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1 Introduction and summary

1.1 Introduction

S-matrix is a fundamental quantity of quantum field theories in Minkowski spacetime.

There is a systematic way to compute it perturbatively by the Feynman rules. However,

we then often encounter infrared (IR) divergences for theories with massless particles. A

famous example is quantum electrodynamics (QED). Virtual photons with small energy

cause divergences of loop diagrams. This problem can be avoided by considering the total

cross-section of various processes including the emission of real soft photons [1, 2]. Another

approach was also developed, which enables us to treat directly the IR finite S-matrix [3–8].

It is called the dressed state formalism, which will be reviewed in the next subsection.

Although the dressed state formalism was proposed many years ago, it has been re-

cently reconsidered in the connection with the asymptotic symmetry (see, e.g., [9–15]). It

has been recognized that QED has an infinite number of symmetries associated with large

gauge transformations [16, 17]. Thus, the conservation laws should constrain the S-matrix.

On the other hand, scattering amplitudes vanish in the conventional approach because the

sum of IR divergences at all orders produces the exponential suppression. It was pointed
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out in [11] that the vanishing of the amplitudes is consistent with the asymptotic sym-

metry of QED. Initial and final states used in the conventional approach generally belong

to different sectors with respect to the asymptotic symmetry. Therefore, the amplitude

between them should vanish since otherwise it breaks the conservation law. It was argued

that we need dressed states in order to obtain non-vanishing amplitudes [11].

Motivated by these facts, we will investigate the dressed state formalism in this paper.

In particular, we will revisit the gauge invariance in the formalism. We will argue that there

is a problem on the gauge invariant condition in [8], and will resolve the problem. In our

method, dressed states are obtained just from the appropriate gauge invariant condition.

We will also discuss the iε prescription for the dressed states. In addition, the relation

between the dressed state formalism and the asymptotic symmetry will be considered. In

order to explain our results more precisely, we first review the dressed state formalism in

subsection 1.2. We then present our results and the outline of the paper in subsection 1.3.

1.2 Review of a problem of S-matrix in QED and the dressed state formalism

S-matrix elements of scatterings in quantum field theories are defined by inner products

of in-states and out-states:

Sα,β = 〈α|β〉out in , (1.1)

where |α〉out and |β〉in are eigenstates with energies Eα and Eβ of the Hamiltonian H

(which is assumed to be time-independent) such that they can be regarded as eigenstates

|α〉0 and |β〉0 with the same energies Eα and Eβ of a free Hamiltonian H0 at t → ±∞.

More precisely, we should consider wave packets which are superpositions of eigenstates

with a smooth function g as follows: ∫
dβ g(β) |β〉in . (1.2)

The condition of in-states and out-states are then given by

lim
ti→−∞

e−iH(ti−ts)
∫
dβ gin(β) |β〉in = lim

ti→−∞
e−iH0(ti−ts)

∫
dβ gin(β) |β〉0 , (1.3)

lim
tf→+∞

e−iH(tf−ts)
∫
dα gout(α) |α〉out = lim

tf→+∞
e−iH0(tf−ts)

∫
dα gout(α) |α〉0 , (1.4)

where we have introduced an arbitrary finite time ts at which the Schrödinger operators

are defined. We can formally write the condition as

|β〉in = lim
ti→−∞

Ω(ti) |β〉0 , |α〉out = lim
tf→+∞

Ω(tf ) |α〉0 , (1.5)

Ω(t) ≡ U(ts, t)U0(t, ts). (1.6)

Here, U(t, t′) and U0(t, t′) are the full and free time-evolution operators respectively:

U(t, t′) ≡ e−iH(t−t′), U0(t, t′) ≡ e−iH0(t−t′). (1.7)

Using eq. (1.5), the S-matrix element (1.1) can be written as

Sα,β = lim
tf→∞, ti→−∞

〈α|0 Ω(tf )†Ω(ti) |β〉0 . (1.8)

– 2 –
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Since |α〉0 and |β〉0 usually have the Fock state representation, we finally obtain the S-

matrix operator on the Fock space HFock as

S = lim
tf→∞, ti→−∞

Ω(tf )†Ω(ti) = lim
tf→∞, ti→−∞

eiH0(tf−ts)e−iH(tf−ti)e−iH0(ti−ts). (1.9)

For computations of the Fock space basis S-matrix (1.9), it is convenient to play in the

interaction picture. We divide the Hamiltonian as H = H0 + V , and define the interaction

operator in the interaction picture as

V I(t) ≡ U0(t, ts)
−1 V U0(t, ts). (1.10)

Then the operator Ω(t) in (1.6) can be written as

Ω(t) = T exp

(
−i
∫ ts

t
dt′ V I(t′)

)
, (1.11)

where the symbol T represents the time-ordered product. The S-matrix (1.9) can be

represented as the Dyson series [18]

S = T exp

(
−i
∫ +∞

−∞
dt′ V I(t′)

)
. (1.12)

The above is the standard treatment of the S-matrix in QFTs. However, this S-matrix

on the Fock space is not well-defined in QED because of the infrared (IR) divergences. If

we try to compute the S-matrix elements on the Fock space by the standard perturbation

theory, we encounter the IR divergences.

One way to address this problem is giving up the S-matrix as usually adopted in QFT

textbooks such as [19, 20]. It is argued that in any experiment for particle physics the

detector has a minimum energy Ed such that photons with energies less than Ed cannot

be detected, and therefore the measured cross-section is the sum of cross-sections for all

events emitting undetectable soft photons [1, 2]. This inclusive method actually works and

the measured cross-section is IR finite.

Nevertheless, it is better that we have a well-defined S-matrix. Fortunately, there

is a way to define an IR finite S matrix. It is called the dressed state formalism [3–

8]. IR divergences in the conventional approach originate from the assumption that the

asymptotic scattering states can be regarded as free particle states at t ∼ ±∞. Since

photons are massless particles, i.e., the electromagnetism is a long-range interaction, we

should take account of the interaction even in the asymptotic region. It means that we

should modify the free time-evolution operator U0 in (1.6) into another time-evolution

operator Uas which contains contributions of the long-range interaction in the asymptotic

region. In fact, even for scatterings in quantum mechanics (not QFTs), in order to obtain

the IR finite S-matrix in the Coulomb potential, we need such a modification [21].

