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ABSTRACT: We derive the Cutkosky rules for conformal field theories (CFTs) at weak
and strong coupling. These rules give a simple, diagrammatic method to compute the
double-commutator that appears in the Lorentzian inversion formula. We first revisit
weakly-coupled CFTs in flat space, where the cuts are performed on Feynman diagrams.
We then generalize these rules to strongly-coupled holographic CFTs, where the cuts are
performed on the Witten diagrams of the dual theory. In both cases, Cutkosky rules
factorize loop diagrams into on-shell sub-diagrams and generalize the standard S-matrix
cutting rules. These rules are naturally formulated and derived in Lorentzian momentum
space, where the double-commutator is manifestly related to the CFT optical theorem.
Finally, we study the AdS cutting rules in explicit examples at tree level and one loop. In
these examples, we confirm that the rules are consistent with the OPE limit and that we
recover the S-matrix optical theorem in the flat space limit. The AdS cutting rules and
the CFT dispersion formula together form a holographic unitarity method to reconstruct
Witten diagrams from their cuts.
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1 Introduction

The modern S-matrix program has transformed our understanding of quantum field theory
(QFT). On-shell methods have driven progress in scattering amplitudes by simplifying
computations and revealing new physics. Instead of working with individual Feynman
diagrams, which can be numerous and gauge-dependent, one works in terms of on-shell
building blocks. Constraints from locality, causality, and unitarity then help determine the
full amplitude. In particular, unitarity methods allow us to calculate loop-level amplitudes



from lower-loop on-shell quantities [1, 2].! Unitarity is a powerful tool for exploring loop-
level structure in the S-matrix that is not manifest at the level of the action, including
Yangian symmetry [9], color-kinematic duality, and the double-copy property of gravity
theories [10, 11]. The arsenal of modern amplitude methods brings difficult computations
into reach, opening paths to novel ultraviolet physics [12].

By contrast, we understand far less about perturbation theory in the absence of an
S-matrix. For example, how do structures uncovered in flat space amplitudes generalize
to theories in Anti-de Sitter (AdS) space? While the S-matrix can be recovered from the
flat space limit of AdS/CFT [13-18], one cannot define an S-matrix in global AdS itself
as an overlap of in- and out-states [19]. Instead, the asymptotic observables are the cor-
relation functions of the boundary CFT. Like flat-space amplitudes, boundary correlators
obey notions of locality, causality, and unitarity, and so it is natural to expect that S-
matrix technology may be applicable to AdS/CFT. Furthermore, the program of studying
AdS/CFT correlators using an on-shell approach has made remarkable progress, for ex-
ample by leveraging the constraints of crossing symmetry [15] and writing correlators in
Mellin space [17, 20, 21]. However, AdS analogues of basic S-matrix ideas remain unknown.

In this paper, we study the following question: what are the on-shell building blocks of
1/N perturbation theory in AdS? Our starting point will be the Cutkosky rules, i.e. that
the discontinuity of a Feynman diagram can be calculated by cutting internal lines [22, 23].
These cuts place lines on shell by replacing the time-ordered propagator with the cor-
responding Wightman, or on-shell, propagator. The cutting rules underpin the optical
theorem for the S-matrix, ensuring that the discontinuity of an amplitude factorizes into
products of on-shell sub-amplitudes. As we review? and show in explicit examples, these
and more general cutting rules follow from basic Lorentzian properties of QFT correla-
tors [27] and persist in curved space.

The cutting rules we explore are directly related to the Lorentzian inversion for-
mula [28], a centerpiece of modern CFT unitarity methods. The inversion formula is
a CFT generalization of the Froissart-Gribov formula for the S-matrix [29, 30] and has
generated recent progress in the study of higher-dimensional CFTs. For example, the in-
version formula proves the existence of Regge trajectories and leads to a dispersion formula
for CF'T four-point functions [31]. In the CFT dispersion formula, the four-point function
is reconstructed from its much simpler double-commutator.® In the context of AdS/CFT,
the double-commutator reduces the loop order. That is, the double-commutator of an
L-loop one-particle irreducible Witten diagram can be computed in terms of (L — 1)-loop
data. The CFT dispersion formula then provides a way to bootstrap loop-level physics
purely from tree-level data. The double-commutator then plays the same role in the CFT
dispersion formula that the discontinuity of the amplitude plays in the S-matrix dispersion
formula [23].

We refer the reader to [3-8] for references and reviews.

2For modern work on the flat-space cutting rules see [24-26].

3 As with the dispersion formula for scattering amplitudes in QFT, there are possible polynomial ambi-
guities affecting operators of bounded spin.



Previously, it was unclear how the double-commutator could be computed via Cutkosky
rules in CFTs, at either weak or strong coupling. The goal of this work is to derive these
rules for both classes of CFTs. To compute the double-commutator, we will classify the
corresponding unitarity cuts of Feynman diagrams in weakly-coupled CFTs and of Witten
diagrams in the AdS dual of holographic CFTs. In the holographic case, the set of allowed
cuts agrees with the previous bulk analysis [32]. We also show that, for certain kinematics,
the CFT optical theorem computes the double-commutator appearing in the inversion
formula. The relationships between the cutting rules, the CFT optical theorem, and the
inversion formula are all elementary properties of CFTs and therefore extend the S-matrix
unitarity method to a wider class of theories.

To derive the cutting rules, we will follow a somewhat historical route and import
Veltman’s derivation of the flat-space cutting rules, via the largest-time equation [27], to
AdS. This approach? gives a simple derivation of the cutting rules and makes manifest
that AdS unitarity methods are a direct generalization of the standard flat space methods.
In practice, our approach amounts to replacing the double-commutator with a simpler
out-of-time-ordered correlator.

While conformal field theories are typically studied in position space, one theme of
this work is that Lorentzian momentum space is convenient for studying unitarity. For
instance, the derivation of the allowed cuts takes a simple form in momentum space. A
cut diagram has a natural interpretation in momentum space as well: it is the gluing of
two sub-diagrams via a phase space integral, which is equivalent to summing over physical
exchanged states. The study of AdS/CFT correlators in momentum space is also motivated
by their relation to cosmological observables, see e.g. [40-56], and the study of on-shell
AdS recursion relations [18, 57-59].°> In this work we will only study the cutting rules in
momentum space, although they are also applicable to AdS/CFT correlators in position
and Mellin space.

Finally, it is useful to compare our approach to other studies of unitarity in AdS/CFT.
One well-established method to compute loops in AdS is via the bootstrap equations.
Here one determines the operator product expansion (OPE) of the CFT at tree level
by solving the crossing equations [15]. One can then plug this data into the loop-level
crossing equations [69], or equivalently use it to compute the double-commutator [28, 70],
to solve for loop-level OPE data. This gives a boundary method to bootstrap loops in AdS
purely from tree-level data. A related approach is the Euclidean bulk method [32, 71].
In this approach, one determines the boundary OPE data by studying Witten diagrams
themselves and working in Euclidean signature. The split representation for bulk-to-bulk
propagators [72, 73] and on-shell conditions in CFT spectral space together lead to an
efficient method to study the double-commutator. The bulk and boundary methods, which
are ultimately equivalent [32], give the double-commutator in terms of the boundary OPE
data. In this work we instead study AdS in Lorentzian signature and express the double-
commutator directly as a sum over cut Witten diagrams, bypassing the boundary OPE.

4An alternative strategy would be to derive the Feynman rules for the CFT double-commutator directly
using time-folded contours i.e. the Schwinger-Keldysh formalism [33-39].
®For further work on AdS/CFT in momentum space see [60-68].



The cuts we study factorize AdS diagrams using bulk normalizable modes and therefore
make AdS locality and factorization manifest. As we review in section 3, the definition of
a cut diagram we use here is a direct generalization of the one used in flat-space unitarity
methods.

Summary of results. We will now give a summary of the main results, followed by
an outline of the paper. Unless stated otherwise, we will study scalar field theories in
flat space and AdS throughout this work.® The cutting rules will be derived for CFTs
in general spacetime dimension and we will only specialize to specific dimensions when
computing examples. The derivations of the cutting rules in weakly and strongly-coupled
CF'Ts will be essentially the same and rely on working in Lorentzian signature. Specifically,
we will need the following properties of Lorentzian CFTs:

1. Positive spectrum. The physical states |¥U(k)) have momentum k lying in the
forward lightcone, k2 < 0 and k% > 0. We use the mostly-plus signature for the

metric 7,,.

2. Causality. Operators commute at spacelike separation:
[6(2),¢(y)] =0 for (z—1)*>0. (1.1)

3. CFT optical theorem.” We use the following combinatoric identity [75-77] for
partially time-ordered operators:

n

DD Y To@e) . b, I T[6(T0,4,) - $(70,)] = 0 - (1.2)

r=0 o€ll(r,n—r)

Here T and T are the (anti-)time-ordering symbols and II(r,n — r) is the set of
partitions of {1,...,n} into two sets of size r and n — r.

The CFT optical theorem can be verified at low points by using the definition of the
(anti-)time-ordering symbol and checking that the 6-functions cancel. It then follows for
all n by induction.

To derive CF'T cutting rules, we begin by using the CFT optical theorem to relate the
real part of a time-ordered four-point function to a double-commutator [78]:

—2 Re(T[p(k1) (k) p(k3)p(ka)]) = ([0(k3), d(ka)]a[o(k1), ¢(ka)lr) , (1.3)

where the subscripts A, R indicate the advanced and retarded commutators,

[p(x1), (22)]a = (2] — 2})[(@1), p(22)], (1.4)
[6(x1), ¢(22)]r = O(a} — 23)[é(x1), $(22)] -

SStrictly speaking, the boundary correlators for a QFT in AdS define a conformal theory that does not

have a stress-tensor and is therefore non-local [15, 74]. However, all of our results can be generalized to
study theories of gravity in AdS with a local CFT dual.

"While this identity is valid in general QFTs, we will refer to this as the CFT optical theorem to avoid
confusion with the S-matrix optical theorem.
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Figure 1. The map from the cutting to coloring rules for the AdS box diagram.

We will refer to the right-hand side of (1.3) as the causal double-commutator. This is
the same double-commutator that appears in the CFT inversion formula and can be com-
puted by taking a double-discontinuity of the correlator in cross-ratio space [28].%® The
identity (1.3) only holds for the kinematics

k2 >0, (ki+kj)>>0 exceptfor ky+ka€Vy, ky+thkscV_, (1.6)
where V. are the closed forward and backward lightcones,
Vi={k|k?><0, £k >0} . (1.7)

Next, we derive the diagrammatic rules for the left-hand side of (1.3) by generalizing
Veltman’s derivation of the Cutkosky rules for the S-matrix [27]. Veltman’s derivation
is based on the largest-time equation, which is a general relationship between Feynman
diagrams for Lorentzian QFTs. Crucially, this relationship holds in both flat space and
AdS. The largest-time equation involves a set of “cut” graphs, which come from introducing
black and white vertices for both internal and external points in the original diagram.? The
largest-time equation states that the sum over all possible colorings of the vertices vanishes.
This is simply the graphical version of the CFT optical theorem (1.2). Finally, there is a
one-to-one correspondence between the set of non-vanishing graphs with these two types
of vertices and the cut graphs of Cutkosky [22, 23, 27] (e.g. see figure 1).

The relation (1.3) turns the cutting rules for Re (T[¢p¢¢¢]) into the cutting rules for the
causal double-commutator ([¢, ¢]a[p, ¢]r) in the restricted kinematics (1.6). To analyti-
cally continue to general momenta, we use that the retarded commutator [¢(z1), ¢(x2)|r
is only non-zero if z; is in the causal future of z2. Using standard arguments for Laplace
transforms of Wightman functions, this causality condition in position space translates into
an analyticity property in momentum space [81, 82]. Using this property for both commu-
tators, we analytically continue away from the restricted kinematics (1.6) and prove the
cutting rules for the causal double-commutator with general momenta. Here we are ana-
lytically continuing only the double commutator and not Re (T'[¢¢¢¢|), which in general
differs from ([¢, @] a[¢, ¢]r) for generic momenta.

8The fact that the inversion formula involves a causal double-commutator is manifest in [79, 80], where
the causal restrictions are put into the definition of the integration region.
9These are the circling rules of [27] and should not be confused with on-shell diagrams.
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Figure 2. A cut bubble is the on-shell gluing of contact diagrams: the undotted lines are Feynman
propagators and the dotted lines are Wightman, or on-shell, propagators.

For the reader interested in the final result, we will now summarize the AdS cutting
rules for ([p(ks3), p(ka)la[d(k1), d(k2)]r) in the Poincaré patch. This double-commutator
is only non-zero for k; + ko € V4, so the momentum necessarily runs from the left to the
right. Aside from satisfying momentum conservation, the other momenta are left generic.
The cutting rules for an individual Witten diagram are as follows:

1. Draw a cut that crosses only bulk-to-bulk propagators. For each of these cut propa-
gators, replace the time-ordered, or Feynman, propagator Ga (k, z;, z;) by the corre-
sponding on-shell propagator GX(k, iy Zj).

2. For each propagator to the (right) left of the cut, use the (anti-)time-ordered propa-
gator.

3. For each internal vertex to the left of the cut, multiply by ¢g. For internal vertices
to the right of the cut, multiply by —ig. Here g is the bulk coupling.

4. Sum over all cuts consistent with momentum conservation.

The AdS on-shell propagator, GA (k, 2z, 2;), is a two-point Wightman function for a free
scalar in AdS. This is precisely the same structure as in flat space: the on-shell propagator
in flat space is by definition a free-field two-point Wightman function, which is a J-function
in momentum space. The standard cutting rules for the S-matrix correspond to replacing
cut lines by two-point Wightman functions. In the examples we study, we will find that
cut AdS diagrams reduce to the corresponding cut scattering amplitudes in the flat space
limit, confirming that we have generalized the flat-space methods to AdS.

In AdS we also find that the on-shell propagator Gz(k, 21, z2) has a simple split rep-
resentation in terms of the on-shell, or Wightman, bulk-to-boundary propagator KX(I{, z):

GL(k, 21, 29) oc (V—E2) 422K (k, 21) KL (K, 22) - (1.8)

Diagrams with on-shell bulk-to-boundary propagators are known as transition amplitudes
and have been studied in the context of recursion relations [18, 57-59]. The on-shell bulk-
to-boundary propagators correspond to normalizable solutions of the bulk equations of
motion [19, 83, 84]. This aligns with our interpretation of a cut diagram as a sum over
states. We have drawn this schematically in figure 2 and provide more details in section 4.



Outline. In section 2 we review the CFT optical theorem and how to relate the real
part of a four-point function to the causal double-commutator. In section 3 we use this
identity and the largest-time equation to derive the double-commutator cutting rules for
weakly coupled theories in flat space. In section 4 we generalize this argument to correlation
functions in AdS/CFT and introduce the transition amplitudes. In section 5 we discuss the
OPE and flat space limit of cut AdS diagrams, and give examples at tree and loop level. We
conclude with a summary and discussion of future directions in section 6. In appendix A we
review the largest-time equation. In appendix B we summarize the analyticity properties
of the double-commutator in momentum space. In appendix C we give a short derivation of
the Feynman tree theorem in AdS. Finally, in appendix D we give an alternative derivation
of the cutting rules using the Schwinger-Keldysh formalism.

2 CFT unitarity conditions

In this section we review how unitarity conditions apply to the full correlator and de-
rive (1.3). This identity is useful because it relates the real part of a time-ordered corre-
lator, which can be computed via a set of cutting rules for theories with a weakly-coupled
description, to the causal double-commutator, which is the central element of AdS/CFT
unitarity methods [28, 32, 69]. This section will be a review of [78], although we will follow
the presentation of [75-77]. The identities reviewed here will hold for all causal unitary
QFTs and do not rely on assuming either conformal invariance or weak coupling.

The proof of (1.3) follows from the CFT optical theorem and the positive spectrum
condition. The four-point version of the CFT optical theorem states [75-77]:

[) + (Tlp(k1)p(k2)p(k3)p(ka)])

( I
(k4)]o(k1)) + (partitions) , (2.1)

where for convenience we have gone to momentum space and suppressed the other partitions
of the external operators. This equation is shown graphically in figure 3 and says that
summing over all “cuts” of a four-point function vanish. What we call a cut here refers to
how the four external operators are grouped under the (anti-)time-ordering symbols. For
example, the first three correlators of (2.1) correspond to the first three diagrams shown
in figure 3. In sections 3 and 4 we explain how to compute cuts of Feynman and Witten
diagrams.

