CSS stabilizer
code is the smallest length of any nontrivial vector in Λ1/Λ2 or (Λ2)∗/(Λ1)∗ calculated
with the Euclidean metric. It is in any case not smaller than min(d1, d

∗
2), where d∗2 is the

Hamming distance of C⊥2 .

Example: Steane [[7, 1, 3]] code. The Steane [[7, 1, 3]] quantum stabilizer code is a
CSS code with C1 being the Hamming [7, 4, 3] code and C2 = C⊥1 being its dual, the
Hamming [7, 3, 4] code. In this case k1 = 4, k2 = 3, d = 3, and the quantum code protects
k = 1 logical qubit against any one-qubit errors. Geometrically, Λ1/Λ2 = (Λ2)∗/(Λ1)∗ is
the quotient of the weight lattice of E7 over the root lattice of E7. As a group, the quotient
is Z2, which corresponds to Pauli operators σx,z acting on the single logical qubit.

A Lorentzian lattice Λ ⊂ Rn,n with metric |v|2 = p2
L − p2

R for ~v = (~kL,~kR) ∈ Rn,n can
be characterized by the Siegel theta-function

ΘΛ(τ, τ̄) =
∑
v∈Λ

q p
2
L/2 q′

p2
R/2, q ≡ e2πiτ , q′ ≡ e−2πiτ ′ , (3.38)

which is a holomorphic function of two complex variables q, q′, or, equivalently τ , τ ′. The
implicit assumption in (3.38) and in the rest of this paper is that the Lorentzian lattice
is simultaneously equipped with the Euclidean metric. In (3.38) we assumed a diagonal
Lorentzian metric, while previously it was given by (3.17). The two metrics are related by
the following transformation which preserves the Euclidean metric on ~v = (α, β) = (~kL, ~kR),

~kL = α+ β√
2
, ~kR = α− β√

2
, (3.39)

where we use different letters (Greek or Latin) and a vector arrow (or lack thereof) to imply
the form of the metric tensor.

– 29 –



J
H
E
P
0
3
(
2
0
2
1
)
1
6
0

When the lattice is even, it is trivially invariant under the simultaneous shift τ → τ+1,
τ ′ → τ ′ + 1. When it is self-dual (unimodular) it is also covariant under τ → −1/τ ,
τ ′ → −1/τ ′, changing as

ΘΛ(−1/τ,−1/τ ′) = (ττ ′)n/2 ΘΛ(τ, τ ′). (3.40)

Thus, the Siegel theta-function of an even self-dual Lorentzian lattice transforms covari-
antly under the full PSL(2,Z) group acting simultaneously on τ and τ ′.

Similarly to the Euclidean lattices associated with binary and GF(4) codes discussed in
sections 2.1 and 2.2, the Siegel theta function of a lattice Λ(C) associated with the stabilizer
code C is determined in terms of its refined enumerator polynomial

ΘΛ(C)(τ, τ̄) = 2−nWC
(
b b′ + c c′, b b′ − c c′, a a′

)
, a′, b′, c′ = a, b, c(τ ′). (3.41)

The theta functions a, b, c are defined in the text after (2.33). The invariance of ΘΛ(C)(τ, τ ′)
under τ → τ + 1, τ ′ → τ ′ + 1 and τ → −1/τ , τ̄ → −1/τ ′ easily follows from the invariance
of WC(x, y, z) under y → −y and (3.32) correspondingly.

Comparing Construction A from section 2.2 and the new Lorentzian Construction A
defined above, we find that a classical self-orthogonal (self-dual) code C over GF(4) can
be associated with both a Euclidean integral (integral) lattice and a Lorentzian integral
(self-dual) lattice. These Euclidean and Lorentzian lattices are related to each other. In
terms of the Euclidean vector ~v = (α, β) = (~x, ~y), the GF(4) Hamming weight, which is
the same as the quantum Hamming weight, is

|v|2q = α2 + β2 − α · β = x2 + 3y2. (3.42)

Therefore the Siegel theta function will become the theta function of the Euclidean lat-
tice (2.55) upon the substitution τ ′ = −3τ , or q′ = q3. Indeed, it is straightforward to
check using Jacobi theta function identities that in this case

b b′ + c c′

2 → φ0(τ), b b′ − c c′

2 ,
a a′

2 → φ1(τ), (3.43)

where φ0,1 were given in (2.62). We postpone giving explicit examples until sections 6.2, 6.6.
Besides the Euclidean metric x2 +3y2 associated with the Hamming weight of a GF(4)

code, the conventional Euclidean metric x2 + y2 may also be considered. It is associated
with the binary Hamming distance db(c) = wx(c) + 2wy(c) + wz(c), with respect to which
the original self-dual GF(4) code C via the Gray map is interpreted as an isodual binary
code. Given that the generator matrix Λ of the Lorentzian Λ(C) satisfies

ΛT gΛ ∈ GL(2n,Z), (3.44)

and g (3.17) can be interpreted as an orthogonal rotation of R2n, we immediately conclude
that Λ(C), understood as a Euclidean lattice with metric x2 + y2, is isodual. The theta
function of this Euclidean lattice follows from ΘC(τ, τ ′) upon the substitution τ ′ = −τ .

Looking ahead, the theta function ΘC(τ,−τ) will turn out to count dimensions of the
CFT operators. In full analogy with the case of classical binary codes, for which we defined

– 30 –



J
H
E
P
0
3
(
2
0
2
1
)
1
6
0

a lattice and sought to maximize the norm of its shortest vector, in the quantum case we
also want to maximize the Euclidean norm of the shortest nontrivial vector of Λ(C), which
defines the spectral gap of the theory. The same problem we encountered in the case of
binary codes also appears here: construction A Lorentzian lattices Λ(C) necessarily have
vectors of the form (α, β) = (2, 02n−1)/

√
2, resulting in operators of conformal dimension

∆ = (p2
L+p2

R)/2 = 1. To partially resolve this problem we employ the procedure of twisting
by a half-vector, which will yield a new even self-dual Lorentzian lattice Λ′ starting from the
original lattice Λ, given a vector 2~δ ∈ Λ with odd norm δ2. The procedure is identical to the
one described in section 2.1, with the only change that scalar product is now understood
to be defined by the Lorentzian metric.

In the context of Construction A code lattices Λ(C), we can take the same vector
~δ = ~1/(2

√
2) as in the binary case. Notice that for any ~u = (α, β)/

√
2 ∈ Λ(C), the scalar

product with ~δ gives

2~δ · ~u =
~1 · α+~1 · β

2 = wx(c) + wz(c)
2 , c = (α, β) ∈ C, (3.45)

and therefore 2~δ ∈ Λ(C) for a real self-dual C if and only if the code C is also even,
C ∈ 4H+

II ∩ 4H+
R . Additionally, for δ2 to be odd, n mod 4 should be odd. Provided both

of these conditions are satisfied, the Siegel theta-function of the new lattice Λ′(C) will be
given by

ΘΛ′(C)(τ, τ ′) =
2n ΘΛ(C)+WC (bc′+cb′, cb′−bc′, 0) +WC(ab′, ab′, ba′)−WC(ac′,−ac′, ica′)

2n+1 .

(3.46)
When the code is self-dual and real WC (µ,±µ, ν) = WC(ν,±ν, µ) = WC(µ + ν,±µ ∓ ν, 0)
for any µ, ν. From here it follows that ΘΛ′(C)(τ, τ ′) is real, i.e. it is invariant under complex
conjugation, accompanied by τ ↔ τ ′ when n is divisible by four. Similarly, (3.46) changes
covariantly under modular transformation ΘΛ′(C)(−1/τ,−1/τ ′) = (ττ ′)n/2ΘΛ′(C)(τ, τ ′), pro-
vided C is also even. When additionally n mod 4 is odd, which is the condition for δ2 to be
odd, the Lorentzian lattice Λ′(C) is even, and accordingly the theta function ΘΛ′(C)(τ, τ ′) is
invariant under τ → τ+1, τ ′ → τ ′+1. Upon substituting a′, b′, c′ → a, b, c, expression (3.46)
reduces to (2.40).

4 Codes and CFTs

4.1 Narain CFTs

We start with a brief review of toroidal compactifications of string theory and the moduli
space of Narain CFTs. This topic is discussed in many textbooks including [60, 61].

As a warm-up we consider a particle of unit mass on a circle of radius R,

S =
∫
dt
ẋ2

2 . (4.1)

The classical EOM can be easily solved: x(t) = x(0)+p(0) t, where p = ẋ is the momentum.
At the quantum mechanical level, the wavefunction ψ(x) must be periodic, ψ(x) = ψ(x+
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2πR), which results in the quantum-mechanical momentum operator p̂ being quantized,
p = n/R, n ∈ Z where p now stands for the eigenvalue of p̂. The solution for x(t) should now
be understood as the solution of the EOM in the Heisenberg picture, x̂(t) = x̂(0) + p̂(0) t,
with the caveat that the operator x̂ is not well-defined. Since the points x and x+ 2πR are
equivalent, the algebra of operators consists of p̂(0) with eigenvalues n/R, and operators
eikx̂(0) for k = m/R, m ∈ Z.

Next let us consider a two-dimensional classical worldsheet theory describing the mo-
tion of n bosons XI on a torus Rn/(2πΓ), where Γ ⊂ Rn is a lattice and 2πΓ stands for
that lattice rescaled by 2π,

S = 1
4πα′

∫
dt

∫ 2π

0
dσ
(
Ẋ2 −X ′2 − 2BIJẊIX ′J

)
. (4.2)

As in the previous example, ~X(t, σ) and ~X(t, σ) + 2π~e must be physically equivalent for
any ~e ∈ Γ . The worldsheet spatial variable σ is periodic, and therefore ~X(t, σ + 2π) =
~X(t, σ)+2π~e. The antisymmetric B-field does not enter into the EOM, nor into the solution

~X(t, σ) = ~X(0, 0) + ~V t+ ~e σ + i

2
∑
n 6=0

an
n
e−in(t+σ) + bn

n
e−in(t−σ), (4.3)

but it affects the relation between the center-of-mass velocity and the total momentum

α′PI = 1
2π

∫ 2π

0
dσ
(
ẊI −BIJX ′J

)
= V I −BIJeJ . (4.4)

Going back to (4.3), we can represent ~X(t, σ) as a sum of left and right-moving components,

~X(t, σ) = ~XL(t+ σ) + ~XR(t− σ), (4.5)

~XL(t+ σ) =
~X(0, 0)

2 + α′
~pL
2 (t+ σ) + i

2
∑
n 6=0

an
n
e−in(t+σ), (4.6)

~XR(t− σ) =
~X(0, 0)

2 + α′
~pR
2 (t− σ) + i

2
∑
n 6=0

bn
n
e−in(t−σ). (4.7)

At the classical level, the vector α′(~pL − ~pR)/2 = ~e ∈ Γ, while α′(~pL + ~pR)/2 = ~V .
Quantum mechanically, since X(t, σ) is only defined up to an arbitrary shift by 2π~e ∈ Γ,
the total momentum (4.4) must be a vector from the dual lattice, ~P ∈ Γ∗, such that
~V = α′ ~P +B~e, and

~pL = α′ ~P + (B + I)~e
α′

, ~pR = α′ ~P + (B − I)~e
α′

, ~e ∈ Γ, ~P ∈ Γ∗. (4.8)

The set of vectors ~v = (~pL, ~pR) for all possible ~e ∈ Γ, ~P ∈ Γ∗ forms a lattice Λ in Rn,n.
To render ~pL, ~pR dimensionless, we use the conventional choice α′ = 2, in which case Λ
becomes even and self-dual. To verify first property we calculate

|~v|2 ≡ p2
L − p2

R = 4
α′
~P · ~e ∈ 2Z. (4.9)
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To verify self-duality it is convenient to perform a linear change of variables and represent
vectors ~v = (~pL, ~pR) as follows

v = (α, β), α = pL + pR√
2

, β = pL − pR√
2

. (4.10)

In (α, β)-coordinates the metric is given by (3.17). In this representation, and taking
α′ = 2, the generator matrix of Λ is

Λ =
(

2γ∗ Bγ
0 γ

)
/
√

2, (4.11)

where γ and γ∗ = (γ−1)T are the generator matrices of Γ and Γ∗ correspondingly. Then it
is straightforward to check that

ΛT gΛ = g ∈ GL(2d,Z), (4.12)

and therefore Λ is self-dual.
The primary vertex operators of the U(1)d × U(1)d CFT are indexed by elements of

the lattice Λ,

VpL,pR = : ei~pL· ~XL(z)+i~pR· ~XR(z̄) :, (~pL, ~pR) ∈ Λ. (4.13)

The partition function of this theory on the Euclidean worldsheet torus τ is

Z(τ, τ̄) = 1
|η(τ)|2d

∑
(~pL, ~pR)∈Λ

q p
2
L/2 q̄ p

2
R/2, q = e2πiτ , q̄ = e−2πiτ̄ . (4.14)

If Λ is an even self-dual lattice, Z(τ, τ̄) is modular invariant and the CFT is well-defined.
We emphasize that in constrast to (3.38), where τ and τ ′ were two independent holomorphic
variables, in (4.14) τ and τ̄ are related by complex conjugation.

Example: twist of a compact boson on a circle. The simplest example of a theory
of the type described above consists of a single boson X compactified on a circle of radius
R. The lattice Γ consists of points ~e = mR ∈ R1 for any integer m, and the vectors of the
dual lattice are ~P = n/R ∈ R1. Since there is only one boson X, the B-field is trivial. We
immediately find

pL = n

R
+ mR

2 , pR = n

R
− mR

2 . (4.15)

The set of vectors ~v = (~pL, ~pR) for all possible n,m ∈ Z defines an even self-dual lattice Λ
in R1,1. It is much simpler to represent Λ in the coordinates (4.10)

v(n,m) =
(
n
√

2
R

,
mR√

2

)
∈ R1,1, n,m ∈ Z. (4.16)

We would like to apply to this lattice the twist procedure (2.39). We start with a vector
δ = (2a/R, bR)/(2

√
2) with some integers a, b, which automatically satisfies 2~δ ∈ Λ. For
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δ2 to be odd, we must require ab/2 mod 2 = 1. Therefore either a = 2(2k+ 1) is even, but
not doubly-even, while b = 2l + 1 is odd, k, l ∈ Z, or the other way around. In the first
scenario we represent Λ = {v(n,m)|n,m ∈ Z} as the union of two sublattices

Λ = Λ0 ∪ Λ1, (4.17)
Λ0 = {v(2n,m) |n,m ∈ Z}, Λ1 = {v(2n+ 1,m) |n,m ∈ Z}, (4.18)

where 2δ · v(2n,m) is even and 2δ · v(2n+ 1,m+ 1) is odd. Then

Λ′1 = Λ1 + δ = {v(2n+ 1,m) + v(2k + 1, l + 1/2) |n,m, k, l ∈ Z}. (4.19)

The disjoint union of Λ0 and Λ′1 gives

Λ′ = {v(2n,m/2) |n,m ∈ Z}. (4.20)

In other words Λ′ is the lattice of the single boson compactified on a circle of radius R′ =
R/2. In the second scenario Λ′ is given by all vectors of the form v(n/2, 2m), n,m ∈ Z, or
R′ = 2R. Thus, starting from some radius R and applying the twist procedure repeatedly,
we arrive at the lattice of a boson compactified on a circle of radius R′ = 2kR for any
integer k.