In Faddeev and Kulish’s paper [8], it was argued that the asymptotic dynamics of

QED can be approximated by the following “interacting” Hamiltonian in the Schrödinger

picture:

Hs
as(t) = Hs

0 + V s
as(t) with V s

as(t) = −
∫
d3xAsµ(~x)jµcl(t, ~x), (1.13)

– 3 –
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where the superscript s denotes that operators are in the Schrödinger picture, and Hs
0 is

the usual free Hamiltonian for QED. jµcl(t, ~x) is a “classical” current operator given by

jµcl(t, ~x) =
∑

e

∫
d3p

(2π)3(2Ep)

pµ

Ep
δ3(~x− ~pt/Ep)ρ(~p), (1.14)

ρ(~p) = b†(~p)b(~p)− d†(~p)d(~p), (1.15)

where the sum in (1.14) runs over all charged particles, and we omit the label for simplicity.

b† (and d†) are creation operators of the charged particles (and antiparticles).1 This current

is “classical” in the sense that it is a diagonal operator on the usual Fock space. Because

of the explicit time-dependence of jµcl, the asymptotic Hamiltonian Hs
as is time-dependent

even in the Schrödinger picture.

The S-matrix is then given by

S = lim
tf→∞, ti→−∞

Ωas(tf )†Ωas(ti) = lim
tf→∞, ti→−∞

U †as(tf , ts)e
−iH(tf−ti)Uas(ti, ts), (1.16)

where Ωas(t) is obtained by replacing U0 in (1.6) into Uas with

Uas(t, ts) ≡ T exp

(
−i
∫ t

ts

dt′Hs
as(t
′)

)
. (1.17)

We can proceed further by computing this asymptotic time-evolution operator (1.17).

Similar to the derivation of (1.11), one can find (see [8] for the derivation) that Uas(t, ts)

is given by

Uas(t, ts) = U0(t, ts) T exp

(
−i
∫ t

ts

dt′ V I
as(t
′)

)
, (1.18)

where

V I
as(t) ≡ U0(t, ts)

−1 V s
as(t)U0(t, ts). (1.19)

Furthermore, since the commutator [V I
as(t1), V I

as(t2)] commutes with V I
as(t) for any t, we

obtain

Uas(t, ts) = U0(t, ts) e
−i
∫ t
ts
dt′ V Ias(t

′)e−
1
2

∫ t
ts
dt1
∫ t1
ts
dt2 [V Ias(t1),V Ias(t2)], (1.20)

and by performing the t-integral, we have

− i
∫ t

ts

dt′ V I
as(t
′) = R(t)−R(ts) (1.21)

with

R(t) ≡
∑

e

∫
d3p

(2π)3(2Ep)
ρ(~p)

∫
d3k

(2π)3(2ω)

pµ

p · k

[
aµ(~k)e

i p·k
Ep

t − a†µ(~k)e
−i p·k

Ep
t
]
, (1.22)

where aµ(~k) are annihilation operators of photons [kµ = (ω,~k), ω = |~k|]. The exponent

including the commutator [V I
as(t1), V I

as(t2)] in (1.20) is a classical operator in the same sense

as jµcl(t, ~x), and we represent it as iΦ(t, ts) where

Φ(t, ts) ≡
i

2

∫ t

ts

dt1

∫ t1

ts

dt2 [V I
as(t1), V I

as(t2)]. (1.23)

1The creation and annihilation operators have labels for a spinor basis, if the particle is a fermion.
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In [8], R(ts) in (1.21) was deleted by a requirement for an initial condition. Permitting

this,2 the S-matrix (1.16) becomes

S = lim
tf→∞, ti→−∞

e−R(tf )e−iΦ(tf ,ts)

[
T exp

(
−i
∫ tf

ti

dt′ V I(t′)

)]
eR(ti)eiΦ(ti,ts). (1.24)

As a result, this S-matrix differs from usual Dyson’s one (1.12) only in the dressing factors

eR and eiΦ. Thus, if we formally introduce a dressed Hilbert space HFK as

HFK = lim
t→−∞

eR(t)eiΦ(t,ts)HFock, (1.25)

the S-matrix on HFK is given by usual one (1.12).3 Actually, the factors play a similar role

as summing the contributions of soft photons, and the S-matrix on HFK is known to be

IR finite [3],if we impose the physical state condition. In subsection 5.1, we will comment

on a subtlety of the proof of IR finiteness in [3].

1.3 Our method and the differences from Faddeev and Kulish’s

Not all of the states in HFK are physical, and thus we have to restrict HFK to the subspace

by imposing a gauge invariant condition. However, the treatment for the gauge invariance

in [8] seems inappropriate. The free Gupta-Bleuler condition was imposed on HFK as the

physical state condition, i.e., physical states, |ψ〉 ∈ HFK , were required to satisfy

kµaµ(~k) |ψ〉 = 0 for any ~k. (1.26)

In [8], to satisfy (1.26), the dressing operator R in (1.22) was modified by introducing a

null vector cµ(~k) satisfying kµc
µ = 1. More concretely, the dressing operator was altered

by shifting the coefficient pµ

p·k in (1.22) to pµ

p·k − c
µ.

We will see that the artificial vector cµ is not needed for an appropriate gauge invariant

condition. Our claim is that contributions of long-range interactions should be incorporated

into the gauge invariant condition, as dressed states are obtained by taking account of such

an interaction. The free Gupta-Bleuler condition (1.26) is not adequate for dressed states.

In section 2, we will present the appropriate condition.

Furthermore, we will show that the dressed Hilbert space can be obtained just by

requiring the gauge invariant condition. In our approach, it turns out that we do not need

to solve the dynamics of the asymptotic Hamiltonian Has as we reviewed in subsec 1.2. In

fact, although the Dyson’s S-matrix (1.12) is not a good operator on the usual Fock space

HFock, it is well-defined on the dressed spaceHFK .4 The asymptotic Hamiltonian Has is just

an approach to derive the dressing factor eR(t). We think that the gauge invariant condition

2We will see that we do not need to worry about this requirement in our approach.
3Even on HFK , the notion of particles for charged fields is still valid because jµcl(t, ~x) in the dressing

factor eR(t) is a diagonal operator on the Fock space. However, the standard interpretation of photons on

the Fock space seems to be lost because the dressing factor excites an infinite number of photons. As we will

see in subsection 5.1, the energy of the excited photons by the dressing factor is soft in the limit t→ ±∞.

Hence, the particle notion for hard photons may be valid.
4In this paper, we do not take care of problems at ultraviolet regions. We assume that they can be

resolved by a standard renormalization procedure.

– 5 –
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is a simpler approach to obtain the factor, and the interpretation is clear. The condition

essentially just says that if there is a charged particle, there should exist electromagnetic

fields around it by Gauss’s law. The fields around the charge indeed make up the dress.

