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1 Introduction

The classification of all Conformal Field Theories (CFTs) is the ambitious dream that

drives the systematic development of the conformal bootstrap program [1, 2]. Almost ten

years ago it was observed that the constraint of crossing symmetry can be recast into

an infinite set of linear and quadratic equations, whose feasibility can be studied numer-

ically [3–6]. Since then, the numerical conformal bootstrap has been successfully applied

to four-point functions of scalar operators in several spacetime dimensions [7–14], and to

spin-1
2 operators in three dimensions [15, 16]. This has led to spectacular results, such

as the most precise determination of the three dimensional Ising model critical exponents

and its spectrum [17–19], a partial classification of O(N)-models in three dimensions [20],

and interesting insights on superconformal theories with and without Lagrangian formu-

lation [21–31]; see [32] for a review and a comprehensive list of references. In this paper,

we consider the next step in complexity: correlators of vector operators. In particular we

study the four-point function of a conserved current.

Any local CFT with a continuous global symmetry contains a conserved current Jµ,

whose flux through the boundary of a region B measures the total charge inside this region.1

This property is encoded in the Ward identity,∫
∂B
dxnµ〈Jµ(x)O1(x1) . . .On(xn)〉 = −〈O1(x1) . . .On(xn)〉

∑
xi∈B

qi , (1.1)

where nµ is the unit normal to the boundary of the region B and qi are the charges of the

local operators Oi. We shall study the four-point function of Jµ which is an observable

that exists in any CFT with a continuous global symmetry. This will allow us to constrain

the spectrum of operators that appear in the Operator Product Expansion (OPE) of two

currents. In three spacetime dimensions, these neutral operators can be classified by their

1The existence of a conserved current follows from the Noether theorem in any Lagrangian CFT. How-

ever, we do not know of a more general (bootstrap) proof of this statement.

– 1 –
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Figure 1. Exclusion plot in the plane (∆+
0 ,∆

−
0 ) corresponding to the lightest parity even and

parity odd scalars appearing in the OPE of two equal conserved currents. The orange shaded

region is allowed. The blue region would be excluded by bootstrap constraints on the correlator of

four parity odd scalars, see section 3 for details.

scaling dimension ∆, SO(3) spin ` and parity.2 More precisely, we will study the conformal

block decomposition

〈Jµ1(x1) . . . Jµ4(x4)〉 =
∑
O

∑
p,q

λ
(p)
JJOλ

(q)
JJO

J J

p
O

q

J J

, (1.2)

where λ
(p)
JJO are the coefficients of the operator O in the OPE of two currents. The index

p, q run over a finite range, which depends on the spin and parity of the operator O. The

symbol stands for the conformal blocks that are labeled by p, q and the quantum

numbers ∆, ` and parity of O. This is described in detail in section 2. Following the

usual bootstrap strategy, we then impose crossing symmetry of this four-point function.

However, due to current conservation, not all crossing equations are linearly independent.

In section 2, we explain how to select a minimal set of independent crossing equations to

be imposed numerically. With these ingredients and assuming unitarity, we applied the

usual bootstrap semi-definite programming method (SDPB) to constrain the spectrum of

neutral operators and some OPE coefficients λ
(p)
JJO.

In figure 1, we show our result for the excluded region of the plane (∆+
0 ,∆

−
0 ), where

∆±` denotes the scaling dimension of the lightest parity even/odd neutral spin-` operator.

This curve was calculated using up to Λ = 23 derivatives of the crossing equations at the

crossing symmetric point (451 components). The parameter Λ is defined in eq. (2.61).

In this plot, we represented several known theories to verify that they all fall inside the

allowed region. On one hand, the theories of a free Dirac fermion and of a free complex

scalar field lie well within the allowed region. On the other hand, the critical O(2)-model

2We shall restrict our analysis to parity invariant CFTs. It would be interesting to relax this condition

since there are many examples of parity breaking 3D CFTs involving Chern-Simons gauge fields.

– 2 –
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Figure 2. Lower bound on the central charge normalized to the one of a free complex scalar as a

function of γ. The vertical dashed lines corresponds to the conformal collider bound −1 ≤ 12γ ≤ 1.

We impose that the first spin-2 operator after Tµν has dimension larger than 3.5 (see section 3 for

explanation).

and the generalized free theory (GFVF) of a current seem to play an important role in

determining the boundary of the allowed region. Our results suggest that these theories

sit at kinks of the optimal boundary corresponding to Λ = ∞.

