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1 Introduction

Coherent elastic neutrino-nucleus scattering [1–3], or CEνNS for short, is the most recently
discovered form of neutrino interaction with matter [4]. In these interactions, the momen-
tum transferred to a system is sufficiently low, such that the neutrino probes the nucleus
as a whole, instead of distinguishing individual nucleons. Compared to the usual neutrino-
nucleon interactions, the most important feature of CEνNS is what has been dubbed the
“coherent enhancement”: the cross section is proportional to the square of the weak charge
of the nucleus. This enhances the CEνNS interaction rate 10- to 100-fold, depending on
the nucleus in question relative to incoherent cross sections.

This new way of detecting neutrinos has attracted a great deal of attention from the
high-energy community. The possibility of doing neutrino physics with relatively small
detectors in the kg [5–9] to tonne [10–13] scale, as opposed to 100-tonne [14–17] or even
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kiloton detectors [14, 15, 18], opens up the possibility of competitively measuring neu-
trino properties with small-scale projects [6, 8, 19–21]. CEνNS provides an unavoidable
background floor for dark matter direct detection [22–35]. Moreover, as CEνNS is inher-
ently a low-energy process, it provides a natural window to study light, weakly-coupled,
new physics in the neutrino sector [4, 9, 33, 36–103]. Nevertheless, taking advantage of
CEνNS to do precision neutrino physics is not without its challenges.

Besides obvious experimental challenges, such as detecting low nuclear recoils, sup-
pressing backgrounds sufficiently or reconstructing the incoming neutrino energy, capital-
izing on CEνNS requires overcoming certain theoretical difficulties. In this manuscript, we
deal with a few of these. We present a calculation of radiative corrections that is universal
to all neutral-current processes that may affect the CEνNS cross section at the few %
level. This is required to properly interpret future precision physics studies with CEνNS,
including weak mixing angle [20, 38, 63, 69, 70, 75, 76, 104–106] and neutrino charge ra-
dius [48, 69, 70, 75, 76, 107–110] extractions. We also calculate the flavor-dependent correc-
tions to this process, which can change the CEνNS cross section at the few % level. These
flavor-dependent contributions are particularly interesting because they allow a neutral-
current process to statistically distinguish the neutrino flavor. While small, the flavor
dependence of neutral-current scattering is thresholdless (being dictated by experimental
limits) and permits the detection of neutrino flavor independent of the associated charged
lepton’s mass. Remarkably, this flavor sensitivity implies that the tau neutrino can be
accessed at neutrino energies of order 10 MeV, well below the tau production threshold in
neutrino-nucleon scattering of Eν ∼ 3.5 GeV. CEνNS offers a realistic avenue with which
to observe these effects since its cross section is much larger than other neutral-current
processes such as neutrino-electron scattering.

As mentioned above, despite CEνNS being a neutral-current process, it receives elec-
tromagnetic radiative corrections which are naively of O(α/π ∼ 0.2%), however they can
be enhanced by kinematic factors resulting in percent-level corrections to tree-level results.
The era of precision CEνNS detectors, from the perspective of the Standard Model, is there-
fore defined by O(1%) precision commensurate with the optimistic projections for next-
generation detectors mentioned above, see e.g. the future physics goals outlined in [111].

Leading-order radiative corrections to neutrino neutral-current processes differ qualita-
tively from charged-current processes or parity-violating electron-nucleus scattering in that
no W − γ or Z − γ box diagrams appear (because neutrinos are neutral). This means that
at O(G2

Fα) radiative corrections simply induce a photon mediated interaction between the
neutrino and the nucleus such that nuclear physics enters only through on-shell matrix ele-
ments of hadronic currents. In particular, radiative corrections to CEνNS are proportional
to 〈A(p′)|ĴEM|A(p)〉, where |A(p)〉 denotes the nucleus state and ĴEM is the electromagnetic
current operator, which is directly accessible via high-precision elastic electron scattering
data. Consequently, all dominant nuclear physics uncertainties are contained in the weak
form factor FW which is less well known [62, 69, 70, 79, 105, 112–117].

In contrast to corrections from nuclear effects (e.g. in the weak form factor), radiative
corrections introduce qualitatively new ingredients to CEνNS that are not present at lead-
ing order. For example, CEνNS is often idealized as a flavor-independent process, however
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Figure 1. Radiative corrections induce a photon-mediated interaction with nuclei. Charged cur-
rents (left diagram) lead to flavor-dependent calculable corrections. Neutral currents (right dia-
gram) lead to flavor-independent corrections, some of which involve light quarks and are inherently
nonperturbative. Rather than working directly with the Standard Model Lagrangian, we use a
more efficient four-fermion treatment [118–120] presented in section 2.1, that incorporates all elec-
troweak physics and effects due to running coupling constants and heavy-particle loops inside Wilson
coefficients.

this is only true at tree level. Loops with charged leptons depend on the mass of the
lepton resulting in flavor-dependent corrections (see figure 1). These effects are reasonably
well appreciated in the CEνNS literature at a qualitative level [110, 121–125]. According
to [126, 127], neutrino-photon interactions are induced via loops of charged particles. As
for any spin-1/2 particle, the on-shell vertex can be parameterized using Dirac spinors and
form factors ū(p2)Γµ(Q2)u(p1) with Q2 = − (p1 − p2)2 (see e.g. [128] for a review in the
context of neutrinos). Extracting the form factor slope from the experimental data, one can
probe a conventionally defined neutrino charge radius [108]. While we agree that CEνNS is
a probe of the neutrino’s electromagnetic properties, it probes the Q2 dependence of form
factors rather than their Q2 → 0 limit.

For concreteness, most of our discussion focuses on neutrinos from a pion decay-at-rest
source. We comment on other sources of low-energy neutrinos when needed. Although typ-
ical momentum transfers Q2 ∼ E2

ν ∼ (30 MeV)2 are small relative to the scales relevant for
nuclear coherence, they are large relative to the scales controlling quantum fluctuations,
namelyme andmµ. In fact, theQ2 → 0 limit can only be taken safely for virtual τ loops and
for loops with µ over some kinematic range, as we will see later. More precisely, the flavor-
dependent contribution is proportional to the vacuum polarization function in QED, and
depends on both Q2/m2

e and Q2/m2
µ neither of which is small for e.g. a neutrino energy of

Eν = 50MeV. In the CEνNS literature, it is often claimed that the effect of lepton loops can
be included in cross section calculations via a prescriptive replacement of the Weinberg an-
gle by an effective value. This prescription assumes a strict Q2 → 0 limit, however (as out-
lined above) this condition is not always satisfied in CEνNS as well as in neutrino-electron
scattering at kinematics of modern accelerator-based neutrino experiments [118, 119]. We
provide a general treatment for Q2 dependence of radiative corrections in this paper.
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In what follows, we study radiative corrections to CEνNS working to O(G2
Fα), i.e.

next-to-leading order (NLO). We emphasize that flavor differences σν` − σν`′ are calcu-
lable at O(G2

Fα
2) with the same treatment of nuclear uncertainties as the leading-order

CEνNS cross section. For NLO corrections (both flavor-dependent and independent), we
provide a full error budget for radiative corrections, while also accounting for nuclear- and
nucleon-level uncertainties at the same requisite O(1%) level of precision.

The rest of this paper is organized as follows: in section 2, we introduce the relevant
theory for CEνNS scattering on spin-0 nuclei. In section 2.1, we begin with a discussion
of CEνNS kinematics and a discussion of nuclear form factors. We then describe the four-
Fermi effective field theory (EFT), as outlined in [120], that is used in the rest of the
paper. In sections 2.2 and 2.3, we make use of this EFT framework to give self-consistent
definitions of the nucleon and nuclear form factors including the weak nuclear charge.
In section 2.4, we provide a comprehensive error budget for the cross section. In section 3,
we focus on the flavor dependence and specifically the flavor difference of cross sections, the
flavor asymmetry, defined as

(
σν` − σν`′

)
/σν` . In section 3.1, we discuss how the flavor

asymmetry can be computed at NLO, i.e. O(G2
Fα

2), with substantially reduced nuclear
uncertainties (see section 3.2). We then briefly sketch possible useful applications of our
results and discuss the future of CEνNS in section 4. Finally, in section 5, we summarize
our findings and reiterate the applicability of our work to the future CEνNS program.

2 Coherent elastic neutrino-nucleus scattering (CEνNS) on spin-0 nuclei

We focus here on spin-0 nuclei both because they are simple (our focus is on radiative
corrections rather than nuclear physics) and because at least two nuclear targets of spin-
0 are relevant to upcoming CEνNS detectors. Liquid argon is used as a common liquid
noble detector material all of whose stable isotopes (40Ar, 38Ar, and 36Ar) are spin-0, and
silicon is the main material in Skipper-CCDs [5, 19, 129, 130], two of whose stable isotopes
(28Si and 30Si) are spin-0 and compose 95% of silicon’s natural abundance. Moreover,
because a detailed understanding of 40Ar’s nuclear physics is essential for the DUNE physics
program [131, 132], we are optimistic that the theoretical nuclear uncertainties relevant for
CEνNS will be steadily improved in coming years.