To simplify this equation, it is useful to choose the momentum to lie in the configura-
tion (1.6). The salient feature of these kinematics is that only the sum ki + ko € Vi and
is therefore on shell. By restricting to this configuration, we ensure that only s-channel
cuts contribute to Re (T'[¢p¢¢¢]). This means only the three diagrams shown in figure 3 are
non-zero. The other cut diagrams (not shown) all vanish. To show this, we will use the
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Figure 3. Optical theorem for a QFT four-point function. The grey disk represents a general
correlation function and not a Feynman diagram. The external lines label the momentum of the
external operator. Operators to the (right) left of the blue line are (anti-)time-ordered in the
four-point functions given in (2.1).

identities:
o)) =0 it k¢ Vi, (2.2)
T[p(ki)p(kj)]|0) =0 if ki+k;j ¢ V4. (2.3)

Both equalities follow from the fact that all the states in the physical Hilbert space, H,
have momentum in the forward lightcone V. For the chosen kinematics, the CFT optical
theorem then becomes

=2 Re (T[p(k1)p(k2) ¢ (k3)d(ka)]) = (T[¢(ks)(ka)|T[d(k1)d(k2)]) , (2.4)

where we used that (T[¢ppopd]) + (T[pppd]) gives twice the real part of the time-ordered
correlator. This unitarity condition is analogous to its S-matrix counterpart. Writing the
S-matrix as S = 1 + 7, the unitarity condition S'S = 1 implies that'®

2Im (7)) =TT . (2.5)

In both (2.4) and (2.5), the left-hand side is found by taking a discontinuity while the
right-hand side has a naturally factorized form in terms of two lower-loop objects.!! More
precisely, (2.4) is the correlation function analogue of studying the s-channel discontinuity
of a scattering amplitude.

To make a connection with the inversion formula, we need to replace the time-ordering
symbol with the retarded commutator. To do this, we use

Tlg(kn)6(k2)]10) = [6 (k1) 9(k2)]rl0)
_ /ddxlddeBi(kLm-f—kgwg) <9(t1 —to)d(x1)p(22) + O(ta — t1)d(x2) (1)
—0(t1 — t2)(6(21)(x2) — Blz2)d(21)) ) |0)

B / dx1dwae M) 6 (9)(1)[0) = B(k2)d(k1)[0) = 0, (2.6)

10VWWriting the non-trivial piece as 7 explains why we take the imaginary piece for the S-matrix but the
real part for the four-point function.
“The relation (2.1) is also used in axiomatic studies of QFT to prove unitarity of the S-matrix [85].



where the final equality follows from having ¢(k)|0) = 0 when k% > 0. In other words,
both T'[¢(k1)o(k2)] and [¢(k1), #(k2)]r have the same action on the vacuum for spacelike
momenta. With the same kinematics, a similar argument gives

(0T [¢(ks)d(ka)]—(0l[@(K3), p(ka)]a =0 . (2.7)

Finally, we arrive at

—2 Re(T[¢(k1) (k) (ks)d(ka)]) = (T[b(ks)d(ka)|T[p(k1)b(k2)])
= ([p(k3), p(ka)]alp(k1), P(k2)]R) , (2.8)

in the configuration (1.6). While (2.8) is a property of general QFTs, our primary focus
will be computing the left-hand side of (2.8) in theories with a weakly-coupled description.

Using (2.8), we can now compute ([, ¢|a[¢, #|r) in the restricted configuration (1.6)
from our knowledge of Re (T[ppopo|). Moreover, once the causal double-commutator is
known for these momenta, it can be analytically continued to general configurations. As we
review in appendix B, the position-space causality conditions for this double-commutator
imply analyticity properties in momentum space [78, 81, 82]. We can choose the three
independent momenta to be ki, k4, and k1 + ko and then analytically continue in k; and
k4 according to

ki — k;—in;,, for i=1,4 and n; €V, . (2.9)

The causal double-commutator is analytic in this region, and we can continue to k7 < 0 to
recover the full causal double-commutator. The double-commutator is only non-zero for
k1 + ko € V., so we do not need to relax any conditions on this variable.

3 Cutting rules at weak coupling

In this section we study (2.8) for weakly-coupled QFTs. As an example, we consider a real
scalar field ¢ with a non-derivative interaction g¢™. We will review the derivation of the
cutting rules for the connected part of the time-ordered correlator, following the method
of [27]. The new result is the combination of these cutting rules with the identity (2.8)
to derive the corresponding cutting rules for the causal double-commutator. We will also
explain why this double-commutator is a simpler object to study than the real part of a
time-ordered correlator. By working this case out in detail, the generalization to AdS will
be manifest. We will not need to assume conformal invariance in this section, but due
to the role of the double-commutator in the inversion formula, this is an interesting case
to study.

We will need the Feynman propagator Ap(z) and the two-point Wightman functions
A*(x) for the free field ¢,

d i .
Ap(x) = (T[$(@)$(0)])tree = / (ijd e
= 0z AT (z) + 0(—2") A~ (z), (3.1)
+ dk 0 2 2\ jik-x
A (@) = ()00 = [ G200 £ w32



Similarly, for the anti-time-ordered propagator we have:

d i
83(@) = TIo)oOiee = [ toair et

=0z A (z) + (—z") AT (z) . (3.3)

ik-x

An important difference between (3.1) and (3.3) is the opposite signs of the ie. We will
use A7 (—z) = (A~ (x))* = AT (x) to express all quantities in terms of AT. The free-field
two-point Wightman functions correspond to on-shell propagators, which in momentum
space are given by

AT (k) =25 (k* + m2)o(k°) . (3.4)

We will also refer to A™ (k) as the Wightman propagator. In the standard S-matrix unitar-
ity method, cut propagators are placed on shell by replacing a propagator with a §-function,
which we see corresponds to Ap — AT,

We will now review Veltman’s derivation of the cutting rules, which are formulated in
terms of the Wightman propagators. For simplicity, we start with the following one-loop
correction to the two-point function (¢(z1)é(x2)) in ¢ theory,

1 €2
(3.5)

As usual, the Feynman rules tell us to assign a factor of ig to each interaction vertex, a
Feynman propagator Ap(z;;) to each line, and then to integrate over the internal points
yi;. When relevant, we also need to include symmetry factors.

From any Feynman diagram, F(xi,...,x,), with n external points and m internal
points, we generate 2™ new graphs by introducing two distinct vertices, which we label
with white and black dots. We will refer to both internal and external points as the vertices

of the diagram. The new collection of “decorated” graphs, F,(z;) with ¢ = 1,...,2"™,
are defined via the following rules:

1. For each internal vertex of either color, multiply by ig.
2. For each white vertex, either internal or external, multiply by —1.

3. For lines connecting two black vertices, z; and x;, use Ap(z;j).
For lines connecting two white vertices, z; and z;, use AJ(x;5).

For lines connecting a white vertex, z;, and a black vertex, z;, use At (z;;).

For simplicity, we assume no line begins and ends at the same point, i.e. no propagator
has a vanishing argument.'? These rules were first given in [27] for amputated Feynman

1276 take into account loop corrections, one should instead work with the renormalized propagator. Then
the same cutting rules carry over, but now with the corresponding renormalized on-shell propagator.
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diagrams to give an alternative derivation of the Cutkosky rules. We will not need the
specific map between the label ¢ and the assignment of black and white vertices as most
decorated diagrams vanish by momentum conservation. Instead, we will find that the non-
zero decorated diagrams are in one-to-one correspondence with the allowed unitarity cuts
of the original diagram.

To find the unitarity cuts of a diagram, we need to introduce the largest-time equa-
tion [27, 86, 87]:

2m+n

> Fylky,... k) =0 (3.6)
g=1

We give a short derivation of this identity in appendix A. To explain its connection to
the cutting rules, we need to isolate two terms in the sum (3.6): the graph with all black
vertices, ﬁqzl(ki), and the graph with all white vertices, Aq:2m+n(ki). Their relation to
the original Feynman diagram is

Fy1(k, ..o kn) = Fky, ... k), (3.7)
Fyonim (k.o kn) = (1) F*(kt, ... k) - (3.8)

To show (3.8), recall that using white vertices amounts to letting ig — —ig and
Ap(x) — A% (z). This replacement generates the complex conjugated graph and the

n

overall factor of (—1)" comes from using white vertices for the external points. If we pull

out these two graphs, the largest-time equation says

antm_q

Flky,..kn) + (1)"F*(ky, ko) = — Y Fylkr, .. k) - (3.9)
q=2

Note that for n even or odd, the left-hand side is the real or imaginary part of the correlation
function respectively.'3

To use (3.9) we must naively study a large set of diagrams that grows exponentially
in the number of vertices. Moreover, it is also not yet manifest how these diagrams are
related to the usual cutting rules. Fortunately, most of the ﬁq(ki) will vanish by momentum
conservation. For example, consider the following two diagrams:

(3.10)

The first graph vanishes because positive timelike momentum is flowing into the white
vertex from each propagator. The second graph vanishes because all the momenta is
flowing out of the bubble. In order to have a non-zero decorated graph, we need both black
and white external vertices, which serve as the “source” and “sink” for the momenta.

n

13For the S-matrix we always amputate external lines, in which case the (=1)™ is not present and we

always take the real part of the amputated diagram.
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The classic result of Veltman [27] is that the set of non-zero colorings of vertices is in
one-to-one correspondence with the allowed unitarity cuts of the diagram, where a unitarity
cut splits a diagram into two on-shell sub-diagrams. The map between cut diagrams and
the coloring rules given above is as follows:

(3.11)

That is, we cut a diagram in two and use black vertices to the left of the cut and white
vertices to the right. Then the cut lines correspond to the on-shell, Wightman propagators.
When we draw general cuts there can be an ambiguity about the assignment of vertices,
i.e. on which side to place which vertices. However, there is only one choice that is non-zero
for a given choice of external momenta. For that reason, we will leave the assignment of
black and white vertices implicit when drawing cut diagrams. In (3.11), if we take the
momentum to run from left to right, then the other possible assignment vanishes.

According to (3.9), we can compute the real or imaginary part of a correlation function
by summing over all cuts of the diagrams. For example, the internal cut of the bubble is
shown in (3.11). Here we are studying correlation functions with off-shell external legs, so
we need to consider the external line cuts as well. These do not reduce the loop order of
the diagram, as can be seen for the bubble,

(3.12)

For the four-point function, which will be our main object of study, we can similarly have
cuts passing through only the external lines,

(3.13)

For the remainder of this section, we will focus on four-point functions.

The external line cuts for (T[¢ppd¢]) are trivial in flat space as they simply place the
external momenta on shell, i.e. k2 = —m? such that k° > 0.!* As long as the external mo-
menta do not lie exactly on the mass-shell, these cuts vanish. In preparation for AdS/CFT,
where the analogous external cuts are non-trivial, it useful to have a dispersion formula
which depends solely on the internal cuts. As we will demonstrate shortly, the CFT dis-
persion formula [28, 31] meets this criteria for four-point correlators by using the causal
double-commutator as input.

4 The terminology “external cut” for (T[ppp¢]) refers to a cut of a propagator connected to an external
point. We study diagrams for this correlator in particular because the same topologies will appear for
single-trace correlators in holographic CFTs. Nevertheless, the cutting rules can also be studied for more
general correlators of composite operators, such as (T'[¢?¢2¢%$?]).
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To see why the double-commutator only depends on internal cuts, we study the cut-
ting rules in the kinematics (1.6), where all external momenta are spacelike. In this con-
figuration, external cuts such as (3.13) manifestly vanish. As reviewed in section 2, the
real part of a time-ordered four-point function, Re (T'[¢p¢pp¢]), is equivalent to the causal
double-commutator, ([¢, ¢]4[¢, #|r), in this configuration. The causal double-commutator
with restricted kinematics therefore only has internal cuts. This is the first hint that the
double-commutator is a simpler object to study than the real part of the correlator.

As the external momenta are all spacelike, we can go further: any internal line cut
that leaves one operator to the left or right of the cut must vanish. In other words, the
following class of cuts for a general Feynman diagram F' vanish:

(3.14)

The reason is simple — we need to have timelike momenta flowing through a unitarity cut
in order for it to be non-zero. With spacelike external momenta, this cannot happen if
only one external point is to the left or right of the cut. The vanishing of these cuts is
equivalent to terms in (2.1) such as (¢(k1)T[p(k2)@(k3)p(ky)]) being zero for spacelike ;.
To give examples, the following cuts both give zero in the kinematics (1.6):

(3.15)

These types of cuts typically vanish when studying amplitudes because on-shell three-point
amplitudes for gluons and gravitons vanish. Here all of our external lines are off-shell and
these cuts vanish due to the choice of external momenta.

Finally, we will consider cuts that split the external legs into pairs, i.e. the s, ¢, and u-
channel cuts familiar from S-matrix unitarity. In the kinematics (1.6), we have k1 +k2 € V4
but k1 + ks and ki + k4 are spacelike. With this choice, only the s-channel cuts are non-zero:

k:l k4

ko ’ ks . (3.16)
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For example, the following cuts are all non-zero:

(3.17)

We can now make an explicit connection to the double-commutator. Using the largest-time

equation
2n+'m_1 N
—2ReF(ki, kg ks ka) = Y Fy(kn, ko, ks, ka) (3.18)
q=2
and the identity (2.8), we find
e
([p(ks), p(ka)|ald(kr), (k) lr) = D Fylkn, ka, ks, ka) - (3.19)
q=2

In other words, the sum over decorated graphs in the kinematics (1.6) computes the causal
double-commutator. On the right-hand side we have written the full sum over ¢, but as
emphasized earlier only a few graphs are consistent with momentum conservation.

While we derived (3.19) using the vertex coloring rules, we can summarize the result
more simply. The cut graphs that contribute to the double-commutator ([¢, ¢]4[¢, ¢|r) are
determined by working in the kinematics (1.6) and using the following cutting rules:

1. For each Feynman diagram, draw a cut that passes only through internal lines.
For each line that is cut, use the on-shell propagator AT (k).

2. For all propagators to the left of the cut, use Ap(k).
For all propagators to the right of the cut, use A} (k).

3. For each internal vertex multiply by g.
For each vertex to the right of the cut, internal or external, multiply by an addi-
tional —1.

4. Sum over cuts consistent with momentum conservation.

As a reminder, we choose the on-shell propagators AT (k) such that the momenta is flowing
across the cut from ¢(k1) and ¢(k2) to ¢(ks) and ¢(ky). For cut four-point functions, all
external points come in pairs and we can replace the 3™ rule by:
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3’. For each internal vertex to the left of the cut multiply by ig.
For each internal vertex to the right of the cut multiply by —ig.

However, when studying higher-point functions it will be important to keep track of how
many external points lie to the right of the cut. One can restore the previous vertex coloring
rules by assigning black and white vertices to the left and right of the cut respectively, see
for example (3.11).

We were careful to work with kinematics (1.6) in order to classify the cut diagrams that
contribute to the double-commutator. Once we have classified and computed these cuts, the
argument reviewed in section 2 allows us to analytically continue the final result to general
kinematics. While using spacelike momenta and studying the cutting rules for Re (T'[¢ppp¢])
are not strictly necessary to derive the cutting rules for the double-commutator, we find
this to be a particularly simple approach.

As an aside, we can also derive the cutting rules by assuming k? > 0 and applying the
identity

(T[(ks)$ (k)T (¢ (k1) d(k2)]) = ([d(ks3), (ka)]al@(kr), d(k2)]r) - (3.20)

As we reviewed in section 2, this follows from the positive spectrum condition. Then the
partially time-ordered correlation function on the left can be computed using the Schwinger-
Keldysh rules [33-35, 37, 38] and one arrives at the same set of cutting rules for the double-
commutator.'® In this approach working with spacelike momenta is useful as well: we only
need a single time-fold to compute the left-hand side of (3.20) while for the right-hand side,
for generic momenta, we need two time-folds [38]. We explain how to derive the cutting
rules from the Schwinger-Keldysh formalism in appendix D.

4 Unitarity cuts in AdS/CFT

4.1 Cutting rules

In this section we will generalize the analysis of section 3 to AdSgz11/CFTy, the main
application of interest in this work. The generalization is straightforward as the derivation
of the cutting rules did not rely on the explicit form of the propagators. Instead, it followed
from general features of Lorentzian two-point functions. The cutting rules will therefore
also hold for weakly coupled theories in AdS. Our aim here is to discuss how the cutting
rules generalize, connect to previous work, and give the explicit expressions necessary for
later computations.

We will study a bulk scalar field ® that has a non-derivative interaction g®" and is
dual to the boundary scalar operator ¢. We work in the Poincaré patch of AdS with the
standard metric

o dzZ* 4 nudatdz”
= <

ds , (4.1)

15The relation between the Schwinger-Keldysh formalism and unitarity cuts is also given in section 11
of [37].
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where we again take 7, to be mostly plus, and z = 0 is the boundary of AdS. Finally, we
will only study the connected Witten diagrams for correlation functions of the single-trace

operator, (T[¢(z1).. . ¢(an)])-
We begin by expanding the Feynman bulk-to-bulk propagator Ga(z1,21;x2,22) in
terms of the Wightman bulk-to-bulk propagators,

< [ (xlazl)q)(x%ZZ)Dfree
0(2) — 29)GL (21, 21522, 22) + 0(2 — 29) G X (2, 20521, 21) ,  (4.2)
(@

(xla Zl) («7327 22)>free ,

Ga(xy, 21522, 22) =

GA(w1, 21529, 20) =

where A is the scaling dimension of the boundary scalar ¢. As in flat space, the Wightman
propagators are defined to be the free-field two-point Wightman functions. These will
again correspond to the on-shell propagators.