In the example above, it was obvious that starting from a toroidal CFT (4.14) and
twisting by a vector δ yields another CFT of the same type. In fact, this construction
can be applied to general CFTs of this type, and can be extended to CFTs with fermionic
degrees of freedom as well [25, 62].

The CFT partition function (4.14) is manifestly invariant under orthogonal trans-
formations O(d) acting independently on ~pL ∈ Rd and ~pR ∈ Rd. They form a group
O(d)L × O(d)R of symmetries of the CFT, which is a subgroup of T-duality transforma-
tions. Thus, from the CFT point of view, two even self-dual lattices Λ and Λ′ related by
an O(d)×O(d) transformation are equivalent.

As we will see shortly, any even self-dual lattice Λ ⊂ Rd,d defines a CFT, with the
partition function given by (4.14). CFTs of this kind are called Narain CFTs. A central
mathematical result, which provides a description of the moduli space of all Narain theories,
is that all even self-dual lattices Λ ⊂ Rd,d are related to each other by boost transformations
in O(d, d). At the level of the generator matrix, and working in coordinates (4.10) such
that metric is given by (3.17),

Λ = O I, (4.21)

where O ∈ O(d, d) and the identity matrix I is the generator matrix of a particular even
self-dual lattice in Rd,d. The lattice generated by I has an obvious symmetry: any element
from O(d, d,Z) maps it into itself.2 Therefore the full Narain moduli space is given by

O(d, d)
O(d)×O(d)×O(d, d,Z) , (4.22)

2Here and in what follows O(d, d,Z) is defined as a group of integer 2d × 2d matrices F satisfying
FT gF = g.
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where the denominator represents the group of T-dualities — symmetries of the two-
dimensional CFT. The first two factors in the denominator act from the left and relate
physically equivalent lattices to each other. The last factor acts from the right. It is a
symmetry of a particular lattice, which maps different lattice points into each other.

Thus, CFTs with momentum lattices of the form (4.8) cover all possible Narain CFTs.
In other words, any Lorentzian even self-dual lattice with generator matrix (4.21) can be
brought into the form (4.8) by means of an appropriate O(d) × O(d) transformation. We
demonstrate this explicitly in appendix C.

4.2 Code CFTs

In section (3.2) we established that real self-dual codes C are in one-to-one correspondence
with even self-dual lattices (

√
2Z)2n ⊂ Λ(C) ⊂ Rn,n. In the previous section we saw that

any even self-dual lattice in Rn,n defines a Narain CFT. We therefore arrive at the main
point of this paper: real self-dual quantum stabilizer codes (or alternatively classical self-
dual codes of type 4H+

R ) define a family of Narain CFTs, which we will call code theories.
The partition function of a code theory is given by the Siegel theta-function ΘC of Λ(C)
divided by |η(τ)|2n, where ΘC is given in terms of the refined enumerator polynomial of C
via (3.41),

Z(τ, τ̄) =
WC

(
b b̄+ c c̄, b b̄− c c̄, a ā

)
2n|η(τ)|2n , (4.23)

a = θ2(q), b = θ3(q), c = θ4(q), ā = θ2(q̄), b̄ = θ3(q̄), c̄ = θ4(q̄).

The code equivalence group (Clifford group) includes arbitrary permutations of code-
word components and conjugations of the i-th component ω ↔ ω̄ (exchange of σiz and σix)
for arbitrary 1 ≤ i ≤ n. The permutations are orthogonal transformations Op ∈ O(n,Z)
which are diagonally embedded in the group O(n) × O(n) of T-duality transformations.
The exchange of σiz and σix is also an element of O(n) × O(n) represented by I × Oi,
where Oi ∈ O(n,Z) flips the sign of the i-th coordinate. In other words, the subgroup
of the equivalence group generated by these transformations is a subgroup of T-duality
transformations, which leave all physical properties of the CFT invariant. In what fol-
lows we will simply refer to these equivalence transformations as T-equivalences. It should
be immediately noted that the full equivalence group also includes cyclic permutations
σix → σiy → σiz → σix, which are not T-equivalences. Therefore, two code CFTs associ-
ated with equivalent codes are not necessarily equivalent as CFTs and may have different
physical properties. We will see many such examples below.

It is important to ask whether any other T-duality transformations from O(n)×O(n),
besides those mentioned above, can map a code theory into a theory based on an inequiv-
alent code. We show in appendix D that this is not the case, and therefore any pair of
T-dual code theories are equivalent also in the code sense.

In the c = (α, β) representation of codewords, T-equivalences are generated by simulta-
neous permutations of the components of α and β and by exchanges of the i-th component
of α with the i-th component of β. Using T-equivalences we can bring the code generator
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matrix (3.19) to the following simple form. (We also need to perform linear operations
mod 2 with the codewords that change the generator matrix, but do not change the code
or the lattice.) First, by using linear operations and permutations, we can bring the n× n
matrix formed by the αi to the form α1

. . .

αn

 =

 Im×m a

0(n−m)×m 0(n−m)×(n−m)

 (4.24)

where a is some m × (n − m) binary matrix. The codewords which form the rows of
the matrix (

0(n−m)×n,−aT , I(n−m)×(n−m)
)

(4.25)

are orthogonal to (αi, βi) with αi given by (4.24) and arbitrary βi, and therefore they
belong to this code. In other words, by an appropriate linear transformation in the algebra
mod 2, the last n −m rows of GT can be brought to the form (4.25). After exchanging
the last (n − m) components of αi with βi, and using the last n − m rows to eliminate
the last n−m components of the first m rows, we finally transform (4.24) into an identity
matrix, yielding a generator matrix of the form GT = ( I |B ). This is the “canonical” form
of the generator matrix, analogous to (2.15). For a real self-dual code the binary matrix
B has zeros on the diagonal and is symmetric. Otherwise it is arbitrary. For notational
convenience, we prefer to exchange all components of α and β to bring the generator matrix
to the form

GT = ( B | I ) . (4.26)

We will call codes whose generator matrix is of the form (4.26), up to multiplication from
the left by a non-degenerate n × n binary matrix, B-form codes. There are (compare
with (3.35))

n−1∏
j=0

2j = 2n(n−1)/2 (4.27)

distinct B-form codes in total, and any real code has at least one T-equivalent B-form code.
Since any self-dual code is equivalent to a real code, and the generator matrix of any

real code can be brought to the form (4.26) using additional equivalence transformations,
we conclude that any code of type 4H+ is equivalent to a B-form code. This result has
been established in a different way in [63].

The generator matrix of Λ(C) associated with the B-form code (4.26) is

Λ =
(

2 I B

0 I

)
/
√

2, (4.28)

where Bij ∈ {0,±1}, such that

B = B mod 2. (4.29)
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There is an ambiguity is choosing signs of Bij , but any choice results in the same lattice.
Let us choose Bij to be antisymmetric, reducing the sign ambiguity to the simultaneous
flips Bij → −Bij , Bji → −Bji. All such generator matrices are related by

Λ→ ΛG, G =
(

I X

0 I

)
∈ O(n, n,Z) ⊂ GL(2n,Z), (4.30)

where Xij ∈ {0,±1}, X = −XT . For all Λ related in this way, the lattice remains the same.
Comparing (4.28) with (4.11), we find that the code theories are toroidal compactifi-

cations on the cube of “unit” size 2π with quantized B-field flux, as well as their T-duals.
Different B-fields corresponding to the same B are related by T-duality transformations in
O(n, n,Z) (from the denominator of (4.22)) which preserve the lattice.

The T-duality transformations which map a code to another code, permutations Op
and sign flips Oi, are the following elements of O(n, n,Z):

Op →
(
Op 0
0 Op

)
∈ O(n, n,Z), Oi →

(
I− 1ii 1ii

1ii I− 1ii

)
∈ O(n, n,Z), (4.31)

where 1ii is a diagonal matrix with all elements being zero, except for ii-th element, which
is 1. Finally, the generator matrix (4.28) can be obtained from the matrix with B = 0 by
a transformation from O(n, n,Z),(

2 I B

0 I

)
/
√

2 = F
(

2 I 0
0 I

)
/
√

2, F =
(

I B

0 I

)
∈ O(n, n,Z). (4.32)

Therefore all Construction A lattices Λ(C) can be obtained by the action of O(n, n,Z),
with the generator matrix being

Λ(F) = F
(

2 I 0
0 I

)
/
√

2. (4.33)

For any F , Λ(F) defines an even self-dual lattice, a sublattice of (Z/
√

2)2n within Rn,n.
Different F ∈ O(n, n,Z) may result in the same lattice, defining an equivalence class

within O(n, n,Z):

F ∼ F H, H =
(
A B
C D

)
∈ O(n, n,Z), B mod 2 = 0. (4.34)

The equivalence of the lattices Λ(F) and Λ(F H) follows from

H
(

2 I 0
0 I

)
=
(

2 I 0
0 I

)
H′, H′ =

(
A B/2
2 C D

)
∈ O(n, n,Z). (4.35)

Such matrices H form a congruence subgroup within O(n, n,Z), which we denote
O2(n, n,Z). Accordingly, all real codes can be described as a coset

O(n, n,Z)
O2(n, n,Z) . (4.36)
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The coset description of the real self-dual codes (4.36) is the analog for code theories of
the full Narain moduli space (4.22).

There is a similar coset construction for all self-dual codes, i.e. including non-real codes
(odd self-dual lattices),

O(n, n,Z2)
O2(n, n,Z2) . (4.37)

Here the subgroup O2 includes all binary orthogonal matrices with zero B. Equivalence
classes (4.36) are mapped into (4.37) by reducing mod 2. We illustrate the coset construc-
tion in case of n = 1 and n = 2 codes in sections 6.1 and 6.2.

Most T-duality transformations (we only discuss those which map code theories to
code theories) do not preserve the B-form of Λ (4.28), but there is a particular set of
transformations which do. They include permutations of B,

B→ Op BOTp , (4.38)

and “genuine” T-duality transformations

B =

 b11 b12

bT12 b22

 → B′ =

 b−1
11 −b−1

11 b12

bT12b
−1
11 b22 − bT12 b

−1
11 b12

 , (4.39)

where b11 is an arbitrary nondegenerate submatrix. It can be written as

B→ ((D + I)B +D) (DB +D + I)−1 , (4.40)

where all algebra is mod 2, and D is the diagonal matrix with ones in the diagonal en-
tries associated with b11 in (4.39) and zeros elsewhere. We note that the composition of
two transformations (4.40) parameterized by D1 and D2 is again a transformation of the
form (4.40) with D = D1 + D2, consistent with the consecutive action of Oi (4.31) with
different i.

Consistency check. The T-duality transformation (4.39) of a code theory does not
change the CFT partition function, and therefore it should leave the refined enumerator
polynomial invariant. For the code C associated with B it can be written as

WC =
∑
αi

xn−w(α)ywy(α)zw(α)−wy(α), (4.41)

where the sum goes over all values of binary variables αi ∈ {0, 1}, we have introduced
auxiliary binary variables βi via β = Bα, and

w =
∑
i

(αi + βi)− wy, wy =
∑
i

αi βi. (4.42)

We recognize the transformation of b22 in (4.39) as the Schur complement, with the property
that the new matrix B′ satisfies (β1, . . . , βm, αm+1, . . . , αn) = (α1, . . . , αm, βm+1, . . . , βn)B′,
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where we have assumed that b11 is m × m. In other words, the transformation B → B′

swaps αi ↔ βi for i ≤ m, while (4.42) remains invariant.
The binary symmetric matrix B with zeros on the diagonal can be interpreted as the

adjacency matrix of a graph on n nodes. In this way all B-form codes (and code theories)
correspond uniquely to graphs. Exchanging all σz and σx maps B-form codes into canonical
form, and the stabilizer generators in this case are

gi = σix

n∏
j=1

(σjz)Bij . (4.43)

Stabilizer codes with generators of the form (4.43) are called graph codes [64, 65]. That
we can always bring a stabilizer code by means of equivalence transformations (unitary
transformations from the Clifford group) to the canonical form with stabilizer generators
of the form (4.43) is in a nutshell the statement that any stabilizer code is equivalent to a
graph code [66]. We should also mention that non-self-dual codes, i.e. [[n, k, d]] codes with
k > 0, also can be represented as graphs with labeled nodes [64]. Returning to self-dual
codes, the one-dimensional code subspace HC , defined as the state ψC invariant under the
action of gi, i.e. giψC = ψC for all i (see (3.22)),

ψC = 1
2n

∑
αi=0,1

(−1)f(αi)|α1, . . . , αn〉, f(αi) =
∑
i>j

αiBijαj . (4.44)

is the so-called graph state [67, 68]. Many aspects of code theory, including the action of
the equivalence group (Clifford transformations), have been discussed in the literature in
the context of graph states [63, 69]. An alternative language, also used in the literature, is
that of boolean functions f(αi) [70].

In terms of graphs, the permutation (4.38) is simply the graph isomorphism which
relabels the nodes, while (4.40) describes all possible compositions of edge local comple-
mentation [71]. Local complementation of a graph B (we associate the graph with the
adjacency matrix) with respect to the node i, denoted B ∗ i, is a new graph defined as
follows. We define the “neighborhood” of i as a subgraph consisting of all nodes j con-
nected to i, i.e. such that Bij = 1, and the edges between them. The complementation
procedure, applied to a (sub)graph, removes all existing links, and connects all pairs of
nodes which were not previously connected. At the level of the adjacency matrix this is
simply Bkl → Bkl + 1 mod 2. Local complementation B ∗ i is a new graph defined as
complementation applied to the neighborhood of i. In terms of B it can be written as

Bkl → Bkl + BikBil + Bikδkl mod 2, k, l 6= i, (4.45)

while Bii and Bij remain unchanged. Edge local complementation is defined with respect
to an edge — a pair of vertices (i, j) — as a repeated application of local complementation

B→ ((B ∗ i) ∗ j) ∗ i = ((B ∗ j) ∗ i) ∗ j. (4.46)

Two graphs related to each other by a sequence of isomorphisms and edge local comple-
mentation are said to be edge local equivalent. The edge local complementation (ELC)
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n 1 2 3 4 5 6 7 8 9 10 11 12

tELC
n 1 2 4 9 21 64 218 1068 8038 114188 3493965 235176097

iELC
n 1 1 2 4 10 35 134 777 6702 104825 3370317 231557290

Table 1. Number of equivalence classes of graphs under edge local complementation (ELC) tELC
n ,

for n ≤ 12. Number of ELC equivalence classes of indecomposable graphs iELC
n .

equivalence classes of graphs are therefore in one-to-one correspondence with the classes
of physically equivalent B-form code theories, i.e. those related to each other by T-duality.
ELC equivalence classes (which are defined to include isomorphic graphs) have been studied
in [21] as a means to classify equivalence classes of classical binary codes. Their connection
with stabilizer codes and Clifford transformations has also been discussed in [70, 71]. The
number of classes of ELC equivalent graphs tELC

n on n nodes is known as the OEIS integer
sequence A156801, see table 1. As the number of inequivalent graphs grows rapidly, it is
more convenient to keep track of indecomposable graphs/codes. The number of classes of
edge local equivalent indecomposable graphs iELC

n is related to the full number of equiva-
lence classes tELC

n via the Euler transform. (We note that the code CFT for a decomposable
code is the tensor product of the CFTs associated with the indecomposable codes into which
the original code factors.)