At tree level, neutrino neutral-current scattering on spin-0 nuclei can be described
by a single form factor. At next-to-leading order (NLO) in the electromagnetic coupling
constant α, photon-mediated scattering takes place and the cross section inherits a flavor-
dependent contribution entering with a charge form factor of the nucleus1

dσν`
dT = G2

FMA
4π

(
1− T

Eν
− MAT

2E2
ν

)(
FW

(
Q2
)

+ α

π

[
δν` + δQCD

]
Fch

(
Q2
))2

, (2.1)

1Note that the tree-level differential cross section can be obtained setting radiative correction to zero.
Neglecting nuclear and nucleon structure dependence, it is simply

dσν`
dT −→ G2

FMA

4π

(
1− MAT

2E2
ν

) [
N − (1− 4 sin2 θW)Z

]2
,

where N and Z are the number of neutrons and protons in the nucleus and θW is the Weinberg angle.
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with incoming neutrino energy, Eν , recoil nucleus kinetic energy, 0 ≤ T ≤ 2E2
ν/(MA+2Eν),

and the mass of the nucleus, MA. The expression depends on the weak, FW, and charge,
Fch, nuclear form factors. The charge form factor enters multiplied by δν` and δQCD which
are radiative corrections defined below in eqs. (2.4) and (2.5). The four-momentum transfer
Q2 can be conveniently expressed as Q2 = 2MAT . The corrections induced by hadronic
and/or quark loops, proportional to δQCD, are flavor independent, whereas the corrections
from charged leptons, proportional to δν` , depend on the neutrino flavor `.

CEνNS is a low-energy process. To describe the cross sections at a percent level of
precision or better, it is important to properly account for the running of Lagrangian
parameters from the weak scale down to the scales relevant for CEνNS. In the Standard
Model (SM), this is a cumbersome task, and it is much more efficient to work within the
four-fermion EFT when W, Z, and h are explicitly integrated out. This drastically reduces
the number of contributing Feynman diagrams, while allowing for a full and systematic
treatment of any loop-induced corrections from heavy particles.

Such an EFT approach has been worked out in detail by one of us in [120], and has
been successfully applied to neutrino-electron scattering in [118]. This latter process and
CEνNS share many similar features. In what follows, we introduce the EFT descrip-
tion appropriate to low-energy neutral-current interactions (such as CEνNS or elastic νe
scattering). We summarize how heavy-quark and lepton contributions can be included
perturbatively, whereas light-quark contributions require a nonperturbative treatment at
CEνNS kinematics. The nonperturbative corrections are flavor independent, such that
CEνNS flavor differences are not affected by corresponding errors.

2.1 Four-fermion effective field theory and radiative corrections

Neutrino-photon interactions scale with the photon momentum as Q2 and can be captured
by a dimension-six operator ∂λF λρν̄`γρPLν`. Following [120], this interaction can be conve-
niently removed via a field redefinition (see appendix A for a detailed discussion), leading to

Leff ⊃ −
∑
`,`′

ν̄`γ
µPLν` ¯̀′γµ

(
cν``

′

L PL + cν``
′

R PR
)
`′ −

∑
`,q

ν̄`γ
µPLν` q̄γµ (cqLPL + cqRPR) q

− 1
4FµνF

µν + e
∑
`

Q` ¯̀γµ`Aµ + e
∑
q

Qq q̄γµqA
µ , (2.2)

with projection operators on left- and right-handed chiral states PL,R = 1∓γ5
2 , and electric

charges Q`, Qq being taken in units of the proton charge. The Wilson coefficients appear-
ing here are evaluated in the MS renormalization scheme at a scale µ & 2GeV appropriate
for a quark-level description. In this Lagrangian, the photon-neutrino couplings have been
removed explicitly by the field redefinition discussed above, and shuffled into the contact
interaction Wilson coefficients. By doing this, any diagram involving photon exchange with
the nucleus that is mediated by heavy degrees of freedom (e.g. the top or bottom quark) is
shuffled into the left- and right-handed quark couplings. This explicitly decouples low- and
high-energy degrees of freedom, and results in a modified definition of the weak nuclear
form factor (see eq. (2.14)). Such effects are proportional to the nuclear charge form factor
Fch(Q2).

– 5 –
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Figure 2. Closed fermion loop contribution to neutral-current neutrino scattering. This diagram
includes both charged and neutral currents cf. figure 1. Heavy fermion loops, with masses above the
renormalization scale, are included implicitly in the four-fermion Wilson coefficients. The effects
of the light fermion loops (i.e. e, µ, τ and u, d, s, c) can be captured by taking tree-level expressions
and making the replacement ciL,R → c̃i,ν`L,R as described in eq. (2.3).

The Wilson coefficients in eq. (2.2) are calculated via a detailed matching performed
at the scale µ = MZ (the Higgs fields, top quark, W and Z gauge bosons are integrated
out at this step), and then evolved down to low energy scales via a renormalization group
analysis, decoupling quark flavors (b) as they become heavy (see [120] for a comprehensive
description). By performing the matching at µ = MZ and running the couplings down to
µ = 2GeV, loop corrections from all heavy particles in the SM are systematically included.
Four quarks u, d, s, and c, are treated as dynamical degrees of freedom. The effects of u, d,
and s are encoded via a nonperturbative charge-charge and charge-isospin current-current
correlators, Π̂(3)

γγ and Π̂(3)
3γ , whereas the c quark is included perturbatively. Charged leptons

are kept as propagating degrees of freedom and their influence on the left- and right-handed
couplings is included explicitly via a loop expansion. For heavy particles (tau leptons, the
charm quark, and hadronic loops), the momentum transfer is approximated as Q2 = 0.
For light leptons (e and µ), the full Q2 dependence is essential.

In calculations of CEνNS cross sections, loop-level effects from light degrees of freedom
can be conveniently captured by taking tree-level expressions and replacing ciL,R → c̃i,ν`L,R(Q2)
everywhere. The tilded couplings, c̃i,ν`L,R(Q2), are Q2 dependent as they include the effects
of dynamical lepton and quark-mediated loops from figure 2. Note that due to this Q2 de-
pendence, tilded couplings are not proper Wilson coefficients. They are given explicitly by

c̃i,ν`L,R = ciL,R+α

π

GF√
2
Qiδ

QCD+α

π

GF√
2
Qiδ

ν` , (2.3)

δν` = cν`eL +cν`eR√
2GF

Π
(
Q2,me;µ

)
+ cν`µL +cν`µR√

2GF
Π
(
Q2,mµ;µ

)
+ cν`τL +cν`τR√

2GF
Π(0,mτ ;µ) , (2.4)

δQCD = 4
(

Π̂(3)
γγ (0;µ)sin2 θW−

1
2Π̂(3)

3γ (0;µ)
)
−NcQc

ccL+ccR√
2GF

Π(0,mc;µ) , (2.5)

where Qi is the electric charge of the particle in units of the proton charge, Nc = 3 is the
number of colors in QCD, Π̂(3)

3γ (0;µ) is a nonperturbative current-current charge-isospin
correlator in the theory with nf = 3 quark flavors estimated as Π̂(3)

3γ = (1 ± 0.2)Π̂(3)
γγ [118]

with the charge-charge correlator evaluated from the experimental data on hadron pro-
duction Π̂(3)

γγ (0;µ = 2 GeV) = 3.597(21) [133–135]. For numerical estimates, we take
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cν``
′

L , ` = `′ cν``
′

L , ` 6= `′ cν``
′

R cuL cuR cdL cdR

2.39818(33) −0.90084(32) 0.76911(60) 1.14065(13) −0.51173(38) −1.41478(12) 0.25617(20)

2.412 −0.887 0.763 1.141 −0.508 −1.395 0.254

Table 1. Top row: effective couplings (in units 10−5 GeV−2) in the Fermi theory of neutrino-
fermion scattering with four quark flavors within the MS renormalization scheme at the scale
µ = 2 GeV. The error due to the uncertainty of Standard Model parameters is added in quadrature
to a perturbative error of matching. For illustration, we have included the tree-level couplings.
Coefficients are determined at the scale µ = MZ via a matching calculation and then run down
to µ = 2GeV via a renormalization group analysis. For a more detailed discussion see [120].
Bottom row: tree-level expressions for the same quantities are quoted to three decimal places.
Notice that some Wilson coefficients receive O(1%) corrections. Tree level expressions are defined
as cν``

′

L = 2
√

2GF(sin2 θW − 1/2 + δ``′), cν``
′

R = 2
√

2GF sin2 θW, cqR = 2
√

2GF(−Qq sin2 θW), and
cqL = 2

√
2GF(T 3

q −Qq sin2 θW) with the quark charge Qq and isospin T 3
q , they are evaluated using

GF = 1.1663787× 10−5 GeV−2 and sin2 θW = 0.23112.

GF = 1.1663787× 10−5 GeV−2, sin2 θW = 0.23112, α−1(2 GeV) = 133.309 and the charm
quark mass m̂c(2 GeV) = 1.096 GeV,2 masses of charged leptons from PDG [136] and cou-
pling constants from table 1 of [118]. For convenience, we present the effective couplings
in table 1 and compare them to the naive tree-level determination.