In section 3, as a support of this interpretation and also another justification that we do

not have to introduce cµ, we will discuss the meaning of the original dressing operator R(t)

in eq. (1.22). As shown in [22], the dressing factor for a charged particle with momentum

~p corresponds to the Liénard-Wiechert potential for the uniformly moving charge with

momentum ~p. We will reconfirm this fact especially taking care of the iε prescription.

Besides, our method allows a variety of dresses, and HFK given by (1.25) is just one

of them. We will see that in our gauge invariant condition, the physical Hilbert space Has

on which Dyson’s S-matrix (1.12) acts takes the form

Has = eRasHfree, (1.27)

where eRas is a dressing factor, and Hfree is a subspace of the Fock space HFock such that

the free Gupta-Bleuler condition are satisfied (kµaµ(~k) |ψ〉 = 0, |ψ〉 ∈ Hfree). The operator

Ras can be R(t) + iΦ(t, ts), but not necessary. We will discuss the relation between the

ambiguity of dressing and the asymptotic symmetry of QED in subsec 4.

We conclude that infrared divergences of the S-matrix in the usual perturbative ap-

proach for QED are caused by the usage of the inappropriate asymptotic states. Although

the asymptotic states satisfying the free Gupta-Bleuler condition may be used at the tree

level, they should not be used at loop levels. If we instead use the correct gauge-invariant

states at the same order, we can avoid IR divergences.

2 Necessity of dresses

We show that states with charged particles must include photons even in the interaction

picture to satisfy the gauge invariance. In order to impose the physical state condition in

a systematic way, we use the BRST formalism.

2.1 Lagrangian and Hamiltonian in covariant gauge

In the BRST formalism with the Feynman gauge, the Lagrangian of QED is given by

LQED = LEM + Lmatter + LGF + LFP , (2.1)

where

LEM = −1

4
FµνF

µν , LGF = −1

2

(
∂µAµ

)2
, LFP = i ∂µc̄ ∂µc, (2.2)

and the metric signature in this paper is (−,+,+,+). Here we have integrated out the

Nakanishi-Lautrap field. The ghost field c can also be integrated out since it is completely

decoupled in QED. However, we keep it to obtain the BRST charge. Lmatter is the La-

grangian of charged matter fields. In this paper, matter fields can be any massive complex

scalars and fermions without derivative self-interactions, and we do not write down the

– 6 –
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explicit form of the Lagrangian. They are coupled to the gauge field so that the EoM of

the gauge field is given by

�Aµ = −jµ, (2.3)

where jµ is the matter current derived from Lmatter. For example, if we have a charged

scalar φ with charge e such as

Lφ = −Dµφ̄D
µφ−m2φ̄φ− Vφ(|φ|), (2.4)

with Dµφ = ∂µφ− ieAµφ, the matter current is given by

jµ = ie
(
Dµφ̄(x)φ(x)− φ̄(x)Dµφ(x)

)
. (2.5)

We now consider the Hamiltonian. We represent the conjugate momentum fields of

Aµ, c, c̄ by Πµ, π(c), π̄(c) which are defined from the Lagrangian (2.1) as

Π0 = −∂µAµ, Πi = F0i, π(c) = −i∂0c̄, π̄(c) = i∂0c. (2.6)

The Hamiltonian is then given by free part H0 and the other interacting part V :

H = H0 + V , (2.7)

where

H0 = HEM +Hmatter +Hghost, (2.8)

with5

HEM =

∫
d3x

[
1

2
ΠµΠµ + (∂iΠ0)Ai + (∂iΠi)A

0 +
1

4
FijF

ij

]
, (2.9)

Hghost = i

∫
d3x(π̄(c)π(c) − ∂ic̄∂ic), (2.10)

and Hmatter is the free part of the Hamiltonian of matter fields.

2.2 Physical states in the Schrödinger picture

We now quantize the system by imposing the canonical (anti)commutation relations. We

put the superscript s to represent that an operator is in the Schrödinger picture like Asµ.

The equal-time (anti)commutation relations for the gauge fields and the ghost fields are

given by6

[Asµ(~x),Πs
ν(~y)] = iηµνδ

3(~x− ~y) , {cs(~x), πs(c)(~y)} = {c̄s(~x), π̄s(c)(~y)} = iδ3(~x− ~y). (2.11)

5HEM given by (2.9) is different from the Hamiltonian obtained in a canonical way from Lagrangian (2.1)

by a total derivative term. We have eliminated the boundary term, and then this HEM commutes with the

BRST charge without a boundary term. This difference is not important except in sec 4.
6The ghost fields c and c̄ are not related by the Hermitian conjugation. They are Grassmann-odd

Hermitian operators cs† = cs, c̄s† = c̄s and their conjugate momenta are anti-Hermitian πs†(c) = −πs(c), π̄
s†
(c) =

−π̄s(c). The Lagrangian and the Hamiltonian are real under this Hermiticity.

– 7 –
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The obtained Hilbert space is too large, and the physical Hilbert space Hphys is given

by the BRST cohomology. In the Schrödinger picture, the BRST operator is expressed as

QsBRST = −
∫
d3x

[
iπ̄s(c)Π

0s − ∂icsΠis + csj0s
]
. (2.12)

Note that, since the BRST charge acts on charged matter fields, it has a term containing the

matter current jµs. For example, the BRST operator acts on the charged scalar in (2.4) as

[QsBRST, φ
s] = ecsφs, (2.13)

which is the BRST transformation for the charged scalar. This BRST charge commutes

with the total Hamiltonian and the matter current

[QsBRST, H
s] = 0 , [QsBRST, j

µs(~x)] = 0. (2.14)

It is convenient to move to the momentum representation because the ghost fields are

free. If we write

cs(~x) =

∫
d3k

(2π)3(2ω)

[
c(~k)e−iωts+i

~k·~x + c†(~k)eiωts−i
~k·~x
]
, (2.15)

c̄s(~x) =

∫
d3k

(2π)3(2ω)

[
c̄(~k)e−iωts+i

~k·~x + c̄†(~k)eiωts−i
~k·~x
]
, (2.16)

πs(c)(~x) = −
∫

d3k

(2π)3

1

2

[
c̄(~k)e−iωts+i

~k·~x − c̄†(~k)eiωts−i
~k·~x
]
, (2.17)