To summarize, B-form codes (graph codes) are in one to one correspondence with
graphs, and we will use both languages interchangeably. The T-dualities that transform
a code theory into another code theory are necessarily code equivalences; we call them T-
equivalences. If we consider their action restricted to the space of B-form codes, then at the
level of graphs, T-dualities are generated by permutations of nodes (graph isomorphisms)
and edge local complementations. In what follows we will simply say that graphs (or
B-form codes) are T-equivalent if they belong to the same ELC equivalence class.

As was mentioned above, T-duality leaves the refined enumerator polynomial invariant;
WC is the same for all codes associated with edge local equivalent graphs. There is another
homogeneous polynomial with this same property, i.e. it is the same for all graphs belonging
to the same ELC equivalence class. This is the interlace polynomial [71, 72] defined via3

Q(x, y) =
∑

w⊆{1,...,n}
xn−s(B[w])ys(B[w]), s(X) := dim(Ker(X)). (4.47)

Here B[w] denotes the submatrix of Bij for i, j ∈ w. The kernel Ker(X) of a binary matrix
is understood to be with respect to mod 2 algebra.

Since any code theory can be brought to the B-form using T-duality, and the interlace
polynomial would be the same no matter which B-form representative we choose, the
interlace polynomial is a proper characteristic of the code CFT. Explicit examples of the
interlace polynomial will be given in section 6.

In the beginning of this section we mentioned that cyclic permutations of σx,y,z (multi-
plying by ω in the language of GF(4) codes) are not T-dualities. For simplicity we consider

3The conventional definition is related to our definition via q(x) = Q(1, x− 1).
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n 1 2 3 4 5 6 7 8 9 10 11 12

tLC
n 1 2 3 6 11 26 59 182 675 3990 45144 1323363

iLC
n 1 1 1 2 4 11 26 101 440 3132 40457 1274068

Table 2. Number of classes of graphs equivalent under local complementation (LC) tLC
n , for n ≤ 12.

Number of LC equivalence classes of indecomposable graphs iLC
n .

n = 1 and multiplication by ω. The action of ω on (α, β) can be written as

(α, β)→ (α, β)
(

0 1
1 1

)
, (4.48)

where algebra is mod 2. This action automatically extends to the code lattice Λ(C). Pro-
vided that we start with an even self-dual Lorentzian Λ(C), the new lattice will be self-dual
but may not be even. Thus, cyclic permutations, in general, do not preserve the property of
codes being real. Combining cyclic permutations of different components with exchanges of
the i-th components of α and β generated by Oi (4.31), one can occasionally find transfor-
mations which transform a B-form code into another B-form code. The orbit of all B-form
codes related to a given one via cyclic permutations of σx,y,z and exchanges σx ↔ σz is
equivalent, at the level of graphs, to the orbit with respect to consecutive actions of local
complementation (LC) (4.46) [63, 69, 73]. Two graphs related to each other by a sequence
of isomorphisms and local complementations are called LC equivalent. Local complemen-
tation equivalence classes of graphs are therefore in one-to-one correspondence with classes
of equivalent codes, i.e. those related to each other by the Clifford group (also called the
local Clifford group in the literature). LC equivalence classes (which are defined to include
isomorphic graphs) have been studied in [34, 69, 73–75], in particular to classify equivalence
classes of self-dual quantum stabilizer codes (or, equivalently, graph states). The number
of classes of LC-equivalent graphs tLC

n on n nodes is known as the OEIS integer sequence
A094927, see table 2, [75].

If two codes are equivalent in the code equivalence sense, but not related by T-
equivalence (T-duality transformations), we call them “C-equivalent,” where the C stands
for cyclic permutations of σx,y,z. C-equivalent codes necessarily share the same enumerator
polynomial but usually have different refined enumerators. The code CFTs associated with
C-equivalent codes are generally physically distinct. At the level of graphs, C-equivalent
B-form codes correspond to the graphs related by LC, but not by ELC.

The role played by ELC graph equivalence in determining the physical equivalence of
the corresponding code theories motivates us to classify ELC classes within the LC classes
of graphs that correspond to equivalent codes. To our knowledge such a classification has
not previously been performed. We provide a full classification for graphs on up to n ≤ 8
nodes, obtained with help of computer algebra, in appendix E.

The relation between quantum stabilizer codes and 2d CFTs outlined in this section
is only one particular aspect of what is likely a much richer story. Given the role classical
codes play in the context of chiral CFTs, we can essentially take for granted that quantum
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codes can be used to define non-chiral vertex operator algebras, a subject we leave for future
investigation. Here we only briefly comment on the recent work [76], which establishes a
relation between the Hexacode, understood as the quantum stabilizer code, and a particular
SCFT. The SCFT in question, the GTVW theory [77], has chiral vertex operators of
dimension 3/2 parametrized by vectors ~k ∈ R6 with all components being half-integer,
ki = ±1/2. These vertex operators can be associated with the ket vectors of the Hilbert
space of the Hexacode, ~k → |(k1 + 1/2) . . . (k6 + 1/2)〉, such that any linear combination in
the Hilbert space is mapped to a linear combination of vertex operators. Harvey and Moore
show that the code subspace ψC , defined via an analog of (4.44) ([76] uses a code equivalent
to Hexacode (2.66), and therefore the analog of (4.44) includes imaginary coefficients), is
mapped to the special vertex operator, the N = 1 supercurrent. They conjecture that
other N = 1 SCFTs are related to other stabilizer codes.

There is a particular technical aspect emphasized in [76]. The expression for the code
state ψC = P|0〉 with P given by (3.22) exists for any stabilizer code, but it depends on
the choice of n generators gi. Choosing different combinations of the gi as generators may
result in a different ψC . This is because g(c) (3.14) understood as a map from codewords
c = (α, β) ∈ GF(4)n to generators is not a representation, but a projective representation

g(c1)g(c2) = ε(c1, c2)g(c1 + c2), c1, c2 ∈ GF(4)n. (4.49)

The cocycle ε(c1, c2) = ±1 is in general nontrivial, but in the example considered in [76] it
vanishes, ε(c1, c2) = 1. Here we point out this is not a unique situation, and in fact other
codes also have a vanishing cocycle, with an appropriate choice of the map from GF(4) to
the group of Pauli matrices. Let us choose

c = (0, 0)→ I, c = (1, 0)→ ipσx, (4.50)
c = (0, 1)→ iqσz, c = (1, 1)→ irσy, (4.51)

where p, q, r are integer numbers between 0 and 3. Then the coefficient ε(c) in (3.14) is
equal to ε = ipwx(c)+qwz(c)+rwy(c). It should be real, which is a consistency condition on
the code and p, q, r. For the cocycle to vanish, g(c1)g(c2) = g(c1 + c2),

p (wx(c1) + wx(c2)− wx(c)) + q (wz(c1) + wz(c2)− wz(c)) +
r (wy(c1) + wy(c2)− wy(c)) = 2β2 α1 mod 4, (4.52)

where c = (c1 + c2) mod 2. This condition is symmetric under c1 ↔ c2 because of (3.15),
and should hold for any two codewords c1, c2 ∈ C. When it holds the stabilizer group is
a genuine representation of the code C ⊂ GF(4)n, understood as an abelian group under
addition. In general this condition is not invariant under code equivalence transformations.
Focusing on real self-dual codes, we have verified that all codes with n = 2, 3 satisfy this
condition for some p, q, r. For n = 3, 24 out of 30 codes, and for n = 4, 103 out of 270
codes satisfy (4.52).

5 Bounds, averaging over codes, and holography

One of the central questions of coding theory is how well one can protect (quantum)
information when the number of qubits n goes to infinity. In the case of self-dual stabilizer
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codes this is the question of determining the largest possible ratio d/n in the limit n→∞,
where d is the maximal achievable Hamming distance.

The quantum Hamming bound (3.4) readily provides an upper limit4

d

n
≤ 2p∗q , n→∞, H(p∗) = ln(2)− p∗q ln(3), p∗q ≈ 0.1893, (5.1)

but it is known to be conservative. A stronger upper bound was found by Rains in [59] by
analytically treating the linear programming constraints,

d ≤ 2
[
n

6

]
+ 2 + δn≡5 (mod 6), ⇒ d

n
. 0.33, n→∞. (5.2)

Further improvements in the asymptotic bound for d/n are possible [41].
Our first task in this section will be to obtain linear programming bounds on d numer-

ically, for n ≤ 32. To illustrate the main idea of our approach we consider the following
problem: to find a homogeneous polynomial W (x, y, z) of degree n, invariant under the
duality transformation (3.32), with all coefficients being integer and non-negative, and
satisfying W (1, 0, 0) = 1. We additionally want to maximize d over the set of such poly-
nomials, which can be formulated as the linear programming optimization (or feasibility)
problem

d−1∑
l=1

∂lW (1, y, y)
(∂y)l

∣∣∣∣∣
y=0

= 0. (5.3)

This is a slight modification of the linear programming bound considered in [50], where
the feasibility of enumerator polynomials W (x, y) was considered.5 We find that consider-
ing the feasibility of refined enumerators somewhat strengthens the bound, which mostly
follows (5.2) except for certain values of n mod 6 = 1. For n ≤ 32 the results are shown
in figure 1. Comparing with known results for n ≤ 30 [47, 48], we find that the linear
programming bound is mostly tight, meaning that the maximal d for which the linear pro-
gramming problem is feasible is also achievable by a code (or potentially many codes) with
that value of d, with at least one known exception when n = 19. In the latter case our linear
programming bound gives d ≤ 8, while no self-dual codes with d = 8 exist.6 Even when
extremal codes, i.e. codes with d saturating the bound exist, there are usually many other
“fake” refined enumerator polynomials which satisfy the linear programing optimization
constraints and have the same d.

The linear programming bound discussed above can be thought of as a toy version of
the conformal modular bootstrap [8–10, 78–92], which aims to establish universal bounds
on the spectral gap and other similar properties of the 2d theories. Here we are essentially
restricting our analysis to the subset of code theories defined in the previous section. Then

4Self-dual codes are detection codes, so they are automatically non-degenerate.
5One of the important ingredients in the analysis of [50] and [59] was the additional condition that the

coefficients of the so-called shadow enumerator be integer and positive. This condition is automatically
satisfied for real self-dual codes, and therefore we do not discuss it here.

6We thank E. Rains for a discussion on this point.
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Shadow bound eq.(5.2)

Gilbert-Varshamov bound

Linear programming bound

5 10 15 20 25 30
n

2

4

6
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10

12

d

Figure 1. Upper and lower bounds on the maximal Hamming distance for self-dual stabilizer codes.
Blue: “shadow” upper bound (5.2) found by Rains [59]. It is an analytic constraint following from
the linear programming bound. Green: linear programming upper bound solved numerically for
n ≤ 32. For n ≤ 18 it coincides with the actual maximal d for the given n, but it is known to
be conservative for n = 19. Yellow: Gilbert-Varshamov lower bound obtained from the refined
enumerator polynomial averaged over all B-form codes (5.4).

the partition function is fully specified by the refined enumerator, which reduces the non-
trivial modular bootstrap analysis to a simple linear programing problem in the space of
invariant polynomials.

Linear programming bounds are not constructive. In practice, they may be used to
produce invariant polynomials with the desired properties, but verifying if there is an
actual code associated with this polynomial is a difficult task. While various shortcuts are
possible, the only universal way to make sure the polynomial is not “fake” is to construct
the code, which is exponentially difficult.

There is also a nonconstructive Gilbert-Varshamov bound for quantum codes, which
bounds maximal d from below. Similarly to the classical case, to obtain the bound we
calculate the refined enumerator polynomial averaged over all B-form codes, i.e. codes
specified by the generator matrix (4.26) with all 2n(n−1)/2 possible matrices B,

W (x, y, z) = xn + (x+ y + 2z)n

2n + (x− y + 2z)n

2n − 2(x+ z)n

2n . (5.4)

W is manifestly invariant under the duality transformation (3.32), as well as y → −y.
Taking z = y reduces it to the averaged enumerator polynomial, from which we immediately
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conclude that for n→∞ the maximal d is bounded from below by d/n ≥ p∗q , which is twice
smaller than the upper bound (5.1), as expected. For a general n we find the maximal
d to be equal to or larger than the maximal value dGV for which the following constraint
is satisfied,

dGV−1∑
l=1

3l − 1
2n

n!
l!(n− l)! < 1. (5.5)

This is a somewhat stronger bound than the conventional Gilbert-Varshamov bound which
would naively follow from (3.3). Similar lower bounds can in principle be obtained by
averaging over any class of codes for which this averaging is feasible. Averaging over B-
form codes proves to be a convenient choice, for which an analytic answer can be found.
We plot the numerical values dGV(n) for n ≤ 32 in figure 1. Even though the Gilbert-
Varshamov bound is asymptotically weaker than the linear programming upper bound (and
presumably the actual maximal value of d), there is no known systematic construction for
producing codes with d ≥ dGV for arbitrarily large n.

The averaged refined enumerator polynomial, via (4.23), can be interpreted as the
averaged partition function of all B-code theories. In light of recent results relating the
average over Narain CFTs to U(1)n × U(1)n Chern-Simons theory in AdS3 [10, 17], it is
natural to ask if the averaged code theory may have a holographic interpretation. To see if
a weakly coupled bulk description is possible, we would like to calculate the spectral gap of
U(1)n primaries. Following [83] we define the spectral gap as the value of ∆ for which the
density of primary states ρ(∆) assumes its asymptotic form. This might be different from
the dimension of the lightest nontrivial primary. Primaries of Narain CFTs correspond
to vectors in the Lorentzian lattice, and their dimension is proportional to the Euclidean
norm-squared ∆ = `2/2. For vectors associated with codewords, `2 = db/2, where the
binary Hamming weight is db(c) := wz(c) + 2wy(c). The binary Hamming distance of a
code (minimal weight of all non-trivial codewords) is the conventional Hamming distance
of a classical binary [2n, n, db] isodual code defined from C via the Gray map. For large n
and sufficiently large ∆� n, the density of vectors of a unimodular lattice Λ(C) ⊂ R2n is
given by the volume of a (2n− 1)-dimensional sphere, yielding

ρ(∆)d∆ = (2π)n∆n−1

Γ(n) d∆. (5.6)

For a lattice Λ(C) associated with a stabilizer code, all points of the form
√

2(a, b), a, b ∈
Zn belong to the lattice and for sufficiently large ∆ their contribution to the density is
given by (5.6) divided by 1/2n. When ∆ increases such that the sphere of radius `2 =
∆/2 includes new codewords, the overall coefficient grows with each codeword eventually
contributing 1/2n, until the overall coefficient in front of (5.6) saturates at one for ∆ �
n. The spectral gap can be defined as the value of ∆, for which the coefficient in front
of (5.6) becomes of order one. This is the value of db for which coefficients of the averaged
enumerator polynomial W C(x2, y2, xy) become of order one,

4 ∆
2n ≡

db
2n = p∗, n→∞. (5.7)
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(As a side note, the value of db/(2n) is exactly the Gilbert-Varshamov bound for binary
self-dual codes [2n, n, db], see section 2.1, which suggests the following picture. The class
of binary self-dual codes obtained through the Gray map from B-form codes is a good
representation, in the statistical sense, of all self-dual codes. Apparently, the isodual codes
which are not self-dual either share a similar distribution of Hamming distances with the
self-dual codes, or their overall number is much smaller than the number of self-dual codes.)