Also appearing in eqs. (2.4) and (2.5) is the vacuum polarization function, Π(Q2,mf ;µ)
(familiar from QED) which is generated by closed fermion loops coupling to photons shown
in figure 2. At the renormalization scale µ in the MS scheme,3 the vacuum polarization
function Π

(
Q2,mf ;µ

)
is given by [137–141]

Π
(
Q2,mf ;µ

)
= 1

3 ln µ2

m2
f

+ 5
9 −

4m2
f

3Q2 + 1
3

(
1−

2m2
f

Q2

)√
1 +

4m2
f

Q2 ln

√
1 + 4m2

f

Q2 − 1√
1 + 4m2

f

Q2 + 1

=


1
3 ln µ2

m2
f
− Q2

15m2
f

+ O
(
Q4/m4

f

)
, m2

f � Q2;
1
3 ln µ2

Q2 + 5
9 + O

(
m2
f/Q

2
)
, m2

f � Q2 .
(2.6)

For mf = me (in particular) and Q = 1 − 50MeV, there is no sense in which a small Q2

approximation is justified, and the full Q2 dependence must be retained. Tau leptons are
sufficiently heavy that the Q2 → 0 limit can be taken safely for CEνNS kinematics.

We also include αs contributions to the charm-quark closed loop; for analytical ex-
pressions see [118, 142–145] and references therein. It is instructive to note that radiative
corrections of vector type do not change the axial part of the nucleon current (see eq. (2.7)).
Consequently, all radiative corrections (besides the nuclear vertex correction) are described
by substitutions of eq. (2.3) for nuclei of arbitrary spin. The factorizable part of the vertex
correction and photon bremsstrahlung from the heavy nucleus can be safely neglected.

2We use the value of the Weinberg angle at the scale µ = MZ since it enters our corrections in eq. (2.5)
with a factor α and any effects of running are more than order of magnitude below the size of hadronic errors.

3We quote the result for an arbitrary renormalization scale. However, µ = 2GeV should be used in
conjunction with the couplings in table 1.
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For nuclei of nonzero spin, QED vertex corrections introduce higher electromagnetic
moments of order α. These corrections are beyond the scope of this work, but can be
included in the definition of electromagnetic response functions and can therefore be folded
into any empirical determination of nuclear form factors. All residual effects scale as Q2/M2

A
and are negligible for heavy nuclei. We therefore expect that the results of this paper can
be extended to higher spin nuclei in a relatively straightforward manner.

2.2 Nucleon form factors in CEνNS

Embedding quarks into nucleons, the matrix element of the quark current is expressed in
terms of Sachs electric Gq

E and magnetic Gq
M isovector, axial FqA, and pseudoscalar FqP form

factors for individual quarks as

Γµ(Q2) = 〈N(p′)|
∑
q

q̄γµ(cqLPL + cqRPR)q|N(p)〉

=
∑
q

cqL + cqR
2 N̄

[
γµGq,N

M (Q2)−
pµ + p′µ

2MN

Gq,N
M (Q2)−Gq,N

E (Q2)
1 + τN

]
N

+
∑
q

cqL − c
q
R

2 N̄

[
γµγ5Fq,NA (Q2) + lµ

MN
γ5Fq,NP (Q2)

]
N , (2.7)

with l = p′ − p, Q2 ≡ −l2 = − (p− p′)2 and τN = Q2/(4M2
N), where MN is the nucleon

mass. We concentrate on the vector part contributing to CEνNS cross section on a spin-0
target. Assuming isospin symmetry, the proton (p) and neutron (n) form factors can be
expressed in terms of the quark contributions to the proton form factor Gq,p as4

Gp
E,M = 2

3Gu,p
E,M −

1
3Gd,p

E,M −
1
3Gs,p

E,M, (2.8)

Gn
E,M = 2

3Gd,p
E,M −

1
3Gu,p

E,M −
1
3Gs,p

E,M . (2.9)

For applications to CEνNS at low momentum transfer, we need only the normalization of
electromagnetic form factors and the first term in the Maclaurin series which provides a
conventional definition of the associated radius riE,M

Gi
E,M

(
Q2
)

= Gi
E,M (0)

1−

(
riE,M

)2

6 Q2 + O
(
Q4
) . (2.10)

More specifically, we need mainly the normalization of the electric form factor, given ex-
plicitly by Gu,p

E (0) = 2, Gd,p
E (0) = 1, and Gs,p

E (0) = 0, and electric charge radii. The most
precise determination of the proton electric charge radius is obtained from the muonic
hydrogen Lamb shift [151, 152]:

rpE = 0.84087(39) fm . (2.11)
4The neglected relative difference in nucleon masses contributes a correction below permille level. Isospin-

breaking effects are expected in constituent quark model to be at the similar level [146–149]. According
to ChPT-based calculation of [150], they can be much larger. This question requires a further theoretical
investigation on the lattice.
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The neutron electric charge radius is measured precisely scattering neutrons on heavy
targets [153, 154]:

〈r2〉nE = −0.1161(22) fm2 . (2.12)

For the strange electric charge radius and magnetic moment, calculations from lattice
QCD [155–159] have recently appeared. We choose the result with a conservative error
estimate from [158]:

〈r2〉sE = −0.0046(18) fm2, µs = −0.020(13) . (2.13)

The strange quark contributes negligibly in the kinematics of neutrinos with energy below
100 MeV. Removing the strange quark from proton constituents does not change any
number in this manuscript within significant digits.

2.3 Weak and charge nuclear form factors in CEνNS

Form factors entering the cross section expressions can be defined as the product of nucleon-
level form factors with point-proton and point-neutron distributions inside the nucleus
fp
(
Q2) and fn

(
Q2). Using the isospin-decomposed nucleon form factors of eqs. (2.8)

and (2.9) yields the following definition for the renormalization scale-dependent weak and
charge form factors [117, 160–163]5

FW =
(
cuL +cuR√

2GF
Gu,p

E + cdL +cdR√
2GF

Gd,p
E

)
fp+(p↔ n), (2.14)

Fch = Gp
Efp+(p↔ n) , (2.15)

where we have omitted small Darwin-Foldy (DF) and spin-orbit terms [117] that contribute
below the uncertainty of hadronic corrections in the kinematic region of CEνNS experi-
ments from pion decay at rest (πDAR) sources. In our detailed calculations, we include
these effects and find them to be negligible (contributing at the sub-permille level).

As discussed above, heavy physics mediated loops are included implicitly in the defi-
nition of ciL and ciR. This leads to a modification of the weak form factor of the proton and
neutron relative to their tree-level values. This definition is somewhat conventional since
certain electromagnetic corrections, such as those proportional to δQCD, could reasonably
be shuffled into the definition of the weak form factor. Our convention separates electro-
magnetic corrections mediated by light degrees of freedom such that the definition of the
weak charge of the proton and neutron is given, respectively, by

QpW (µ = 2 GeV) = 2c
u
L + cuR√

2GF
+ cdL + cdR√

2GF
= 0.06015(53), (2.16)

QnW = 2c
d
L + cdR√

2GF
+ cuL + cuR√

2GF
= −1.02352(25), (2.17)

5The normalization of form factors fp and fn is fixed by the number of protons (Z) and neutrons (N)
inside the nucleus as fp (0) = Z and fn (0) = N .
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and can be compared to the tree-level values QpW = 0.0751 and QnW = −1.6 The renormal-
ization scale dependence in the proton weak charge is inherited from the Wilson coefficients.

Alternatively, one can define the scale-independent but process-dependent weak charge
of the nucleus entering the cross section at Q2 = 0 as

Qν`W = FW (0) + α

π

(
δν` + δQCD

)
Fch (0) = ZQp,ν`W +NQnW, (2.18)

Qp,ν`W = 2c
u
L (µ) + cuR (µ)√

2GF
+ cdL (µ) + cdR (µ)√

2GF
+ α

3π
∑

`′=e,µ,τ

cν``
′

L (µ) + cν``
′

R (µ)√
2GF

ln µ2

m2
`′

+ 4α
π

(
Π̂(3)
γγ (0;µ) sin2 θW −

1
2Π̂(3)

3γ (0;µ)− ccL (µ) + ccR (µ)
2
√

2GF
Π (0,mc;µ)

)
. (2.19)

This illustrates that the definition of a weak nuclear charge is not unique at one-loop order
and beyond. Rather, these quantities depend on choice of convention, on the renormaliza-
tion scheme and on the process in general.

One should not compare directly the weak form factor and the weak charge in our
definition to commonly used values in parity-violating electron scattering (PVES) [136].
The Wilson coefficients that will be embedded inside nucleons are process dependent, i.e.
electron-quark and neutrino-quark couplings differ after accounting for heavy physics medi-
ated one-loop corrections. Moreover, one-loop radiative corrections depend on the process
even within the low-energy effective theory. For example, in PVES electrons can exchange
a photon with the nucleus leading to a γ − Z box diagram at NLO. This cannot occur in
CEνNS because neutrinos do not couple directly to photons. A comparison of the weak
nuclear charge defined in this work to conventions in the PVES literature will require a
proper account for one-loop running of electron-quark Wilson coefficients from the elec-
troweak scale down to µ = 2GeV and reliable treatment of radiative corrections in PVES.