π̄s(c)(~x) =

∫
d3k

(2π)3

1

2

[
c(~k)e−iωts+i

~k·~x − c†(~k)eiωts−i
~k·~x
]
, (2.18)

eq. (2.11) leads to

{c(~k), c̄†(~k′)} = i(2ω)(2π)3δ3(~k − ~k′), {c̄(~k), c†(~k′)} = −i(2ω)(2π)3δ3(~k − ~k′). (2.19)

We also introduce the ladder operators of photons as7

Asµ(~x) =

∫
d3k

(2π)3(2ω)

[
aµ(~k)e−iωts+i

~k·~x + a†µ(~k)eiωts−i
~k·~x
]
, (2.20)

Πs
0(~x) = −i

∫
d3k

(2π)3(2ω)

[
kµaµ(~k)e−iωts+i

~k·~x − kµa†µ(~k)eiωts−i
~k·~x
]
, (2.21)

Πs
i (~x) = −i

∫
d3k

(2π)3(2ω)

[
(kia0(~k) + ωai(~k))e−iωts+i

~k·~x

− (kia
†
0(~k) + ωa†i (

~k))eiωts−i
~k·~x
]
, (2.22)

with

[aµ(~k), a†ν(~k′)] = (2ω)(2π)3δ3(~k − ~k′)ηµν . (2.23)

7This is always possible because this is just a change of canonical variables at a time ts.
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The BRST operator (2.12) is then written as

QsBRST = −
∫

d3k

(2π)3(2ω)

[
c(~k){kµa†µ(~k) + e−iωts j̃0s(−~k)}+ c†(~k){kµaµ(~k) + eiωts j̃0s(~k)}

]
,

(2.24)

where j̃0s(~k) is the Fourier transformation of j0s(~x) defined as

j̃sµ(~k) =

∫
d3x e−i

~k·~xjsµ(~x). (2.25)

Since the ghost fields are decoupled, we can always restrict the ghost-sector of physical

states to the ghost-vacuum annihilated by c(~k) and c̄(~k). Therefore, the physical state

condition QsBRST |ψ〉 = 0 becomes[
kµaµ(~k) + eiωts j̃0s(~k)

]
|ψ〉 = 0 for all ~k . (2.26)

This is the physical state condition in the Schrödinger picture. Note that this condition is

different from the usual Gupta-Bleuler condition (1.26). This fact holds in the interaction

picture as we will see in next subsection.

2.3 Gauge invariant asymptotic states

We now move to the interaction picture such that the S-matrix is given by the usual

one (1.12). The asymptotic state |β〉0 which is acted on the S-matrix is related to the

in-states in the Schrödinger picture, |β〉in, as (1.5). Since |β〉in is a physical state in the

Schrödinger picture, it satisfies QsBRST |β〉in = 0. Thus, from eq. (1.5), |β〉0 should satisfy

0 = QsBRST |β〉in = lim
ti→−∞

QsBRSTΩ(ti) |β〉0 . (2.27)

Since QsBRST commutes with the exact Hamiltonian Hs, we have

QsBRSTΩ(t) = U(ts, t)Q
s
BRSTU0(t, ts) = Ω(t)QIBRST(t), (2.28)

where QIBRST(t) is the BRST operator in the interaction picture:

QIBRST(t) ≡ U0(t, ts)
−1QsBRST U0(t, ts) (2.29)

= −
∫

d3k

(2π)3(2ω)

[
c(~k){kµa†µ(~k) + e−iωtj̃0I(t,−~k)}+ c†(~k){kµaµ(~k) + eiωtj̃0I(t,~k)}

]
.

Therefore, |β〉0 satisfies

lim
ti→−∞

QIBRST(ti) |β〉0 = 0. (2.30)

By restricting the ghost-sector to the ghost-vacuum, this condition becomes

lim
ti→−∞

[
kµaµ(~k) + eiωti j̃0I(ti, ~k)

]
|β〉0 = 0. (2.31)

It means that states satisfying the free Gupta-Bleuler condition kµaµ(~k) |ψ〉 = 0 are gener-

ally not the physical asymptotic states. Thus, the charged 1-particle states in the standard

Fock space, such as b†(~p) |0〉, cannot be the asymptotic physical states.
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We will show below that the states satisfying the condition (2.31) are dressed states.

In fact, if there is an anti-Hermitian operator R̃(t) such that

[kµaµ(~k), R̃(t)] = −eiωtj̃0I(t,~k), [j̃0I(t,~k), R̃(t)] = 0, (2.32)

then states in eR̃(t)Hfree are annihilated by kµaµ(~k)+eiωtj̃0I(t,~k) whereHfree is a subspace of

HFock satisfying the free Gupta-Bleuler condition. Thus, the Hilbert space satisfying (2.31)

is given by

lim
ti→−∞

eR̃(ti)Hfree. (2.33)

There are various choices of the dressing operator satisfying (2.32). One example is

R̃(t) =

∫
d3k

(2π)3(2ω)

1

2ω2

[
eiωtj̃0I(t,~k)k̃µa†µ(~k)− e−iωtj̃0I(t,−~k)k̃µaµ(~k)

]
, (2.34)

where k̃µ = (ω,−~k).

Although one may use such a dressing operator R̃(t), we can simplify it by recognizing

that the current operator j0I can be approximated in the asymptotic regions (t ∼ ±∞) by

the classical current operator j0
cl given by (1.14). It is convenient to use the hyperbolic co-

ordinates (τ, ρ) to look at the asymptotic behaviors of massive charged fields as follows [17]:

t =
√

1 + ρ2 τ, ~x = |τ |ρx̂. (2.35)

Then we can straightforwardly obtain (see appendix C in [23] for details)8

lim
τ→±∞

j0I(t, ~x) = lim
τ→±∞

j0
cl(t, ~x). (2.37)

Therefore, we can rewrite the condition (2.31) as

lim
ti→−∞

[
kµaµ(~k) + eiωti j̃0

cl(ti,
~k)
]
|β〉0 = 0. (2.38)

For later convenience, we represent the operator in (2.38) by Ĝ(t,~k) as

Ĝ(t,~k) ≡ kµaµ(~k) + eiωtj̃0
cl(t,

~k). (2.39)

Noting that the momentum representation of the classical current operator is given by

j̃0
cl(t,

~k) =
∑

e

∫
d3p

(2π)3(2Ep)
e
−i ~p·~k

Ep
t
ρ(~p), (2.40)

and a trivial equation e
−i p·k

Ep
t

= eiωte
−i ~p·~k

Ep
t
, we can easily confirm that the Faddeev-Kulish

dressing operator R(t) in (1.22) satisfies

Ĝ(t,~k)eR(t) = eR(t) kµaµ(~k). (2.41)

8Other components of the current also satisfy similar equations:

lim
τ→±∞

jiIfree(t, ~x) = lim
τ→±∞

jicl(t, ~x). (2.36)

Here, the subscript free means that the current is that of the free theory.
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Thus, an asymptotic physical Hilbert space satisfying (2.38) is given by

lim
ti→−∞

eR(ti)Hfree. (2.42)

Since the phase operator Φ in (1.23) commutes with Ĝ(t,~k) and R(t), Φ is not relevant

for the gauge-invariance (2.38). Therefore, the Faddeev-Kulish dressed space HFK in (1.25)

is gauge invariant without introducing a vector cµ, if we restrictHFock to the subspaceHfree.