The calculation of the spectral gap above is somewhat schematic. What is important
for us is that db in (5.7) scales linearly with the central charge n, sp we expect the corre-
sponding averaged theory to be holographic. We leave the task of understanding the dual
gravitational theory for the future, while here we consider the simpler case of chiral theo-
ries and speculate about their possible gravity dual description. The chiral analogue of the
average over the Narain lattices would be the average over even self-dual Euclidean lattices.
The averaged theta-function is known to be given by the Eisenstein series En/2(τ) [48], so
that the averaged partition function of the corresponding chiral CFTs is

ZCFT(τ) =
En/2(τ)
ηn(τ) . (5.8)

For n divisible by 24, (5.8) is modular invariant. Otherwise, since n is divisible by 8, it is
invariant under the subgroup of PSL(2,Z) generated by τ → τ + 3 and τ → −1/τ . Using
the conventional representation for the Eisenstein series we can rewrite (5.8) as

ZCFT(τ) =
∑

γ∈Γ∞\SL(2,Z)

1
ηn(γτ) , (5.9)

for n divisible by 24 and interpret this sum as a sum over handlebodies, with 1/ηn(τ) being
the partition function of U(1)n Chern-Simons on thermal AdS3 geometry, parametrized
by the modular parameter τ of the boundary torus. This holographic interpretation is
schematic, and similarly to the non-chiral case [10, 17] requires further checks and clar-
ifications. Furthermore, if n is not divisible by 24, additional degrees of freedom in the
bulk, possibly in the form of a Z3 gauge field, would be necessary to make the sum in (5.9)
well defined. We overlook these important nuances, as our goal here is to understand how
averaging specifically over code CFTs would change the story. In the chiral case, we would
consider even self-dual lattices Λ(C) associated with doubly-even self-dual binary codes.
Their averaged theta-function is given by (2.51), (2.29), which differs from En/2(τ) by an
appropriate modular form. For simplicity we consider the case n = 24, for which

Zcodes = a12E12(τ) + a62E2
6(τ)

η24(τ) , a12 + a62 = 1, (5.10)

with the values of a12 and a62 being unimportant. This expression can be represented in a
way similar to (5.9),

Zcodes =
∑

γ∈Γ∞\SL(2,Z)

a12 + a62E6(γτ)
η24(γτ) . (5.11)
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Again, the term 1/η24(τ) can be interpreted as the holographic contribution of U(1)n gauge
fields, while E6 in the numerator suggests presence of non-abelian gauge fields in the bulk,
which are known to produce certain combinations of Jacobi theta-functions [17].

Our considerations do not prove that the averaged code theories have weakly coupled
holographic duals, but they indicate that such an interpretation may be possible. We end
this discussion with a few concrete questions. First, the representation of a modular form
as a polynomial in terms of E4, E6 is not unique. Instead of a12E12 + a62E2

6 in (5.10) we
can write the most general expression a12E12 + a62E2

6 + a43E3
4 , and correspondingly the

numerator in (5.11) will become a12 +a62E6 +b4E4 +b42E2
4 with arbitrary b4, b42 satisfying

b4 + b42 = a43 . Thus the holographic partition function for n = 24 can be written in many
different ways, suggesting there are different microscopic descriptions in the bulk, related
by dualities. For larger n there would be more representations and potentially a larger
duality web in the bulk.

Even more intriguing is the chiral case of n = 8, for which there is a unique even
self-dual lattice E8. Modulo the important subtlety that to make the sum over SL(2,Z)
well-defined, additional degrees of freedom in the bulk would be needed, the partition
function E8/η

8(τ) similarly admits a holographic interpretation. It therefore provides a
setting to study from the CFT side interpretation of the Euclidean wormhole geometries
when the boundary is not connected.

To conclude this section, we return back to the question of the spectral gap, which
we now define strictly as the dimension of the lightest non-trivial primary. It can be
equivalently defined as the length-squared of the shortest non-trivial vector of the Narain
lattice, and in this way the maximal value of the spectral gap is related to the efficiency
of lattice sphere packing in a given dimension. This question has been recently studied
numerically in [8–10]. Similarly to classical binary codes, which give rise to optimal sphere
packings in 8 and 24 dimensions and provide valuable insight about scaling for large n, one
may expect quantum codes to occasionally saturate the spectral gap bounds and inform the
large-n behavior. In terms of real stabilizer codes, maximizing the spectral gap is equivalent
(up to an important nuance discussed below) to maximizing the binary Hamming distance
for a given n. The question of finding a quantum code with maximal db for a given value of
n is very similar to the conventional question of finding the “best” code with largest d, but
to our knowledge it was not previously discussed in the literature. In figure 2 we plot the
linear programming bound on db obtained by imposing constraints similar to (5.3). The
bound is tight at least for n ≤ 8. Superimposed with the approximate theoretical fit of the
numerical spectral gap bound [10], translated into units of db = 4∆ . n/2 + 2 (dashed line
in figure 2), we find that both exhibit approximately linear growth with a similar slope. We
leave it as an open problem to find the analytic analogue of (5.2) for the binary Hamming
distance, or at least its asymptotic behavior for large n.

By comparison with the case of classical codes and Euclidean lattices, we may expect
quantum codes to yield Narain CFTs with the maximal spectral gap for certain special
values of n, in particular for n = 4 and n = 12. This is indeed the case for n = 4, as is
evident from figure 2 and discussed in section 6.4. For n = 12, code theories fall short of
saturating the spectral gap bound, which is discussed in more detail in section 6.10.

– 47 –



J
H
E
P
0
3
(
2
0
2
1
)
1
6
0

Linear programming bound

Gilbert-Varshamov bound

0 5 10 15 20 25 30
n

5

10

15

db

Figure 2. Blue points: linear programming upper bound on binary Hamming distance db of real
self-dual codes. It is tight for small but presumably not all n. Dashed blue line: an approximate
theoretical fit ∆ = n/8+1/2 of the numerical bootstrap constraint for the maximal value of spectral
gap, measured in units of db = 4∆ [10]. Yellow points: Gilbert-Varshamov lower bound on binary
Hamming distance obtained from (5.4).

In the discussion above we identified the spectral gap (length of the shortest vector)
with the binary Hamming distance of a code. This is correct for db ≤ 4, but for larger db
there are always lattice vectors of the form

√
2(±1, 02n−1) which are shorter. This is the

same problem, discussed in section 2.1, which precludes classical binary codes from yielding
efficient sphere packings in large dimensions, at least directly via Construction A. For small
n this problem can be partially solved by applying the shift procedure to the Construction
A lattice, which will remove unwanted short vectors

√
2(±1, 02n−1). A similar strategy can

be employed in the quantum case, making it possible to relate codes with larger db to CFTs
with larger spectral gap. We consider an explicit example of a lattice with shortest vector
controlled by db > 4 in section 6.10.

6 Enumeration of self-dual codes with small n

In this section we discuss many explicit examples of self-dual stabilizer codes for n ≤ 12.
As the number of codes rapidly grows with n, we emphasize different points for different
n. For n = 1 we discuss all codes in detail. For n = 2 we focus on real codes, discuss
them in detail and then illustrate the coset construction. Starting from n = 3 we restrict
our attention to B-form codes, and for n = 3, 4 go over all classes of T-equivalent codes.
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For n = 3, 4 we also explicitly write down all “fake” enumerators. Starting from n ≥ 5
we only consider codes with maximal values of d and/or db. For n = 7, 8 we give explicit
examples of non-equivalent codes with the same refined enumerator polynomials, giving rise
to groups of physically distinct isospectral code CFTs. For n = 4, 6, 12 we give examples
of codes related to special lattices.

6.1 n = 1

For n = 1 there are three codes, see (3.33), specified by the unique stabilizer generator

g = X, or Y, or Z. (6.1)

Obviously all three codes are equivalent (in the sense of the code equivalence group). Two
codes, see (3.35), the first and third, are real and correspond to code CFTs. The first code
g = X is a B-form code (4.28) with B = 0. This is the only B-form code for n = 1. The
corresponding graph is simply a graph consisting of one vertex. The corresponding CFT
is a boson on a circle of radius R = 1. The third code g = Z is T-dual to the first one.
This is a boson compactified on a circle of radius R = 2. Its lattice generator matrix is
Λ = diag(1, 2)/

√
2. The refined enumerator polynomial of these two codes is, cf. (3.36),

W1 = x+ z. (6.2)

Since all three codes (6.1) are equivalent, they share the same enumerator polynomial
W (x, y) = x + y. The Hamming distance of all three codes is d = 1, see figure 1. The
binary Hamming distance of real codes db = 1, in agreement with the spectral gap of
the compact scalar on a circle of radius R = 1 (or 2), ∆ = db/4 = 1/4. The interlace
polynomial of the graph with B = 0 is Q1 = x+ y.

We would like to see how the coset description (4.36) works in the case n = 1. The
group O(1, 1,Z) consists of four matrices

±
(

1 0
0 1

)
, ±

(
0 1
1 0

)
. (6.3)

The first two matrices form the subgroup O2(1, 1,Z). The coset (4.36) includes two ele-
ments, with representatives

F =
(

1 0
0 1

)
,

(
0 1
1 0

)
. (6.4)

The resulting lattice generator matrices (4.33) correspond to two n = 1 codes, with stabi-
lizer generators g = X and g = Z correspondingly.

The coset description of all codes (4.37) is equally straightforward. The group
O(1, 1,Z2) includes six elements,(

1 0
0 1

)
,

(
1 0
1 1

)
,

(
1 1
0 1

)
,

(
0 1
1 1

)
,

(
0 1
1 0

)
,

(
1 1
1 0

)
, (6.5)
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B =
(

0 0
0 0

)
B =

(
0 1
1 0

)

Figure 3. Graphs and their adjacency matrix associated with the first code in (6.7) (left) and the
first code in (6.8) (right).

with the first two forming the subgroup O2(1, 1,Z2). Multiplication by the only non-trivial
element of O2(1, 1,Z2) permutes the matrices in (6.5) as follows

1↔ 2, 3↔ 4, 5↔ 6. (6.6)

Therefore matrices 1, 3, and 5 can be chosen as class representatives (cf. (6.4)). They
correspond to g = X,Y,Z.

6.2 n = 2

There are fifteen codes with n = 2. Six of them, see (3.35), are real. We only list real
codes, which are specified by a pair of stabilizer generators,

(g1, g2) = (X I, I X), (X I, I Z), (Z I, I X), (Z I, I Z), (6.7)
(g1, g2) = (X Z, Z X), (X X, Z Z). (6.8)

The codes are split into two groups, with 4 and 2 elements. All codes within each group are
T-dual to each other. The first group consists of decomposable codes. The corresponding
code CFTs are tensor products of two bosons compactified on circles or radius R = 1 or 2.
The refined enumerator polynomial of these codes is W = W 2

1 and the (binary) Hamming
distance is d = db = 1. Only the first code in (6.7) is of B-form, with zero 2× 2 matrix B.
The corresponding graph is shown in figure 3 left. The interlace polynomial of this graph
is Q = Q2

1 = (x+ y)2.
Codes in the second group are indecomposable. They have W = W2 = x2 + y2 + 2z2,

cf. with (3.36), and (binary) Hamming distance d = db = 2. The first code in (6.8) is of
B-form. The corresponding CFT consists of two compact bosons on circles of radius R = 1
with one unit of B-flux, Bij = εij . The corresponding graph is shown in figure 3 right,
and the interlace polynomial is Q2 = 2x(x + y). The second code in (6.8) is T-dual to
the first one. The generating matrix of its lattice Λ(C) has the toroidal compactification
form (4.11) with vanishing B-field and

2γ∗ = γ =
(

1 1
1 −1

)
. (6.9)

The lattice generated by γ is the square lattice with minimal length
√

2. Therefore the
corresponding CFT is the tensor product of two theories, each being a boson compactified
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on a circle of self-dual radius R =
√

2. This is confirmed by the partition function

|η(τ)|2 Z2
R=
√

2 =
(
θ3(q2)θ3(q̄2) + θ4(q2)θ4(q̄2)

2

)2

= a2a′2 + b2b′2 + c2c′2

2

∣∣∣∣∣
τ ′=τ̄

, (6.10)

where the right-hand-side follows from (4.23). This is a curious situation because the code
CFT is a tensor product of two theories, while the code itself is indecomposable. The
spectral gap of this theory is ∆ = db/4 = 1/2.

This code has other interesting properties. It is in fact the repetition code i2, the
linear self-dual code of type 4H mentioned in section 2.2. Comparing with (2.59), we find
Wi2(x, y) = W2(x, y, y). The Lorentzian lattice in R2,2 generated by (4.11) with γ as
in (6.9), and the Euclidean lattice in C2 = R4 associated with i2 ∈ 4H are related to each
other by a linear transformation (

−1 −1√
3 −
√

3

)
/
√

2 (6.11)

in each R2 = C plane. Upon setting τ ′ = −3τ , the Siegel theta function (6.10) reduces to
the theta function of the Euclidean lattice φ2

0 + 3φ2
1, as expected.

Using the Gray map, we can also interpret this code as a binary repetition code, such
that the enumerator polynomial (2.22) is Wi2(x, y) = W2(x2, y2, xy). The theta function
following from (6.10), reduces to b4 after setting τ ′ = −τ , which is the correct theta function
of a cubic lattice of size

√
2 in R4.

To conclude the case of n = 2, we describe the coset construction (4.36) of real self-dual
codes. The group SO(2, 2,R) is the product of two SL(2,R) factors mod Z2,

Si =
(
ai bi
ci di

)
, aidi − bici = 1, i = 1, 2, (6.12)

S1 × S2 =
(

a1S2 b1S2ε

−c1εS2 d1(ST2 )−1

)
∈ SO(2, 2,R), ε =

(
0 1
−1 0

)
. (6.13)

Elements of O(2, 2,Z) can be described in a similar way. They include products S1 × S2
where S1,2 ∈ SL(2,Z) (these are matrices of det = 1) and t (S1×S2) (these are matrices of
det = −1), where

t =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 . (6.14)

The subgroup O2(2, 2,Z) includes only matrices with all elements of the upper-right 2× 2
submatrix being even. This leaves S1 × S2 where c1 mod 2 = 0 and S2 is arbitrary. In
other words

O2(2, 2,Z) = Γ0(2)× SL(2,Z), (6.15)
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where Γ0(2) is the Hecke congruence subgroup of level 2. The quotient SL(2,Z)/Γ0(2)
includes three matrices,

s1 =
(

1 0
0 1

)
, s2 =

(
1 1
0 1

)
, s3 =

(
0 1
−1 0

)
. (6.16)

Six real self-dual codes, arranged the same way as (6.7), (6.8), are

s1 × I, t (s1 × I), t (s3 × I), s3 × I, (6.17)
s2 × I, t (s2 × I). (6.18)

6.3 n = 3

There are 30 real codes for n = 3, which split into tELC
4 = 4 orbits under T-duality

equivalences (T-equivalences). In terms of the B-field representations, these four orbits
correspond to the four inequivalent graphs with three vertices, labeled by the number of
edges (links) 0 ≤ l ≤ 3. The equivalence of codes within each orbit is obvious, as the
graphs with the same number of links l are isomorphic for n = 3. When l = 0, 1, the
graphs, and hence the codes, are decomposable. We will not discuss these cases in detail
as their properties were discussed above. B-form codes with l = 2 are T-dual to the code
with lattice Λ(C) (4.11), with vanishing B-field and

γ =

 0 1 1
1 0 1
1 1 0

 . (6.19)

B-form codes with l = 3 are T-dual to the code lattice Λ(C) (4.11), with the same γ (6.19)
and with non-trivial B-field

B =

 0 0 0
0 0 1
0 −1 0

 . (6.20)

In this latter case there is no T-dual theory with lattice of the form (4.11), with some γ,
and vanishing B-field. This is the general situation: it is always possible to use T-duality
to bring (4.11) to the form (4.28) with γ = I and some non-trivial B-field, but it is almost
never possible to get rid of B by changing γ.