The stress-energy tensor appears in the OPE of two currents,

Jµ(x)Jν(0) = CJ
δµν − 2x̂µx̂ν

x4
+

3CJ
32π|x|

[
tαβµν (x̂) + 12γ t̃αβµν (x̂)

]
Tαβ(0) + . . . (1.3)

where x̂µ = xµ

|x| and the dots represent the contributions from all other operators besides

the identity and the stress tensor Tαβ . There are two independent tensor structures3

compatible with conservation and permutation symmetry. The conformal Ward identities

relate the overall coefficient to the OPE coefficient of the identity operator (CJ) but the

relative coefficient γ is an independent parameter that characterises the CFT. In particular,

it controls the high frequency/low temperature behaviour of the conductivity [33]. In the

holographic context, γ corresponds to a higher derivative coupling between two photons and

a graviton in the bulk. In particular, γ vanishes for Einstein-Maxwell theory. The conformal

collider analysis of [34] gives rise to the bounds −1 ≤ 12γ ≤ 1 (see also [35–37]). This

bound was recently proven using only unitarity and convergence of the OPE expansion [38]

(also see [39] for an alternative approach). The bound is saturated by free complex bosons

(12γ = −1) and free fermions (12γ = 1).

In figure 2, we plot the minimal value of the central charge CT as a function of γ and

for several values of Λ (number of derivatives of the crossing equations imposed). In dashed

3Their explicit form is:

tαβµν (x̂) = 6x̂(µδ
α
ν)x̂

β + 2δαµδ
β
ν + 3x̂µx̂ν x̂

αx̂β − 5δµν x̂
αx̂β ,

t̃αβµν (x̂) = 2x̂(µδ
α
ν)x̂

β − 2δαµδ
β
ν − 3x̂µx̂ν x̂

αx̂β − 3δµν x̂
αx̂β .

– 3 –
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lines we plot the conformal collider bounds and the value of the central charge CT of the

minimal theories that saturate them: a free complex scalar and a free Dirac fermion. It is

encouraging to notice that the lower bound on CT grows very rapidly outside the region

−1 ≤ 12γ ≤ 1. We suspect it diverges when Λ→∞. On the other hand, for −1 < 12γ < 1

the lower bound on CT seems to be converging to a finite curve as we increase Λ.

Figures 1 and 2 are just an appetiser for the results presented in section 3. To facilitate

the interpretation of our results we listed in appendix A some known 3D CFTs with a

continuous global symmetry. In section 2, we summarize the steps involved in setting

up the numerical conformal bootstrap approach to the four point function of a conserved

current, leaving many details to appendices B, C, D, E and F. Finally, we conclude in

section 4 with a discussion of future work.

2 Setup

In this section we define our notation for three and four point correlation functions of spin 1

currents. We will often work in general spacetime dimension d and specialize to d = 3 at the

end. Through this section we will work in embedding space, see [40] for a detailed review.

In the embedding formalism each operator O∆,` is associated to a field Φ∆,`(P,Z),

polynomial in the (d+ 2)-dimensional polarization vector Z, such that

Φ(λP ;αZ + βP ) = λ−∆α`Φ(P ;Z) . (2.1)

We fix the normalization of the operators such that:

〈Φ∆,`(P1, Z1)Φ∆,`(P2, Z2)〉 =
H`

12

(P12)∆
, (2.2)

where Pij ≡ −2Pi · Pj . The quantity H12 entering the above equation, together with Vi,jk
are the building blocks needed to construct higher point correlation functions. They are

defined as:

Hij ≡
(Zi · Zj)(Pi · Pj)− (Zi · Pj)(Zj · Pi)

(Pi · Pj)
,

Vi,jk ≡
(Zi · Pj)(Pi · Pk)− (Zi · Pk)(Pi · Pj)√

−2(Pi · Pj)(Pi · Pk)(Pj · Pk)
. (2.3)

2.1 Three point functions 〈JJO±
∆,`〉

In order to decompose the four-point function 〈JJJJ〉 in conformal blocks, we need to

understand the structure of the OPE of two currents J×J . This is equivalent to classifying

all the conformal invariant three-point functions 〈JJO±∆,`〉. Since we are assuming the CFT

is parity preserving, the three-point functions 〈JJO+
∆,`〉 will not involve the ε-tensor while

the three-point functions 〈JJO−∆,`〉 will do.

– 4 –
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Let us start by writing the most general form of the three-point function between two

equal vector operators (of dimension d− 1) and a parity even operator,

〈J(P1,Z1)J(P2,Z2)O+
∆,`(P3,Z3)〉 (P12)d−1−∆

2 (P13)
∆
2 (P23)

∆
2 =

=



λ
(1)
JJO+V1V2V

`
3 +λ

(2)
JJO+H12V

`
3 if `= 0

λ
(3)
JJO+(H13V2−H23V1)V `−1

3 if `≥ 1,odd

λ
(1)
JJO+V1V2V

`
3 +λ

(2)
JJO+H12V

`
3 +

+λ
(3)
JJO+(H13V2+H23V1)V `−1

3 +λ
(4)
JJO+H13H23V

`−2
3 if `≥ 2,even

(2.4)

where λ
(i)
JJO+ are undetermined constants and we used the notation

V1 = V1,23 , V2 = V2,31 , V3 = V3,12 . (2.5)