Besides of the phase operator, there are other choices of the dressing operator Ras(t)

satisfying

Ĝ(t,~k)eRas(t) = eRas(t) kµaµ(~k). (2.43)

One example of Ras(t) other than the Faddeev-Kulish dressing operator (1.22) is obtained

by replacing j̃0I with j̃0
cl in (2.34). Then we can define another asymptotic physical Hilbert

space:

lim
ti→−∞

eRas(ti)Hfree, (2.44)

which is a solution of the gauge invariant condition (2.38). Although the question that

what types of dressing cancel the IR divergences in the S-matrix is beyond the scope of

this paper, we will discuss in subsection 4 that the existence of many choices is natural

from the point of view of asymptotic symmetry.

3 Interpretation of the Faddeev-Kulish dresses

It is shown in [22] that the Faddeev-Kulish dressing factor for a charged particle with

momentum pµ corresponds to the classical Liénard-Wiechert potential around the particle.

This fact supports our statement that Gauss’s law require the dressing factor. In this

section, we will reconfirm this fact taking care of the iε prescription, and see that we

should use different prescriptions for initial and final states, which might be useful for the

explicit computation of scattering amplitudes.

3.1 Coulomb potential by point charges in the asymptotic region

Here, we will recall the expression of the electromagnetic potential created by a charged

point particle with momentum pµ. The classical equation of motion for the gauge field in

the Lorenz gauge is given by

�Aµ(x) = −jµ(x) , jµ(x) = e

∫ ∞
−∞
dτ
dyµ(τ)

dτ
δ4(x− y(τ)), (3.1)

where yµ(τ) =
pµ
m τ =

pµ
Ep
t is the trajectory of the charged particle, which is supposed to

pass through the origin at t = 0. The position at t = 0 is not relevant when we consider the

asymptotic region.9 By using the retarded Green’s function for the Klein-Gordon equation,

Gret(x) = −
∫

d4k

(2π)4

1

(k0 − ω + iε)(k0 + ω + iε)
eik·x, (3.2)

9However, the position at t = 0 can contribute to subleading orders, and it was shown in [24] that the

position is important for the subleading memory effect.
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the general solutions of (3.1) are given by

Aµ(x) = Ainµ (x) +

∫
d4x′Gret(x− x′)jµ(x′)

= Ainµ (x) + ie
pµ
Ep

∫
d3k

(2π)3

∫ t

−∞
dt′

1

2ω

(
e−iω(t−t′) − eiω(t−t′)

)
e−ε(t−t

′)e
i~k·
(
~x− ~p

Ep
t′
)

= Ainµ (x)− e
∫

d3k

(2π)3(2ω)

[
pµ

p · k + iε
e
i~k·
(
~x− ~p

Ep
t
)

+
pµ

p · k − iε
e
−i~k·

(
~x− ~p

Ep
t
)]
. (3.3)

where Ainµ (x) is the incoming free wave, which is specified at t→ −∞, and the second term

is the Liénard-Wiechert potential created by the particle with momentum pµ and charge

e. We represent this second term by Aret
µ (x; ~p) as

Aret
µ (x; ~p) ≡ −e

∫
d3k

(2π)3(2ω)

[
pµ

p · k + iε
e
i~k·
(
~x− ~p

Ep
t
)

+
pµ

p · k − iε
e
−i~k·

(
~x− ~p

Ep
t
)]
. (3.4)

3.2 Coulomb potential from dressed states with iε prescription

Let’s consider a dressed state of a single incoming electron with momentum pµ defined by

||p(t)〉〉 ≡ eRin(t)b†(~p) |0〉 , (3.5)

where Rin(t) is an operator dressing the incoming single particle state. The gauge field in

the interaction picture can be written as

AIµ(x) =

∫
d3k

(2π)3(2ω)

(
aµ(~k)eik·x + a†µ(~k)e−ik·x

)
. (3.6)

Then we demand that its expectation value for the above dressed state10 match the classical

gauge field (3.4) created by a charged point particle with momentum pµ as

〈〈p(t)||AIµ(x)||p(t)〉〉

= −e
∫

d3k

(2π)3(2ω)

(
pµ

p · k + iε
e
i~k·
(
~x− ~p

Ep
t
)

+
pµ

p · k − iε
e
−i~k·

(
~x− ~p

Ep
t
))
〈〈p(t)||p(t)〉〉. (3.7)

We can easily check that the following dressing operator satisfies the above condition,

Rin(t) = e

∫
d3p

(2π)3(2Ep)
ρ(~p)

∫
d3k

(2π)3(2ω)

(
pµ

p · k − iε
aµ(~k)e

i p·k
Ep

t − pµ

p · k + iε
a†µ(~k)e

−i p·k
Ep

t
)
.

(3.8)

This operator matches the dressing operator (1.22) up to the iε insertion. How to insert

iε in the dressing operator is determined by how the initial condition of gauge fields is

specified. Thus, the dressed states stand for the states of (anti-)electrons surrounded by

relativistic Coulomb fields created by themselves. We have considered a single charged

particle state (3.5). The generalization to multi-particle states is trivial, and the expec-

tation value of Aµ is given by the superposition of the Coulomb field created by each

10More precisely, we should use a wave-packet since the state (3.5) is not normalized.
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particle. In other words, in the dressed state, the charged particles are properly dressed

by electromagnetic fields in the asymptotic region where the particles have nearly constant

velocities. This result is natural since our dressed states are obtained by solving the BRST

(gauge invariant) condition without ignoring the interaction in the asymptotic regions. We

also would like to comment that this expectation value changes if we modify the dressing

operator by introducing a vector cµ as in [8]. This is another reason to think that such a

modification is unnatural. Note also that Rin is anti-Hermitian (R†in = −Rin). Thus, the

dressing factor e−Rin is unitary.11

Similarly, we can fix the iε prescription for the dressing operator Rout(t) for outgoing

states. We consider a dressed outgoing state

out〈〈p(t)|| ≡ 〈0| b(~p)e−Rout(t), (3.9)

and require that the expectation value of AIµ(x) agree with the advanced potential for the

point particle, which is given by

Aadvµ (x; ~p) = −e
∫

d3k

(2π)3(2ω)