There are tLC
4 = 3 inequivalent classes of codes for n = 3. The classes of T-equivalent

codes with l = 2 and l = 3 are related to each other via C-equivalence. Accordingly, their
refined enumerator polynomials

W3 = x3 + 3y2z + 3xz2 + z3, and W̃3 = x3 + 3xy2 + 4z3, (6.21)

yield the same enumerator polynomial W3(x, y, y) = W̃3(x, y, y) = x3 + 3xy2 + 4y3. Both
classes of codes have the same Hamming distance d = 2 but different binary Hamming dis-
tances db = 2 and db = 3. The corresponding CFTs will have different partition functions,
as well as different spectral gaps, ∆ = 1/2 and ∆ = 3/4 correspondingly.
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B =

 0 0 0
0 0 0
0 0 0


W = W 3

1

Q = Q3
1

B =

 0 1 0
1 0 0
0 0 0


W = W1W2

Q = Q1Q2

B =

 0 1 1
1 0 0
1 0 0


W = W3

Q = x(3x+ y)Q1

B =

 0 1 1
1 0 1
1 1 0


W = W̃3

Q = 4x2Q1

Figure 4. Graphs, their adjacency matrices, refined and interlace polynomials, associated with
the four T-dual classes of n = 3 codes. The polynomials W1,W2,W3 are defined in (3.36), and
W̃3 ≡ x3 + 3xy2 + 4z3 = −W3 + 3W1W2 +W 3

1 .

For n = 1 and n = 2, all polynomials W (x, y, z) invariant under (3.32) and y → −y,
and satisfying additional conditions, W (1, 0, 0) = 1, all coefficients integer and positive,
are actual refined enumerator polynomials of additive codes. For n = 3, besides the four
polynomials associated with the four classes of T-equivalent codes, see figure 4, there are
another six “fake” polynomials,

W = x3 + 2x2z + 3xz2 + y2z + z3, (6.22)
W = x3 + x2z + 3xz2 + 2y2z + z3, (6.23)
W = x3 + 2x2z + xy2 + 2xz2 + 2z3, (6.24)
W = x3 + xy2 + 2xz2 + 2y2z + 2z3, (6.25)
W = x3 + x2z + 2xy2 + xz2 + 3z3, (6.26)
W = x3 + 2xy2 + xz2 + y2z + 3z3. (6.27)

There are no additive self-dual codes for which these polynomials are refined enumerator
polynomials, yet they satisfy all necessary properties, and the “partition function” defined
via (4.23) is modular invariant and satisfies other basic properties expected of the CFT
partition function. This poses the following question important in light of the modular
bootstrap program: do those would-be CFT partition functions correspond to actual the-
ories? Given that the number of “fake” polynomials increases rapidly with n, unless they
correspond to actual CFTs, “bootstrapping” 2d theories must yield a growing number of
consistency regions (occasionally taking the form of “islands”) in the exclusion plots, which
are in fact empty, contradicting our experience so far. Assuming the opposite, that some
of these “fake” polynomials correspond to actual CFTs, they likely can be identified as
refined enumerator polynomials for non-additive codes. In this case the scope of what we
call code theories should be extended to include CFTs based on a wider class of codes.
Continuing this logic further, the CFT partition function is a much richer object than the
code enumerator polynomial, and may satisfy additional non-trivial conditions [93–96]. An
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interesting scenario would be if these additional conditions could be used to distinguish
“fake” code enumerators from actual ones, thus introducing a new string theoretic tool to
code theory.

6.4 n = 4

There are tELC
4 = 9 classes of T-equivalent codes in this case, iELC

4 = 4 of which correspond
to indecomposable codes. We discuss only the indecomposable ones. The first class includes
B-form codes with the B matrices (graphs)

B =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 , B =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 , (6.28)

and those isomorphic (permutation equivalent) to them. We explicitly write down two
different B’s for the same class of T-equivalent codes to emphasize that edge local com-
plementation can change the number of links, topology, etc. The REP for this class is
W = x4 + 4xy2z + 2x2z2 + 4y2z2 + 4xz3 + z4 = 2W 2

1W2 − 2W1R−W 4
1 , and the interlace

polynomial is Q = 5x4 + 8x3y + 3x2y2.
The second equivalence class include B-form codes with the B matrices (graphs)

B =


0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 0

 , B =


0 0 1 1
0 0 1 1
1 1 0 1
1 1 1 0

 , (6.29)

and those isomorphic to them. The edge local complementarity of these two graphs is
discussed as an example in [21]. The REP for this class is W = x4 + x2y2 + x2z2 +
4xy2z + 4xz3 + 3y2z2 + 2z4 = 2W 2

1W2 − W1R − W 4
1 , and the interlace polynomial is

Q = 6x4 + 8x3y + 2x2y2.
The two classes of T-equivalent codes described above are related to each other via

C-equivalence. One can easily check that the enumerator polynomial in both cases is the
same by taking R → 0. Both classes of code theories have the same value of d = db = 2
and spectral gap ∆ = 1/2.
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There are two more classes of T-equivalent codes for n = 3 . B-form codes from the
third class are given by

B =


0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 , (6.30)

and those isomorphic to them. The REP of this class isW = x4+6x2z2+y4+6y2z2+2z4 =
W 2

2 − 2W1R and interlace polynomial is Q = 4x4 + 7x3y + 4x2y2 + xy3.
Finally, the fourth class has a unique B-form representative with Bij = 1−δij associated

with the complete graph with four vertices

B =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 . (6.31)

The REP of this class is Wqe8 = x4 + 6x2y2 + y4 + 8z4 = W 2
2 + 4W1R and the interlace

polynomial is Q = 8x3(x+ y).
The third and fourth classes are related to each other via C-equivalence (thus there

are two classes of indecomposable equivalent codes iLC
4 = 2). Accordingly, the enumerator

polynomials of the third and fourth classes are the same, W (x, y) = W2(x, y, y)2, and also
the same as the enumerator polynomial of the decomposable code consisting of two n = 2
codes. This is an example of a generic situation: enumerator polynomials are not unique
and different codes may share the same enumerator polynomial. The same is also true for
the refined enumerator polynomial, see section 6.7. Codes from the third and fourth classes
have different db, 2 and 4 correspondingly. This is similar to the case of n = 3 and is a
reflection of the general situation: C-equivalent codes must have the same d but usually
have different db.

Comparing B from (6.31) with (2.18) we immediately recognize that the binary code
obtained from this stabilizer code via Gray map is not merely isodual, but in fact self-
dual. It is the extended Hamming [8, 4, 4] binary code, and the Lorentzian lattice Λ(C),
understood as a lattice in the Euclidean space, is the even self-dual lattice E8. In other
words E8 is an even self-dual lattice in both Lorentzian and Euclidean signatures! As a
consistency check one can easily verify that the enumerator polynomial of the resulting
binary code Wqe8(x2, y2, xy) = We8(x, y). Now we can recognize db/2 = 2 as the length-
squared of the shortest root of E8 lattice `2 = 2. The corresponding Narain CFT, which
we will refer to as the non-chiral E8 theory, has spectral gap ∆ = 1.

Modular bootstrap studies of the maximal spectral gap in U(1)4 × U(1)4 theories
reveal with an astonishing precision that ∆ = 1 is in fact the optimal (maximal possible)
value [10]. The theory of eight free Majorana fermions with diagonal GSO projection was
identified in [89] as the CFT saturating the bound. Here we have found that the non-chiral
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Figure 5. Two non-equivalent graphs under edge local complementation, which have the same
interlace polynomial Q = 4x2(x+ y)2.

E8 Narain CFT also saturates the bound. Using the explicit form of Wqe8 and (4.23) we
readily find the partition function of this theory

ZE8(τ, τ̄) = |a|
8 + |b|8 + |c|8

2|η(τ)|8 , (6.32)

which coincides with the partition function of eight fermions mentioned above [89]. In fact
these are the same theory, which has other descriptions including as the ŜO(8)1 WZW
model. The theory of eight fermions exhibits a group of symmetries, known as triality,
which has been recently discussed in [97]. While the description of this theory as a Narain
CFT has been discussed previously, to our knowledge the connection with the E8 lattice,
understood as a Narain lattice, has not been pointed out (a connection with the Euclidean
E8 lattice was noted in [8]). We establish an explicit relation between the theory of eight
Majorana fermions and the non-chiral Narain E8 theory in the appendix A.

There are 11 “fake” REPs for n = 4,

W = W 2
2 + kW1R, k = −1, 1, 2, 3, (6.33)

W = W 2
1W2 ±W1R, (6.34)

W = 2W 2
1W2 −W 4

1 , (6.35)

W = 1
2W2W

2
1 + W 4

1
2 ± RW1

2 , (6.36)

W = 3
2W2W

2
1 −

W 4
1

2 ± RW1
2 . (6.37)

The interlace polynomial Q(x) is a characteristic of the graph equivalence class under
edge local complementation (and isomorphisms), but different classes may share the same
Q(x). This happens for the first time (meaning smallest n) for n = 4, for the decomposable
graphs shown in figure 5. Edge local complementation acts on each disconnected subgraph
individually, and therefore these graphs, which have different decompositions 1 + 3 and
2 + 2 can not be equivalent.

6.5 n = 5

For n = 5 there are too many classes of codes (tELC
5 = 21, iELC

5 = 10) to describe all of them
in detail. From now on we will only focus on codes maximizing the Hamming distance d
(the conventional measure of quality for quantum codes) or the binary Hamming distance
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Figure 6. ELC-equivalent (T-dual equivalent) graphs corresponding to n = 5 code with the
largest d = 3, db = 3, W = x5 + 5x2y2z + 5x2z3 + 10xy2z2 + 5xz4 + 5y2z3 + z5 and Q =
x3 (11x2 + 16xy + 5y2).

Figure 7. Unique (up to isomorphisms) graph corresponding to n = 5 class of codes with the
largest db = 4, d = 2, W = x5 + 10x3y2 + 5xy4 + 16z5 and Q = 16x4(x+ y).

db (which determines, up to some nuances, the spectral gap in the code CFT). For all
n ≤ 4, there was a unique class of T-equivalent codes with maximal db, which also had
maximal d (note, there were other codes with the same d, but smaller db). For n = 5,
there is a unique class of codes with the maximal d = 3 (and db = 3), the so-called shorter
hexacode related via Construction A of section 2.2 to the shorter Coxeter-Todd lattice [39],
and there is another unique class of codes with the maximal db = 4 (and d = 2).

There are three distinct graphs (up to isomorphisms), which correspond to the shorter
hexacode class, see figure 6. And there is a unique graph (up to isomorphism), which
corresponds to the second class with db = 4, figure 7.

For n = 3 and n = 4 we saw examples where C-equivalence would relate two classes
of T-equivalent codes. For n = 5 there are already groups of 2, 3 and 4 classes of codes
related to each other by C-equivalences.

There are 128 “fake” REPs for n = 5. The number of “fake” REPs increases rapidly
with n, 2835 for n = 6, 71164 for n = 7, 4012529 for n = 8 and so on.

6.6 n = 6

There is a unique class of codes which achieves both maximal d = 4 and maximal db = 4.
This is the hexacode h6, introduced in section 2.2. As can be easily seen from (2.66), the
hexacode is a real code, and by using T-duality transformations it can be brought to the
B-form. (We should note that there are other codes, C-equivalent to the hexacode (2.66),
which are also called by this name in the literature, see [20, 76]. Those codes are not real.)
There are two graphs shown in figure 8, which are associated with the class of T-equivalent
codes that includes the hexacode. The refined enumerator polynomial of the hexacode is
Wh6(x, y, z) = x6 + 30x2y2z2 + 15x2z4 + y6 + 15y2z4 + 2z6, which reduces to (2.60) upon
substituting z → y.
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Figure 8. ELC-equivalent (T-equivalent) graphs corresponding to the hexacode. These graphs
have Q = 2x4(11x2 + 16xy + 5y2).

Figure 9. Representatives from three distinct classes of T-equivalent codes, which maximize both
d = 3 and db = 4. The interlace polynomials for these classes are Q = 40x7+62x6y+24x5y2+2x4y3,
Q = 41x7 + 63x6y + 23x5y2 + x4y3, and Q = 43x7 + 64x6y + 21x5y2.

The Lorentzian lattice of the hexacode Λ(h6) is related to the Euclidean Coxeter-Todd
lattice K12 by the linear transformation (6.11) applied in each C plane. Upon setting
τ ′ = −3τ , the Siegel theta-function of Λ(h6) reduces to the theta function of K12 (2.67).
We should note that the Lorentzian lattice Λ(h6), although related to K12, is not the
same as the Coxeter-Todd lattice understood as a Lorentzian even self-dual lattice. The
latter interpretation and the related Narain CFT was recently introduced in [10]. That
construction is analogous to our construction of E8 as a Lorentzian even self-dual lattice,
discussed in section 6.4.

There are two other classes of codes with maximal db = 4 and d = 2, which we do not
discuss here.

6.7 n = 7

There are tELC
7 = 218 classes of T-equivalent codes, with 18 classes attaining the maximal

value of d = 3, and 8 classes with the maximal value of db = 4. Let us first focus on
those 3 classes which have both maximal d and db. The first class includes 3 graphs (up to
isomorphisms), the second 12 and the third 6. We only show one representative for each
class of T-equivalent codes in figure 9. The REPs for these codes are (from left to right)

W = 3W2W
5
1

2 + W 2
2W

3
1

4 + W 3
2W1
2 + 11R2W1

4 − RW
2
2

2 − 5W 7
1

4 − 5RW 4
1

2 − RW2W
2
1

2 ,

W = 3W2W
5
1

2 + W 2
2W

3
1

4 + W 3
2W1
2 − RW2W

2
1

2 − RW
2
2

2 − 5W 7
1

4 − R
2W1
4 − RW

4
1

2 ,

W = 7R2W1
4 − 7RW2W

2
1

2 − 3W 7
1

4 + 7W 2
2W

3
1

4 .
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Figure 10. “Fish” graphs — representatives from two classes of T-dual codes, which share the
same refined enumerator polynomial (6.38); they are C-equivalent but not T-dual to each other.
The first class includes 10 distinct non-isomorphic graphs; the second class includes 9. We choose
among them two representatives based on simplicity and aesthetics. These two classes of graphs
also share the interlace polynomial Q = 30x7 + 58x6y + 34x5y2 + 6x4y3.

It turns out, there are exactly two distinct classes of T-equivalent codes for n = 7
which share the same REP,

Wisospectral = x7 + x5y2 + 5x4y2z + 5x2y4z + x5z2 + 12x3y2z2 + 9xy4z2 + 4x4z3

+22x2y2z3 + 4y4z3 + 5x3z4 + 25xy2z4 + 11x2z5 + 11y2z5 + 10xz6 + 2z7.