As for neutrino charge radii r2
ν`
[120], QCD and uncertain hadronic contributions cancel

in flavor differences of charges in eqs. (2.18) and (2.19). One can precisely predict these
differences up to O

(
α3) in terms of the charge e0 and electromagnetic coupling constant

α0 in the Thomson limit, α−1
0 = 137.035999084(21) [136], as

Qν`W −Q
ν`′
W =

Ze2
0

(
r2
ν`′
− r2

ν`

)
3
√

2GF
= 2Zα0

3π ln m
2
`′

m2
`

(
1 + 3α (µ)

4π + . . .

)
, (2.20)

QνeW −Q
νµ
W = 0.01654Z, (2.21)

Q
νµ
W −Q

ντ
W = 0.00876Z, (2.22)

while the absolute scale of weak charge is determined by the proton Qp,νeW = 0.0747(34)
and scale- and flavor-independent neutron weak charge QnW = −1.02352(25).7

This provides a microscopic definition of nuclear form factors in terms of the Wil-
son coefficients in the four-fermion Lagrangian presented above, assuming a conventional

6At leading order, the weak charge of the nucleus is given approximately by the number of neutrons N
taken with opposite sign.

7Our flavor differences are in agreement with [164, 165] while central values for weak charges differ due
to distinct matching and treatment of hadronic contributions in [164, 165] vs. [120].
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picture of nuclear physics. Trusting such a microscopic picture relies on a top-down ap-
proach to nuclear physics, and one may worry that complicated effects related to such a
many-body strongly interacting system are not well understood. One famous example is
the EMC effect [166–168], where quark parton distribution functions inside nuclei were
found to differ from those of nucleons in a vacuum. This effect is still not understood.
Nevertheless, at momentum transfers of O(50 MeV) and below, one does not expect these
effects to be important.

An alternative to this is the bottom-up approach based on the extraction of relevant
form factors, Fch(Q2) and FW(Q2), directly from experiments. In fact, Fch(Q2) is already
well determined with high precision for a number of nuclei [169, 170], including 40Ar [171],
through decades of elastic electron scattering experiments. For instance, the charge radius
of 208Pb extracted from experiment is known to about 0.02% precision [169]. Similarly,
FW(Q2) can be experimentally determined in a clean model-independent way from elec-
troweak probes such as CEνNS and PVES experiments [172].

A precise measurement of CEνNS cross section on a particular nucleus can be used to
extract FW(Q2) of that nucleus, using eq. (2.1). Note however that, while δν` can be calcu-
lated and Fch(Q2) can be measured with electron-nucleus scattering, the precision on the
determination of FW(Q2) will be limited by hadronic uncertainties stemming from δQCD.
The latter nonperturbative object can be in principle constrained by lattice calculations
or performing measurements on nuclei with different numbers of protons and neutrons,
Z and N respectively. Another possible way of measuring the weak form factor of the
nucleus is via PVES experiments, albeit subject to the difficulties outlined above relating
to process-dependent shifts in Wilson coefficients and radiative corrections. To convey the
basic idea, we ignore these subtleties and work at leading order in the following discus-
sion. The key experimental observable in the elastic scattering of longitudinally polarized
electrons from the unpolarized spin-0 nucleus is the parity-violating asymmetry APV. The
parity-violating asymmetry arises from the interference of γ-mediated and Z-mediated
scattering diagrams. The asymmetry APV is determined from the fractional difference in
cross sections between the scattering of positive and negative helicity electrons, that is,
APV = (σ+ − σ−)/(σ+ + σ−), where ± refers to the polarization of the electron. This is
similar to the parity violation asymmetry in Möller scattering experiments. In the Born
approximation at low momentum transfer, APV is proportional to the ratio of the weak to
the charge form factors of the nucleus:8

APV ≈
GFQ

2

4
√

2πα
FW(Q2)
Fch(Q2) , (2.23)

where form factors are normalized to the nucleus’ weak and electric charges, that is,
QW ≡ FW(Q2 = 0) and Z ≡ Fch(Q2 = 0). For a given nucleus, if Fch(Q2) is already
known from elastic electron scattering experiment, one can extract FW(Q2) from measured
APV in eq. (2.23) at the momentum transfer of the experiment after accounting for radiative
corrections and Coulomb distortion effects not considered in the Born approximation [173].

8PVES is sensitive to Wilson coefficients of electron-quark interaction and is subject to radiative correc-
tions distinct to the CEνNS process.
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Coulomb distortions can be theoretically calculated by solving the Dirac equation for an
electron moving in a nuclear potential [174–178] and are relatively well understood [179].

In fact, the PREX experiment at JLab has done such measurement and pro-
vided the first model-independent determination of the weak form factor of 208Pb,
FW(〈Q2〉) = 0.204± 0.028 at the average momentum transfer of the experiment
〈Q2〉 ≈ 8800 MeV2 [163, 180]. The PREX-II experiment is currently underway and is ex-
pected to improve the precision of the 208Pb form factor measured by PREX. The CREX
experiment is planned to measure the weak form factor of 48Ca [181]. Future facilities such
as the MESA facility in Mainz envisioned to start operations in a few years will also be
suited for high-precision parity-violating experiments [182].

It is worth noting that CEνNS can be used to probe the weak form factor only at
low momentum transfers where the process remains coherent, but accesses a continuum
of four-momentum transfers. In contrast, PVES experiments are usually carried out at a
single value of the momentum transfer at a time. A combination of measurements from
these two independent and complementary scattering techniques is ideal since systematic
uncertainties are largely uncorrelated. This will then provide an empirical extraction of a
nucleus’ weak form factor in clean and model-independent fashion.

2.4 Cross sections and uncertainties for a monoenergetic source

In this section, we evaluate CEνNS cross sections and provide a complete error budget for
the case of 40Ar nucleus.9 We focus on three benchmark energies relevant for a CEνNS ex-
periment whose neutrino flux is sourced by pion decay at rest (πDAR). We take Eν = 10,
30, and 50MeV. A proper treatment of flux-averaged cross sections in a realistic experimen-
tal setup would require a precise prediction of the daughter neutrinos from both pion and
muon decay. This necessarily involves an understanding of decay in flight (DIF) contamina-
tion and a more precise theoretical prediction of both the pion’s and muon’s decay spectrum
including radiative corrections; both effects need to be understood at the percent or even
permille level. The former issue is experiment specific and must be addressed with Monte
Carlo simulations, while the latter is an interesting and important theoretical problem that
we leave to future work. We discuss some of these issues qualitatively in appendix C.

In what follows, we provide an estimated error budget accounting for uncertainties
stemming from a variety of sources. Our treatment is meant to be conservative and ex-
haustive. We include the following sources of uncertainties:

• Nuclear level. For the central values, we average over eight available nuclear cal-
culations for fp and fn [116, 117, 186, 187]. At small momentum transfer, we es-
timate the theoretical uncertainty using the small Q2 expansion in terms of point-
nucleon radii Rp = 3.338 ± 0.003 fm, Rn = 3.406 ± 0.046 fm [169, 187, 188],10 i.e.

9See [183–185] for a recent discussion of neutrino neutral-current cross sections on 40Ar producing an
excited state of the nucleus.

10Shell-model [117] and density functional theory calculations predict larger values for the neutron skin
Rn−Rp. 0.11fm. Conservatively increasing error of Rn to 0.065fm increases the nuclear error in table 2 at
Eν = 10MeV as 0.04→ 0.06 and in table 3 at Eν = 10 (30,50)MeV as 0.82→ 0.83 (0.21→ 0.28, 0.02→ 0.03)
respectively. This modified error estimate increases the total error of the flavor asymmetry in table 3 at
energy Eν = 50MeV by the last significant digit, while the total error in table 3 at energy Eν = 30MeV
increases as 0.35→ 0.40.
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Eν , MeV Nuclear Nucleon Hadronic Quark Pert. Total 1040 · σνµ , cm2 1040 · σ0
νµ , cm2

50 4. 0.06 0.56 0.13 0.08 4.05 34.64(1.36) 32.05
30 1.5. 0.014 0.56 0.13 0.03 1.65 15.37(0.25) 14.23
10 0.04 0.001 0.56 0.13 0.004 0.58 1.91(0.01) 1.77

Table 2. Contributions to the relative error (in %) of the total CEνµNS cross section on 40Ar target
for an incident νµ neutrino energy Eν . Cross section with radiative corrections σνµ is compared to
the tree-level result σ0

νµ .

fp = Z
(
1−Q2R2

p/6
)
, fn = N

(
1−Q2R2

n/6
)
, as the error propagated from point-

proton and point-neutron radii added in quadrature to the error of next terms in the
Q2 expansion estimated as [σ(Rp, Rn)− σ(Rp, Rn = 0)]2 /σ(Rp, Rn). At larger mo-
mentum transfer, we take the largest difference between the theoretical calculations
of [116, 117, 186, 187, 189]. At intermediate region, we take the minimum of these
two estimates.