[
pµ

p · k − iε
e
i~k·
(
~x− ~p

Ep
t
)

+
pµ

p · k + iε
e
−i~k·

(
~x− ~p

Ep
t
)]
. (3.10)

The requirement

out〈〈p(t)||AIµ(x)||p(t)〉〉out = Aadvµ (x; ~p) out〈〈p(t)||p(t)〉〉out (3.11)

can be satisfied by the following dressing operator

Rout(t) = e

∫
d3p

(2π)3(2Ep)
ρ(~p)

∫
d3k

(2π)3(2ω)

(
pµ

p · k + iε
aµ(~k)e

i p·k
Ep

t − pµ

p · k − iε
a†µ(~k)e

−i p·k
Ep

t
)
.

(3.12)

Thus, the sign of iε terms is opposite to that in the initial dressing operator Rin given

by (3.8).12 This Rout is also anti-Hermitian (R†out = −Rout), and the dressing factor e−Rout

is thus unitary.

The unitarity of the dressing factors, eRin and e−Rout , guarantees that the asymptotic

Hilbert space is positive definite. The asymptotic dressed states are given by multiplying

the unitary dressing factors by states satisfying the free Gupta-Bleuler condition. The

dressed states thus have a positive norm, because states satisfying the free Gupta-Bleuler

condition are positive definite and any unitary transformation preserves the positive defi-

niteness.

Here, we also give a formal proof of the unitarity of S-matrix. Including the dressing

factors, the S-matrix acting on the Fock space takes the form (up to phase operators)

S = lim
tf→∞,ti→−∞

S(tf , ti) with S(tf , ti) = e−Rout(tf )S0(tf , ti)e
Rin(ti), (3.13)

11If we write e−Rin in the normal ordering, the normalization factor has an IR divergence if we set ε = 0.

Thus, it is often said (see, e.g., [8]) that the dressing factor is not a unitary operator on the Fock space

in a rigorous sense. However, it does not matter if we keep ε nonzero. After computing IR finite physical

quantities, we can take ε to 0.
12This difference of the iε prescription for initial and final states may be related to the prescription used

to define in-out and in-in propagators in nonstationary spacetime [25].
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where S0 denotes the usual (finite time) S-matrix:

S0(tf , ti) = T exp

(
−i
∫ tf

ti

dt′ V I(t′)

)
= U †0(tf , ts)U(tf , ti)U0(ti, ts). (3.14)

The unitarity of S0(tf , ti) simply follows from the expression of eq. (3.14). Since Rin and

Rout are anti-Hermitian, we can show the unitarity of S(tf , ti) as

S†(tf , ti)S(tf , ti) = eR
†
in(ti)S†0(tf , ti)e

−R†out(tf )e−Rout(tf )S0(tf , ti)e
Rin(ti)

= e−Rin(ti)S†0(tf , ti)e
Rout(tf )e−Rout(tf )S0(tf , ti)e

Rin(ti)

= e−Rin(ti)S†0(tf , ti)S0(tf , ti)e
Rin(ti)

= 1. (3.15)

Therefore, the S-matrix is unitary.

4 Asymptotic symmetry in the dressed state formalism

Gauge theories in 4-dimensional Minkowski space have an infinite number of symmetries

(see [26] for a recent review). The symmetries are given by “large” gauge transformations

such that the gauge parameters can be nonvanishing functions in the asymptotic regions but

they preserve the asymptotic behaviors of fields. We now discuss the relation between the

asymptotic symmetry in QED and dressed states (see also [9–15] for related discussions).

We will show that the Faddeev-Kulish dressed states carry the charges associated with the

asymptotic symmetry, and investigate the conservation law of the asymptotic charges for

the S-matrix in the dressed state formalism.

The Lagrangian (2.1) is invariant under a class of gauge transformations which keep

∂µA
µ intact. Neother’s charge for the transformations in the Schrödinger picture is given by

Qsas[ε] =

∫
d3x

[
−Π0s∂0ε−Πis∂iε+ j0sε

]
, (4.1)

where the gauge parameter ε(x) satisfies �ε = 0. This charge Qsas[ε] is BRST exact up to

the boundary term:

Qsas[ε] = −
∫
d3x ∂i(Π

isε) +

{
QsBRST,

∫
d3x(−c̄s∂0ε+ iπs(c)ε)

}
. (4.2)

Therefore, if the gauge parameter ε(x) vanishes in the asymptotic regions, this charge does

not play any role on the physical Hilbert space. However, this is not the case if ε takes non-

vanishing values in the asymptotic regions. Such nontrivial charges are called asymptotic

charges. As discussed in [23], the asymptotic charges are physical charges, i.e., the asymp-

totic symmetry generated by the charges is not a redundancy of the Hilbert space but the

physical symmetry. For example, if ε is a constant, the corresponding charge represents

the total electric charge. There is no reason to restrict the Hilbert space to the subspace

with zero total electric charge. Similarly, we should not restrict the Hilbert space to the
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subspace annihilated by Qsas[ε]. Therefore, asymptotic charges Qsas[ε] can act nontrivially

on the physical Hilbert space.

The finiteness condition of Qsas[ε] requires that ε should approach functions of angu-

lar coordinates around the null infinities. It means that we have an infinite number of

asymptotic charges corresponding to the number of functions on two-sphere [16]. All of

the asymptotic charges commute with the BRST charge:

[Qsas, Q
s
BRST] = 0, (4.3)

and they commute with the Hamiltonian Hs up to the BRST exact term:13

[Qsas, H
s] = −i

∫
d3x

[
∂iε ∂iΠ

0s + ∂0ε (∂iΠ
is + j0s)

]
=

{
QsBRST,−i

∫
d3x

(
∂iε∂ic̄

s + i∂0ε π
s
(c)

)}
. (4.4)

Therefore, the spectrum of the physical Hilbert space is infinitely degenerated.

This fact naturally leads us to classify the asymptotic states by QIas in the interaction

picture. We now see how QIas acts on the initial dressing operator Rin(t) given in eq. (3.8).