(6.38)

Two representative graphs (there are many others) associated with these two classes are
shown in figure 10. (We note that the REP is unique for all classes of T-equivalent codes
for n ≤ 6). It should be noted that the shown graphs are related by LC, which means
that the corresponding classes of codes are C-equivalent. And while in the general case
C-equivalence can change the REP, in this case it does not.

Since these two classes of codes are not T-equivalent, corresponding code theories are
not T-dual to each other, see appendix D. Because they share the same REP, the corre-
sponding code CFTs have the same partition function. In other words we have obtained
an explicit example of two Narain CFTs, not related by T-duality, with the same spec-
trum. At the level of lattices, this is a pair of isospectral but not isomorphic even self-dual
Lorentzian lattices in R7,7. It is interesting to compare this example with the examples
of isospectral but not isomorphic Euclidean lattices associated with inequivalent classical
codes, in particular Milnor’s example of E8⊕E8 and D+

16 even self-dual lattices in R16. In
String Theory this example famously corresponds to the two possible isospectral compact-
ifications of 16 left-moving modes of the heterotic string. These two isospectral theories
are related by T-duality upon compactification [29–31]. Our construction gives an exam-
ple of isospectral even self-dual lattices in the smallest number of dimensions, and in that
dimension it is unique, much like the Milnor’s example. (We note our analysis covers only
code-related lattices. It is an open question if there are other even self-dual isospectral
lattices in Rn,n for n ≤ 7.) But it is also different from Milnor’s example in several ways.
First, Milnor’s example related a decomposable code with an indecomposable one. Here
we have two indecomposable codes. Second, at the level of CFTs it is an example of two
isospectral non-chiral CFTs, not related in any simple way to chiral CFTs. Furthermore,
there is no obvious symmetry which would make this example unique or special, raising
doubts that these isospectral theories might be related by a duality.
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As we will see shortly there are many more examples of isospectral Narain CFTs with
n ≥ 8. Our finding highlights a limitation of the modular bootstrap approach, which is
incapable of differentiating isospectral theories.

6.8 n = 8

There are tELC
8 = 1068 classes of T-equivalent codes with n = 8. Fourteen classes achieve

the maximal allowed value of d = 4, and db = 4. They form 5 groups of C-equivalent
codes [75]. There are other classes with maximal db = 4 but they have smaller d.

Among the fourteen classes with the maximal d = db = 4 is the code with lattice
Λ(C) = E8 ⊕ E8, understood with the metric (3.17). Upon bringing it to B-form, its
B-matrix is given by

B =
(

0 B4
B4 0

)
, (6.39)

where the 4 × 4 matrix B4 is given by (6.31). As can be seen from its graph, this code is
indecomposable and its REP is

W(qe8)2 = x8 + 14x4y4 + 28x4z4 + 168x2y2z4 + y8 + 28y4z4 + 16z8. (6.40)

We should note right away that there is another decomposable code, which is a product
of two n = 4 codes (6.31). Its B matrix is block-diagonal, with each block equal to B4.
The lattice Λ(C) of that code is also E8 ⊕ E8 but this time each E8 is understood as a
Lorentzian lattice, as in section 6.4. The REP of this code is W 2

qe8 and d = 2, db = 4.
Both codes would be equivalent as binary codes, and in particular W(qe8)2(x2, y2, xy) =
W 2
qe8(x2, y2, xy) = We8(x, y)2. As we have mentioned several times already, the binary

e8 ⊕ e8 code is isospectral with d+
16 (denoted E16 in [27]). The latter can be brought to

canonical form with the B-matrix being symmetric and Bii = 0. This means the binary
self-dual code d+

16 can be uplifted to the real self-dual stabilizer code with B-matrix (one
of many representatives from the T-equivalence class) and graph

B =



0 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1
1 1 0 0 0 1 0 0
1 1 0 0 0 0 1 0
1 1 0 0 0 0 0 1
1 1 1 0 0 0 0 0
1 1 0 1 0 0 0 0
1 1 0 0 1 0 0 0


, (6.41)

This code has d = 2, db = 4 and REP

Wd+
16

= x8 + 4x6y2 + 22x4y4 + 4x2y6 + y8 + 24x4z4 + 144x2y2z4 + 24y4z4 + 32z8.
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Figure 11. Representatives from three different not C-equivalent classes of T-equivalent codes,
which share the same REP W = (x+ z)2(x6 − 2x5z + 3x4z2 + 4x3y2z + x2y4 + 2x2y2z2 + 4x2z4 +
2xy4z + 24xy2z3 + 4xz5 + 9y4z2 + 10y2z4 + 2z6).

Of course Wd+
16

(x2, y2, xy) = We8(x, y)2, which means that all three code CFTs — the one
associated with (6.39), the tensor product of two (6.31) theories, and the one associated
with (6.41) — have partition functions which coincide along the diagonal τ̄ = −τ (purely
imaginary τ), but are different otherwise.

We just saw that Milnor’s example of isospectral even self-dual lattices in Euclidean
space R16 does not lead to isospectral Lorentzian lattices. This does not mean there is any
lack of isospectral even self-dual lattices in R8,8. Among n = 8 real self-dual stabilizer codes
there are 60 isospectral pairs (excluding the product of the n = 1 code with the isospectral
n = 7 codes shown in figure 10). Among these 60 pairs two relate a decomposable code
with an indecomposable one, while the other 58 relate two indecomposable codes. Among
the first two cases is the hexacode, see figure 8, combined together with the n = 2 code
shown in figure 3 right, which is isospectral with the indecomposable n = 8 code associated
with the graph (one of many representatives from the T-equivalence class)

B =



0 1 1 1 1 1 0 0
1 0 1 1 1 1 0 0
1 1 0 1 1 0 1 0
1 1 1 0 0 1 0 1
1 1 1 0 0 0 0 0
1 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0


, (6.42)

One can easily find two codewords with db = 2 that are not orthogonal to other codewords
in terms of the Euclidean metric. This means corresponding lattice is not decomposable
into a sum of two lattices, but is isospectral with a decomposable one. In this sense this
example is similar to Milnor’s example.

We will not discuss other examples of isospectral pairs in detail, but just mention
that in 36 instances isospectral codes are C-equivalent, while in 24 instances they are
not. Besides 60 isospectral pairs, there are 5 isospectral triples, when three different code
CFTs are isospectral. Four triples include two C-equivalent codes, and another one, not
C-equivalent. All three codes in the fifth triple are not C-equivalent. Representative graphs
from the fifth triple are shown in figure 11.
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6.9 n = 9 − 11

We have classified all graphs with up to n ≤ 8 vertexes, see appendix E, and one can easily
generate all corresponding refined enumerator polynomials and identify equivalent ones
using computer algebra. We leave the task of classifying ELC classes of graphs (classes of
T-equivalent codes) with larger n for the future. There is a full classification of LC classes
(classes of equivalent codes) for n ≤ 12 obtained in [75], with the corresponding database
available online. Going through 675 n = 9, 3990 n = 10 and 45144 n = 11 codes available
there we confirm there are more new examples of isospectral codes. There are instances
of pairs, triples, and quadruples of isospectral n = 10 codes, and k-tuples of isospectral
n = 11 codes for all k ≤ 11.

6.10 n = 12

The theoretical fit of the numerical bootstrap constraint for the value of the spectral gap
∆ ≤ (n+ 4)/8, depicted as a dashed line in figure 2, seems to suggest the celebrated Leech
lattice, the unique self-dual lattice in d = 24 with no vectors shorter than `2 = 4, will make
an appearance when n = 12, saturating the bound. But this is not the case. First, the
numerical bound on the spectral gap is close, but is strictly smaller than ∆ < 2 [10]. Second,
the Leech lattice understood as a self-dual Lorentzian lattice is odd, see appendix B. That
leaves the possibility for the Leech lattice to define some special non-chiral fermionic CFT
with large spectral gap, a question we leave for the future.

The largest achievable binary Hamming distance for real self-dual codes with n = 12
is db = 6. It corresponds to spectral gap ∆ = db/4 = 3/2. As we have mentioned already,
the Construction A lattice Λ(C) of any stabilizer code necessarily has vectors of length
`2 = 2, which limits the spectral gap to ∆ ≤ 1. Nevertheless in certain cases one can apply
a twist by a half lattice vector δ to attain larger spectral gaps. To turn an even lattice
into an even lattice, δ2 should be odd. Assuming the vector ~1 is one of the codewords,
when n/4 is odd e.g. for n = 12, a twist by δ = ~1/(2

√
2) will yield a new even self-dual

Lorentzian lattice, whose corresponding Narain CFT has spectral gap ∆ = db/4. The
Siegel theta-function and hence the partition function of the corresponding CFT is given
by (3.46). This procedure is universal, and can be applied to any code whose REP includes
the term y12.

There is a unique equivalence class of codes with the largest possible Hamming distance
d = 6, the so-called the dodecacode [73]. Real codes belonging to this class split into three7

classes of T-equivalent codes, with the refined enumerator polynomials

WI = WIII − 2W 2
1R3, (6.43)

WII = WIII + 4W 2
1R3, (6.44)

WIII = x12 + 2x6y6 + 60x6y4z2 + 270x6y2z4 + 64x6z6 + 60x4y6z2 + 480x4y4z4

+840x4y2z6 + 105x4z8 + 270x2y6z4 + 840x2y4z6 + 810x2y2z8 + 60x2z10 + y12

+64y6z6 + 105y4z8 + 60y2z10 + 4z12. (6.45)
7 Strictly speaking we should say at least three, as potentially there could be isospectral classes of

T-equivalent codes, which are C-equivalent but not T-equivalent with each other.
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Of course all three REPs correspond to the same enumerator polynomial

W = x12 + 396x6y6 + 1485x4y8 + 1980x2y10 + 234y12. (6.46)

All three classes have d = db = 6. They can be brought to the canonical, or B-form, with
many possible matrices B. Here we give a representative from each class of T-equivalent
codes, in the notation of (E.1),

k1 = 12020990775258723326, (6.47)
k2 = 8432846454558968306, (6.48)
k3 = 47473099643714589357. (6.49)

Understood as binary codes, via the Gray map, these codes are isodual but not self-dual.
For B-form codes this means the matrices B are symmetric but do not satisfy B BT = I.
It is therefore remarkable that enumerator polynomial of the third class, with the graph
shown in figure 12, understood as classical binary code, is the same as the enumerator
polynomial of the odd Golay code h+

24,

WIII(x2, y2, xy) = x24 + 64x18y6 + 375x16y8 + 960x14y10 + 1296x12y12

+960x10y14 + 375x8y16 + 64x6y18 + y24. (6.50)

The odd Golay code is a self-dual [24, 12, 6] binary code. It is even but not doubly-even,
which means corresponding Construction A lattice is self-dual and odd. Applying twist
with ~δ = ~1/2/

√
2, one obtains the odd Leech lattice, the unique self-dual odd lattice in

24 dimensions, with shortest vector of length-squared `2 = 3. Its theta-function, given
by (6.50) and (2.40), is

ΘOdd Leech = 1 + 4096 q3/2 + 98256 q2 + 1130496 q5/2 + 18384512 q3 + . . . (6.51)

The odd Leech lattice can be understood as an odd self-dual Lorentzian lattice, which
means that the generator of the h+

24 code can be brought to the canonical form (2.15) with
a symmetric B, in which not all Bii are zero.8

Going back to the stabilizer codes from the third class (6.49), see figure 12, they
correspond to an even self-dual Lorentzian lattice, which, understood as a Euclidean lattice,
is isodual and isospectral with the Construction A lattice of h+

24. If we apply a twist with
~δ = ~1

2
√

2 , we obtain an even self-dual Lorentzian lattice, which, as a Euclidean lattice,
is isodual and isospectral with the odd Leech lattice. Its Siegel theta-function is given
by (3.46) and reduces to (6.51) along the diagonal τ ′ = −τ . The Narain CFT defined
with this lattice has spectral gap ∆ = db/4 = 3/2. It should also be noted that codes
from two other classes, via the same twist procedure, also lead to Narain theories with
∆ = db/4 = 3/2 .

8If one defines h+
24 using the generator matrix given in figure 12.1 of [48], the permutation

{1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 20, 24, 15, 14, 13, 16, 19, 18, 17, 23, 22, 21, 8, 12} brings it to a form that is self-dual
with respect to (3.17).
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Figure 12. Graph of (6.49), a representative from one of the T-equivalence classes associated with
the dodecacode. The corresponding refined enumerator polynomial is given by (6.45). As a binary
isodual code it is isospectral with h+

24. Via the twist construction it gives rise to a non-integer
isodual lattice isospectral with the odd Leech lattice.

Finally, returning to the Golay code, its matrix B in the canonical form (B.1) is
symmetric but Bii 6= 0. This means that the Golay code can be interpreted as a self-dual
stabilizer code, which is not real. We can use code equivalence to find C-equivalent real
self-dual codes. There are three classes of T-dual codes (strictly speaking, at least three,
see footnote 7): one has d = 4 and db = 6 (and can be used to construct a Narian CFT
with ∆ = 3/2 via twist construction), and other two have a more modest d = db = 4. A
curious observation here is that the matrix B (B.1) with all diagonal elements set to zero
gives rise to the stabilizer code, which shares the same REP with one of the d = db = 4
classes mentioned above. This seems to indicate that for this matrix B, C-equivalence can
simply remove all non-zero diagonal matrix elements while leaving everything else intact.
This is an unusual situation, and it would be interesting to describe the class of matrices
B for which this is possible.

7 Conclusions

In this paper we have discussed a relation between quantum stabilizer codes, a particular
class of quantum error-correcting codes, and a class of 2d conformal field theories. The
key ingredient in our construction is the relation between stabilizer codes and Lorentzian
lattices, which is the subject of section 3.2. Self-dual quantum stabilizer codes correspond
to self-dual lattices, and real codes to even lattices. In this way, real self-dual codes define
CFTs based on even self-dual lattices, which we call code theories. Basic properties of code
CFTs are captured by the corresponding codes; in particular, the CFT partition function is
given by the code’s refined enumerator polynomial (4.23). Qualitatively, classical codes are
related to Euclidean lattices and chiral CFTs. In this paper we have shown that quantum
codes correspond to Lorentzian lattices and non-chiral CFTs.

Our main focus has been on self-dual codes and lattices. The space of stabilizer codes is
discrete, but in our construction it is embedded in the continuous space of Lorentzian self-
dual lattices. This is an essential difference from the case of classical codes, for which the
space of Euclidean self-dual lattices is discrete. Within the Narain moduli space of all self-
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dual even Lorentzian lattices, we describe the set of real self-dual stabilizer codes as a group
coset (4.36). There are other spin-off results which can be formulated without references
to CFTs. We have derived the Gilbert-Varshamov bound by averaging over all codes in
canonical form, and calculated linear programming bounds on the largest binary Hamming
distance, see section 5. At the level of graphs, informed by the CFT interpretation, we
outlined the importance of edge local complementation (ELC) equivalence classes, and
classified all graphs on n ≤ 8 nodes, see appendix E. Finally, we constructed an isodual
non-integral lattice isospectral to odd Leech lattice in section 6.10.