• Nucleon level. We exploit a Q2 expansion for the error estimate at the nucleon level.
We add in quadrature propagated errors of charge radii of eqs. (2.11) and (2.13) to
the estimate of neglected terms in Q2 expansion:[

σ(rpE, 〈r
2〉nE, 〈r2〉sE)− σ(rpE, 〈r

2〉nE, 〈r2〉sE = 0)
]2
/σ(rpE, 〈r

2〉nE, 〈r2〉sE). (2.24)

We also include an uncertainty due to the isospin symmetry breaking given by the
relative difference of proton and neutron masses multiplying the radii central values.

• Hadronic contributions. Following [118], we take the correlator Π̂(3)
3γ in the approxi-

mation of exact SU(3)f symmetry when Π̂(3)
3γ = Π̂γγ with Π̂γγ = 3.597(21) [133–135]

and conservatively assign a 20% error.

• Wilson coefficients. We propagate central values and uncertainties of neutrino-quark
coupling constants from [118, 120] properly accounting for correlations and threshold
matching errors.

• Perturbative expansion. We estimate the perturbative error as a difference between
our results evaluated at scales µ =

√
2µ0 and µ = µ0/

√
2 with µ0 = 2GeV.

To estimate the total uncertainty, we add all of the above errors in quadrature. We present
the relative size of uncertainties of total cross section in table 2 and for the differential
cross sections for the neutrino energy corresponding to the monochromatic neutrino line
from pion decay at rest, Eν = m2

π−m2
µ

2mπ ' 29.79MeV,

σνµ = (15.19± 0.25) · 10−40 cm2, σνe = (15.01± 0.24) · 10−40 cm2. (2.25)

As we can see from table 2, at higher energies the main source of uncertainty for
the CEνNS cross section comes from nuclear physics. In fact, this can be traced down
to the error of the neutron distribution inside the nucleus. The error stemming from the
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Figure 3. CEνµNS cross section on 40Ar target (blue band) compared to the tree-level prediction
(red dashed curve) as a function of the recoil nucleus energy for the incoming neutrino energies
Eνµ = 10, 30, and 50 MeV. The error bands shown here include the full error budget outlined
in section 2.4 and summarized in table 2.

charge-isospin hadronic correlator, Π̂(3)
3γ , is the second largest source of uncertainty for

Eν & 30MeV, and actually dominates over the neutron distribution error at low energies.
This is because the point-neutron and point-proton form factors are normalized up to
infinite precision at Q2 → 0 while deviations scale as Q2. Thus, much like in neutrino-
electron scattering [118], the charge-isospin correlator is the major theoretical bottleneck
for precise predictions.

Fortunately, however, our knowledge of this object can be improved with future lattice
QCD studies [190–192], and since it’s contribution is α/π suppressed for neutrino neutral-
current scattering, an uncertainty on the order of 5% would reduce its contribution to the
error budget to the permille level. This would be below the precision necessary for next-
generation CEνNS experiments to achieve their goals. The third largest source of the error
is the uncertainty of neutrino-quark couplings from [120].

One interesting consequence of our calculations is that the dominant source of uncer-
tainty at low momentum transfers Q2 . 100 MeV2 is given by microscopic particle physics
inputs rather than nuclear modeling. The reason for this is that the point-like treatment
of the nucleus becomes such a good approximation at low energies that all nuclear model-
ing details are subdominant to hadronic uncertainties. This motivates using CEνNS as a
precision observable at low neutrino energies as we discuss in section 4.3.

3 Flavor-dependent cross section differences

As emphasized above, radiative corrections in CEνNS can be split into a flavor-independent
and flavor-dependent parts, the latter being induced by charged-lepton loops. Noting that
proton and charge form factors induce a negligible uncertainty, and that hadronic and
neutron-related uncertainties are flavor universal, one can give a precise description of
flavor-dependent effects.

This simple observation means that the flavor difference can be calculated precisely at
O(G2

Fα) subject only to uncertainties related to FW(Q2). The flavor difference is expressed
in terms of weak and charge form factors as
dσν`
dT −

dσν`′
dT = G2

FMA
4π

(
1− T

Eν
− MAT

2E2
ν

)[2α
π

(δν` − δν`′ )FW
(
Q2
)

Fch(Q2)
]

+ O(G2
Fα

2).

(3.1)
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Hadronic uncertainties, being proportional to δQCD, cancel identically, whereas leptonic
loops contribute differently with their difference being proportional to (δν` − δν`′ ), given
explicitly by

δν` − δν`′ = 2
[
Π(Q2,m`)−Π(Q2,m′`)

]
+ O(α), (3.2)

where we dropped the renormalization-scale dependence of the vacuum polarizations since
the difference is renormalization scale and scheme independent.

3.1 Next-to-leading order prediction

Because the flavor asymmetry is O(G2
Fα) at leading order itself, we can compute it up

to next order, i.e. up to O(G2
Fα

2). For this purpose, the ratio of the difference of flavor-
dependent cross sections to a particular flavor cross section (e.g. σνµ) can be calculated to
a higher level of accuracy than the difference alone.

According to Furry’s theorem, contributions with two photons attached to the nucleus
vanish. All QED vacuum polarization contributions to the photon line in figure 2 are
captured replacing the overall coupling constant by its value in the Thomson limit α→ α0.
The only remaining flavor-dependent contributions at order O(G2

Fα
2) arise from QED

corrections to closed lepton loops in figure 2. We include this correction taking analytical
expressions from [118, 142–145].

The resulting flavor asymmetry between ν` and ν`′ cross sections is given by

dσν` − dσν`′
dσν`

= r − r2 + O
(
α3
)
, r = 4α0

π

(
Π
(
Q2,m`

)
−Π

(
Q2,m`′

))
Fch

(
Q2)

FW (Q2) + α0
π [δν` + δQCD]Fch(Q2) . (3.3)

3.2 Uncertainties for a monoenergetic source

In this section, we focus on the flavor asymmetry defined in eq. (3.3) which can be reliably
computed to next-to-leading order. Moreover, the relative error for the flavor asymmetry
is actually lower than the relative uncertainty of the total cross section as can be seen by
comparing table 2 vs. tables 3 and 4.

The reason for the lessened uncertainty can be understood as follows. Most of the
nuclear uncertainties cancel in the ratio drastically decreasing the relative uncertainty
at higher energies of O(50 MeV). The hadronic contribution cancels in the numerator,
and only enters at next-to-leading order because of its’ entering the cross section in the
denominator. The same holds true for the quark couplings error.

3.3 Point-nucleus limit

For the reader’s convenience, we provide explicit formula in the idealized limit of a point-
like nucleus Rn, Rp → 0. Note that this limit is equivalent to Q2 → 0 only at tree level due
to the Q2 dependence of the vacuum polarization. In this limit, the nuclear form factors
assume their point-like values Fch → Z and FW → QW, such that

lim
Rp,Rn→0

dσν`
dT −

dσν`′
dT = Zα0

π

[
Π(Q2,m`)−Π(Q2,m`′)

]G2
FMA
π

(
1− T

Eν
− MAT

2E2
ν

)
QW,

(3.4)
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Eν , MeV Asymmetry Nuclear Nucleon Hadronic Quark Perturbative Total
50 0.93 0.82 0.002 0.28 0.07 0.001 0.87
30 1.14 0.21 9× 10−4 0.28 0.07 0.001 0.35
10 1.67 0.02 2× 10−4 0.28 0.07 0.001 0.29

Table 3. CEνNS flavor asymmetry, (σνe −σνµ)/σνµ in %, on 40Ar target and contributions to the
relative error (in %) for an incident neutrino energy Eν .

Eν , MeV Asymmetry Nuclear Nucleon Hadronic Quark Perturbative Total
50 1.47 0.43 0.007 0.28 0.07 0.002 0.52
30 1.47 0.17 0.003 0.28 0.07 0.002 0.34
10 1.47 0.02 3× 10−4 0.28 0.07 0.002 0.29

Table 4. CEνNS flavor asymmetry, (σντ −σνµ)/σνµ in %, on 40Ar target and contributions to the
relative error (in %) for an incident neutrino energy Eν .

where Q2 = 2MAT . We present the point-nucleus limit for relative flavor differences

lim
Rp,Rn→0

dσν` − dσν`′
dσν`

= 4α0
π

Z

QW

[
Π
(
Q2,m`

)
−Π

(
Q2,m`′

)]
, (3.5)

in figures 4 and 5. Our precise calculation is well approximated by eq. (3.3). In the
kinematics of experiments with πDAR beams, the vacuum polarization function can be
taken at Q2 = 0 for tau neutrinos and, to a reasonably good approximation, for muon
neutrinos. Within such an approximation, the flavor asymmetry reads as

lim
Rp,Rn→0

dσντ − dσνµ
dσνµ

= 4
3
α0
π

Z

QW
ln m

2
τ

m2
µ

, (3.6)

in agreement with the effective Weinberg angle convention as it is described in appendix B.

4 Applications

The motivation for the precise calculation performed here is the rapid progress in technology
for CEνNS detector. In the three years since its discovery, the field of CEνNS research has
blown up and we optimistically await improved detector technologies and larger exposures
that will drive down systematical and statistical uncertainties. With this outlook in mind,
we briefly outline some potentially interesting applications of the work presented here that
we hope will motivate and inform future experiments.

