Decomposition of Cattle Dung on Mixed Grass-Legume Pastures

José C. B. Dubeux Jr.
Federal Rural University of Pernambuco, Brazil

Carolina Câmara Lira
Federal Rural University of Pernambuco, Brazil

Erinaldo Viana de Freitas
Pernambuco State Agricultural Institute, Brazil

Mércia V. F. dos Santos
Federal Rural University of Pernambuco, Brazil

Mário de Andrade Lira
Pernambuco State Agricultural Institute, Brazil

See next page for additional authors

Follow this and additional works at: https://uknowledge.uky.edu/igc

Part of the Plant Sciences Commons, and the Soil Science Commons

This document is available at https://uknowledge.uky.edu/igc/22/2-11/21

The 22nd International Grassland Congress (Revitalising Grasslands to Sustain Our Communities) took place in Sydney, Australia from September 15 through September 19, 2013. Proceedings Editors: David L. Michalk, Geoffrey D. Millar, Warwick B. Badgery, and Kim M. Broadfoot

Publisher: New South Wales Department of Primary Industry, Kite St., Orange New South Wales, Australia

This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Presenter Information
José C. B. Dubex Jr., Carolina Câmarvent Lira, Erinaldo Viana de Freitas, Mércia V. F. dos Santos, Mário de Andrade Lira, Caroline Dykstra, Erick Rodrigo da Silva Santos, and Fernando Tenório Filho

This event is available at UKnowledge: https://uknowledge.uky.edu/igc/22/2-11/21
Decomposition of cattle dung on mixed grass-legume pastures

José Carlos Batista Dubeux Jr. AD, Carolina Câmara Lira A, Erinaldo Viana de Freitas B, Mércia Virginia Ferreira dos Santos AD, Mário de Andrade Lira BD, Caroline Dykstra C, Erick Rodrigo da Silva Santos A and Fernando Tenório Filho B

A Federal Rural University of Pernambuco, R. Dom Manoel de Medeiros, s/n, Dois Irmãos Recife - PE, Brazil
B Pernambuco State Agricultural Institute, Av. Gen. San Martin, 1371 – Bongi Recife-PE, Brazil
C University of Guelph, graduate student 50 Stone Rd E Guelph, ON N1G 2W1, Canadá
D CNPq fellow

Contact email: dubeux@dz.ufrpe.br

Keywords: Nitrogen fertilization, biomass remaining, nutrient cycling, organic matter, mineralization, immobilization.

Introduction
Animal excreta contribute positively to nutrient cycling and can improve the quality of soil (Dubeux et al. 2009, Carvalho et al. 2010). Cattle excrement, when evenly distributed over a pasture, can help to maintain plant nutrition without the application of fertilizers. The introduction of legumes intercropped with grasses benefits the soil by means of nitrogen fixation. Also, when ruminant animals eat legumes, the excrement produced may have lower C:N, C:P, lignin:N and lignin:P ratios promoting better nutrient return to the soil compared to when cattle eat only grass. Given the importance of nutrient return and decomposition time of cattle excreta on pastures, the objective of this study was to evaluate the decomposition of excrement of heifers managed in mixed grass-shrubby legume pastures and grass-only pastures.