Code theories form a subsector of Narain CFTs. T-duality transformations can map a
code theory into another code theory, in which case the corresponding codes are necessarily
equivalent in the code sense, as proved in appendix D. Using T-duality transformations one
can always bring any code CFT into the form of a compactification on an n-dimensional
cube of “unit” size and quantized B-flux, such that it is fully specified by a binary symmetric
matrix B = B mod 2. The matrix B can be interpreted as the graph adjacency matrix.
Thus code theories can be labeled by graphs, with graphs of T-dual theories being related
by edge local complementation. By classifying all classes of ELC equivalent graphs on n ≤ 8
nodes we have found all physically distinct code CFTs with central charge c = n ≤ 8.

Schematically, one can think of code theories as a particular “ansatz” which reduces
modular invariance of the CFT partition function to a simple algebraic condition satisfied
by a multivariate polynomial. In this way code theories provide a playground to probe
several questions central to the conformal modular bootstrap program. As in the case of
classical binary codes which give rise to optimal sphere packings in certain dimensions, a
particular code theory which we dub non-chiral E8, and which is ŜO(8)1 WZW theory in
disguise, attains the maximal value of the spectral gap among the Narain theories with
central charge c = n = 4. This theory is based on the root lattice of E8, understood as a
Lorentzian even self-dual lattice, see section 6.4. Other special lattices, in particular the
odd Leech lattice, also make an appearance, see section 6.10. A drastic reduction of the
modular invariance constraints at the level of code theories gives us a multitude of examples
of “fake” CFT partition functions, modular invariant non-chiral functions Z(τ, τ̄), which
admit expansions in terms of U(1)n×U(1)n characters with positive integer coefficients (the
first being 1), yet do not correspond to any known theory. The number of fake Z(τ, τ̄)’s
quickly grows with c = n, which suggests one of two possibilities. It could be that these
are not partition functions of any actual CFT, which means persistent allowed regions in
modular bootstrap exclusion plots in fact might be empty. Another possibility is that these
Z(τ, τ̄)’s might correspond to actual CFTs from some new sector, most likely related to
a family of (non-additive) codes. This would mean that the notion of a code CFT could
be extended to include these and perhaps other sets of theories. (We also mention that a
completely analogous construction exists for classical binary codes leading to examples of
“fake” chiral CFT partition functions for c ≥ 24 divisible by 8, see section 2.1.)

Finally, our analysis of stabilizer codes with small n ≤ 12 reveals a growing number
of isospectral but physically inequivalent Narain CFTs. From the mathematical point
of view these are examples of isospectral but non-isomorphic Narain lattices. The first
such example appears for n = 7; it corresponds to a pair of isospectral even self-dual

– 65 –



J
H
E
P
0
3
(
2
0
2
1
)
1
6
0

Lorentzian lattices in R7,7, see figure 10. For chiral CFTs based on Euclidean lattices, the
lowest-dimensional pair of isospectral CFTs are the E8×E8 and Spin(32)/Z2 lattice CFTs
corresponding to Milnor’s example of isospectral even self-dual lattices in 16 dimensions.
In contrast to the Euclidean case, where next example occurs in 24 dimensions, there are
many dozens of examples of isospectral c = n = 8 theories, with the number presumably
growing rapidly for larger c = n.

Code CFTs may provide a useful framework for addressing the following two ques-
tions. The first is to understand the asymptotic behavior of the maximal spectral gap for
Narain theories with c = n � 1 [9, 10]. At the level of code theories, the analog of the
spectral gap is the binary Hamming distance db, which can be effectively studied using
linear programming methods. It is an open question though to relate quantum codes with
large db to Lorentzian lattices with large shortest vector. To that end one needs to go
beyond Construction A lattices, discussed in this paper, and introduce some analogs of
constructions B, C etc. developed for classical codes [20]. Another question is the recently
proposed holographic duality between averaged Narain theories and certain Chern-Simons
theories in the bulk [10, 17]. We have argued in section 5 that the ensemble average over all
code theories exhibits the same basic features as the average over full Narain moduli space,
suggesting a holographic interpretation. Thus, code theories may provide an additional
testbed to verify and study this duality.

There are several different ways in which classical codes may be associated with various
chiral CFTs, both supersymmetric and not [3, 5]. We expect the construction outlined in
this paper to be perhaps the simplest but not the only scheme relating quantum codes
to non-chiral CFTs. We already mentioned a possible connection between self-dual albeit
non-real stabilizer codes, associated with self-dual odd Lorentzian lattices, and fermionic
CFTs. But we expect that many other constructions are possible. Perhaps the most
important aspect of the relation between Euclidean lattices and chiral CFTs is that the
former can be used to define consistent Vertex Operator Algebras (VOA). Thus, the VOA
associated with the Leech lattice, and its Monster orbifold, exhibits symmetries which go
beyond pure geometric symmetries of the lattice [2, 98]. In light of our work, one of the
immediate questions would be to study symmetries of the non-chiral VOAs associated with
code CFTs, possibly leading to a non-chiral moonshine theory.

Let us conclude with one more fundamental question: to what extent does the physi-
cal Hilbert space of a code theory exhibit quantum error-correcting properties related, or
inherited, from the associated codes? Here we have in mind various properties, including
“quantum error correction” necessitated by the emergence of locality in the bulk [15] or re-
lated to the large N limit [99], quantum information properties of CFT ground states [100],
and probably many others.

Acknowledgments

We would like to thank Noam Elkies, Anton Gerasimov, Nikita Nekrasov, Vasily Pestun,
and Eric Rains for discussions. AD is supported by the National Science Foundation
under Grant No. PHY-1720374. He would like to thank IHES for hospitality during the

– 66 –



J
H
E
P
0
3
(
2
0
2
1
)
1
6
0

visit, which was supported by funds from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation program (QUASIFT grant
agreement 677368).

A E7 and E8 lattices and codes

In this section we show that the root lattices of the Lie algebras E7 and E8 are isomorphic
to the Construction A lattices of the Hamming [7, 4, 3] code and the extended [8, 4, 4] code
e8. We start with the case of E8 as it is more symmetric and simpler. For E8 we also discuss
the equivalence of different Lorentz-signature metrics and the relation of the non-chiral E8
theory to the theory of eight free Majorana fermions.

A.1 E8

The root lattice of the Dn series is the “checkerboard” lattice of integer vectors
(x1, . . . , xn) ∈ Zn with the sum of all coordinates being even,

∑
i xi = 0 (mod 2). We

denote this lattice as Dn. The vector ~δ = ~1/2 does not belong to the lattice, but when n
is even, 2δ does. Using a procedure similar to the twist described in section 2.1, we can
define a new lattice

D+
n = Dn ∪ (Dn + δ), (A.1)

where Dn + δ is defined as in (2.38). For n = 8 this lattice is the root lattice of the Lie
algebra E8. It includes vectors of the form (x1, . . . , xn) where all xi are simultaneously
either integer or half integer, and their sum is integer and even. One can choose

ΛE8 =



1 0 0 0 0 0 −1
2 0

−1 1 0 0 0 0 −1
2 0

0 −1 −1 0 0 0 −1
2 0

0 0 1 −1 0 0 −1
2 0

0 0 0 1 −1 0 −1
2 0

0 0 0 0 1 1 −1
2 1

0 0 0 0 0 1 −1
2 −1

0 0 0 0 0 0 −1
2 0


(A.2)

as a generator matrix, in which case gram matrix is the Cartan matrix of E8,

ΛT
E8 ΛE8 =



2 −1 0 0 0 0 0 0
−1 2 1 0 0 0 0 0
0 1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 1 0 1
0 0 0 0 1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 0 1 0 0 2


. (A.3)
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The generator matrix ΛE8 is of course very different from the generator of the Con-
struction A lattice Λ(e8) associated with the Hamming [8, 4, 4] code. The latter is given
by (2.17) with the matrix B as in (2.18); we will denote it by Λe8 . The lattices generated
by ΛE8 and Λe8 are not identical but are isomorphic, which means there is a rotation
O ∈ O(8) and a matrix Z ∈ GL(8,Z) such that

ΛE8Z = OΛe8 . (A.4)

Finding O and Z directly from (A.4) is difficult; indeed, Wikipedia calls the task of finding
the explicit isomorphism “not entirely trivial.”

The following trick saves the day. There are 240 roots, i.e., vectors of length `2 = 2,
which can be written explicitly in both representations. In particular all of the columns of
Λe8 are roots. We consider the Gram matrix

ΛT
e8 Λe8 =



2 0 0 0 1 1 1 0
0 2 0 0 1 1 0 1
0 0 2 0 1 0 1 1
0 0 0 2 0 1 1 1
1 1 1 0 2 1 1 1
1 1 0 1 1 2 1 1
1 0 1 1 1 1 2 1
0 1 1 1 1 1 1 2


. (A.5)

Our goal now is to choose 8 roots from the list of 240 roots of ΛE8 such that their scalar
product is given by (A.5). The procedure is iterative. Using computer algebra we calculate
the 240 × 240 matrix of scalar products. The first root is chosen at will. We choose the
second root from the set of those which have the desired scalar product with the first one.
The third is then chosen from the list of those remaining roots which have desired scalar
product with the first two, and so on. The procedure does not guarantee success (we may
not be able to find a vector with the desired properties at a certain step), but since the
lattice has many symmetries it works well in practice.

Once a set of roots with the scalar product matrix (A.5) are found, one can choose
them to generate the lattice, which will be related to ΛE8 by an appropriate GL(8,Z)
transformation. That is the desired matrix Z. Once Z is known, O follows from (A.4),

O =



0 0 1 −1
2

1
2

1
2 −

1
2 0

0 0 −1 −1
2

1
2

1
2 −

1
2 0

0 1 0 1
2 −

1
2

1
2 −

1
2 0

0 −1 0 1
2 −

1
2

1
2 −

1
2 0

1 0 0 1
2

1
2 −

1
2 −

1
2 0

−1 0 0 1
2

1
2 −

1
2 −

1
2 0

0 0 0 1
2

1
2

1
2

1
2 −1

0 0 0 1
2

1
2

1
2

1
2 1


/
√

2. (A.6)

The lattice E8 is even and self-dual, which follows from all diagonal matrix elements
of (A.5) being even, while the matrix is integer and has determinant 1. Curiously E8 is
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also even and self-dual with respect to Lorentz signature metric (3.17). Indeed,

ΛT
e8 gΛe8 =



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 1 1 1
0 0 1 0 1 0 1 1
0 1 0 0 1 1 0 1
1 0 0 0 1 1 1 0


∈ GL(8,Z), (A.7)

from which follows that it is self-dual. It is also even because all diagonal elements of the
Gram matrix are even. (Alternatively one can flip signs in B to make it antisymmetric.
The lattice would remain the same, but now Λe8 would be an orthogonal matrix from
O(4, 4,R), which guarantees that the lattice is even and self-dual.) In section (6.4) we used
E8 understood as a Lorentzian lattice to define a “non-chiral E8” Narain CFT.

An immediate check reveals that the lattice generated by ΛE8 is also even self-dual
with respect to the same metric g. We leave the exercise of calculating ΛT

E8
gΛE8 to the

reader. This is curious, because it means that the lattice generated by Λe8 is even self-dual
with respect to both metrics, g and

η = OT gO. (A.8)

One can immediately ask, what is the Narain CFT defined with respect to η? It turns
out that this is exactly the same theory thanks to the lattice symmetry. We consider an
orthogonal transformation of the form

T = H(OL ×OR)H, (A.9)

where OL,R ∈ O(4,R) and the 8× 8 block matrix

H =
(

I I
I −I

)
/
√

2, (A.10)

performs the transformation (4.10). Then T is a symmetry of g, T T g T = g. (In physics
terms, the transformation OL × OR is in the part of the T-duality group that rotates pL
and pR separately.) Accordingly, the orthogonal matrix S = T O satisfies

η = ST g S. (A.11)

It turns out that for the particular choice of

OL =


0 0 −1 −1
−1 −1 0 0
0 0 −1 1
1 −1 0 0

 , OR =


0 0 1 1
−1 −1 0 0
0 0 −1 1
−1 1 0 0

 , (A.12)
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S is a symmetry of the lattice,

SΛe8 = Λe8ZS , ZS ∈ GL(8,Z). (A.13)

Therefore the Narain CFTs corresponding to the lattice Λ(e8), understood as a Lorentzian
lattice in two different ways, with respect to the metrics g and η, are T-dual to each other.

More generally, the E8 lattice has a rich group of symmetries, most of which act
nontrivially on the Lorentzian metric, “rotating” it into a new one. Narain CFTs defined
with respect to any choice of the Lorentzian metric are physically equivalent to each other.

Finally we discuss the equivalence between the non-chiral E8 theory and the theory
of eight free fermions with the diagonal GSO projection. The fermions can be bosonised,
leading to a toroidal compactification CFT on D4 — the root lattice of SO(8) [101] with
generator matrix

γD4 =


1 0 0 0
−1 1 0 0
0 −1 1 1
0 0 −1 1

 . (A.14)

The B-field

B =


0 −1 −1 0
1 0 −1 0
1 1 0 0
0 0 0 0

 (A.15)

is chosen such that upper triangular parts of γTD4
γD4 and γTD4

BγD4 coincide, leading to
SO(8)× SO(8) global symmetry [102–104]. The resulting Lorentzian lattice with the gen-
erator

ΛŜO(8)1
=
(

2(γTD4
)−1 BγD4

0 γD4

)
/
√

2 (A.16)

describes the ŜO(8)1 WZW theory as a Narain CFT. It is related to the lattice generated
by Λe8 by a T-duality transformation (A.9) with either OL or OR flipping the sign of one
arbitrary coordinate.