4.1 Precision electroweak observables at low energy

To test the Standard Model of particle physics at low energies, our precise predictions of
cross sections with quantified uncertainties [118, 120] can be directly compared to experi-
mental measurements. Any significant deviations between the theory and experiment will
indicate the presence of new physics and can be expressed as some conventional definition
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Figure 4. Same as figure 3 but for the ratio
(
dσνµ − dσνe

)
/dσνµ compared to the point-nucleus

limit of section 3.3. The exact and approximate calculations lay on top of each other. As discussed
in section 3.1 by taking the difference of flavor-dependent cross sections the leading-order QCD
corrections, being flavor independent, cancel in the numerator, while many nuclear systematic
uncertainties cancel in the ratio. The result is a much smaller relative error compared to the
absolute cross section as demonstrated in tables 3 and 4.
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Figure 5. Same as figure 4 but for the ratio
(
dσντ − dσνµ

)
/dσνµ . The Q2 dependence in kinematics

of πDAR arises mainly from closed electron loops and has to be included for flavor differences with
electron flavor involved.

for the low-energy property, traditionally referred to the Weinberg angle or the neutrino
charge radius. More generally, what can be probed is the weak form factor of a nucleus
and the neutrino’s electromagnetic form factor. Recent work has considered CEνNS as a
percent-level probe of physics both within [20, 38, 48, 63, 69, 70, 75, 76, 104–110] and be-
yond the Standard Model (BSM) [4, 9, 19, 33, 36–42, 46–51, 53–100]. Our precise theoretical
treatment will allow us to consistently account for theoretical errors putting constraints
on standard and non-standard neutrino couplings either on more specific parameters or
concrete BSM scenarios.

We would like to stress that any analysis of low-energy properties at percent level or
better has to be supplemented with a complete treatment of electroweak and QCD virtual
corrections, at least at one-loop level. In particular, neutrino-electron scattering at energies
of accelerator neutrinos and coherent elastic neutrino-nucleus scattering require a complete
account for the kinematic dependence of radiative corrections which is often overlooked in
the literature.

Working with correct (i.e. physical and propagating) degrees of freedom at low ener-
gies is the other crucial physical feature that is typically not taken into account. Quarks
are not valid degrees of freedom at and below the QCD scale ΛQCD. One has to switch
to the hadronic description which introduces additional uncertainty in any neutral-current
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Figure 6. On the upper plot, CEνeNS cross section on 40Ar (blue band) is compared to νee and
ν̄ee cross sections of [118] multiplied by the factor Z = 18. On the lower plot, the relative error of
the total CEνeNS cross section is presented.

neutrino-induced process due to the pure knowledge of the charge-isospin current-current
correlation function Π̂3γ . The knowledge of Π̂3γ at low energies can be improved by a factor
5–10 with precise lattice QCD studies [190–192]. We would like to stress that hadronic
physics introduces an error at a few permille level that is universal to all neutrino-induced
neutral-current scattering. Going to low energies where nuclear physics is under control,
these universal uncertainties dominate the error budget for both CEνNS and neutrino-
electron scattering. Therefore, we conclude that CEνNS is actually an ideal tool for preci-
sion tests of electroweak physics due to the relative ease with which high statistics samples
can be obtained (since the CEνNS cross section is much larger than the νe cross section).
In figure 6, to illustrate how much larger the CEνNS cross section is, we compare the
CEνeNS cross section on 40Ar with neutrino-electron cross sections of [118] multiplied by
the factor Z = 18. The main drawbacks for performing precision physics with CEνNS are
experimental uncertainties such as quenching factor and background rejection and the un-
certainty on the neutrino flux. While we expect future experiments to mitigate the former,
the latter is an issue shared by almost all neutrino sources.
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4.2 Prompt to delayed ratios with decay-at-rest sources

One particularly interesting application of our results involves the prompt to delayed ratio
that is often considered at πDAR experiments. At COHERENT, for example, the finite
time required for a beam spill limits the efficiency of a timing cut to being O(10%) [193],
however this is a well-studied effect, and it is reasonable to expect the collaboration to
understand the precision of this efficiency at the percent level. Such a timing cut generates
two samples of events: prompt and delayed, the former being composed of O(90%) νµ and
O(10%) ν̄µ, νe and vice-versa for the latter. As we have demonstrated above, the νe and νµ
CEνNS cross sections differ at the level of a few percent, and the two event samples would
therefore be expected to yield event rates that also differ from the naive 1:2 event ratio
at the percent level. Since ratios of prompt to delayed fluxes are a standard “handle” for
πDAR data, understanding this effect in detail for a given experiment’s timing efficiency
is an important issue to address.

This is particularly important to BSM scenarios such as nonstandard interactions
(NSIs) [59, 75, 77, 81, 84, 88, 96] and sterile neutrino oscillations [63, 194]. As described
above, timing cuts allow one to probe the flavor structure of a πDAR source, and flavor-
dependent NSIs are easily capable of explaining any asymmetry between the prompt and
delayed samples. If similar studies are to be conducted with percent level precision at future
experiments then proper accounting for the SM flavor asymmetry is once again mandatory.

Finally, in addition to flavor-dependent corrections, the simple observation that the
cross section is shifted relative to its SM predicted value is important for experiments with
πDAR, nuclear reactor neutrino sources, and isotope decay-at-rest sources (IsoDAR) [195].
We will discuss the latter in the next section. A precise knowledge of the CEνNS cross
section could be coupled with an IsoDAR or πDAR source to provide high-precision cal-
ibrations of quenching factors [196–199] which could then be used in applications with
CEνNS detectors at nuclear reactor sources where flux uncertainties are more severe, as
we will see shortly.

4.3 Isotope decay at rest

As alluded to at the end of section 2.4, the theoretical uncertainty of the CEνNS cross
section is incredibly small at low recoil energies being dominated by hadronic current-
current correlators and uncertainty on quark-level couplings in the effective field theory
description used here. Moreover, CEνNS is easily the largest neutrino cross section available
at low energies, surpassing both inverse beta decay and neutrino-electron scattering, and,
as we have emphasized in this work, is even sensitive to flavor differences at the percent
level. Therefore, were a high-intensity source of low-energy (∼ 10MeV) neutrinos to exist,
CEνNS would represent a powerful tool with which to conduct precision experiments. One
would have both large statistics and high-precision predictions.

Such a low-energy neutrino source has been recently proposed as part of the
DAEδALUS facility [200] being termed isotope decay at rest (IsoDAR) [195]. The ba-
sic premise is to irradiate a beryllium target, liberating neutrons, which are subsequently
captured in a surrounding isotopically (99.9%) pure 7Li sleeve. Neutron capture in the
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absorber leads to a large population of radioactive 8Li which then beta decays yielding
a low-energy ν̄e. The beta decay of 8Li has a relatively well-understood decay spectrum
and an ongoing program of Monte Carlo studies are underway [201] to have an accurate
prediction for the ν̄e flux.

The produced ν̄e flux can then be detected via either elastic scattering or inverse
beta decay (IBD)11 ν̄ep → ne+. A high-intensity IsoDAR source has many of the same
advantages of a nuclear reactor source, without the complicated problem of uncertain and
time-dependent fuel composition. The energy is sufficiently high that IBD thresholds are
easily overcome. Because the energy of the signal e+ from IBD is highly correlated with
antineutrino energy, many IsoDAR studies focus on its ability to yield a large flux of
neutrinos with measurable energy.

Other complementary detector strategies for IsoDAR have also been proposed including
CEνNS and elastic neutrino-electron scattering. The latter of these two channels has a very
small cross section, but is often touted as a perfect setting in which to perform precision
tests of the Standard Model at low energies [202, 203]. While electrons are naively a
perfectly “clean” target, as we discuss in section 4.1 at O(G2

Fα), the same charge-isospin
hadronic correlator, introduced in eq. (2.5), enters the radiative corrections and dominates
the theoretical uncertainty of the cross section. In [202], both a CEνNS detector and
a νe scattering detector were proposed on the merits of observing nuclear coherence and
conducting precision electroweak measurements respectively. At IsoDAR energies, however,
we find that the SM prediction for the CEνNS cross section is competitive with the relative
precision of the νe scattering cross section, but would allow for a much larger statistical
sample. We therefore conclude that a CEνNS detector could perform both tasks at an
IsoDAR source.

4.4 Standard oscillations

As flavor corrections lead to slightly different CEνNS cross sections for each neutrino flavor,
it raises the following question: “Can oscillation physics be studied with CEνNS”? The
main advantage here compared to other neutrino oscillation experiment is that CEνNS has
no particle production threshold. Therefore, one may study tau neutrino physics well
below the tau production threshold of about 3.5GeV. For example, with a πDAR source
the maximum of tau appearance would require about 15 km baseline. In fact, exploring
CEνNS to study tau neutrinos would be the only way currently known to study ντ (ν̄τ )
oscillations with (statistical) flavor identification below the tau threshold.