We now Fourier transform in the flat «# directions to use the AdS/CFT momentum-
space propagators. The bulk-to-bulk propagators take the form [88]:

[NJIsH

Ga(k, 21, 22) = —i(2122)

T T (pz1) T (p22)
/dpp e (4.4)
0

GE(k, 21, 20) = m(2122) 2 Ty (x/—k2z1> 7y (\/_k%) 0(—k2)0 (k) (4.5)

where 7, is the Bessel function of the first kind and v = A —d/2.'6 The bulk-to-boundary
propagator, Ka(k, z), is then defined by taking one point to the boundary:

Ka(k,z) = lim 2'"2Ga(k, z,2)

z'—0
= iz (VP) K (V) (49)
K (k,z) = m <\/—7;2)"Z%JV (\/—722) 0(—k2)0(£k°) | (4.7)

where IC,, is the modified Bessel function of the second kind.'” Here we have given the Feyn-
man bulk-to-boundary propagator Ka(k, z) for spacelike k. When analytically continuing
to timelike momenta, we give k% a small imaginary part as dictated by the ie prescription.
Finally, Ki(k, z) are the on-shell, or Wightman, bulk-to-boundary propagators.

We can now repeat the arguments of section 3 with minor changes. For completeness,
we spell them out here. For a Witten diagram W (x1,...,z,) with n external (boundary)

When studying the Euclidean principal series we usually write A = % + iv, but to be consistent with
previous work on AdS/CFT momentum space we use A = g +v.
'"In general, we need to work with the regulated bulk-to-boundary propagators [89],

a2 Ku (\ﬁz)

(\ﬁé) (4.8)

KAk 2) = (5)

where § < 1 is the cut-off on the z-coordinate. However, for the discussion and examples considered in this
work we can use Ka(k, z) throughout.
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points and m internal (bulk) points, we can define 2"t new graphs Wq(acl, .oy Xp) by
using two types of vertices. We again distinguish them by using white or black dots. The
new decorated graphs are defined as follows:

1. For each internal vertex multiply by ig.
2. For each white vertex, internal or external, multiply by an additional —1.

3. For lines between black vertices in the bulk use Ga (s, 2;; x5, 25).
For lines between white vertices in the bulk use G} (i, zi; x5, ;).
For lines between a white vertex at (z;,2;), and a black vertex at (zj,z;), use
Gi(wi,zi;xj,zj).

4. If a line ends on the boundary, use the appropriate bulk-to-boundary propagator.

The only difference from the previous section is that we now have two kinds of prop-
agators, depending on whether a point lies on the boundary or in the bulk. Here we
have taken all external points to the boundary in order to study the CFT correlator
(p(x1) ... p(xy)). For a QFT in AdS, we can also study purely bulk correlation func-
tions (®(z1,21)...9P(zp,2,)). When all external points lie in the bulk, the derivation of
the cutting rules in AdS is exactly the same as in flat space. In this work however we will
focus on CFT correlators.

The largest-time equation in AdS says:

antm_q

W (a1, zn) + (1" W (@1, a) = = Y Wela,...,z), (4.9)
q=2

where we pulled out the original graph and its complex conjugate. Restricting to four-point
functions (n = 4) and using the kinematics (1.6), we can again use (1.3) to go from the
real part of a time-ordered correlator to the causal double-commutator. The diagrammatic
expansion for the double-commutator in the configuration (1.6) is:

2ntm g

([$(ks), o(ka)alo(kr), pk)IR) = > Wolki,... ka) . (4.10)
q=2

Although the right-hand side runs over a large number of terms, only a few Witten diagrams
are non-zero for our choice of momenta, just as in flat space. To simplify the presentation,
we use the same cutting notation as before:

XX =

(4.11)
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Our assumption that the external momenta are spacelike implies that cuts of bulk-to-
boundary propagators vanish identically. This is consistent with earlier work on unitarity
cuts in AdS/CFT [32, 90], in which it was found that internal cuts compute the “absorptive”
part of the diagram. Using external spacelike momenta also implies the cuts split the
external points into two pairs. For our choice of momenta (1.6), we must have {ki, ka} to
the left of the cut and {ks, k4} to the right. Cuts through internal lines that leave a single
external point on one side of the cut will vanish. In short, the cut structure for Witten
diagrams is exactly the same as for the corresponding Feynman diagrams in flat space.

One difference in comparison to flat space is that external line cuts in AdS are less
restrictive. Cutting through an external line in flat space means an external momentum
must lie on the mass-shell, i.e. k2 = —m? and k% > 0. In AdS a cut external line is non-
zero as long as k € V. Therefore, the external line cuts will contribute to Re (T[ppp¢])
for general external timelike momenta and furthermore these cuts do not reduce the loop
order of a diagram. By working with spacelike momenta, or by studying the causal double-
commutator, we ensure that only internal cuts are allowed, and these do simplify the
diagram.

The diagrams that contribute to the right-hand side of (4.10) are found from the rules
summarized in section 1, which we repeat here for convenience:

1. Given a Witten diagram, draw a cut such that only bulk-to-bulk propagators are cut.
For each cut propagator use the on-shell propagator Gz(k‘, iy 25).

2. For all propagators to the left of the cut, use Ga(k, 2z, zj).
For all propagators to the right of the cut, use G; (k, 2, z;).

3. For each internal vertex multiply by g.
For each vertex to the right of the cut, multiply by an additional —1.

4. Sum over all cuts consistent with momentum conservation.

To revert to the vertex assignment rules, we again use black and white dots for all vertices
to the left and right of the cut respectively, see e.g. (4.11). The rules given in section 1
were specialized to four points, in which case we can ignore factors of —1 from external
points as they always come in pairs. Here we have given the rules for a general n-point
Witten diagram as we will later study cut five-point diagrams.

4.2 AdS transition amplitudes

Our methods rely on using Lorentzian signature, and studying Lorentzian AdS allows us
to interpret the cut diagrams in terms of a sum over states, or equivalently a phase-space
integral. Specifically, we will relate the cut propagators to normalizable solutions to the
bulk equations of motion. This provides another sense in which a cut diagram is on shell
and allows us to make a connection with the CFT optical theorem.

To set the stage, recall the unitarity condition for the flat-space S-matrix:

(out|Im (7)[in) = (out|7 7 in) . (4.12)
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Inserting a complete set of states, the right-hand side factorizes as
(out[Im (7)]in) =Y (out|7|¥)(¥|T]in) . (4.13)
v
It is well-known that there is a one-to-one map between the allowed unitarity cuts of a
diagram and the physical states |¥) that can be exchanged. As reviewed earlier, see (2.8),
the CFT statement of unitarity is

—2 Re(T[¢(k1)d(ka)d(ks)d(ka)]) = (T[d(ks)p(ka)]T[¢(k1)(k2)]) | (4.14)

in the momentum configuration (1.6). Once again, the right-hand side factorizes when we
insert a complete set of states. However, it may not be clear what the map is between
the states exchanged and the bulk cutting procedure. In other words, which basis of the
AdS/CFT Hilbert space are we picking out with our cuts? As we will demonstrate, the
natural set of states are the normalizable modes of the Poincaré patch, which are also used
to define Poincaré transition amplitudes [19].

In Lorentzian AdS, the bulk equations of motion have both normalizable and non-
normalizable solutions [91-93]. The normalizable modes are quantized to obtain the bulk
Hilbert space and the non-normalizable modes are classical, non-fluctuating backgrounds.
The bulk normalizable and non-normalizable solutions are dual to boundary states and
sources in the CFT respectively [83, 84]. To find these solutions, we solve the equations of
motion for a scalar @,

(O-m?)d =0, (4.15)

by working in momentum space. For spacelike momenta, k2 > 0, there is a single solution
that is regular in the interior of AdS:

®(k, 2) = ¢oz¥?K, (VE2z) . (4.16)
For timelike momenta k? < 0, there are two solutions:

®(k, z) = g0z T, (v —k2z2) (4.17)
®(k, z) = g0z, (V —k22) . (4.18)
Here J and K are the Bessel functions defined earlier, and ) is a Bessel function of the
second kind. The J solution gives a normalizable mode while the ) and K solutions give
non-normalizable modes. In the limit z — 0, the normalizable solutions scale like 2 while
the non-normalizable solutions scale like z¢~2. Correlation functions are computed by

choosing non-normalizable modes for all the external legs of the Witten diagram.
The connection between the AdS cutting rules and the Hilbert space can be seen from
a “split representation”. It is well-known that time-ordered bulk-to-bulk propagators in

AdS can be expressed as [17, 72]:

o0

Galk, 21, 2) = / doP(w, A g, (k21 K g (R 2), (4.19)
1 w?

P(w,A) = (4.20)

S B
PR
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That is, the Feynman bulk propagator is a spectral integral over the corresponding bulk-
to-boundary propagators. By comparing (4.5) and (4.7), we observe that the on-shell
bulk-to-bulk propagator also has a simple split representation:

22T(1 +v)?
7.(-(1 /_k2)2u

Unlike the split representation for time-ordered propagators, we do not have a spectral

GZ(k’,Zl,ZQ) = KI(k,Zl)KX(k,Zg) . (4.21)

integral.!® We can also identify the overall factor in (4.21) as a boundary, Wightman, two-
point function. Taking both points of the bulk-to-bulk on-shell propagator to the boundary
yields:

(S(—R)B(R)) = g5 (V=2 O(—K)O(K) (4.22)
where we use the notation

(k1) ... d(kp)) = (2m) 6% (k1 + ... + Ep) (p(k1) . .. d(kp)) . (4.23)

As before, A = d/2 + v is the dimension of the boundary scalar ¢. We can then write the

on-shell propagator as:?"

GX(k,Zl,ZQ) == KZ(]{I,Zl) KJAF(]C, 22) . (424)

1
{o(=k)o(k)))
As shown in (4.7), KX(k,z) ~ J(V—k22), and so the bulk-to-bulk on-shell propagator
factorizes into a product of normalizable modes. We can now see explicitly that cut-
ting bulk-to-bulk propagators inside a Witten diagram produces two sub-diagrams glued
together via on-shell bulk-to-boundary propagators with the correct normalization. The
on-shell condition restricts the momentum k to lie in the forward lightcone, V,, and this
turns the momentum integral into a phase space integral. Finally, dividing by the two-point
CFT Wightman function gives the correct normalization for the exchanged states.

The relation between the bulk and boundary descriptions of unitarity becomes clear
when we work in terms of the “transition amplitudes”, (¥, |T[¢(k1) ... ¢(kn)]|¥,) [19].2
In the Poincaré patch, the states are defined via boundary conditions on the past and
future Poincaré horizons. For the transition amplitudes studied here, the states |¥,) and
(V| are defined in terms of a collection of normalizable modes with momenta ¢z, ..., ¢,

8The split representation (4.19) is the basis of the Euclidean analysis in [32, 71]. There, putting a line
on shell corresponds to closing the w integral on the pole in P(w,A). This produces bulk-to-boundary
propagators of dimension A and d — A, so the OPE of the resulting diagram has unphysical “shadow”
operators. Projecting these out yields the double-commutator. The Lorentzian split representation (4.21)
uses the on-shell propagators, so this projection is not required.

YHere we are dropping analytic terms in k that contribute to contact terms in position space.

20 Another way to derive this is to consider the two-point Wightman function in free-field theory,
(P(k1, 21)P(k2, 22))free, and expand the fields in terms of creation and annihilation operators for the nor-
malizable Poincaré modes [19].

21'\While transition amplitudes are the standard name in AdS /CFT, these are more precisely the analogues
of flat space form factors.
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and qy,...,q such that g;, ¢; € Vi. The ¢; and g; are incoming and outgoing momenta
respectively. In practice, these transition amplitudes are computed by replacing some of
the time-ordered bulk-to-boundary propagators in a standard Witten diagram with the
corresponding on-shell propagators, i.e. the normalizable modes [83, 84]. From (4.24),
we see that cutting a bulk-to-bulk propagator produces sub-diagrams with normalizable
external lines. To be concrete, we can consider the cut of a tree-level exchange diagram in
®3 theory,

k
. (O(—k)O(k))
Vi
. (4.25)

The dotted lines on the right-hand side of (4.25) are the on-shell bulk-to-boundary prop-
agators, KX(I{:, z), while the undotted lines are the corresponding Feynman propagators,
Ka(k,z). Following the cutting rules, we also complex conjugate the three-point Witten
diagram to the right of the cut. Specifically, we find:

T dz1dz
-2 ReWé),exch(kl) ey 92 / d+1 dil klv Zl)KA(k27 Zl)GA(kl + k?) 21, Z?)
0
K (kg,ZQ)KA(k4,Z2) (4.26)

where the prime means we drop the overall momentum conserving é-function,
Wiky, ... ks) = 20)%0%Uky + ...+ k)W (k... kq) . (4.27)
Using (4.24) we can rewrite this as

T dz1dz
2 ReW, (k. ka) = o7 / d; dil Akt 20) K (kp, o) KL (B + kayz1)  (4.28)
0

<<¢(—k1—k2)¢(k1+k2)>> KX (k1tko, 22) KA (s, 22) KA (Ka, 22) -

Denoting the three-point transition amplitude as
) 7 dz
Ra—pi (b1, kol k) = ig / Kk, ) Kby, 2)KA (K, 2), (4.29)
0

we see that the cut Witten diagram is a product of transition amplitudes:

— 2 Re W), eyen (ks - - - ka)
1

(p(—(k1 + k2)) (k1 + k2)))

= Ra—pt(k1, k2|k1 + k2) Ri_pe(ks, kalk1 + ko) . (4.30)
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The final result and ordering agree with inserting a resolution of the identity in the right-
hand side of (4.14). Specifically, we can insert a complete set of single-particle states, which
we label as |Uy), into (4.14) to find:
= Ak (O[T[p(k3)p(ka)][We) (Vi |T [ (k1) (K2)]0)
Tl ok TIo(R)o0)]) = [ 5 Ca
Vi
_/ d'k (Vg T[p(k3)$(ka)]|0)* (k| T[¢(K1) b (k2)][0)
(2m)d (Vg W)

Vi
(4.31)
We can restrict to single-particle states because we are working at tree-level in the AdS

theory. The result from the cutting rules (4.30) and from inserting a complete set of
states (4.31) then agree due to the relations,

(U |T[p(k1)p(k)]|0) = (2m)6%(k + k1 + ko) Rt (K1, koK) , (4.32)

(Ui y) = (2m) (S(—k)(k)) - (4.33)

This example shows that the cutting rules for Witten diagrams, which were derived using

purely diagrammatic identities, have a simple correspondence with transition amplitudes
defined between states on the Poincaré horizons.

The definition we have used for the transition amplitudes is perturbative in nature,

as they are defined directly via Witten diagrams. In principle, one can also give a non-

perturbative definition for Poincaré transition amplitudes via correlation functions in global

AdS. We will not need this definition and will instead point the reader to [19, 58] for more
details.

4.3 Higher-point functions

In this section we will briefly discuss the cutting rules for higher-point functions. We start
by using the CFT optical theorem (2.1) for general points [75]:

(T[p(z1) - .- P(2n)]) + (=1)"(T[¢(21) ... d(zn)])
n—1

==Y (=0 > (T(pwe)) - d(@o T [(20,4) - - S(2,)]) (4.34)
r=1

c€ll(r,n—r)
where we recall II(r,n — r) is the set of partitions of {1,...,n} into two sets of size r and
n — r. This relation tells us that the (real) imaginary parts of (even) odd-point correlators
can be expressed in terms of lower-point correlators. We can then factorize the right-hand
side by using a resolution of the identity.

Next, we use that the cutting rules given in sections 3 and 4 also compute the real and
imaginary piece for even and odd-point functions, respectively. In the cutting rules, this
happens because there is a factor of (—1) for each external point to the right of the cut.
For general n-point Witten diagrams we find

e
Wzt oan) + (1)W1, ) =— Y Wolz,...,2) . (4.35)
q=2
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This result is expected, as one can also derive (4.35) directly from (4.34) using the Schwinger-
Keldysh rules.

In section 2 we used a special choice of kinematics to relate Re (T[¢p¢pp¢]) to a double-
commutator. The motivation there was to make a connection with the Lorentzian inver-
sion formula [28, 79, 80], where the same double-commutator appears. For higher-point
functions the corresponding inversion formula is not known, but certain kinematics still
simplify (4.34). One natural choice is to set all the external momenta to be spacelike,
k? > 0. Then the terms with r = 1 and n — 1 vanish in (4.34) since ¢(k;)|0) = 0 with
this choice. At the level of Witten diagrams, this choice of momenta sets the external cuts
to zero.

As an example, we can consider a five-point function with the following kinematics:

k2 >0, (ki+kj)*>0, except ki+ke€V, . (4.36)
In this case,

—2im (T [¢(k1) ... d(ks)]) = (T [$(ks)d(ka)d(ks)] T[d(kr)p(k2)]) - (4.37)

Next, we will look at the allowed cuts for an individual Witten diagram. Given the restric-
tive kinematics we have chosen, the momentum flowing through a cut has to be equal to
k1 + ko. For example, for the following five-point tree-level diagram,

ks

ko ks
(4.38)

only the above cut is non-zero. Defining the three and four-point transition amplitudes as
[d
_ z
Ra—pt(k1, ko|k) = Zg/Zd_HKA<k172')KA(k27Z)KZ(k7 z), (4.39)
0
[ dud
z1dz
Ra—pt(ks, ka, ks|k) = —g? / ﬁKX(k,Zl)KA(k&ZQGA(k + ks, 21, 22)
1 *2

KA(kg,ZQ)KA(k4,ZQ) , (4.40)
we find, in the kinematics (4.36), that

— 20 Im (T (k1) - .. p(ks)])
1 *
= <<¢(_(k1 + k2))¢<k1 + kg))) R3—pt(/€17 k‘2’k‘1 + k2)R4—pt(k3’ k4, k5‘k1 + kg) . (4.41)
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We see that the cut five-point diagram can be written as the product of two transition
amplitudes, in agreement with our previous analysis.