As in (4.2), the asymptotic charge QIas in the interaction picture takes the following form

up to the BRST exact part:

QIas[ε] = −
∫
d3x ∂i(Π

iIε) = −
∫
d3x [ΠI

i ∂
iε+ (∂iΠ

iI)ε]. (4.5)

The commutator of ΠI
i and Rin(t) is given by

[ΠI
i (t, ~x), Rin(t)]

= ie

∫
d3p

(2π)3(2Ep)
ρ(~p)

∫
d3k

(2π)3(2ω)

Epki − ωpi
p · k

(
e
−i~k·(~x− ~p

Ep
t) − ei

~k·(~x− ~p
Ep
t)
)
, (4.6)

where we have set ε = 0 because the integrand is not singular at ~k = 0. On the other

hand, the classical electric field for the classical configuration Aret
µ (x; ~p) given by (3.4) is

computed as

∂0A
ret
i (x; ~p)− ∂iAret

0 (x; ~p) = ie

∫
d3k

(2π)3(2ω)

Epki − ωpi
p · k

(
e
−i~k·(~x− ~p

Ep
t) − ei

~k·(~x− ~p
Ep
t)
)
. (4.7)

where we have also set ε = 0. Hence, one can say that the commutator of ΠiI and Rin(t) is

given by the “classical operator” which represents the classical Liénard-Wiechert electric

field as

[ΠI
i (t, ~x), Rin(t)] =

∫
d3p

(2π)3(2Ep)
ρ(~p)[∂0A

ret
i (x; ~p)− ∂iAret

0 (x; ~p)] ≡ F cl0i(x). (4.8)

13This is the reason why we adopted the Hamiltonian (2.9). As mentioned in footnote 5, the canonical

Hamiltonian Hs
can has extra boundary terms: Hs

can = Hs −
∫
d3x ∂i(Π

s
0A

is + ΠisA0s). The boundary

terms affect the commutator (4.4) as [Qsas,
∫
d3x ∂i(Π

s
0A

is + ΠisA0s)] = −i
∫
d3x ∂i(Π

0s∂iε + Πis∂0ε) =

{QsBRST,−i
∫
d3x ∂i(c̄

s∂iε)} − i
∫
d3x ∂i(Π

is∂0ε). Since ∂0ε = O(r−1) at r → ∞, we can neglect the effect

of boundary terms if the radial component of the electric field operator, x̂iΠi, decays as O(r−2). This

condition is probably satisfied for physical scattering states in a reasonable setup.
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Similarly, the commutator of ∂iΠ
iI and Rin(t) is given by the classical current as

[∂iΠ
iI(t, ~x), Rin(t)] = −e

∫
d3p

(2π)3(2Ep)
ρ(~p) δ3(~x− ~pt/Ep) = −j0

cl(x). (4.9)

Therefore, the asymptotic charge QIas[ε] in (4.5) acts on eRin as

[QIas[ε], e
Rin ] = eRin

∫
d3x [F 0i

cl ∂iε+ j0
clε]. (4.10)

The integral

Qclas[ε] ≡
∫
d3x [F 0i

cl ∂iε+ j0
clε] (4.11)

is in fact the asymptotic charge operator on the Fock space of charged particles. In the limit

t → ±∞, the eigenvalues agree with the classical leading hard charges computed in [23].

The leading hard charges are the contributions to the asymptotic charges from uniformly

moving charged particles and their Coulomb-like electric fields. For example, if we take a

constant ε = 1, it gives just a total electric charge as Qclas[1] b†(~p) |0〉 = eb†(~p) |0〉. If ε is a

nontrivial large gauge parameter, the eigenvalues of limt→±Q
cl
as[ε] are given by momentum-

dependent functionals of ε0 which is an arbitrary function on two-sphere that determines

the asymptotic behaviors of ε (see [23] for details). Therefore, eq. (4.10) represents that

charged Fock particles with the dressing operator (1.22) carry the asymptotic charges for

the classical free charged particles with their Liénard-Wiechert electric fields. This result

is natural because the dressing corresponds to creating the Liénard-Wiechert potential as

we have seen in section 3.

At the classical level, the conservation of asymptotic charges leads to the electromag-

netic memory effect [23]. Let us see the implication at the quantum level. To make our

discussion simple, we suppose that the radiation sector is given by eigenstates of asymp-

totic charges at t = ±∞; that is, we consider states |Λin〉 and 〈Λout| such that they contain

only transverse photons and satisfy

QI,−as [ε] |Λin〉 = Λin[ε0] |Λin〉 , 〈Λout|QI,+as [ε] = 〈Λout|Λout[ε
0], (4.12)

where QI,±as [ε] = limt→±∞Q
I
as[ε], and Λin and Λout are arbitrary (c-number) functionals of

ε0 to which ε asymptotically approaches. We then prepare the following dressed states by

exciting charged particles on |Λin〉 and 〈Λout| as

|in〉 = eRin(t=−∞)Ψ̂†in |Λin〉 , 〈out| = 〈Λout| Ψ̂oute
−Rout(t=+∞), (4.13)

where Ψ̂†in is an arbitrary product of creation operators b†, d† of charged particles and Ψ̂out

is any product of annihilation operators b, d. The asymptotic symmetry implies

〈out| (QI,+as S0 − S0Q
I,−
as ) |in〉 = 0, (4.14)

where S0 is given by (3.14) with limits tf → ∞, ti → −∞. From (4.10) and a similar

computation for e−Rout , we have

QI,−as |in〉 = (Q−H + Λin) |in〉 , 〈out|QI,+as = 〈out| (Q+
H + Λout). (4.15)
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Here, Q−H and Q+
H represent the hard charge eigenvalues for the states Ψ̂†in |0〉 and 〈0| Ψ̂out

respectively as(
lim

t→−∞
Qclas

)
Ψ̂†in |0〉 = Q−HΨ̂†in |0〉 , 〈0| Ψ̂out

(
lim
t→∞

Qclas

)
= 〈0| Ψ̂outQ

+
H . (4.16)

Thus, (4.14) becomes

(Q+
H + Λout −Q−H − Λin) 〈out|S0 |in〉 = 0. (4.17)

It means that the S-matrix elements can take non-zero values only when the asymptotic

charges conserved,

Q+
H + Λout = Q−H + Λin, (4.18)

between the out states and the in states [11]. It also means a quantum analog of the classical

memory effect. In a scattering event, if the hard charges are not conserved Q+
H 6= Q−H , there

should be a change in the radiation sector |Λin〉 → |Λout〉 so that (4.18) holds for any ε0.

Conversely, a change in the radiation sector, Λout−Λin, is memorized in the change of the

hard charges Q+
H −Q

−
H .