Materials and Methods
The experiment evaluated the decomposition of excrement of heifers managed in signal grass (Brachiaria decumbens Stapf.) pastures intercropped (or not) with shrubby legumes. Treatments were: (1) Signal grass in pure stand and not fertilized; (2) signal grass in pure stand + 60 kg N/ha/yr; (3) signal grass intercropped with Mimosa caesalpinifolia Benth.; (4) signal grass intercropped with Leucaena leucocephala (Lam.) de Wit; (5) signal grass intercropped with Bauhinia cheilantha (Bong) Steud.; and (6i) signal grass intercropped with Gliricidia sepium (Jacq.) Kunth ex Walp. The experiment was planted in July 2008; legumes when present were planted in double rows spaced 10 m x 1.0 m x 0.5 m. The excrement was collected from cattle grazing/browsing the different pasture combination; paddocks (plots) measured 660 m² and were individually fenced. Fecal samples were collected and dried at 65ºC for 72 hours. Fecal samples were then incubated in nylon bags at field conditions (Dubeux Jr. et al. 2006) at seven time periods (4, 8, 16, 32, 64, 128 and 256 days) with three replicates per incubation, from June 23, 2010 to February 26, 2011. The research was performed at the experimental research station of Itambé, run by the Agronomic Institute of Pernambuco (IPA). Average precipitation during the experiment was 727 mm. The means were analyzed using the PROC MIXED procedure in SAS (SAS Inst. 1996). A single exponential model (Wagner and Wolf 1999) was used for percentage loss of organic matter.

Results and Discussion
The Brachiaria decumbens (60 kg N) treatment had the highest rate of fecal biomass loss (k=0,0031g /g/d) with 55% loss of organic matter over the 256 day incubation period. The lowest rate of loss was seen for Mimosa caesalpinifolia Benth. (k=0,0018 g/g/d) with 37% of the material decomposing over the same period. The excrement collected in the Gliricidia sepium (Jacq.) and Brachiaria decumbens treatments showed similar loss rates (k= 0.0027 and 0.0028 g /g/d, respectively) and the Leucaena leucocephala decomposition rate was close to that of the Brachiaria decumbens (60kg N) treatment, which can be attributed to nitrogen fixation by some legumes, providing a higher quality grass on offer (Table 1). The nitrogen (N), phosphorus (P) and potassium (K) remaining showed a significant difference only based on decomposition time (Fig. 1), and the relative rate of loss (k) of N was 0.00043 g/g/d which explains the return of nitrogen of ~16%, at the end time of the incubation (256 days). Phosphorus and potassium released 60% and 99.6%, respectively, in the same incubation period.

Conclusions
The rate of biomass loss from excrement collected in mixed grass-legume pasture and grass-only pastures are greatest during the first days of incubation. Different excreta decomposition rates among pastures are significant for nutrient cycling because faster rates may lead to greater nutrient use efficiency.
Table 1. Percentage of biomass remaining of heifer excrement in grass-legume pastures and grass-only pastures in different incubation times

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Days of incubation (%)</th>
<th>Exponential model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brachiaria decumbens</td>
<td>0, 4, 8, 16, 32, 64, 128, 256</td>
<td>Y = 90.19 -0.0027t</td>
</tr>
<tr>
<td>B. decumbens (60 kg/N)</td>
<td>0, 4, 8, 16, 32, 64, 128, 256</td>
<td>Y = 87.28 -0.0031t</td>
</tr>
<tr>
<td>Gliricidia Sepium</td>
<td>0, 4, 8, 16, 32, 64, 128, 256</td>
<td>Y = 88.82 -0.0025t</td>
</tr>
<tr>
<td>Leucaena leucocephala</td>
<td>0, 4, 8, 16, 32, 64, 128, 256</td>
<td>Y = 86.63 -0.0023t</td>
</tr>
<tr>
<td>Bauhinia cheilantha</td>
<td>0, 4, 8, 16, 32, 64, 128, 256</td>
<td>Y = 84.78 -0.0029t</td>
</tr>
<tr>
<td>Mimosa caesalpinifolia</td>
<td>0, 4, 8, 16, 32, 64, 128, 256</td>
<td>Y = 88.82 -0.0025t</td>
</tr>
</tbody>
</table>

Figure 1. Percentage of nitrogen, phosphorus and potassium remaining in heifer excrement in grass-legume and grass-only pastures.

References

Carvalho et al. (2010) Managing grazing animals to achieve nutrient cycling and soil improvement in no-till integrated systems. *Nutrient Cycling in Agroecosystems* 88, 259–273