An important open question is: what is the minimal set of reduced correlators that we
need to know in order to reconstruct the full five-point function? At four points we can
choose spacelike momenta to reduce Re (T'[¢d@¢]) to double-commutators. There are three
double-commutators we can consider, but the Lorentzian inversion formula [28] shows that
two of them are sufficient to reconstruct the full correlator. It would be interesting to
answer this question at higher points and understand the connection to the cutting rules
presented here.

5 Applications to Witten diagrams

In this section we check our cutting rules in a variety of ways. At tree level, we confirm
that our cutting rules agree with the discontinuity of the full Witten diagram. By using the
momentum-space OPE [94, 95], we will relate the bulk cut structure to the spectrum of the
dual CFT and find agreement with previous work on the OPE limit of Witten diagrams.
Finally, by studying tree and loop examples, we show that cut AdS diagrams become the
corresponding cut flat space diagrams in the flat space limit. This gives evidence that the
flat space limit of the AdS Cutkosky are the corresponding S-matrix rules.

5.1 OPE and flat space limits

OPE in momentum space. In this section we study how the bulk cutting procedure in
the Poincaré patch is related to the standard boundary OPE. We begin with the relation

—2 Re(T[¢(k1)$(k2)d(ks)d(ka)]) = (T[d(ks)d(ka)]T[p(k1)(k2)]) , (5.1)

which holds in the configuration (1.6). To find the Lorentzian OPE [75-77, 94], we will
insert a complete set of states between the pairs of ordered operators. Specifically, we
will use

d
L= 0001+ 3 [ 2P wn WO YO (). (52)
oy,

where the sum runs over all the local primary operators O of the boundary CFT. The
explicit form of the projector is

(—k2)d2-a L 2nlA -9y,

Ca  Znl{l-nml(A-l-d+2),

1k kyy .k k
<€' p1 121_k2):n Vnnun+1yn+l...nww+permstraces> . (5.3)

pA (k) =

Moo fhg V1.0V

The tensor P”A1
ator Og_na ¢, i.e. for a fictitious operator of dimension d — A and spin ¢. The factor Cp is

g1, (k) is what appears in the two-point function for the shadow oper-
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related to the normalization of the two-point function and is given by??

2d—2A
CA == d T 2 (54)
L(-$+A+1)

Finally, using (5.2) gives the momentum-space OPE [94]
(T (ks)p(ka)| Tp(k1)p (ko)1) = > _(T(b(k3)d(ka)]OHH¢ (ky + k2)) (5.5)

(@
X P . () (O (<1 — )T (k1) b (R2)]) -

As a reminder, the ((...)) notation means that we drop the overall momentum-conserving

d-function. To relate the bulk cutting rules to the momentum-space OPE, we will study
Witten diagrams in the limit that the exchanged momentum goes to zero, ki + ko — 0. In
this limit, we have [94]:

(O(=k1 = k) Tp(k1)p(k2)]) ~ (= (ky + k2)?) 20~ V2 (kY — i)~ B0/2202 . (5.6)
The exchange of the operator O therefore gives the scaling
(T(o(k3)(kIT[S(k1)d(k)I)|  ~ (= (k1 + ka)?) 2=, (5.7)
@
where we used that the projector scales as P;ﬁ...w,ul...w(k) ~ (=k?)¥/?=A Using this zero-

momentum limit, we will show that there is a correspondence between the cut lines of a
Witten diagram and the operators that appear in the boundary OPE. That is, if we can
perform a cut in which only a single propagator for the bulk scalar ® is cut, then its dual
operator ¢ must appear in the boundary OPE. Similarly, if we can cut multiple ® lines
then the corresponding multi-trace operator built from ¢ must appear in the OPE.

The correspondence between bulk cuts and boundary operators is expected, both from
previous work on AdS/CFT unitarity [32, 69, 90, 96, 97] and from the previous discussion
on cut graphs and Poincaré transition amplitudes. However, one subtlety is that our
derivation of the cutting rules is based on quantizing the AdS theory on slices of constant
Poincaré time. This is why there is a simple map between the cuts of a diagram and the
Poincaré transition amplitudes. On the other hand, in order to study the OPE we quantize
the CFT using radial quantization, which is dual to quantizing the AdS theory on slices
of constant global time. We therefore do not expect that our Poincaré cuts necessarily
isolate the dual single- or multi-trace operator in the boundary OPE. Instead, we will give
evidence for a weaker but still useful statement: the existence of a bulk cut implies the
existence of the corresponding single- or multi-trace operators in the boundary OPE.

We begin by studying the simplest non-trivial case, the exchange Witten diagram,
which is given in (4.25)—(4.26) and for convenience is reproduced below,

r dzdz
-2 ReWéﬁ,exch(k"la ce ,k‘4) :/Zd—i-izdilKA(kl’ Zl)KA(kIQ, Zl)GZ(kﬁl + ]{2, 21, 22)
1 2

KA (3, z2) KA (kg, 22) . (5.8)

*2To compare with eqn 2.15 of [77] we note that the operators there are unit normalized, (Oa ¢|Oa¢) = 1,
(L+A-1T(A)
27d/2(A—1)['(A+1—d/2) "

while here we have (Oa ¢|Oa ) =
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The tree diagram will be a useful example for seeing the cutting rules in action and un-
derstanding the structure in more general diagrams. As expected, we will show that the
boundary OPE of (5.8) involves only the exchange of the single-trace operator ¢ and its
descendants [28].

To understand how the scaling (5.7) emerges, we will study the limit k1 + k2 — 0
under the z integrals.?® From (5.8), we see that the dependence on ki + ks comes from
the on-shell bulk-to-bulk propagator. In the zero-momentum limit, the propagator takes
the form

Gz(kazlaza) ~ T 2(21Z2)A(_k2)Aid/2 ’ (59)

221(1 +v)
where we used the explicit expression (4.5). Substituting this into (5.8) and comparing
to (5.7) confirms the expected scaling due to ¢ exchange.

We next study the bubble diagram, drawn in (4.11), in the same limit. As we are
performing a two-particle cut, we expect that by taking the limit ki + ko — 0 we will see
the exchange of the double-trace operators [¢¢],, s in the boundary OPE. The double-traces
have the form

[0@]n, = @Mt ... 0" ¢ — traces, (5.10)
Any=20+2n+J. (5.11)

We will study the leading OPE contribution, which is governed by the exchange of the
scalar [p¢]oo with dimension 2A. The full expression for the cut bubble is

i, 7 dzydz

2m)d Zd+1zd+1KA(klaZl)KA(kz,Zl)GX(f, 21, 22)
) A 2

—2 Re Wl;ubble(kh ceey ]C4) :/ (
Vi

Gz(kl 4+ ko — ¥, 21, ZQ)KZ(kg, ZQ)KZ(/C4, 2’2) . (5.12)

We will take the limit k1 +ko — 0 with k1 +ko € V. The above expression involves on-shell
propagators that are non-zero only for k1 + ko — ¢ € V4 and ¢ € VL. These conditions
imply that when k1 + k2 — 0, we must also have { — 0. That is, the integration region
for the phase space integral is bounded by the size of the incoming momenta. To see this
explicitly, we write

ki +ks=v+¥, veVy. (513)
Squaring both sides yields
(k1 + ko) =0 420 L+ 02 (5.14)

As v, £ € V., each term on the right-hand side is negative. Taking k; + ko — 0 then
requires that v, £ — 0 as well. When we take this limit, we therefore find that each on-shell

231n section 5.2 we will show the expected scaling emerges when we perform the z integrals first.
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propagator scales like (— (k1 + k2)?)2~%2 while the shrinking phase-space integral gives an

extra factor of (— (k1 + k2)?)#2. Putting this together, we find the expected scaling;
—2 Re W/ ypie(kis- - - ka) ~ (—(k1 + kg)?)2A74/2 (5.15)

This pattern continues at higher loops: when we cut n lines, we find the expected scaling
for an n-trace operator. For each propagator we cut, we have a factor of (— (k1 + k‘g)z)A—d/ 2
and for each loop momentum in a cut line we find a factor of (—(ky + k2)?)%? from the
loop measure.

Flat space limit. Studying the flat space limit together with our cutting rules will
provide another non-trivial consistency check. As we are working in the Poincaré patch,
we will use the flat space limit given in [18], which we review here. To define this limit, we
write the Witten diagram as an independent function of the momenta k; and their norms

Wk, k1|, .., ka, [kal) - (5.16)

We will assume the d-dimensional momentum k& is spacelike and then define a (d + 1)-
dimensional null vector,

k= (k,ilk|) . (5.17)
If we define the total energy as

Br =3Ik, (5.18)

then the flat-space amplitude comes from a total energy pole of the Witten diagram,

M(ky,... ky) oc lim (Bp)*W (ki |k, ..., k4, |ka]) - (5.19)
E1r—0
In general, the exact strength of the pole and proportionality factor depend on the loop
order and the theory.?*

In the physical region, all |k;| are positive for k spacelike and we do not have access to
the total energy pole. To reach this pole, we instead treat the |k;| as independent complex
variables and analytically continue in them.?® However, to obtain null momenta in the flat
space limit, we still need to impose that |k;|> = k; - k; before taking the flat space limit.
The procedure is then: we first analytically continue in some of the |k;| to flip their signs
and then take the limit Ep — 0. By using (5.17), we recover the flat-space amplitude with
complexified (d + 1)-dimensional momenta. This flat space limit originates from the fact
that the total energy pole comes from the z — oo limit of the AdS integration, where the

#TFor related work on dS correlators see e.g. [50-54, 56].

25This analytic continuation is distinct from the one used to go from spacelike to timelike momenta, where
the ie prescription determines how to approach the branch cut at k% < 0 and |k| is not an independent
variable. Instead one keeps |k| = Vk2, which is imaginary for timelike momenta.
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AdS integrand takes the same form as the flat-space integrand. Comparing the AdS and
flat-space expressions fixes the coefficient of |k| in (5.17) [18].

To be concrete, we can consider a conformally-coupled scalar in AdS, which is dual
to a boundary scalar of dimension A, = %(d + 1). The flat-space amplitude is then the
residue of the total energy pole,

M(ki,. ..k
W(k17|k1|""ak4a‘k4‘): ( 1E 4) + (520)
T
where the omitted terms are regular at Ep = 0.

Before performing any analytic continuation in |k;|, we find

Re M(ky, ..., k4) N
Er

and so we identify the discontinuity of the flat space tree-level amplitude as the coeflicient

ReW(kl,‘kl‘,...,]{4,‘k4‘) = (5.21)

of a total energy pole in ReW. One simple way to understand this limit is to write the
real part of the CFT correlator as

2 Re (T[pde]) = (T[¢60d)) + (T[psod) - (5.22)

We can then take the flat space limit of each correlator on the right-hand side individually.
The flat space limit of the time-ordered correlator gives matrix elements for ¢7 [16, 98]
while the flat space limit of the anti-time-ordered correlator gives matrix elements for —i 7.
Their sum is then the natural object to study whose flat space limit yields Im (7). We
then see from (1.3) that for certain kinematics the total energy pole in the causal double-
commutator computes the discontinuity of a flat space amplitude [70, 99, 100]. We will
verify this explicitly in the following sections.

5.2 Four-point scalar exchange

To make the previous discussions more concrete, we will now consider explicit examples
of cut Witten diagrams. For simplicity, we consider diagrams with external conformally-
coupled scalars ¢, with dimension A, = %(d + 1). When calculating the real part of a
four-point Witten diagram, we will always work in the kinematics (1.6). Computing the
real part of a diagram is then equivalent to taking a discontinuity with respect to ki,
across the branch cut at k3, < 0. In contrast to the flat space limit, when computing

this discontinuity we impose that |k;| = \/g and similarly for k;;. Here we have defined
kij =k; + kj .

One benefit of using conformally-coupled scalars is that the bulk-to-boundary propa-
gator takes a simple form,

K, (k,2) = —iz'T e Kl (5.23)

First, we will consider an exchange diagram for (¢.¢.¢.¢.) where the exchanged scalar O
has arbitrary dimension Ap:

dzi1dz
~2 ReW) (b1, - . ka) = 67 / o Kol 2K ke, )G (k.21 22)
1 2

KR (k3 22) KR (ka, 22) - (5.24)
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The z integrals can be evaluated and we find

,m20280 (A — 1)2 (—k2)20~20(—k2)0(k)
D (4420 +1)° (al+ R} ksl + [Ra])) B0

—2 Re W(/lexch(kl’ k) =g

Ao -1 Ap d Ky
F — Ao — - +1;
21( 9 "o (@) 2 ’k1’+|k22
Ap—1 Ao d >
F s o - -+ 1 (5.25)
“( s
We see that when k%, — 0, the Witten diagram scales like
—2 Re Wb,exch(klv s 7k4) ~ (_k%Q)AO_% ) (526)

which corresponds to the exchange of O in the boundary CFT. Expanding the oF} hyper-
geometric functions yields additional powers that correspond to descendants of O. We use
the notation k%, instead of |k; + k2|* to make the analytic continuation in these variables
clearer. This will also distinguish them from |k;|, which are analytically continued to obtain
the flat space limit.

To verify that our cutting rules give —2 Re W, we will consider a case where the Witten
diagram can be computed in full and then take its discontinuity. One simple example is
d=5and Ap = A. = 3. Assuming k; and k1o are spacelike, we find

o0
2 —([k1l+Ik2]) 21— (k3 |+ [ka]) 22
W, exen(krs e ka) = [ dzidzs / ap219” s sin(pza)e
0

/ (kfy +p?)
0
:/dp%g2 P’
SV W+ ) (k] el + 77) (sl + [Ral)” +27)
_ ig®
(/83 + Vit + kol ) (/835 + Vs + hal ) (] + ol + [k | + ]

(5.27)

Next, to go to the kinematics (1.6) we need to take k3, < 0. From (5.27) we see that there
is a square root branch cut for timelike k15. To compute the discontinuity across the cut,
we take the difference between taking k%, negative and real from below and above the real
line in the complex k%, plane. This yields

2 2 _k2
2 Re W) axen(k, - ka) = At ~ . (5.28)
’ (k12*(|k1|+|k2|) ) (k12*(|k'3|+|k4|) )

This agrees with the cutting rules (5.24) when we set d =5 and O = ¢..
Next, we study the flat space limit for the exchange diagram. The total energy pole

in (5.27) appears explicitly, and its residue gives the flat space amplitude:

..
lim By W, on(kr,... ki) = —2— (5.29)
Er—0 @ S
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where we identified the flat space Mandelstam invariant
s = (|ka| + [k2])* = Ky . (5.30)

By contrast, the real part of the Witten diagram as given in (5.28) does not have a total
energy pole and then appears to vanish in the flat space limit. In order to capture the
discontinuity of the flat space amplitude (5.29), which is given by d(s), we need to imple-
ment the ie prescription more carefully when analytically continuing the norms |k;|. To see
how the J-function emerges in the flat space limit, it will be convenient to use regulated
d-functions in the cut propagators:

Gk o1,20) = 2m(a20)? [ dp pLpo0) T (p22)3° (2 4 pPOGIO(—I?) (531
0
Gl
6@ =g (5.32)

Using this expression for the on-shell propagator in the cut tree-diagram gives

-2 ReWé)c,exch(kl, e k4)

- 7d 4g° P’ ¢ (5.33)
Y R R A TR TR ) (6 ) 4 @)

As the integrand is symmetric under p — —p, we can extend the p integration to (—oo, 00)
and evaluate the integral by closing the contour in the upper-half of the complex p plane.
We observe that there are four poles:

p=i(lki] + [ka]) (5.34)
p =i(|ks| + |ka]), (5.35)
p=/—kiy +ic . (5.37)

Picking up the poles (5.34) and (5.35) will lead to a total energy pole in the final answer
while the poles (5.36) and (5.37) will reproduce our earlier expression, which does not
contain a total energy pole. Closing the p contour and taking the limit EFp — 0 before
taking € — 0 then yields the expected result:

2¢g?

lim lim —2E7 ReW), . (k1,...,ks) = lim O(kY,)
30 Er20 et 0 4 (| + kel =)

= 2mg?5(s5)0(KY,) . (5.38)
We see that when sitting on a total energy pole, the real part of the AdS/CFT correlator
reorganizes itself into a cut flat space amplitude.

One noteworthy aspect of this flat space limit is that on the Fp = 0 pole, the norms
of the CFT momenta are identified with an emergent (d + 1) component of the external
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momenta. Heuristically, these norms can be thought of as the “radial” momenta in the
AdS dual. We see from (5.30) that the emergent component can be identified with the
energy of the respective particle in flat space. An emergent energy variable is natural in
the study of dS correlators, where we expect to see bulk time emerge from the study of
purely spatial correlators [45, 50]. Here we are working in Lorentzian AdS, which already
has a notion of time and energy, and the extra component is more naturally identified with
a complex spatial momentum.