A.2 E7

The root lattice E7 can be defined via the generator matrix

ΛE7 =



1 0 0 0 0 −1
2 0

−1 1 0 0 0 −1
2 0

0 −1 1 0 0 −1
2 0

0 0 −1 1 0 −1
2 0

0 0 0 −1 1 −1
2 1

0 0 0 0 1 −1
2 −1

0 0 0 0 0 1√
2 0


, (A.17)
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such that the Gram matrix is the Cartan matrix of the E7 Lie algebra,

ΛT
E7ΛE7 =



2 −1 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 −1
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 0
0 0 0 −1 0 0 2


. (A.18)

The generator matrix of the Hamming [7, 3, 4] code is the transpose of (2.7). The
generator matrix of the Construction A lattice of this code can be chosen as

Λe7 =



2 0 0 0 1 0 0
0 2 0 0 0 1 0
0 0 2 0 1 1 0
0 0 0 2 0 0 1
0 0 0 0 1 0 1
0 0 0 0 0 1 1
0 0 0 0 1 1 1


/
√

2. (A.19)

To match the lattice generated by Λe7 with the one generated by ΛE7 , we will employ a
procedure analogous to the one used in the previous section. We construct 126 roots of
the code lattice, which include 14 vectors of the form (±2, 06)/

√
2 (and permutations), and

24×7 vectors obtained from the 7 codewords of Hamming weight 4. Then we calculate the
126×126 scalar product matrix, and start choosing roots one by one such that their scalar
product is equal to (A.18). The process does not need to succeed and in practice we needed
to experiment with a few different candidates for the fifth vector, before the process could
be completed. Once those roots are identified, we can solve a system of linear equations to
find a matrix Z−1 ∈ GL(7,Z) which expresses those roots in terms of Λe7 . After that an
orthogonal matrix O satisfying

ΛE8 = OΛe8Z
−1, (A.20)

can be found easily



1 0 0 0 −1 0 0
−1 0 0 0 −1 0 0
0 0 1 0 0 0 1
0 0 −1 0 0 0 1
0 1 0 0 0 1 0
0 −1 0 0 0 1 0
0 0 0 −

√
2 0 0 0


. (A.21)
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B Golay code and Leech lattice

The binary extended [24, 12, 8] Golay code g24 can be defined using a generator matrix of
the canonical form (2.15) with

B =



1 0 0 1 1 1 1 1 0 0 0 1
0 1 0 0 1 1 1 1 1 0 1 0
0 0 1 0 0 1 1 1 1 1 0 1
1 0 0 1 0 0 1 1 1 1 1 0
1 1 0 0 1 0 0 1 1 1 0 1
1 1 1 0 0 1 0 0 1 1 1 0
1 1 1 1 0 0 1 0 0 1 0 1
1 1 1 1 1 0 0 1 0 0 1 0
0 1 1 1 1 1 0 0 1 0 0 1
0 0 1 1 1 1 1 0 0 1 1 0
0 1 0 1 0 1 0 1 0 1 1 1
1 0 1 0 1 0 1 0 1 0 1 1



. (B.1)

This defines a self-dual code since B BT = I, understood over GF(2). Alternatively, one
can define the generator matrix of the Construction A lattice Λ(g24)

Λg24 =
(

2 I BT

0 I

)
/
√

2, (B.2)

and check that ΛTΛ is integer, unimodular, and with even diagonal entries.
The Leech lattice can be obtained from Λ(g24) by applying a twist (2.39) with the

vector ~δ = ~1/2/
√

2.
We have seen in section A.1 that the E8 lattice can be understood as a Lorentzian

even self-dual lattice. It can be used to define a non-chiral CFT with the largest possible
spectral gap ∆ = 1 for the given value of central charge (and U(1)4 × U(1)4 symmetry).
This extremal property can be traced to the lattice E8 being the optimal sphere packing
in 8 Euclidean dimensions, with a spectral gap specified by the maximal possible length of
the shortest lattice vector, 2∆ = `2 = 2. Given that the Leech lattice yields the optimal
sphere packing in 24 dimensions with the shortest vector of length `2 = 4, it would lead to
a non-chiral c = 12 theory with spectral gap ∆ = 2, provided it could be reinterpreted as a
Lorentzian lattice. It has been recently shown using numerical modular bootstrap that the
spectral gap for all theories with n = 12 (and U(1)12×U(1)12 symmetry) is strictly smaller
than 2 [10]. This indirectly proves that the Leech lattice is not an even self-dual lattice in
R12,12 for any Lorentzian metric with signature (12, 12). Here we provide an independent
and more explicit demonstration of this fact, underscoring a notable difference between the
Leech lattice and E8.

Our starting point is the Golay code g24. If we could interpret it, via the Gray map,
as a self-dual stabilizer code, it would immediately follow that Λ(g24) is an even self-dual
Lorentzian lattice. Then applying a twist with the same ~δ = ~1/2/

√
2 would immediately
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yield the Leech lattice, now viewed as Lorentzian even and self-dual. In other words we
would like to interpret the generator matrix GT = ( I |B) of the binary Golay code as the
generator matrix of a real stabilizer code. For that we need B = BT , which is satisfied,
but also Bii = 0, which is not. In other words, understood as a stabilizer code, the Golay
code is self-dual but not real. Therefore the corresponding lattice Λ(g24), understood as
a Lorentzian lattice, is self-dual but odd (one can check that ΛT

g24 gΛg24 is an integral
unimodular matrix with odd diagonal entries). Proceeding to define the Leech lattice via
this δ-twist would yield an odd self-dual lattice.

One may wonder if one can use code equivalences to define a new code with B symmetric
and Bii = 0. The transformations of B include permutations B→ BOp, as well as (compare
with (4.39))

B =
(
b11 b12
b21 b22

)
→ B′ =

(
b−1
11 b−1

11 b12
b21b

−1
11 b22 + b21 b

−1
11 b12

)
, (B.3)

where all algebra is over GF(2). It is assumed in (B.3) that the sub-matrix b11 is nonde-
generate.

The matrix B is not necessarily symmetric and may have non-zero diagonal elements.
But if B = BT and Bii = 0, (B.3) respects this property. Therefore if we hope to bring (B.1)
to the form B = BT ,Bii = 0, we must do it solely using permutations B → BOp. It can
be easily seen that this is impossible.

To summarize, the Leech lattice, considered as a Lorentzian lattice, is self-dual and odd.

C Any Narain CFT is a toroidal compactification

We want to show that, using symmetries of the physical theory, namely O(d) × O(d)
transformations, any even self-dual Lorentzian lattice (a so-called Narain lattice), can be
brought to the form (4.11).

Our starting point is equation (4.21), which states that any Narain lattice can be
obtained from the cubic lattice with generator matrix I by an appropriate O(d, d) trans-
formation. Let us denote first d vectors (columns) of the generator matrix I by ui and last
d vectors (columns) by ũi. They satisfy

ui · uj = 0, ũi · ũj = 0, ui · ũj = δij . (C.1)

Since an O(d, d) transformation leaves the metric invariant, we can say that an arbitrary
lattice Λ is generated by 2d vectors ui, ũj satisfying (C.1). Let’s start with u1. It is a null
vector, |u1|2 = 0, and therefore if we represent it in terms of two d-dimensional vectors,
~u1 = (~k1

L,
~k1
R), the vectors ~k1

L and ~k1
R will have the same length. Using a transformation

from O(d) we can rotate ~k1
R to be equal to ~k1

L (which will be denoted simply as ~k1). Next
we consider the vector ~u2 = (~k2

L,
~k2
R). For the same reason |~k2

L| = |~k2
R| and moreover

~k1 · ~k2
L = ~k1 · ~k2

R. (C.2)
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By an orthogonal transformation in the directions orthogonal to ~k1 we can make ~k2
L =

~k2
R = ~k2. Continuing this logic, we find

~ui = (~ki, ~ki). (C.3)

We can repeat the same procedure for the vectors ũi, but in this case an orthogonal
transformation acting on the ~ui will bring them to the form

~ui = (~ki,O~ki), ~̃ui = (~̃ki, ~̃ki). (C.4)

where O ∈ O(d). We can find an orthogonal matrix Q satisfying Q2O = −I, and after a
diagonal transformation Q×Q ∈ O(d)×O(d) and a trivial redefinition of ~ki, ~̃ki we obtain

~ui = (Q~ki,−Q−1~ki), ~̃ui = (~̃ki, ~̃ki). (C.5)

The last step is to impose ui · ũj = δij . The vectors ~̃ki define a lattice, which we can take
to be Γ∗. The vectors ~ki satisfy

~̃ki · (Q+QT )~kj = δij . (C.6)

Therefore, the vectors ~ei = (Q + QT )~ki form lattice Γ which is dual to Γ∗, and the anti-
symmetric matrix B from (4.8) is given by

B = (Q−QT )(Q+QT )−1. (C.7)

D T-duality as code equivalence

Starting from a particular code CFT with code generator matrix (3.19),

GT =

 α1 β1
. . . . . .

αn βn

 , (D.1)

we would like identify all possible transformations from O(n)×O(n) which would map the
code lattice Λ(C) into another code lattice Λ(C′) for some code C′. An element OL×OR ∈
O(n)×O(n) would act on G as follows

G→ G′ = QG, Q = 1
2

(
OL +OR OL −OR
OL −OR OL +OR

)
∈ O(n, n,R). (D.2)

We also remind the reader that αi, βi are equivalent (they define the same code and the
same lattice) upon shifting components by even number,

G ∼ G+ 2G̃, G̃ ∈ Mat(2n, n,Z). (D.3)

Another way to represent (D.2) is

~pL = α+ β

2 → OL
α+ β

2 , (D.4)

~pR = α− β
2 → OR

α− β
2 . (D.5)
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We already saw in section 4.2 that simultaneous permutations Op×Op ∈ O(n)×O(n),
as well as sign flips I × Oi ∈ O(n) × O(n), (Oi)kl = δkl − 2δikδil, are code equivalences,
mapping codes to equivalent codes.

Next we consider sign flips of the form Oi × I. It is easy to see that the simultaneous
sign flip Oi × Oi of a particular component of αi and βi (applied to all 1 ≤ i ≤ n) is a
symmetry of the lattice. Therefore flipping the sign with OL or with OR is equivalent.

A pair of arbitrary permutations O1
p × O2

p can be represented as (Op × I)(O2
p × O2

p),
where Op = O1

p(O2
p)−1. The diagonal part has been already discussed, and we only need

to analyze (Op × I). In order for the vectors pL, pR to correspond to a code lattice, the
i-th components of pL and pR must be simultaneously integer or half-integer. Since the
transformation (Op×I) leaves pR invariant, the permutation Op must only reshuffle integer
or half-integer components of pL with each other. In other words, provided there is a subset
w ⊆ {1, . . . , n} such that for all n codewords (αi, βi), all components of pkL,i, k ∈ w are
simultaneously integer or half-integer,

2pkL,i = 2plL,i mod 2 for k, l ∈ w, pkL,i = αki + βki
2 , 1 ≤ i ≤ n, (D.6)

then Op is an arbitrary permutation of indexes within w. For simplicity we can assume w
includes the first k indices, in which case all generators g are of the form

gi = εi σνi
1
⊗ · · · ⊗ σνi

k
⊗ . . . (D.7)

where all νil for 1 ≤ l ≤ k are either even or odd. If, for a given i, all νil are odd, then the
vector pl,i = (1/2, . . . , 1/2︸ ︷︷ ︸

k

, . . . ) and Op acts on it trivially. Otherwise, when all νil are even,

the first k components of ~pL,i are either zeros or ones, which are reshuffled by Op. Going
back to the generator (D.7), in the first case the generator remains invariant, while in the
second case the first k matrices are either I or σy which are reshuffled by Op.

If we now take a particular gi such that first k matrices are either I or σy and reshuffle
them, the new vector will trivially commute with all the gj , provided gi does. In this case
the new reshuffled gi would belong to the code, since the code is self-dual. We therefore
conclude that any transformation of the form Op× I which transforms a code (lattice) into
another code (lattice) is in fact a symmetry of that code (lattice).

To summarize, we have shown that any transformation of the form O × O for O ∈
O(n,Z) acts on all codes by transforming them into equivalent codes. Furthermore, if a
transformation

OL ×OR ∈ O(n,Z)×O(n,Z) (D.8)

transforms a given code into another code, the codes are equivalent in the code equiva-
lence sense.

So far we have only considered the transformations of the form (D.8), which is too
restrictive. Going back to (D.4), (D.5) and taking into account that α, β can be shifted by
arbitrary even-valued vectors, α→ α+ 2a, a ∈ Zn, while pL, pR must always be integer or
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half-integer, we immediately conclude that all matrix elements of OL and OR are integer
or half-integer. Since the OL,R are orthogonal, if (OL,R)kl is an integer it must be equal to
±1, and all other components of the k-th row and the l-th column must be zero. Because
of the symmetry (D.3), all components of 2Q must be integers. Therefore, if OL is an
integer, so must be OR, and if OL is a half-integer, so must be OR. Finally, if (OL,R)kl is a
half-integer, it is equal to ±1/2 and there must be three other components in the k-th row
and l-th column of (OL,R)kl which are also equal to ±1/2. Combining all this together and
using a diagonal transformation O × O, O ∈ O(n,Z), which maps codes into equivalent
codes, we can always take OL,R to be block-diagonal matrices where each block is either
(i) a 4× 4 matrix with all elements being ±1/2 or (ii) an orthogonal matrix from O(k,Z),
k ≤ n. Both OL and OR must have the same block structure.

If OL,R has no half-integer blocks, this is the case of (D.8) considered above. In
what follows we assume OL,R has at least one half-integer 4 × 4 block, which, without
loss of generality we can assume to be located in the upper-left corner. Since diagonal
permutations Op × Op combined with reshufflings of columns of G would not change the
canonical form of G, without loss of generality we can assume that (αi) = I and that
(βi) = B is a symmetric matrix, and focus on the 4× 4 upper-left block,

(αi) = I → (α′i) =
(
HL +HR

2 I + HL −HR

2 B
)

mod 2, (D.9)

and similarly for βi. Here HL, HR are orthogonal 4 × 4 matrices and |(HL,R)kl| = 1/2.
Provided that the new α′i, β

′
i define a new code, the generator matrix can be brought into

canonical form using permutations Op×Op, sign-flips and row operations. Sign flips can be
absorbed into HL, HR and permutations won’t change the canonical form; we therefore can
assume that the matrix (α′i) is nondegenerate. Similar logic with sign flips and permutations
can be used to transform HL into the Hadamard matrix, while HR would be one of 768
possible combinations of signs. For each choice of HR we can scan through all 26 possible
choices of B,9 to conclude that whenever all α′i happen to be integer-valued (which is
necessary for the new G′ to define a code lattice), as a matrix α′i is degenerate. This
concludes our proof.

E Classification of graphs on n ≤ 8 nodes

We can parametrize graphs by an adjacency matrix B, an n × n symmetric matrix with
Bii = 0 and Bij = 1 if the vertices i and j are connected. All matrices B can be parametrized
by integer numbers 0 ≤ k ≤ 2n(n−1)/2 − 1 using the following non-degenerate map

B ↔ k =
n∑
i=1

n∑
j=i+1

Bij 2(n+1)(n−2)/2−j+i+1−(i−1)(2n−i)/2. (E.1)

9Since all vectors of the form (α, β) = 2(a, b) for a, b ∈ Z4 (upon rescaling by
√

2) belong to the code
lattice, it can be shown that the code ( I |B) must be even. Indeed, by taking a = b = (1, 0, 0, 0), from (D.9)
we find (2HLa, 2HLa) mod 2 = ~1 must belong to a code. Any real self-dual code which includes the codeword
~1 is even, hence the code defined by α′, β′ is even. Applying the same logic to the inverse of (D.9) we find
that the code defined by α, β is even. There are only 8 such codes.
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n 1 2 3 4 5 6 7 8 9 10 11 12

tIn 1 2 4 11 34 156 1044 12346 274668 12005168 1018997864 165091172592

iIn 1 1 2 6 21 112 853 11117 261080 11716571 1006700565 164059830476

Table 3. Number of inequivalent graphs on n nodes tIn (number of graph isomorphism equivalence
classes), for n ≤ 12. Number of inequivalent indecomposable graphs iIn. Integer sequences A000088
and A001349 correspondingly.

Our results are summarized as Wolfram Mathematica lists in the file graphs8 available
here. It contains one variable ELiELCiI which is a nested list of lists. It has 8 components,
which contain information about LC equivalence classes split into ELC classes, which in
turn split into graph isomorphism equivalence classes for graphs on 1 ≤ n ≤ 8 nodes.
ELiELCiI[[n]] is a list of tLC

n elements, the first iLC
n of which correspond to decomposable

graphs; the last tLC
n − iLC

n correspond to indecomposable graphs, see table 2. For each
1 ≤ i ≤ tLC

n , ELiELCiI[[n, i]] corresponds to a particular ELC equivalence class within
the nth LC equivalence class. Each element of ELiELCiI[[n, i, j]] is a list with each entry
corresponding to a graph isomorphism class within a given ELC equivalence class. Each
graph isomorphism equivalence class is labeled by the maximal number k (E.1) among all
numbers associated with graphs within this class. A simple consistency check confirms
correct number of ELC classes tELC

n and iELC
n , see table 1, and the correct number of graph

isomorphism classes, see table 3.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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