Another advantage would be related to the size of the detector necessary to study neu-
trino oscillations. First, the large CEνNS cross section would allow for smaller detectors to
see a relatively large number of events. Second, the shorter baseline to observe oscillations,
compared to e.g. 810 km and 295 km of the current oscillation experiments NOvA [204]
and T2K [205], would also help getting more events. The obvious disadvantage lies in the
fact that the flavor-dependent effects in CEνNS are at a few percent level, and thus the
changes in event counts induced by oscillations are typically small.

11For concreteness, we restrict inverse beta decay to the capture of electron antineutrinos on free protons.
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To have an idea of what could be done, in principle, with a CEνNS detector for standard
oscillation physics, we have performed the following simple exercise. To estimate the statis-
tical precision one may achieve in such a setup, we have (very optimistically) assumed that a
total liquid argon detector and πDAR source such that (total number of pions produced)×
(detector fiducial mass) = 20NA kton, where NA is the Avogadro number. If the detector
is deployed 15 km from the source, the prompt monochromatic line would lead to about
10,000 CEνNS interactions while the delayed continuous spectrum would lead to 30,000
events. This translates into 1% and 0.6% statistical uncertainties. The relative difference
in the number of events between unoscillated and oscillated neutrino fluxes would be 1.3%
and 0.6% for the prompt and delayed neutrinos, assuming the best fit oscillation parameters
of [206] and using the flavor-dependent CEνNS cross section of eq. (3.5).

To obtain some understanding of these numbers, we first note that the prompt flux
of νµ almost entirely oscillates to ντ at 15 km. While a similar oscillation effect happens
to the delayed ν̄µ component, νe disappearance is driven by the smallest mixing angle
sin2 2θ13 ' 0.09. Therefore, the oscillation effect on the delayed component is about half
of that in the prompt events, modulus the energy dependence of the delayed flux and
Q2 dependence on asymmetries involving the electron flavor. Also, contributions to the
asymmetry by νµ → ντ and νµ → νe oscillations have the opposite sign.

From these numbers, one could, within the proposed optimistic scenario, measure tau
appearance below the tau threshold at the couple of σ level. Note also that, while a near
detector would certainly be helpful, the ratio between prompt and delayed spectrum could
mitigate the uncertainties on the initial neutrino flux.

Doing precision oscillation physics with such a setup would be quite a challenge: per-
cent level sensitivity to e.g. sin2 2θ23 would require at least a statistical uncertainty of
a few %, which seems a bit too optimistic (that is, unrealistic) for next, or even next-to-next
generation experiments. Nevertheless, studying tau neutrinos with this setup could provide
nontrivial information on the unitarity of the PMNS matrix [207–211]. As a final remark,
future dark matter direct detection experiments like DARWIN [212] will be able to observe
CEνNS from the 8B solar neutrino flux. The expected number of CEνNS events from this
flux above the threshold is about 90 events per ton-year [213] which would translate into
36,000 events for a 40 ton dual-phase xenon detector running for 10 years. The number of
events could be increased if the nuclear recoil detection threshold is lowered, possibly allow-
ing for oscillation studies at DARWIN with CEνNS. To understand if a realistic experimen-
tal setup could leverage the flavor dependence of the CEνNS cross section to perform oscil-
lation physics studies is beyond the scope of this paper and may be pursued in the future.

4.5 Oscillations to sterile neutrinos

The LSND [214] and MiniBooNE [215] anomalies present an outstanding conundrum in
the field of neutrino physics. While these anomalies are consistent with the existence
of light sterile neutrinos at the eV, such an interpretation presents severe tension with
numerous experiments [216–219] and with standard ΛCDM cosmology [220–223]. The
sterile neutrino searches in most oscillation experiments primarily rely on charged-current
interactions using either an appearance signal, interpreted as an active flavor oscillating to
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another active flavor, or a disappearance signal, interpreted as an active flavor oscillating
to any other neutrino flavor (active or sterile).

Oscillation probabilities are simplest for monoenergetic sources and πDAR provides a
high-intensity monoenergetic source of νµ, thus being a natural candidate for carrying out
high statistics searches for νµ disappearance. Importantly, however, the daughter neutrino
from πDAR is well below the charged-current threshold required to produce muons, and so
one must rely on neutral-current processes. In this context, CEνNS has been recognized as
being advantageous due to its relatively large cross section [42, 100, 224, 225]. Working at
lower energies allows for shorter baselines with equivalent L/Eν and consequently higher
fluxes as compared to e.g. the SBN program.

Regarding the experimental landscape, currently a 10-ton liquid argon experiment,
Coherent CAPTAIN-Mills (CCM) at Lujan center at LANL, is operational and plans to
study active-to-sterile neutrino oscillations using CEνNS [13] at multiple baselines from the
πDAR source. Future measurements with ton and multi-ton scale CEνNS detector at the
Spallation Neutron Source at ORNL [226] and at the European Spallation Source [75] are at
planning stage. A key assumption in all of these proposals, however, is that CEνNS is flavor
independent. As we have shown in this work, CEνNS has a precisely calculable dependence
on neutrino flavor that enters at a few percent level and is especially pronounced at low
nuclear recoil energies. If CCM or similar experiments are to search for disappearance
probabilities on the order of a few percent, these SM radiative corrections become obligatory
for a proper analysis. Even with a near detector, flavor-dependent corrections to the
CEνNS cross section are required to properly interpret precise experimental results.

4.6 Nuclear facility monitoring

Recent work has shown that neutrino detectors, both using IBD (i.e. ν̄e capture on free pro-
tons) and CEνNS on nuclei, can serve as novel state of the art instruments for monitoring
nuclear facilities (see [227] for a review). This includes both civilian nuclear reactors, where
precise measurements of the ν̄e flux can provide information about spent fuel [228, 229], and
the global excess of fissile nuclear materials [230, 231]. These ideas have already motivated
the construction of one such neutrino-based nuclear reactor monitoring system [232].

In both cases, CEνNS occupies a unique and complementary position relative to IBD
because of its thresholdless nature [231, 233]. There are two ways in which CEνNS dif-
ferentiates itself from IBD. First, the cross section is much larger. This observation holds
true even after normalizing per unit of detector mass [233] provided the thresholds are low
enough (sub 100 eV). Perhaps more important, however, is the fact that certain neutrino
flux components appear only below the IBD threshold, Eν . 1.8MeV, and so CEνNS is
the only tool available for certain applications. A notable example is the monitoring plu-
tonium blankets [231] as a marker of compliance with the Plutonium Management and
Disposition Agreement.12 Interestingly, it is in this low-energy, low-nuclear recoil limit

12Agreement between the Government of the United States of America and the Government of the Russian
Federation concerning the management and disposition of plutonium designated as no longer required for
defense purposes and related cooperation, http://fissilematerials.org/library/2010/04/2000_plutonium_
management_and_.html.

– 22 –

http://fissilematerials.org/library/2010/04/2000_plutonium_management_and_.html
http://fissilematerials.org/library/2010/04/2000_plutonium_management_and_.html


J
H
E
P
0
2
(
2
0
2
1
)
0
9
7

where radiative corrections are most sizeable as can be clearly seen by comparing the three
panels of figure 3. Moreover, (anti)neutrinos emitted in nuclear reactions are electron fla-
vor eigenstates for whom radiative corrections are the largest (relative to muon and tau
neutrino flavors).

Neutrino energies substantially below the IBD threshold may be accessible in the fu-
ture by employing silicon-based Skipper-CCDs, which have recoil thresholds in the 10–20 eV
range. The most abundant isotope of silicon, 28Si, composes over 90% of a naturally oc-
curring silicon source and is, fortuitously, a spin-0 nucleus. The other two stable isotopes,
29Si and 30Si, are spin-1/2 and spin-0 and have natural abundances of 5% and 3% respec-
tively. Although beyond the scope of this work, the effective field theory treatment can be
extended to spin-1/2 nuclei.

The level of precision achieved here paves the way for high-precision neutrino detection
of nuclear facilities. Having provided a permille level error budget for the CEνNS cross
section, we essentially guarantee that near-future neutrino probes of nuclear reactors will
be limited by either statistics or experimental systematics. CEνNS naturally complements
IBD because of its thresholdless nature allowing detectors to measure components of the
neutrino flux with Eν . 1.8MeV below IBD thresholds. Some of these low-energy com-
ponents are essential for applications [231]. To measure low-energy neutrinos necessarily
requires a low nuclear recoil threshold, and it is interesting to note that the radiative cor-
rections studied in this work are largest in the low-recoil limit. We hope that the ability to
conduct future precision measurements of ν̄e spectra uninhibited by theoretical errors will
serve as a useful tool in the monitoring of civilian and military nuclear facilities.

5 Conclusions and outlook

We have provided a comprehensive treatment of CEνNS cross sections on spin-0 nuclei
appropriate for next-to-leading order accuracy of both the overall flavor-dependent cross
section and flavor asymmetries. Our calculation accounts for all sources of theoretical errors
including nuclear form factors, nucleon form factors, perturbative error in the determination
of low-energy Wilson coefficients, and nonperturbative hadronic contributions to radiative
corrections. Extension to higher spin nuclei is possible after a careful account for nuclear
responses.