5.3 Four-point gauge boson exchange

We will now repeat the previous analysis for Yang-Mills in AdS to illustrate the process for
spinning fields. We will compute the cut of the Yang-Mills exchange diagram, both from
the cutting rules and by taking a discontinuity of the full diagram.

Following [57, 58] we work in the axial gauge A¢ = 0, where a is the color index.
Throughout this section we drop the color indices, although it is straightforward to restore
them. In the axial gauge, € - k = 0 for physical bulk modes, where € is the polarization
vector.?® The Yang-Mills bulk-to-bulk propagators are

ws [ Ji2(pz1)T a2 (pz2)
/dpp 2 2

GIW (k, zZ1, 22) = —7,(2’12’2) 2 12 +p2 e Ppu(kap) ) (5'39)
0
G (ky 21, 29) = (z122) 7 Ja- a-2(pz1) T2 (p22) Puv (K, V —k?)0 Ho(£EY),  (5.40)

where we have defined the tensor

K.k,
Puv(ky D) = Ny + ;—2 . (5.41)

Taking one point to the boundary, we then find the bulk-to-boundary propagators>”
1
KM (k,z) = —iﬁ(\ﬁz) (Wz Pk, —k2), (5.42)
KME(k 2) = —— (Vi22) T Jw Q(Wz P (b, V —E2)0(—k2)O(£K%) . (5.43)

We see in (5.39), (5.42), and (5.43) that the factor P, (k, vV —k?2) projects onto directions
orthogonal to k.22 The on-shell bulk-to-bulk propagator therefore factorizes into a product
of on-shell bulk-to-boundary propagators. This is the same structure we saw earlier for
scalar propagators in section 4.2. Finally, the cubic vertex is

VHP (K, ko, k3) = (" (k1 — k2)? + n"P (k2 — k3)" + 0 (ks — k1)”), (5.44)

5

26We hope it is clear from context where e stands for a polarization vector and where it gives the ie
prescription for time-ordered propagators.

2TTo obtain the bulk-to-boundary propagator, we have dropped terms analytic in k that contribute to
contact terms in position space.

281n [58] the factor P, (k, —k?) is not included in the bulk-to-boundary propagators as the condition
€ -k =0 is imposed on the external polarizations.
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which takes the same form as the flat-space vertex factor. The full tree-level exchange
diagram is then:?"

WM

dz1dz
excch, i1 .. 4(k17k2,k3,k4)292/12KYM (k1,21)K 2y2(7€2,z1) V2P (ke kg, ko)

d+1 _d+1 11

G XM (K2, 21, 22) 2 V7 (kg by, —ka2) K oy (ks 22) Ky v, (s, 22) -

(5.45)

To make the notation more compact, we will contract the external indices with polarization
vectors

WIM (k1 ko, k3, ky) = et Wexch gineoa (k1 Koy ks, Ky (5.46)

The condition €;-k; = 0 trivializes the projector in the bulk-to-boundary propagators (5.42)
and (5.43). Finally, by specializing to d = 3 one can perform the p and z integrals in
closed form. This computation was carried out in [64] so, accounting for differences in
normalization, we will quote the final result:
_ig? V20 (ki ko, —k12) V7 (K3, ka, ki2)

(VEfy + [k | + [k (V/Rfy + || + [kal)
(77 PCY kiy + Br)(k12)p(k12)o ) (5.47)

po ) .
VL ([ka| + [k2|)(ks| + |kal)

where V127 = (e1),(€2), V. As a consistency check, we can take the flat space limit:

Wexch(kla k27 k37 k4) -

;2

i
lim By WM (k. ko, ks, ka) = V12 (ky, ko, —k12) V17 (k. ka, brz)
Er—0 S

(k12),p(k12)0
<npa T b n)? . 0z ) (5.48)

where n = (0,0,0,1). This matches the flat-space amplitude, where we recall the vertices
VP only have indices in the first three directions.

We can now compute the real part of (5.47) by taking the discontinuity and using the
cutting rules applied to spinning particles. Using the cutting rules yields

ledZQ
~2Re Wegeh py . M(kh’“%k&k”‘):_gz/MKml(’Wl)Kuguz(@le)

V2P (ke kg, ki2) Gl M (g, 21, 22) VP9 (ks ka, —kr2)
K (k) KN (k). (549)

13vs3 Havy

where the overall minus sign on the right-hand side comes because the vertices include a
factor of 7. Evaluating the z integrals and contracting with the polarization vectors gives

)
—2 RGWEXC (k‘l, k‘g, ]{33, k‘4) = — 292 12
" (kT — (k1| + [k2])2) (k5 — (k3| + [ka)?)

k12 pk12.0
V2P (K1, ko, k12) V7 (ks ka, —ki2) (77,00 - 12]5212> . (5.50)
12

2 The factors of z} come from using the inverse metric to contract the vertices and propagators.

~32 -



This agrees with a direct calculation of the real piece by analytically continuing (5.47)
to timelike momenta, k:%Q < 0, and computing the discontinuity across the cut. With
the exception of the polarization dependence, the analysis is the same as the scalar case
considered in the previous section.

5.4 Five-point tree

The analysis for higher-point tree diagrams is similar to the four-point case. As an example,
we consider the five-point tree shown in (4.38) and use conformally coupled scalars ¢, in
d = 5. The five-point tree-diagram is

. dz1dzodzs
Wé_pt(kh ooy ks) :(ZQ)S / WKACUCI, 21) KA, (K2, 21)G A, (F12, 21, 22)
1 *2 ~3

Ka, (ks, 22)Ga (ks + ka, 22, 23) Ka, (K3, 23) K, (K4, 23) .
Ao=3,d=5
(5.51)

To check the cutting rules, we use the five-point kinematics given in (4.36), that is we
choose k1 + ko € Vi, ks + kg + ks € V_, and take all the other invariants to be spacelike. In
this configuration the only non-zero cut places Ga_(k12, 21, 22) on shell, as shown in (4.38).
Using the cutting rules, we have

‘ . dz1dzadz
—2¢Im ng,_pt(kh ey k‘5) = Zg3 / WKACUQ, Zl)KAC(kQ, Zl)GZC(klg, 21, 2’2)
2 3

1

K7 (ks, 22)G A, (k3+ky, 20, 23) K7 (K3, 23) KA (K4, 23) -
Ao=3,d=5

(5.52)

As a reminder, we have a factor of (ig) for the vertex to the left of the cut, a factor of
(—ig)? for the two vertices to the right of the cut, and finally an overall (—1) because
we have an odd number of external points to the right of cut. Performing the z integrals

yields:

: , o3 |ksl[ks + kal/ =k
=20 Im Wy (k1. - 5) = — 89 2(12 2 2 212 4
(2]ks |2 (K2, — k3y) + (kfy + k34)% + |ks|?)
1
(([Fr] 4 [k2])? + E25) (([ka| 4 |kal)? — K3,)

Next, we compute the imaginary piece of the five-point function directly from the full

(5.53)

correlator. Evaluating the p and z integrals for (5.51) gives:

_ ggi VS + K3y + k1| + ko] + [ks| + |ka| + 2]ks)

Er VS, + kS + | ks
1

(V/R3: + Vsl + [kl ) (VRZ + Ikl + el =+ [Rs])
1

(VA% + Il + kel ) (VRE + lks| + k| + ks )

W pe(k1, ..o ks)

(5.54)
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where Ep = |k1| + ... + |ks|. To compute —2iIm (T'[¢(k1) ... ¢(ks)]), we first analytically
continue k%, to be timelike and then take the discontinuity across the branch cut. The
result agrees exactly with the answer from the cutting rules in (5.53).

As a consistency check, our result (5.54) agrees with [67], and we also see that on the
total energy pole the five-point Witten diagram reduces to the correct five-point flat space

amplitude:
lim Br Wi (k ks) = ¢° ! !
T - 1y---5R5) =
Er—0 P ((kr] + k)2 = k7o) (k3| + [ka])? = K3,))
1
=g . (5.55)
512534

One can also recover the discontinuity of the flat space five-point diagram by taking the
flat space limit of (5.52). As with the four-point exchange diagram, it is useful to make
the replacement GZ — Gz’e to see how the flat-space §-function emerges in this limit. The
analysis is identical in form to the case of the exchange diagram. For d = 5 the z integrals
can be evaluated in closed form and the p integral can be extended to (—oo, c0), and then
evaluated via a contour analysis. Finally, we take the limit £ — 0 before taking € — 0 to
find the d-function. The final answer is:

. 2ig3e
lim lim —2iErImW. _ (ki,... ks) = li
E%E;IEO 1Eplm 5—pt( 1,---,ks5) 20 (|1ks| — |k3a| + |Kkal)(Jk3| + |ksa| + |kal)
0 (ki)
(=2 + (k| + ko)) + €2)
L2 2T
= Z93875(3%2)9(k?2)~ (5.56)
34
Here we made the identifications
sij = (ki + [k;)* = k3, (5.57)

where s;; are the flat-space Mandelstam invariants. The final result agrees with the cut
flat-space amplitude.

5.5 One-loop bubble

Finally, we consider a more non-trivial example corresponding to the following one-loop
bubble diagram:

k1 k4

X

ko k:g

(5.58)
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To verify that the cut diagram has the correct OPE limit, it is simpler to begin in position
space. We will assume the external scalars are conformally coupled and that the two
internal propagators are identical, but correspond to a distinct operator O:

. d%y1d%yadzdzs
W(,D,bubble(xlw--v«@i) = (19)2 / LAl dil Ka (w1591, 21) Ka (22591, 21)
1 2

AdS

Gao (Y1, 213 Y2, 22)° K, (233 Y2, 20) KA (%45 Y2, 22) - (5.59)

The Kéllén-Lehmann spectral representation in AdS says [90, 101]:

Galyr, 21392, 22)> =Y _ an(n)Gaa(yr, 213 Y2, 22) (5.60)
n=0
(d/2)n(2A + 20)1_)2(2A + 1 — d + 1),

: 5.61
27/ 2n)(A + n);_gp(2A+n—d/2)n (5.61)

an(n) =

where (a)y, is the Pochhammer symbol. In other words, the bubble diagram reduces to an
infinite sum over tree-level exchange diagrams. Using this identity and then passing into
momentum space, we obtain

Wo pubbie (k15 - k1) =Y an (Wi, o exen(Fis - Fa) - (5.62)

We then take the real part of both sides, expand in the limit k1o — 0, and find the expected
scaling behavior for the exchange of double-trace operators:

-2 ReWo pupble(k1, - - -5 ka) ~ (—kfy)2R0=4/2 (5.63)

which we argued for in section 5.1 using the integral representation of the cut diagram. This
argument can be generalized to other “bubble” type diagrams, as was done for example
in [97, 102].

Next, we will study the cut bubble diagram directly in momentum space for d = 3
when all scalars are conformally coupled. We will show how the correct OPE limit emerges
directly from the cutting rules and also that in the flat space limit we recover the cut
flat-space bubble diagram. The cut bubble diagram is given by

dz1dz d
/ =g° 2
—2Re W¢07bubble(k1’ Tt k4) =9 /Z(li+1zg+1 / (271-)(1

KAC (kl? Zl)KAc (k27 Zl)GXf(€7 Zl7 22)

GXf(kIQ _ga Zl,ZQ)KZC<]§3,ZQ)KZC(I€4,ZQ> 9
Ac=2,d=3
(5.64)

where we used the regulated d-functions inside the cut propagators. It will also be useful
to define

Ep = k| +|ko|,  Eg=|ks| + |ka| . (5.65)
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Performing the z integrals, we find

© a3
—2 Re W} puble(F1, - - -, ka) :6492/0 dpldp2/(27r)3ELERplp2

5 (% + p1)d (k12 — 0)* + p)
(E? + (p1 — p2)?) (E? + (p1+ p2)?)
07 (—0*)0" (= (k12 — 0)?)

. 5.66
(BE% + (p1 —p2)?) (BR + (01 +p2)?) (566)

Here the function 0" is defined to be a f-function for the forward lightcone V:
O (—0%) = 6(—£*)0(1°) . (5.67)

To find the OPE limit for this diagram, we restrict to physical values for the norm, that is
|ki| = \/g with k; spacelike, and take the limit k1o — 0. In this case we have Er, Eg > 0
and can take ¢ — 0 inside the integrand. The on-shell propagators yield §-functions that
trivialize the p integrals:

d3e
—2Re Wy, pupbte(F1s - -, ka) = 16g° / WELERMWQQ — 0T (—£2)0" (= (k12 — )%
1
(EZ + (1] = ka2 = £))?) (EF + (|€] + k12 — £])?)
1

(E12% + (€] = k12 — €|)2) (E}22 + (1] + k12 — EDQ) . (5.68)

To evaluate this integral in the OPE limit, we make the following change of variables,
¢ = r(cosh(¢),sinh(¢) cos(f), sinh(¢) sin(d)), with 0<r,¢ <oco, 0<0<2r. (5.69)

This parameterization trivializes the 6+ (—¢2) function, but we still need to impose the
constraint from the other T function. To further simplify the analysis, we work in the
center-of-mass frame,

k1o = (k5,0,0) . (5.70)
In this frame, requiring k12 — ¢ € V. implies
0<r<e k). (5.71)

Imposing these constraints, we find that the measure for the integrand becomes

/(gsi 0 (00" (= (k1o — 0)*) = (2717) / /Oo 0/ dr % sinh(¢ (5.72)

where the factor of 72 sinh(¢) comes from the Jacobian. To compute the OPE limit, we

make the change of variables r = k0,7’ and then expand at small kY, for fixed /. Performing
the 7/, ¢, and 6 integrals in this limit gives

k)
—2 ReW), ki,...,k ( . 5.73
€ d)c,bubble( 1, 3 4) 4571' (’kl’ + ‘k2‘) (’k?,’ + “{4’)3 ( )
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In the OPE limit, the exchange of an operator with dimension A leads to the overall scaling
(—k?y)2 =2, Here d = 3 and A, = 2 and we recognize that the overall (k,)® dependence
comes from the exchange of the scalar double-trace operator of dimension 4, [¢cd¢lo,0. This
agrees exactly with the previous result for the bubble in the OPE limit (5.63) using the
Killén-Lehmann spectral representation. By expanding to higher orders in k{, one can
capture sub-leading terms in the OPE limit.

Finally, we will recover the cut bubble diagram in flat space from the corresponding
AdS diagram. As with the four-point exchange diagram, using the regulated §¢-functions
will make the total energy pole manifest. We will check that the flat space limit holds
directly at the level of the integrand rather than working with the full integrated diagram.
This approach makes manifest that in the flat space limit a p integral becomes the (d+4 1)
component of the flat-space loop integral [18].

To evaluate (5.66), we first extend the p; o integrals to the entire real line. Then we
can evaluate these integrals via a contour analysis. As shown in [18], the total energy pole
in 1, + Er comes from poles pinching the p; contours. Here we can see that closing the
p2 contour on the poles explicitly written in the denominator of (5.66) will yield the total
energy pole:

d3e

( 27T)3277929+(€0)9+(k? + kY — 29

ERﬁfEL

lim —Q(EL + ER)R,@ W(;C’bubble(kl, .o 7]{34) = /dpl/

562 + p)o((kra — 0)* + (iBL +p1)?) .
(5.74)

If we identify the 4-dimensional external momenta as k; = (ki i|k;|) and the internal 4-
dimensional momenta as ¢ = (¢,p), we find

d*l
(2m)*
O (=020t (—(ky + k2 — 0)%) . (5.75)

lim  —2(Ep + Er)ReW),_puppie(k1,- .- k) = / (2m)26%6(02)8 (k1 + ko — £)?)

ERﬁfEL

This agrees with the cut flat-space bubble diagram exactly.

6 Conclusion

6.1 Discussion

In this work, we derived and applied the AdS Cutkosky rules. Together with the Lorentzian
inversion formula, these cutting rules furnish a holographic unitarity method for AdS,,1/
CFTy4. In the process, we also provided the cutting rules for weakly-coupled CFTs. We
used basic properties of Lorentzian QFTs to derive these rules, and so the results can be
generalized to study QFT in other curved spaces.

The proof of the CET Cutkosky rules relies on the CFT optical theorem (1.2) in com-
bination with constraints from positivity of the spectrum and causality. Using positivity,
we showed that for the restricted set of momenta (1.6),

— 2 Re(Tp¢p0]) = ([9; 9l al9; O] r)- (6.1)
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This statement of CFT unitarity allows us to relate two seemingly different objects, the real
part of a time-ordered correlator and a causal double-commutator. The right-hand side is
the same double-commutator that appears in the Lorentzian inversion and CFT dispersion
formulas [28, 31, 79, 80]. The left-hand side is a natural generalization of Im (7°), but now at
the level of the off-shell correlation function. Like Im (7"), the cutting rules for the real part
can be derived by using the largest-time equation. Using (6.1) and analyticity in momentum
space, we can then derive the cutting rules for the double-commutator. The derivation of
these rules relied on using Lorentzian momentum space, but they can also be studied using
other representations of the correlator, e.g. by working in position or Mellin space.

Our method for CFT correlators is a direct generalization of the flat-space S-matrix
method. In both cases, a cut replaces a time-ordered propagator with the corresponding
Wightman, or on-shell, propagator and therefore factorizes the diagram into a product
of on-shell sub-diagrams. Dispersion formulas can then be used to reconstruct the full
diagram from its cuts. Moreover, we checked in explicit examples that the AdS unitarity
cuts reduce to the usual S-matrix cuts in the flat space limit.