We here comment on the possibility of other dressing operators. The standard Fock

vacuum is not the eigenstate of QIas.
14 Roughly speaking, eigenstates in (4.12) consist of

clouds of soft photons without charged particles. However, the Faddeev-Kulish dressing op-

erator R(t) in (1.22) makes a photon cloud only when there are charged particles. Thus, we

need other dressing operators than Faddeev-Kulish’s in order to prepare eigenstates (4.12).

As we have already argued in subsection 2.3, the dressing operators are not uniquely fixed

from the gauge invariant condition. We think that this variety is related to the asymptotic

symmetry, and leave it for a future work to classify gauge invariant dressed states in terms

of the asymptotic charges.

5 Conclusion and further discussion

In this paper, we have shown that the Faddeev-Kulish dressed states can be obtained just

from the gauge-invariant condition without solving the asymptotic dynamics. While in the

original paper [8] it was discussed that the dressing operator R(t) in eq. (1.22) should be

modified, we have found that such a modification is not needed. We have also justified the

unmodified dressing factor eR(t) with the iε prescription by giving the interpretation as the

Coulomb fields around charges. In addition, we have shown the possibility of other types of

gauge-invariant dressed states. We have also shown that the Faddeev-Kulish dressed states

carry the charges associated with the asymptotic symmetry, and have investigated the

conservation law of the asymptotic charges for the S-matrix in the dressed state formalism.

We close this section with further discussion and comments on future directions.

14The asymptotic symmetries for general gauge parameters ε are spontaneously broken in the standard

Fock vacuum [16].
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5.1 Softness of dresses

The infrared finiteness of the dressed state formalism is based on Chung’s analysis [3]. If

we extract soft momentum region k ∼ 0 for the dressing operator (1.22), the operator takes

the form

Rsoft ∼
∑

e

∫
d3p

(2π)3(2Ep)
ρ(~p)

∫
soft

d3k

(2π)3(2ω)

pµ

p · k

[
aµ(~k)− a†µ(~k)

]
, (5.1)

because e
i p·k
Ep

t ∼ 1 at k ∼ 0. Roughly, this is the dressing operator used in [3]. In fact,

the behavior of the dressing operator at the non-soft momentum region was not specified

in [3]. Since only the soft momentum region is relevant for the proof of the IR finiteness,

this simplification may be justified.

However, one may worry that the hard momentum contribution in (1.22) affects the

physical observables. We can make a rough argument that this is not the case as follows.

First note that p ·k = −ω(Ep−~p · k̂) can be zero only when ω = 0 because pµ is an on-shell

momentum of a massive particle (Ep > |~p|). Then, owing to the oscillating factor e
i p·k
Ep

t
,

contributions from nonzero momenta (ω > 0) can be ignored in the limit t → ±∞. This

statement can be made more rigorous by using ε-inserted dressing operator eq. (3.8) or

eq. (3.12). We shall use the following identity as a distribution:

lim
ε→0

lim
t→±∞

eiαt

α± iε
= ∓iπδ(α). (5.2)

From the identity, we have

lim
ε→0

lim
t→−∞

Rin(t) = − iπ
2

∑
e

∫
d3p

(2π)3(2Ep)
ρ(~p)

∫
d3k

(2π)3

pµ

p · k

[
aµ(~k) + a†µ(~k)

]
δ(ω), (5.3)

lim
ε→0

lim
t→∞

Rout(t) =
iπ

2

∑
e

∫
d3p

(2π)3(2Ep)
ρ(~p)

∫
d3k

(2π)3

pµ

p · k

[
aµ(~k) + a†µ(~k)

]
δ(ω). (5.4)

Therefore, we can say that only soft photons constitute the dresses in the asymptotic limit

t→ ±∞.

Nevertheless, it may be dangerous to use the above asymptotic limit directly. The

S-matrix on the Fock space is given by

lim
tf→∞, ti→−∞

e−Rout(tf ) T exp

(
−i
∫ tf

ti

dt′ V I(t′)

)
eRin(ti). (5.5)

Thus, we should first compute the finite time S-matrix element and then take the limits

tf → ∞ and ti → −∞. In addition, since eq. (5.5) probably suffers from an infinitely

oscillating phase factor, the phase operator such as (1.23) might be needed to make the S-

matrix well-defined. As we said in subsection 2.3, the phase operator cannot be determined

from the gauge invariance. We would like to report a computation of the S-matrix in our

dressed state formalism including the determination of the phase operator in future.
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5.2 Other future directions

We would like to comment on other future directions.

Mandelstam developed a manifestly gauge-independent formalism of gauge theories [27,

28]. In the formalism, the dynamical variables of QED are the field strength Fµν and path-

dependent charged fields such as

φ(x; Γ) ≡ e−ie
∫ x
Γ dξµAµ(ξ)φ(x). (5.6)

Such fields attached with Wilson lines are also considered in the context of the bulk re-

construction in the AdS/CFT correspondence (see e.g. [29–31]). A similarity between

Mandelstam’s formalism and the dressed state formalism was discussed in [32]. However,

the dressing operator constructed in [32] has additional terms depending on the choice

of the path Γ. Thus, the dressing operator seems not to be related directly to Faddeev-

Kulish’s one (1.22). Furthermore, we should also investigate the relation to the asymptotic

symmetry. As explained in [33] for gravitational theories in AdS, operators like (5.6) are

transformed under the asymptotic symmetry, and the behavior of the path Γ near the

asymptotic boundary is important in determining the transformation law of the symmetry.

In [27, 28], the behavior of Γ near the asymptotic region was not specified. Thus, it is

interesting to understand more precisely the relations among Mandelstam’s formalism, the

dressed state formalism and the asymptotic symmetry [34].

It is important to extend our analysis to other theories. Although the cancellation of IR

divergences in the inclusive method [1, 2] was extended to more general theories [35, 36], we

do not know how to define the IR finite S-matrices directly. We think that the dressed state

formalism is surely useful for this problem. The dressed state formalism for the perturbative

gravity was developed in [37] (see also [12, 13]). However, a tensor cµν , which is an analog of

a vector cµ in [8], was introduced by imposing a free “gauge invariant” condition which is a

gravitational counterpart of the free Gupta-Bleuler condition (1.26). As in QED, we should

impose an appropriate physical condition, and we expect that the tensor cµν is unnecessary.

Asymptotic symmetries for scalar theories are also studied in [38–40]. It was found recently

that the asymptotic symmetry of a massless scalar is related to the gauge symmetry of the

two-form field dual to the scalar [41–45]. It might be possible to construct dressed states

in a massless scalar theory from the gauge-invariant condition for the dual two-form field.
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