Surprisingly, the largest source of uncertainty at low energies comes from hadronic
physics and perturbative error in the determination of Wilson coefficients. At larger
energies, nuclear form factor uncertainties associated with the distribution of neutrons
dominate. Practically speaking, this means that the CEνNS cross section for low-energy
neutrinos is a precision observable on par with neutrino-electron scattering whose domi-
nant theoretical uncertainty is driven by the same hadronic charge-isospin correlator as the
CEνNS cross section.

Our results pave the way for future high-precision CEνNS experiments. While technical
hurdles must still be overcome to begin probing percent-level effects and to reach enhanced
low-recoil cross sections, once these have been achieved CEνNS will be able to test SM
prediction of neutrino interactions and to search for new physics that leads to percent
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level (or optimistically permille level) deviations from SM predictions. We think that a
CEνNS detector coupled with an IsoDAR source is especially promising. However, a πDAR
source could provide similarly high levels of precision provided the nuclear uncertainties
that enter at higher neutrino energies are reduced to a permille level.

In summary, we have provided a state of the art precision calculation of the CEνNS
cross section and flavor asymmetries that we hope will enable and motivate future experi-
mental progress.

A Field redefinition for the effective Lagrangian

In this paper, we have emphasized the role of the photon in CEνNS but our effective
Lagrangian does not contain any explicit neutrino-photon coupling. As discussed in the
main text, the absence of an explicit photon-neutrino coupling is a consequence of field
redefinition which induces an explicit vector-like (weak-electromagnetic) current-current
interaction between neutrinos and the nucleus. In this section, we offer a brief discussion
of this field redefinition; for a detailed discussion see [120].

Prior to the field redefinition, the neutral-current interaction of neutrinos with quarks
and leptons relevant for scattering cross sections at O(G2

Fα) is described by the effective
four-fermion Lagrangian [120, 234] (neglecting fermion kinetic terms)

Leff ⊃−
∑
`,`′

ν̄`γ
µPLν` ¯̀′γµ

(
cν``

′

L PL+cν``
′

R PR
)
`′−

∑
`,q

ν̄`γ
µPLν` q̄γµ (cqLPL+cqRPR)q

− 1
4FµνF

µν +e
∑
`

Q` ¯̀γµ`Aµ+e
∑
q

Qq q̄γµqA
µ− 1

e

∑
`

cν`γ∂µF
µν ν̄`γνPLν`. (A.1)

The fact that neutrino-photon coupling only appears at dimension-6 is a manifestation
of the anapole-only neutrino-photon vertex appropriate for a massless (or massive and
Majorana) neutrino [128].

For neutral-current scattering applications, it is convenient to redefine the photon
field13 such that neutrino-photon interactions are removed at NLO. The appropriate field
redefinition to achieve this feature is

Aµ → Aµ + 1
e

∑
`

cν`γ ν̄`γµPLν` . (A.2)

Such a field redefinition introduces additional four-fermion operators as

Leff ⊃ −
∑
`,`′

ν̄`γ
µPLν` ¯̀′γµ(cν``

′

L PL + cν``
′

R PR)`′ −
∑
`,q

ν̄`γ
µPLν` q̄γµ(cqLPL + cqRPR)q

− 1
4FµνF

µν + e
∑
`

Q` ¯̀γµ`Aµ + e
∑
q

Qq q̄γµqA
µ (A.3)

+
[∑
`′

Q`′ ¯̀′γµ`′
][∑

`

cν`γ ν̄`γµPLν`

]
+
[∑
q

Qq q̄γµq

][∑
`

cν`γ ν̄`γµPLν`

]
.

13We remind the reader that S-matrix elements are unaffected by field redefinitions. The same answers
would be obtained if photon-mediated diagrams were included explicitly.
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The bottom line can then be absorbed into modified definitions of the left- and right-handed
couplings, such that the effective Lagrangian is written

Leff ⊃ −
∑
`,`′

ν̄`γ
µPLν` ¯̀′γµ(cν``

′

L PL + cν``
′

R PR)`′ −
∑
`,q

ν̄`γ
µPLν` q̄γµ(cqLPL + cqRPR)q

− 1
4FµνF

µν + e
∑
`

Q` ¯̀γµ`Aµ + e
∑
q

Qq q̄γµqA
µ , (A.4)

which matches eq. (2.2) of the main text. This shows explicitly how high-energy photon-
mediated diagrams can be re-shuffled into modified left- and right-handed couplings at
low energies.

B Comparison with effective Weinberg angle convention

The literature surrounding CEνNS discusses flavor-dependent radiative corrections, often
phrased as a measurement of the neutrino charge radius. In this appendix, we compare
our systematic treatment to the prescription commonly presented in the literature.

The prescription in the literature is to take a tree-level CEνNS cross section and to
make the following replacement [108–110],

sin2 θW → sin2 θW −
α

4π

[
1− 2

3 ln m2
`

M2
W

]
, (B.1)

for (anti)neutrino flavor ν`(ν̄`).
An easy point of comparison is our expression for the difference of the differential cross

sections. In the prescription advocated in the CEνNS literature [108–110], the difference
would be given as

dσν`
dT −

dσν`′
dT ≈ G2

FMA
3π

Zα

π

(
1− T

Eν
− MAT

2E2
ν

)
N ln m

2
`′

m2
`

, (B.2)

which is the same answer one would get starting from eq. (3.4) in me,mµ,mτ → ∞ limit
(with me/mµ and mµ/mτ fixed), such that a small Q2 expansion is justified.

For realistic values of the lepton masses, this prescription is insufficient for electron
(and quite often for muon) flavor and misses crucial Q2 dependence leading to an over-
prediciton of the νe − νµ flavor asymmetry by a factor as large as six at Q2 ' 100 MeV2.
A similar prescription, much closer to our conclusion, is presented in [235, 236] where the
Weinberg angle is replaced by the full Q2-dependent form factor. A low-Q2 expansion is
only permissible for Q2 � m2

` .

C Flux-averaged cross sections

In this paper, we have presented precise SM predictions for CEνNS cross sections, but have
intentionally refrained from discussing the experimentally relevant question of event rates
from flux-averaged cross sections. A prediction for the event rate in a given interval of recoil
energy T ∈ [Tmin, Tmax] requires the cross section to be folded against a flux prediction.
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To predict the event rate at the few-% level, both the cross section and the flux must be
known to the same level of precision.

Consider a flux of neutrinos sourced by a π+ beam that is stopped in a target. Often
these sources are termed pion decay at rest (πDAR) but they inevitably include contam-
ination from pion decay in flight (πDIF) as well. The pions that do decay produce µ+,
which subsequently decay to ν̄µ, νe, e+. Both the pion and muon decays also receive radia-
tive corrections at the level of a few-%. If one would like to predict the event rate at such
an experiment at a percent level of precision then one requires a prediction for the πDIF
component, ΦπDIF

ν`
, the leading order πDAR flux (neglecting radiative corrections) for each

neutrino flavor, Φ(0)
ν` , and the radiative corrections to this flux for each neutrino flavor,

Φ(1)
ν` . Adding all of these together, one would find the total flux arriving at the detector

accurate up to corrections of the permille level.

Φν = Φ(0)
ν`

+ α

π
Φ(1)
ν`

+ ΦπDIF
ν`

+ O(permille) . (C.1)

The πDIF flux was a few percent of the leading-order πDAR flux at LSND [237] and is
expected to supply an O(0.5%) contamination at the SNS [193]. We therefore count this
at the same order as the radiative corrections for practical purposes, but ignore the µ−
capture discussed in [193] for brevity’s sake. This flux then must be folded against the
neutrino energy-dependent cross section calculated in this paper

dσν`
dT = dσ(0)

dT + α

π

dσ(1)
ν`

dT , (C.2)

where dσ(1)
ν` /dT is the correction to the tree-level cross section dσ(0)/dT . dσ(1)

ν` /dT can be
taken from the main text of this paper.

For rate predictions, Rν` , at the percent level, one needs

dRν`

dT =
∫

dEν`

[
dσ(0)

dT Φ(0)
ν`

+ α

π

dσ(1)
ν`

dT Φ(0)
ν`

+ α

π

dσ(0)

dT Φ(1)
ν`

+ dσ(0)

dT ΦπDIF
ν`

]
, (C.3)

with the integrand evaluated at fixed nuclear recoil energy. Since Q2 = 2MAT , the compli-
cated functional dependence on Q2 (cf. eq. (2.6)) does not effect the integration over Eν` .
The explicitly Eν-dependent prefactor in eq. (2.1) must be included in both the LO and
NLO expressions for the CEνNS cross section.

Using the expressions in this paper, the monochromatic πDAR flux, and the well
known µDAR flux (all without radiative corrections), the first two terms in eq. (C.3) can
be calculated. To calculate the last two terms in the square brackets, predictions for the
corrections to the leading-order πDAR and µDAR fluxes are needed, as is a prediction
for the πDIF component of the flux. We leave a calculation of the πDAR and µDAR
radiative corrections to future work. The πDIF component (and µ− capture component if
it’s contribution is appreciable) requires a dedicated study for each experiment.
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