The identity (6.1) gives a notion of factorization in CFT;: one can always insert
a complete set of states in the right-hand side to find an infinite sum over three-point
functions. The non-trivial feature of holographic CFTs is that the right-hand side can be
rewritten as a phase-space integral over two AdS Witten diagrams. In other words, for
holographic CFTs we have a stronger notion of factorization that comes from the locality of
the bulk dual. The rules presented here make bulk locality manifest and are complementary
to the previous work [32], where different bulk rules were derived to compute the conformal
block expansion of the double-commutator. These two methods make different properties
of AdS/CFT manifest — bulk factorization and the perturbative structure of the boundary
OPE — and open new windows into 1/N perturbation theory via unitarity.

6.2 Future work

There are many open questions in the broader study of unitarity methods for CFT cor-
relators. The appearance of the double-commutator in the real part of a time-ordered
momentum-space correlator provides a hint that momentum space may be useful in the
study of the CFT dispersion formula [31]. We expect that the real/imaginary part of
even/odd-point time-ordered correlators with spacelike external momenta will provide nat-
ural generalizations of the double-commutator. Such correlators factorize into partially
time-ordered correlators and can also be computed via the cutting rules. Using momen-
tum space may therefore clarify the structure of the higher-point inversion formula and the
larger problem of bootstrapping general n-point functions.

It is also important to develop efficient ways of using the cutting rules in practice to
determine a one-loop correlator. In this work we have given a set of rules to compute the
double-commutator, but we did not introduce new tools to evaluate the dispersion formula.
One possible avenue is to use the dispersion formula directly in momentum space. Another
potentially useful approach is to use generalized unitarity to fix the one-loop correlator by
allowing for more general cuts [3]. This has already been done for correlation functions
in weakly-coupled N/ = 4 SYM [103], but its application to more general weakly-coupled
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CFTs, such as the O(N) vector models, appears to be less explored. While our work gives
natural candidates for the relevant cuts, generalized unitarity has not yet been studied in
AdS, and we expect its development will teach us more about a rich class of observables
and theories. For example, at tree level in type IIB supergravity on AdSsxS® there exists a
fascinating hidden 10d conformal symmetry [104].3C This symmetry explains the simplicity
of Mellin amplitudes and anomalous dimensions of the CFT dual [21, 107, 108]. Recursion
relations and generalized unitarity can help clarify to what extent this symmetry continues
to hold at higher points and at loop level.

Studying cutting rules for holographic CFTs in Mellin space may also provide new
insight. The Mellin amplitude shares important similarities with a scattering amplitude,
but it also encodes the OPE in a simple way [17, 109, 110]. This simplicity continues to hold
beyond tree level in supersymmetric theories [99, 100, 111-117]. While we have derived
the cutting rules in momentum space, it would be interesting to study their application to
one-loop Mellin amplitudes. Relatedly, while most recent work on holographic correlators
focuses on bootstrapping the full, integrated correlator, much of the recent progress in the
study of scattering amplitudes comes from studying the integrand [4, 6, 7]. To import this
technology into AdS, it may prove useful to understand the structure of AdS integrands
using Mellin space ideas. This may also help determine the class of functions that can
appear in holographic correlators [117-120].

The cutting rules derived here contribute to the larger program of bootstrapping
weakly-coupled theories in curved space via unitarity methods. Understanding unitar-
ity constraints directly in the bulk of AdS opens up applications to other spacetimes, from
deformed versions of AdS to the study of inflationary observables relevant for cosmology.
We anticipate that by further generalizing S-matrix methods, we can open new avenues
into this broader class of theories.

Acknowledgments

We thank Soner Albayrak, Simon Caron-Huot, Clifford Cheung, Savan Kharel, Per Kraus,
Julio Parra-Martinez, Eric Perlmutter, and David Simmons-Duffin for discussions. We also
thank Julio Parra-Martinez for comments on the draft. AS thanks the Walter Burke Insti-
tute for Theoretical Physics for hospitality while this work was in progress. The research
of DM is supported by Simons Foundation grant 488657, the Walter Burke Institute for
Theoretical Physics and the Sherman Fairchild Foundation. AS is supported by the College
of Arts and Sciences of the University of Kentucky.

A Largest-time equation

In this appendix, we briefly review the derivation of the largest-time equation. For more
details see [27, 86, 87]. To prove the largest-time equation, we will study the integrand f,
of each decorated Feynman diagram F; as a function of both internal and external points,

~

Fy(xi,...,2n) = /ddyl...ddymf/;(xl,...,xn;yl,...,ym) ) (A1)

39Gee [105, 106] for a generalization to AdSs x S3.
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The largest-time equation then holds at the level of the integrand,

2m+n

Zﬁ](xl,...,a:n;yl,...,ym):o. (A.2)
q=1

To prove this, we assume xz; has the largest time, 33(1) > a:?,y?. Then if we have a graph

ﬁ](xl, e s Tp YL, - - -, Ym) Where x has a black vertex, it will cancel in the sum (A.2) against
a graph where x1 has a white vertex and all the other points are the same. For example,

ol €2 _|_ 1 O X2 — 0
. (A.3)

The cancellation happens because if 1 has the largest time, changing the color of its vertex
does not affect the propagators connected to 1, but it does introduce an extra minus sign
from the white vertex. To be more explicit, we can isolate the propagators connected to x1:

1 Y1 .
o—o = igAt(z —y1)

1 n

Oo—=@ = —igAT(z1 —y1) (A.4)

where in the first line we used Ap(z12) = 0(2) — 29)AT(z12) + (1 + 2) and that x;
has the largest time to drop the second term. The second line follows directly from the
coloring rules. Since all other terms in the integrand are the same, it is clear the two graphs
in (A.3) cancel. The same logic carries over if we have multiple lines connected to x; or if
an internal point y; has the largest time. All graphs in (A.3) therefore cancel in pairs for
all configurations.

To obtain the full correlator, we need to integrate over all internal points and keep the
external points generic. We therefore cannot assume one point has the largest time. How-
ever, this is already taken care of by summing over all possible graphs in (A.2). Regardless
of which coordinate has the largest time, the sum ensures they will cancel in pairs. We can
then perform the y; integrals to find the integrated largest-time equation:

> Fy(ar,...,20) =0. (A.5)

Once we have this equality, we can then Fourier transform to momentum space.

To see how this generalizes to AdS, it simplest to study the largest-time equation for a
purely bulk correlation function (®(x1,21)...®(xy, 2,)). Then the structure of individual
diagrams is the same as in flat space, since here we only use the bulk-to-bulk propaga-
tor. The largest-time equation then generalizes straightforwardly and one can then use
the extrapolate dictionary to prove the analogous equation for the boundary correlator
(p(x1) ... p(xy)). Alternatively, one can directly prove the largest-time equation for the
boundary correlator by keeping track of the two kinds of propagators, the bulk-to-bulk and
bulk-to-boundary propagators, from the beginning.
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B Analyticity in momentum space

In this appendix, we will review the analyticity properties of the double-commutator
([p(k3), p(ka)]alp(k1), ¢(k2)]r) in momentum space [78]. To relate the real part of the
time-ordered correlator, Re (T [¢p(k1) ... ¢(k4)]), with this causal double-commutator, we
had to assume all four momenta were spacelike, k‘? > 0, and only k; 4+ ko € V.. The
double-commutator is non-zero for more generic momenta, so we would like to relax some
of these assumptions. Specifically, we will show that once we know the double-commutator
for this set of momenta, we can analytically continue to find it for general kinematics. We
first note that the double-commutator is only non-zero for ki + ko € Vi by the positive
spectrum condition on the CFT Hilbert space. We therefore only need to analytically
continue in kq and k4.

To simplify the discussion and avoid the overall momentum conserving delta-function,
we will write the momentum-space correlator as a Fourier transform in three out of the
four positions:

H(p1,p2,Q) = /ddTlddT‘QddRei(m’T1+p2'r2+R'Q)<[¢(R)a¢(R+7“2)]A[¢(7‘1)7¢(0)]R> . (B.1)

Here we have adopted the notation of [78] to simplify the comparison. The relation to the
parameterization used in the body of the paper is:

p1 = ki, (B.2)
p2 = ku, (B.3)
Q =k +ky. (B.4)

Next, we will show H is analytic in p; 2 in the appropriate region of the complex plane. As
noted originally in [78], causal commutators in position space imply analyticity properties
in pj 2. The argument mirrors the standard proof [81, 82] that the Wightman functions
(¢(x1) ... ¢o(xy)) are analytic in position space. To prove analyticity of the position-space
Wightman functions, one uses that the physical spectrum is in the forward lightcone, i.e.
the momentum k € V, for physical states. To prove analyticity of the causal double-
commutator in momentum space, we use that the integrand of (B.1) is only non-zero for
r1,7o € V4. The only difference between the two cases is that here we are reversing the
roles of position and momentum space.?!

To see how this works, we make the replacement p; — p; —in; in (B.1). Then we find:

H(py —im,p2 — in2, Q) :/ddmddrzaldl?,e"(pl'7"1“’2""2R'Q)*m""1“72'7"2
([0(R), p(R + r2)]ald(r1), 6(0)]R) - (B.5)

The right-hand side is only non-zero for r; € V. Therefore if we choose n; € V., we find
the integral is exponentially damped at large r;. The right-hand side is now a Laplace

31For a similar example see section 11.2.6 of [82] where they discuss the r-functions, which are given by
iterated retarded commutators and are also analytic in momentum space.
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transform, so the left-hand side is an analytic function of p; — in; if n; € V4. With this
analyticity property, we can now continue the double-commutator to configurations with
p? < 0. As we are studying the Laplace transform of a tempered distribution, the causal
double-commutator for real momenta is the boundary value of this analytic function where
we take 1; — 0T, that is we take 7; to zero inside the forward lightcone [81, 82]. This
completes the proof because once we have found H (pi,p2, Q) for @Q € Vi and pg > 0 we
can find the function for general p; by analytic continuation. At this point we can also
Fourier transform to recover the double-commutator in position space that enters into the
inversion formula.

C Feynman tree theorem

In this appendix we will discuss the Feynman tree theorem [121, 122], a different but
related notion of cutting. This theorem follows from the fact that a closed loop of retarded
propagators in a Feynman diagram must vanish by causality. Using this property, we can
express the full one-loop diagram as an integral of tree-level diagrams. As opposed to the
usual Cutkosky rules, the cuts do not have to split the diagram into two pieces.

In this section we can work in position space. To keep notation compact, we will use
capital Latin letters, e.g. Y = (y*, z), for points in the bulk of AdS;; and lower-case Latin
letters, y*, for boundary points. Next, recall the retarded bulk-to-bulk propagator for a
free scalar ® is defined by:

GR (X1, Xa) = ([(X1), (X2)sreel (2] — 23) , (C.1)
where 20 is the Poincaré time. Then we have the identity
GR(X1,X2) = Ga(X1, Xa) — GL(X2, X1) . (C.2)

This can be checked by using the definition of the time-ordering symbol and retarded
commutator.

Next we use that any closed loop of retarded propagators has to vanish. This is
manifest in position space. For example we can consider a one-loop correction to the
two-point function:

/ dY1 2K A (715 Y1)GR (Y1, Y2)GE (Ya, Y1) KA (225 Y2) = 0 . (C.3)
AdS

The retarded propagator Gg (Y1,Y5) is only non-zero if Y7 is in the causal future of Y5 and
similarly Gﬁ (Y2, Y1) is only non-zero if Y3 is in the causal future of Y;. The two propagators
cannot be non-zero at the same time and so the integral vanishes. In momentum space,
this loop vanishes because all the poles in p° are on one side of the real axis [122]. Now we
can use (C.2) to expand this equality in terms of the positive energy on-shell propagators
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Figure 4. Feynman tree theorem in AdS for a one-loop correction to the propagator in ®3 theory.
The arrow indicates the flow of positive energy across the cut.

and the usual time-ordered propagator. Specifically we find:

/dYLzKA(fUl;Yl)GA(YhY2)2KA(9C2;Yz)
AdS

= /dYI,Q KA(xl;Yl)KA(l‘Q;YQ)(GA(Y1,Y2)(GX(YLY2)+GZ(Y2,Y1))
AdS
- GE(BM)GEM,Y2)) (C.4)

The first line is the original Witten diagram while in the second and third lines there is
at least one propagator put on shell, see figure 4. In contrast to the cutting rules, we are
computing the full Witten diagram, as opposed to its real or imaginary piece. Finally,
we also see the momentum does not have a definite flow from the left to the right of the
diagram. All these properties are exactly the same as in the original flat space Feynman
tree theorem.

D Cutting rules via Schwinger-Keldysh

In this appendix we give an alternative derivation of the cutting rules using Schwinger-
Keldysh contours [33, 34] (see [38, 123] for reviews and generalizations). One benefit of
using this method is that we can avoid subtleties in the largest-time equation when we
have derivative interactions [124].

We start by setting k7 > 0 and then from (2.8) we have

(T[p(k3)p(ka)T[p(k1)p(ka)]) = ([#(k3), p(ka)]ald(F1), d(k2)]R) - (D.1)

The positive spectrum condition implies these correlators are only non-zero for ki +ko € Vi
and k3 + k4 € V_. To compute the left-hand side, we introduce a complex time contour
with a single fold, as shown in figure 5. We now have four different propagators, depending
on which segments of the contour each point lies on:

Agr(r1,72) = Ap(212) (D.2)
Apr(z1,m2) = AT (212), (D.3)
Agrp(r1,22) = A™ (212), (D.4)
App(zy,x2) = AR (x12) . (D.5)
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3 4 L

Figure 5. Time folded contour used for (T[¢3¢4]T[d1¢2]). The arrows indicate the flow of time
and the labels R and L are used to distinguish the two contours by the direction in which time
flows.

In free field theory these are the two-point functions, e.g. Apr(z1,22) = (¢L(21)PR(%2) ) frec
where the subscript indicates on which contour the operator sits. We can unify all four
propagators by defining a contour-ordering symbol T¢ such that:

Telp(x1)p(x2)] = Tlp(x1)¢(x2)] if 12 € R, (D.6)
Telo(z1)d(z2)] = o(x1)p(x2) if x€el, x€eR, (D.7)
Telp(x1)p(z2)] = d(z2)p(x1) if x1€R, z2€lL, (D.8)
Telo(x1)p(x2)] = Tle(21)(x2)] if x1p€L . (D.9)

The four propagators are encoded in the free-field two-point function defined using the
contour-ordering symbol, (T¢[¢(z1)@(x2)]). For the interaction vertices, we use ig for a
vertex inserted on the R contour and —ig for a vertex inserted on the L contour. To
compute (T[¢(k3)p(ka)]|T[p(k1)p(k2)]), we use the time-folded contour shown in figure 5,
place the operators ¢(k1) and ¢(ke) on the R-contour, place ¢(k3) and ¢(ky4) on the L-
contour, and use the Feynman rules given above.

It is now apparent that these Feynman rules are exactly the same as the coloring rules
introduced by Veltman to compute the real part of a four-point function. To make this
map clear, we associate black dots with vertices on the R-contour and use white dots for
vertices on the L-contour. To make the connection with the double-commutator, we need to
impose that the external momenta are spacelike, k‘ZQ > (0. This implies that any propagator
connected to an external point has to end on the same contour as that point. If we connect
it to a different contour we need to use the Wightman functions, A*(k), which vanish for
spacelike momenta. This is equivalent to the statement that when external momenta are
spacelike, we cannot cut external lines.

To illustrate the equivalence, we can consider some specific examples. For example,
for the cut tree diagram the mapping is

1 9
X -
3 A b
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and for the triangle, we have

| =

(D.11)

In these pictures, we integrate the interaction vertices only on either the L or R-contours,

but not both. While we have only given the map for flat-space Feynman diagrams, the

generalization to AdS is straightforward by using the corresponding Schwinger-Keldysh
rules [125].
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1]

Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory
amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226]
[INSPIRE].

Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes
into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].

Z. Bern and Y .-t. Huang, Basics of Generalized Unitarity, J. Phys. A 44 (2011) 454003
[arXiv:1103.1869] [NSPIRE].

H. Elvang and Y .-t. Huang, Scattering Amplitudes, arXiv:1308.1697 [INSPIRE].

L.J. Dixon, A brief introduction to modern amplitude methods, in Theoretical Advanced
Study Institute in Elementary Particle Physics: Particle Physics: The Higgs Boson and
Beyond, Boulder U.S.A. (2013), pg. 31 [arXiv:1310.5353] [INSPIRE].

J.M. Henn and J.C. Plefka, Scattering Amplitudes in Gauge Theories, Lect. Notes Phys.
883 (2014) 1.

N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka,
Grassmannian Geometry of Scattering Amplitudes, Cambridge University Press, Cambridge
UK. (2016).

C. Cheung, TASI Lectures on Scattering Amplitudes, in Proceedings of Theoretical Advanced
Study Institute in Elementary Particle Physics: Anticipating the Next Discoveries in
Particle Physics (TASI 2016), Boulder U.S.A. (2016), pg. 571 [arXiv:1708.03872]
[INSPIRE].

N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The All-Loop
Integrand For Scattering Amplitudes in Planar N =4 SYM, JHEP 01 (2011) 041
[arXiv:1008.2958] INSPIRE].

45 —


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(94)90179-1
https://arxiv.org/abs/hep-ph/9403226
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9403226
https://doi.org/10.1016/0550-3213(94)00488-Z
https://arxiv.org/abs/hep-ph/9409265
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9409265
https://doi.org/10.1088/1751-8113/44/45/454003
https://arxiv.org/abs/1103.1869
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1103.1869
https://arxiv.org/abs/1308.1697
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1308.1697
https://arxiv.org/abs/1310.5353
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1310.5353
https://doi.org/10.1007/978-3-642-54022-6
https://doi.org/10.1007/978-3-642-54022-6
https://arxiv.org/abs/1708.03872
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.03872
https://doi.org/10.1007/JHEP01(2011)041
https://arxiv.org/abs/1008.2958
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1008.2958

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

18]

[19]

[20]

[21]

Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes,
Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double
Copy of Gauge Theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

Z. Bern et al., Ultraviolet Properties of N' = 8 Supergravity at Five Loops, Phys. Rev. D 98
(2018) 086021 [arXiv:1804.09311] [InSPIRE].

L. Susskind, Holography in the flat space limit, AIP Conf. Proc. 493 (1999) 98
[hep-th/9901079] [INSPIRE].

J. Polchinski, S matrices from AdS space-time, hep-th/9901076 [INSPIRE].

I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field
Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].

M. Gary, S.B. Giddings and J. Penedones, Local bulk S-matriz elements and CFT
singularities, Phys. Rev. D 80 (2009) 085005 [arXiv:0903.4437] [INSPIRE].

J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03
(2011) 025 [arXiv:1011.1485] [INSPIRE].

S. Raju, New Recursion Relations and a Flat Space Limit for AdS/CFT Correlators, Phys.
Rev. D 85 (2012) 126009 [arXiv:1201.6449] [NSPIRE].

V. Balasubramanian, S.B. Giddings and A.E. Lawrence, What do CFTs tell us about
Anti-de Sitter space-times?, JHEP 03 (1999) 001 [hep-th/9902052] [INSPIRE].

G. Mack, D-independent representation of Conformal Field Theories in D dimensions via
transformation to auxiliary Dual Resonance Models. Scalar amplitudes, arXiv:0907.2407
[INSPIRE].

L. Rastelli and X. Zhou, Mellin amplitudes for AdSs x S°, Phys. Rev. Lett. 118 (2017)
091602 [arXiv:1608.06624] [INSPIRE].

R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys. 1
(1960) 429 [INSPIRE].

R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, The analytic S-matrix,
Cambridge University Press, Cambridge U.K. (1966).

S. Abreu, R. Britto, C. Duhr and E. Gardi, From multiple unitarity cuts to the coproduct of
Feynman integrals, JHEP 10 (2014) 125 [arXiv:1401.3546] [INSPIRE].

S. Abreu, R. Britto, C. Duhr and E. Gardi, Cuts from residues: the one-loop case, JHEP
06 (2017) 114 [arXiv:1702.03163] [INSPIRE].

J.L. Bourjaily, H. Hannesdottir, A.J. McLeod, M.D. Schwartz and C. Vergu, Sequential
Discontinuities of Feynman Integrals and the Monodromy Group, arXiv:2007.13747
[INSPIRE].

M.J.G. Veltman, Unitarity and causality in a renormalizable field theory with unstable
particles, Physica 29 (1963) 186 [INSPIRE].

S. Caron-Huot, Analyticity in Spin in Conformal Theories, JHEP 09 (2017) 078
[arXiv:1703.00278] [INSPIRE].

V.N. Gribov, Partial waves with complex orbital angular momenta and the asymptotic
behavior of the scattering amplitude, Sov. Phys. JETP 14 (1962) 1395 [INSPIRE].

— 46 —


https://doi.org/10.1103/PhysRevD.78.085011
https://arxiv.org/abs/0805.3993
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0805.3993
https://doi.org/10.1103/PhysRevLett.105.061602
https://arxiv.org/abs/1004.0476
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1004.0476
https://doi.org/10.1103/PhysRevD.98.086021
https://doi.org/10.1103/PhysRevD.98.086021
https://arxiv.org/abs/1804.09311
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.09311
https://doi.org/10.1063/1.1301570
https://arxiv.org/abs/hep-th/9901079
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9901079
https://arxiv.org/abs/hep-th/9901076
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9901076
https://doi.org/10.1088/1126-6708/2009/10/079
https://arxiv.org/abs/0907.0151
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0907.0151
https://doi.org/10.1103/PhysRevD.80.085005
https://arxiv.org/abs/0903.4437
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0903.4437
https://doi.org/10.1007/JHEP03(2011)025
https://doi.org/10.1007/JHEP03(2011)025
https://arxiv.org/abs/1011.1485
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1011.1485
https://doi.org/10.1103/PhysRevD.85.126009
https://doi.org/10.1103/PhysRevD.85.126009
https://arxiv.org/abs/1201.6449
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1201.6449
https://doi.org/10.1088/1126-6708/1999/03/001
https://arxiv.org/abs/hep-th/9902052
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9902052
https://arxiv.org/abs/0907.2407
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0907.2407
https://doi.org/10.1103/PhysRevLett.118.091602
https://doi.org/10.1103/PhysRevLett.118.091602
https://arxiv.org/abs/1608.06624
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.06624
https://doi.org/10.1063/1.1703676
https://doi.org/10.1063/1.1703676
https://inspirehep.net/search?p=find+J%20%22J.Math.Phys.%2C1%2C429%22
https://doi.org/10.1007/JHEP10(2014)125
https://arxiv.org/abs/1401.3546
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.3546
https://doi.org/10.1007/JHEP06(2017)114
https://doi.org/10.1007/JHEP06(2017)114
https://arxiv.org/abs/1702.03163
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.03163
https://arxiv.org/abs/2007.13747
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.13747
https://doi.org/10.1016/S0031-8914(63)80277-3
https://inspirehep.net/search?p=find+J%20%22Physica%2C29%2C186%22
https://doi.org/10.1007/JHEP09(2017)078
https://arxiv.org/abs/1703.00278
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.00278
https://inspirehep.net/search?p=find+J%20%22Sov.Phys.JETP%2C14%2C1395%22

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

M. Froissart, Asymptotic behavior and subtractions in the Mandelstam representation, Phys.
Rev. 123 (1961) 1053 [NSPIRE].

D. Carmi and S. Caron-Huot, A Conformal Dispersion Relation: Correlations from
Absorption, JHEP 09 (2020) 009 [arXiv:1910.12123] [INSPIRE].

D. Meltzer, E. Perlmutter and A. Sivaramakrishnan, Unitarity Methods in AdS/CFT,
JHEP 03 (2020) 061 [arXiv:1912.09521] [INSPIRE].

J.S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (1961) 407
[INSPIRE].

L.V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47
(1964) 1515 [INSPIRE].

K.-c. Chou, Z.-b. Su, B.-l. Hao and L. Yu, Equilibrium and Nonequilibrium Formalisms
Made Unified, Phys. Rept. 118 (1985) 1 [INSPIRE].

D. Stanford, Many-body chaos at weak coupling, JHEP 10 (2016) 009 [arXiv:1512.07687]
[INSPIRE].

F.M. Haehl, R. Loganayagam and M. Rangamani, Schwinger-Keldysh formalism. Part I:
BRST symmetries and superspace, JHEP 06 (2017) 069 [arXiv:1610.01940] INSPIRE].

F.M. Haehl, R. Loganayagam, P. Narayan and M. Rangamani, Classification of
out-of-time-order correlators, SciPost Phys. 6 (2019) 001 [arXiv:1701.02820] [InSPIRE].

J. Murugan, D. Stanford and E. Witten, More on Supersymmetric and 2d Analogs of the
SYK Model, JHEP 08 (2017) 146 [arXiv:1706.05362] [INSPIRE].

J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field
inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] INSPIRE].

J.M. Maldacena and G.L. Pimentel, On graviton non-Gaussianities during inflation, JHEP
09 (2011) 045 [arXiv:1104.2846] [INSPIRE].

I. Mata, S. Raju and S. Trivedi, CMB from CFT, JHEP 07 (2013) 015 [arXiv:1211.5482]
[INSPIRE].

N. Kundu, A. Shukla and S.P. Trivedi, Constraints from Conformal Symmetry on the Three
Point Scalar Correlator in Inflation, JHEP 04 (2015) 061 [arXiv:1410.2606] [INSPIRE].

A. Ghosh, N. Kundu, S. Raju and S.P. Trivedi, Conformal Invariance and the Four Point
Scalar Correlator in Slow-Roll Inflation, JHEP 07 (2014) 011 [arXiv:1401.1426]
[INSPIRE].

N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043
[INSPIRE].

N. Kundu, A. Shukla and S.P. Trivedi, Ward Identities for Scale and Special Conformal
Transformations in Inflation, JHEP 01 (2016) 046 [arXiv:1507.06017] InSPIRE].

C. Sleight, A Mellin Space Approach to Cosmological Correlators, JHEP 01 (2020) 090
[arXiv:1906.12302] [INSPIRE].

C. Sleight and M. Taronna, Bootstrapping Inflationary Correlators in Mellin Space, JHEP
02 (2020) 098 [arXiv:1907.01143] [INSPIRE].

C. Sleight and M. Taronna, From AdS to dS Ezchanges: Spectral Representation, Mellin
Amplitudes and Crossing, arXiv:2007.09993 [INSPIRE].

47 —


https://doi.org/10.1103/PhysRev.123.1053
https://doi.org/10.1103/PhysRev.123.1053
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C123%2C1053%22
https://doi.org/10.1007/JHEP09(2020)009
https://arxiv.org/abs/1910.12123
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.12123
https://doi.org/10.1007/JHEP03(2020)061
https://arxiv.org/abs/1912.09521
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.09521
https://doi.org/10.1063/1.1703727
https://inspirehep.net/search?p=find+J%20%22J.Math.Phys.%2C2%2C407%22
https://inspirehep.net/search?p=find+J%20%22Zh.Eksp.Teor.Fiz.%2C47%2C1515%22
https://doi.org/10.1016/0370-1573(85)90136-X
https://inspirehep.net/search?p=find+J%20%22Phys.Rept%2C118%2C1%22
https://doi.org/10.1007/JHEP10(2016)009
https://arxiv.org/abs/1512.07687
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.07687
https://doi.org/10.1007/JHEP06(2017)069
https://arxiv.org/abs/1610.01940
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.01940
https://doi.org/10.21468/SciPostPhys.6.1.001
https://arxiv.org/abs/1701.02820
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1701.02820
https://doi.org/10.1007/JHEP08(2017)146
https://arxiv.org/abs/1706.05362
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.05362
https://doi.org/10.1088/1126-6708/2003/05/013
https://arxiv.org/abs/astro-ph/0210603
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0210603
https://doi.org/10.1007/JHEP09(2011)045
https://doi.org/10.1007/JHEP09(2011)045
https://arxiv.org/abs/1104.2846
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1104.2846
https://doi.org/10.1007/JHEP07(2013)015
https://arxiv.org/abs/1211.5482
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1211.5482
https://doi.org/10.1007/JHEP04(2015)061
https://arxiv.org/abs/1410.2606
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.2606
https://doi.org/10.1007/JHEP07(2014)011
https://arxiv.org/abs/1401.1426
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.1426
https://arxiv.org/abs/1503.08043
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1503.08043
https://doi.org/10.1007/JHEP01(2016)046
https://arxiv.org/abs/1507.06017
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.06017
https://doi.org/10.1007/JHEP01(2020)090
https://arxiv.org/abs/1906.12302
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.12302
https://doi.org/10.1007/JHEP02(2020)098
https://doi.org/10.1007/JHEP02(2020)098
https://arxiv.org/abs/1907.01143
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.01143
https://arxiv.org/abs/2007.09993
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.09993

[50] N. Arkani-Hamed, P. Benincasa and A. Postnikov, Cosmological Polytopes and the
Wavefunction of the Universe, arXiv:1709.02813 [INSPIRE].

[51] N. Arkani-Hamed and P. Benincasa, On the Emergence of Lorentz Invariance and Unitarity
from the Scattering Facet of Cosmological Polytopes, arXiv:1811.01125 [INSPIRE].

[52] P. Benincasa, From the flat-space S-matriz to the Wavefunction of the Universe,
arXiv:1811.02515 [INSPIRE].

[63] P. Benincasa, Cosmological Polytopes and the Wavefuncton of the Universe for Light States,
arXiv:1909.02517 [INSPIRE].

[54] N. Arkani-Hamed, D. Baumann, H. Lee and G.L. Pimentel, The Cosmological Bootstrap:
Inflationary Correlators from Symmetries and Singularities, JHEP 04 (2020) 105
[arXiv:1811.00024] [INSPIRE].

[65] D. Baumann, C. Duaso Pueyo, A. Joyce, H. Lee and G.L. Pimentel, The Cosmological
Bootstrap: Weight-Shifting Operators and Scalar Seeds, arXiv:1910.14051 [INSPIRE].

[56] D. Baumann, C. Duaso Pueyo, A. Joyce, H. Lee and G.L. Pimentel, The Cosmological
Bootstrap: Spinning Correlators from Symmetries and Factorization, arXiv:2005.04234
[INSPIRE].

[57] S. Raju, BCEW for Witten Diagrams, Phys. Rev. Lett. 106 (2011) 091601
[arXiv:1011.0780] [NSPIRE].

[58] S. Raju, Recursion Relations for AdS/CFT Correlators, Phys. Rev. D 83 (2011) 126002
[arXiv:1102.4724] [INSPIRE].

[59] S. Raju, Four Point Functions of the Stress Tensor and Conserved Currents in
AdS,/CFTs, Phys. Rev. D 85 (2012) 126008 [arXiv:1201.6452] [INSPIRE].

[60] H. Isono, T. Noumi and G. Shiu, Momentum space approach to crossing symmetric CFT
correlators, JHEP 07 (2018) 136 [arXiv:1805.11107] INSPIRE].

[61] H. Isono, T. Noumi and G. Shiu, Momentum space approach to crossing symmetric CFT
correlators. Part II. General spacetime dimension, JHEP 10 (2019) 183
[arXiv:1908.04572] [INSPIRE].

[62] J.A. Farrow, A.E. Lipstein and P. McFadden, Double copy structure of CFT correlators,
JHEP 02 (2019) 130 [arXiv:1812.11129] [INSPIRE].

[63] A.E. Lipstein and P. McFadden, Double copy structure and the flat space limit of conformal
correlators in even dimensions, Phys. Rev. D 101 (2020) 125006 [arXiv:1912.10046]
[INSPIRE].

[64] S. Albayrak and S. Kharel, Towards the higher point holographic momentum space
amplitudes, JHEP 02 (2019) 040 [arXiv:1810.12459] [INSPIRE].

[65] S. Albayrak, C. Chowdhury and S. Kharel, New relation for Witten diagrams, JHEP 10
(2019) 274 [arXiv:1904.10043] NSPIRE).

[66] S. Albayrak and S. Kharel, Towards the higher point holographic momentum space
amplitudes. Part II. Gravitons, JHEP 12 (2019) 135 [arXiv:1908.01835] [INSPIRE].

[67] S. Albayrak, C. Chowdhury and S. Kharel, Study of momentum space scalar amplitudes in
AdS spacetime, Phys. Rev. D 101 (2020) 124043 [arXiv:2001.06777] [INSPIRE].

[68] S. Albayrak and S. Kharel, On spinning loop amplitudes in Anti-de Sitter space,
arXiv:2006.12540 [INSPIRE].

48 —


https://arxiv.org/abs/1709.02813
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.02813
https://arxiv.org/abs/1811.01125
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.01125
https://arxiv.org/abs/1811.02515
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.02515
https://arxiv.org/abs/1909.02517
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.02517
https://doi.org/10.1007/JHEP04(2020)105
https://arxiv.org/abs/1811.00024
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.00024
https://arxiv.org/abs/1910.14051
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.14051
https://arxiv.org/abs/2005.04234
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.04234
https://doi.org/10.1103/PhysRevLett.106.091601
https://arxiv.org/abs/1011.0780
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1011.0780
https://doi.org/10.1103/PhysRevD.83.126002
https://arxiv.org/abs/1102.4724
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1102.4724
https://doi.org/10.1103/PhysRevD.85.126008
https://arxiv.org/abs/1201.6452
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1201.6452
https://doi.org/10.1007/JHEP07(2018)136
https://arxiv.org/abs/1805.11107
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.11107
https://doi.org/10.1007/JHEP10(2019)183
https://arxiv.org/abs/1908.04572
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.04572
https://doi.org/10.1007/JHEP02(2019)130
https://arxiv.org/abs/1812.11129
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.11129
https://doi.org/10.1103/PhysRevD.101.125006
https://arxiv.org/abs/1912.10046
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.10046
https://doi.org/10.1007/JHEP02(2019)040
https://arxiv.org/abs/1810.12459
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.12459
https://doi.org/10.1007/JHEP10(2019)274
https://doi.org/10.1007/JHEP10(2019)274
https://arxiv.org/abs/1904.10043
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.10043
https://doi.org/10.1007/JHEP12(2019)135
https://arxiv.org/abs/1908.01835
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.01835
https://doi.org/10.1103/PhysRevD.101.124043
https://arxiv.org/abs/2001.06777
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.06777
https://arxiv.org/abs/2006.12540
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.12540

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[83]

O. Aharony, L.F. Alday, A. Bissi and E. Perlmutter, Loops in AdS from Conformal Field
Theory, JHEP 07 (2017) 036 [arXiv:1612.03891] [INSPIRE].

L.F. Alday and S. Caron-Huot, Gravitational S-matriz from CFT dispersion relations,
JHEP 12 (2018) 017 [arXiv:1711.02031] [INSPIRE].

D. Ponomarev, From bulk loops to boundary large-N expansion, JHEP 01 (2020) 154
[arXiv:1908.03974] INSPIRE].

T. Leonhardt, R. Manvelyan and W. Riihl, The Group approach to AdS space propagators,
Nucl. Phys. B 667 (2003) 413 [hep-th/0305235] [INSPIRE].

M.S. Costa, V. Gongalves and J.a. Penedones, Spinning AdS Propagators, JHEP 09 (2014)
064 [arXiv:1404.5625] [INSPIRE].

M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matriz bootstrap.
Part I: QFT in AdS, JHEP 11 (2017) 133 [arXiv:1607.06109] [INSPIRE].

M. Gillioz, X. Lu and M.A. Luty, Scale Anomalies, States, and Rates in Conformal Field
Theory, JHEP 04 (2017) 171 [arXiv:1612.07800] INSPIRE].

M. Gillioz, X. Lu and M.A. Luty, Graviton Scattering and a Sum Rule for the ¢ Anomaly in
4D CFT, JHEP 09 (2018) 025 [arXiv:1801.05807] [INSPIRE].

M. Gillioz, Momentum-space conformal blocks on the light cone, JHEP 10 (2018) 125
[arXiv:1807.07003] INSPIRE].

A .M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp.
Teor. Fiz. 66 (1974) 23 [InSPIRE].

D. Simmons-Duffin, D. Stanford and E. Witten, A spacetime derivation of the Lorentzian
OPE inversion formula, JHEP 07 (2018) 085 [arXiv:1711.03816] [INSPIRE].

P. Kravchuk and D. Simmons-Duffin, Light-ray operators in conformal field theory, JHEP
11 (2018) 102 [arXiv:1805.00098] [INSPIRE].

R.F. Streater and A.S. Wightman, PCT, spin and statistics, and all that, Princeton
University Press, Princeton U.S.A. (1989).

R. Haag, Local quantum physics: Fields, particles, algebras, Springer, Berlin Germany
(1992).

V. Balasubramanian, P. Kraus and A.E. Lawrence, Bulk versus boundary dynamics in
anti-de Sitter space-time, Phys. Rev. D 59 (1999) 046003 [hep-th/9805171] [INSPIRE].

V. Balasubramanian, P. Kraus, A.E. Lawrence and S.P. Trivedi, Holographic probes of
anti-de Sitter space-times, Phys. Rev. D 59 (1999) 104021 [hep-th/9808017] InSPIRE].

S.S. Schweber, An Introduction to Relativistic Quantum Field Theory, Row, Peterson & Co,
New York U.S.A. (1961).

G.’t Hooft and M.J.G. Veltman, DIAGRAMMAR, NATO Sci. Ser. B 4 (1974) 177
[INSPIRE].

M.J.G. Veltman, Diagrammatica: The Path to Feynman rules, Cambridge Lect. Notes Phys.
4 (1994) 1.

H. Liu and A.A. Tseytlin, On four point functions in the CFT/AdS correspondence, Phys.
Rev. D 59 (1999) 086002 [hep-th/9807097] [NSPIRE).

— 49 —


https://doi.org/10.1007/JHEP07(2017)036
https://arxiv.org/abs/1612.03891
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.03891
https://doi.org/10.1007/JHEP12(2018)017
https://arxiv.org/abs/1711.02031
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.02031
https://doi.org/10.1007/JHEP01(2020)154
https://arxiv.org/abs/1908.03974
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.03974
https://doi.org/10.1016/j.nuclphysb.2003.07.007
https://arxiv.org/abs/hep-th/0305235
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0305235
https://doi.org/10.1007/JHEP09(2014)064
https://doi.org/10.1007/JHEP09(2014)064
https://arxiv.org/abs/1404.5625
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1404.5625
https://doi.org/10.1007/JHEP11(2017)133
https://arxiv.org/abs/1607.06109
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.06109
https://doi.org/10.1007/JHEP04(2017)171
https://arxiv.org/abs/1612.07800
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.07800
https://doi.org/10.1007/JHEP09(2018)025
https://arxiv.org/abs/1801.05807
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.05807
https://doi.org/10.1007/JHEP10(2018)125
https://arxiv.org/abs/1807.07003
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.07003
https://inspirehep.net/search?p=find+J%20%22Zh.Eksp.Teor.Fiz.%2C66%2C23%22
https://doi.org/10.1007/JHEP07(2018)085
https://arxiv.org/abs/1711.03816
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.03816
https://doi.org/10.1007/JHEP11(2018)102
https://doi.org/10.1007/JHEP11(2018)102
https://arxiv.org/abs/1805.00098
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.00098
https://doi.org/10.1103/PhysRevD.59.046003
https://arxiv.org/abs/hep-th/9805171
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9805171
https://doi.org/10.1103/PhysRevD.59.104021
https://arxiv.org/abs/hep-th/9808017
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9808017
https://doi.org/10.1007/978-1-4684-2826-1_5
https://inspirehep.net/search?p=find+J%20%22NATO%20Sci.Ser.%2CB4%2C177%22
https://doi.org/10.1103/PhysRevD.59.086002
https://doi.org/10.1103/PhysRevD.59.086002
https://arxiv.org/abs/hep-th/9807097
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9807097

[89] D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the
CFT(d)/AdS(d+1) correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058|
[INSPIRE].

[90] A. Fitzpatrick and J. Kaplan, Unitarity and the Holographic S-matriz, JHEP 10 (2012) 032
[arXiv:1112.4845] [INSPIRE].

[91] S.J. Avis, C.J. Isham and D. Storey, Quantum Field Theory in anti-de Sitter Space-Time,
Phys. Rev. D 18 (1978) 3565 [INSPIRE].

[92] P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Annals
Phys. 144 (1982) 249 [INSPIRE].

[93] P. Breitenlohner and D.Z. Freedman, Positive Energy in anti-de Sitter Backgrounds and
Gauged Extended Supergravity, Phys. Lett. B 115 (1982) 197 [INnSPIRE].

[94] M. Gillioz, Conformal 3-point functions and the Lorentzian OPE in momentum space,
Commun. Math. Phys. 379 (2020) 227 [arXiv:1909.00878] [INSPIRE].

[95] M. Gillioz, X. Lu, M.A. Luty and G. Mikaberidze, Convergent Momentum-Space OPE and
Bootstrap Equations in Conformal Field Theory, JHEP 03 (2020) 102 [arXiv:1912.05550]
[INSPIRE].

©

6] E.Y. Yuan, Loops in the Bulk, arXiv:1710.01361 [INSPIRE].

©
)

E.Y. Yuan, Simplicity in AdS Perturbative Dynamics, arXiv:1801.07283 [INSPIRE].

)

8] T. Okuda and J. Penedones, String scattering in flat space and a scaling limit of Yang-Mills
correlators, Phys. Rev. D 83 (2011) 086001 [arXiv:1002.2641] [INSPIRE].

F. ay, On Genus-one String Amplitudes on 5 X S, arXiv:1812.11783 |INSPIRE]|.
99] L.F. Alday, On G String Amplitud AdSs x S°

[100] A. Bissi, G. Fardelli and A. Georgoudis, Towards All Loop Supergravity Amplitudes on
AdSs x S®, arXiv:2002.04604 [INSPIRE].

[101] D.W. Dusedau and D.Z. Freedman, Lehmann Spectral Representation for Anti-de Sitter
Quantum Field Theory, Phys. Rev. D 33 (1986) 389 [INSPIRE].

[102] A. Fitzpatrick and J. Kaplan, Analyticity and the Holographic S-matriz, JHEP 10 (2012)
127 [arXiv:1111.6972] [INSPIRE].

[103] O.T. Engelund and R. Roiban, Correlation functions of local composite operators from
generalized unitarity, JHEP 03 (2013) 172 [arXiv:1209.0227] INSPIRE].

[104] S. Caron-Huot and A.-K. Trinh, All tree-level correlators in AdSs x S5 supergravity: hidden
ten-dimensional conformal symmetry, JHEP 01 (2019) 196 [arXiv:1809.09173] INSPIRE].

[105] L. Rastelli, K. Roumpedakis and X. Zhou, AdS3 x S3 Tree-Level Correlators: Hidden
Siz-Dimensional Conformal Symmetry, JHEP 10 (2019) 140 [arXiv:1905.11983]
[INSPIRE].

[106] S. Giusto, R. Russo, A. Tyukov and C. Wen, The CFTg origin of all tree-level 4-point
correlators in AdS3 x S3, Eur. Phys. J. C 80 (2020) 736 [arXiv:2005.08560] [INSPIRE].

[107] L. Rastelli and X. Zhou, How to Succeed at Holographic Correlators Without Really Trying,
JHEP 04 (2018) 014 [arXiv:1710.05923] [INSPIRE].

[108] F. Aprile, J. Drummond, P. Heslop and H. Paul, Double-trace spectrum of N = 4
supersymmetric Yang-Mills theory at strong coupling, Phys. Rev. D 98 (2018) 126008
[arXiv:1802.06889] [INSPIRE].

— 50 —


https://doi.org/10.1016/S0550-3213(99)00053-X
https://arxiv.org/abs/hep-th/9804058
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9804058
https://doi.org/10.1007/JHEP10(2012)032
https://arxiv.org/abs/1112.4845
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1112.4845
https://doi.org/10.1103/PhysRevD.18.3565
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD18%2C3565%22
https://doi.org/10.1016/0003-4916(82)90116-6
https://doi.org/10.1016/0003-4916(82)90116-6
https://inspirehep.net/search?p=find+J%20%22Annals%20Phys.%2C144%2C249%22
https://doi.org/10.1016/0370-2693(82)90643-8
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB115%2C197%22
https://doi.org/10.1007/s00220-020-03836-8
https://arxiv.org/abs/1909.00878
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.00878
https://doi.org/10.1007/JHEP03(2020)102
https://arxiv.org/abs/1912.05550
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.05550
https://arxiv.org/abs/1710.01361
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.01361
https://arxiv.org/abs/1801.07283
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.07283
https://doi.org/10.1103/PhysRevD.83.086001
https://arxiv.org/abs/1002.2641
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1002.2641
https://arxiv.org/abs/1812.11783
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.11783
https://arxiv.org/abs/2002.04604
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.04604
https://doi.org/10.1103/PhysRevD.33.389
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD33%2C389%22
https://doi.org/10.1007/JHEP10(2012)127
https://doi.org/10.1007/JHEP10(2012)127
https://arxiv.org/abs/1111.6972
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.6972
https://doi.org/10.1007/JHEP03(2013)172
https://arxiv.org/abs/1209.0227
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1209.0227
https://doi.org/10.1007/JHEP01(2019)196
https://arxiv.org/abs/1809.09173
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.09173
https://doi.org/10.1007/JHEP10(2019)140
https://arxiv.org/abs/1905.11983
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.11983
https://doi.org/10.1140/epjc/s10052-020-8300-4
https://arxiv.org/abs/2005.08560
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.08560
https://doi.org/10.1007/JHEP04(2018)014
https://arxiv.org/abs/1710.05923
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.05923
https://doi.org/10.1103/PhysRevD.98.126008
https://arxiv.org/abs/1802.06889
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.06889

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

G. Mack, D-dimensional Conformal Field Theories with anomalous dimensions as Dual
Resonance Models, Bulg. J. Phys. 36 (2009) 214 [arXiv:0909.1024] InSPIRE].

A. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju and B.C. van Rees, A Natural Language
for AdS/CFT Correlators, JHEP 11 (2011) 095 [arXiv:1107.1499] INSPIRE].

L.F. Alday, A. Bissi and E. Perlmutter, Genus-One String Amplitudes from Conformal
Field Theory, JHEP 06 (2019) 010 [arXiv:1809.10670] [INSPIRE].

D.J. Binder, S.M. Chester, S.S. Pufu and Y. Wang, N' = 4 Super- Yang-Mills correlators at
strong coupling from string theory and localization, JHEP 12 (2019) 119
[arXiv:1902.06263] [INSPIRE].

S.M. Chester, Genus-2 holographic correlator on AdSs x S° from localization, JHEP 04
(2020) 193 [arXiv:1908.05247] [INSPIRE].

S.M. Chester and S.S. Pufu, Far Beyond the Planar Limit in Strongly-Coupled N = 4 SYM,
arXiv:2003.08412 [INSPIRE].

L.F. Alday and X. Zhou, Simplicity of AdS Supergravity at One Loop, JHEP 09 (2020) 008
[arXiv:1912.02663] [INSPIRE].

L.F. Alday, S.M. Chester and H. Raj, 6d (2,0) and M-theory at 1-loop, arXiv:2005.07175
[INSPIRE].

J.M. Drummond and H. Paul, One-loop string corrections to AdS amplitudes from CFT,
arXiv:1912.07632 [INSPIRE].

F. Aprile, J.M. Drummond, P. Heslop and H. Paul, Quantum Gravity from Conformal Field
Theory, JHEP 01 (2018) 035 [arXiv:1706.02822] [INSPIRE].

F. Aprile, J.M. Drummond, P. Heslop and H. Paul, Loop corrections for Kaluza-Klein AdS
amplitudes, JHEP 05 (2018) 056 [arXiv:1711.03903] [INSPIRE].

F. Aprile, J. Drummond, P. Heslop and H. Paul, One-loop amplitudes in AdSs x S°
supergravity from N =4 SYM at strong coupling, JHEP 03 (2020) 190 [arXiv:1912.01047]
[INSPIRE].

R.P. Feynman, Quantum theory of gravitation, Acta Phys. Polon. 24 (1963) 697 [INSPIRE].
S. Caron-Huot, Loops and trees, JHEP 05 (2011) 080 [arXiv:1007.3224| [INSPIRE].

F.M. Haehl, R. Loganayagam, P. Narayan, A.A. Nizami and M. Rangamani, Thermal
out-of-time-order correlators, KMS relations, and spectral functions, JHEP 12 (2017) 154
[arXiv:1706.08956] [INSPIRE].

E.T. Tomboulis, Causality and Unitarity via the Tree-Loop Duality Relation, JHEP 05
(2017) 148 [arXiv:1701.07052] [INSPIRE].

C.P. Herzog and D.T. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence,
JHEP 03 (2003) 046 [hep-th/0212072] [iNSPIRE].

~ 51 —


https://arxiv.org/abs/0909.1024
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0909.1024
https://doi.org/10.1007/JHEP11(2011)095
https://arxiv.org/abs/1107.1499
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1107.1499
https://doi.org/10.1007/JHEP06(2019)010
https://arxiv.org/abs/1809.10670
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.10670
https://doi.org/10.1007/JHEP12(2019)119
https://arxiv.org/abs/1902.06263
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.06263
https://doi.org/10.1007/JHEP04(2020)193
https://doi.org/10.1007/JHEP04(2020)193
https://arxiv.org/abs/1908.05247
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.05247
https://arxiv.org/abs/2003.08412
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.08412
https://doi.org/10.1007/JHEP09(2020)008
https://arxiv.org/abs/1912.02663
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.02663
https://arxiv.org/abs/2005.07175
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.07175
https://arxiv.org/abs/1912.07632
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.07632
https://doi.org/10.1007/JHEP01(2018)035
https://arxiv.org/abs/1706.02822
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.02822
https://doi.org/10.1007/JHEP05(2018)056
https://arxiv.org/abs/1711.03903
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.03903
https://doi.org/10.1007/JHEP03(2020)190
https://arxiv.org/abs/1912.01047
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.01047
https://inspirehep.net/search?p=find+J%20%22Acta%20Phys.Polon.%2C24%2C697%22
https://doi.org/10.1007/JHEP05(2011)080
https://arxiv.org/abs/1007.3224
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1007.3224
https://doi.org/10.1007/JHEP12(2017)154
https://arxiv.org/abs/1706.08956
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.08956
https://doi.org/10.1007/JHEP05(2017)148
https://doi.org/10.1007/JHEP05(2017)148
https://arxiv.org/abs/1701.07052
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1701.07052
https://doi.org/10.1088/1126-6708/2003/03/046
https://arxiv.org/abs/hep-th/0212072
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0212072

	CFT Unitarity and the AdS Cutkosky Rules
	Repository Citation

	CFT Unitarity and the AdS Cutkosky Rules
	Digital Object Identifier (DOI)
	Notes/Citation Information

	Introduction
	CFT unitarity conditions
	Cutting rules at weak coupling
	Unitarity cuts in AdS/CFT
	Cutting rules
	AdS transition amplitudes
	Higher-point functions

	Applications to Witten diagrams
	OPE and flat space limits
	Four-point scalar exchange
	Four-point gauge boson exchange
	Five-point tree
	One-loop bubble

	Conclusion
	Discussion
	Future work

	Largest-time equation
	Analyticity in momentum space
	Feynman tree theorem
	Cutting rules via Schwinger-Keldysh