In this expression, we only imposed conformal and permutation symmetry. To impose

conservation of J(P1, Z1), it is enough to demand that the embedding space differential

operator ∂
∂P1
· ∂
∂Z1

annihilates the three-point function. This further reduces the number

of independent constants. In the case of a scalar operator, conservation implies λ
(2)
JJO+ =

∆−d+1
∆ λ

(1)
JJO+ leaving only one free constant. In the case of odd spin, conservation implies

λ
(3)
JJO+ = 0, which means that a parity even, spin odd operator cannot appear in the OPE

J × J . Finally, in the case of even spin ` ≥ 2 we find

λ
(4)
JJO+ =

(d−∆− 2)(d−∆− 1)λ
(1)
JJO+ +

(
∆(d−∆− 2) + `(3d− 2∆− 4) + `2

)
λ

(2)
JJO+

(2d−∆ + `− 4)(2d−∆ + `− 2)
,

λ
(3)
JJO+ =

(d−∆− 1)λ
(1)
JJO+ + (∆ + `)λ

(2)
JJO+

2d−∆ + `− 2
,

which reduces the number of independent structures down to 2.

Let us now turn our attention to the three point function of two conserved currents

and one parity odd operator O−∆,`. In d ≤ 4 one can use the ε-tensor to make parity

odd conformally invariant three point functions. Indeed, any parity odd structure can be

obtained by multiplying parity even structures by ε-tensors. In d = 3, there are three

parity odd building blocks:

εij ≡ ε(Zi, Zj , P1, P2, P3) (i, j = 1, 2, 3) . (2.6)

Conformal invariance and permutation symmetry restricts the tensor structures to be:4

〈J(P1,Z1)J(P2,Z2)O−∆,`(P3,Z3)〉 (P12)d−
∆+1

2 (P13)
∆+1

2 (P23)
∆+1

2 =

=



λ
(1)
JJO−ε12V

`
3 if `= 0

λ
(2)
JJO−(ε13V2+ε23V1)V `−1

3 if `= 1

λ
(2)
JJO−(ε13V2−ε23V1)V `−1

3 +λ
(3)
JJO−(ε13H23−ε23H13)V `−2

3 if `≥ 2,even

λ
(2)
JJO−(ε13V2+ε23V1)V `−1

3 +λ
(3)
JJO−(ε13H23+ε23H13)V `−2

3 if `≥ 3,odd

(2.7)

4As explained in appendix B, the structure ε12V
l
3 is not independent of the ones we used for ` ≥ 2. Struc-

tures involving an ε tensor contracted with three polarization vectors can also be expressed in terms of εij .

– 5 –
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where λ
(i)
JJO− are undetermined constants. Current conservation then fixes

λ
(3)
JJO− =

∆− 2− (−1)`

∆− `− 3
λ

(2)
JJO− , (2.8)

for ` ≥ 2. In the case ` = 0, conservation is automatic and λ
(1)
JJO− is a free parameter. In

the case ` = 1, conservation implies that λ
(2)
JJO− = 0. In other words, no spin 1 operator

that can appear in the OPE of two equal currents.

In summary, the number of independent constants in the three-point function 〈JJO±∆,`〉
is given in the following table:

Parity

Spin Dimension + −
` = 0 ∆ ≥ 1/2 1 1

` = 1 ∆ ≥ 2 0 0

` ≥ 2 even ∆ ≥ `+ 1 2 1

` ≥ 3 odd ∆ ≥ `+ 1 0 1

Finally, let us comment on the special cases when O saturates the unitarity bound.

For ` ≥ 1 this happens when O is a conserved current with ∆ = ` + d − 2. It is easy to

check that the three-point function (2.4) of O+ are automatically conserved at P3 if we set

∆ = ` + d − 2. On the other hand, conservation of O−(P3) implies that the three-point

functions (2.7) vanish for ` > 2. For ` = 2 conservation follows from ∆ = 3. This is

consistent with the fact that it is possible to couple the currents to the stress tensor with

a parity odd three-point function in theories that violate parity. For ` = 0, one should

impose ∂2O = 0 when ∆ = 1
2 . This implies that the three-point function 〈JJO〉 must

vanish for both ± parity.

2.1.1 Special case: 〈JJTµν〉

Let us study in detail the three point function of two identical conserved currents and

the energy momentum tensor. As discussed in the previous section there are only two

independent structures. The three-point function is given by (2.4) with ` = 2, ∆ = d and

λ
(1)
JJT =

(
2− 3d− 4d3γ

)
C , λ

(2)
JJT = (1− 2d− 4d2γ)C , (2.9)

λ
(3)
JJT = −2d(1 + 4γ)C , λ

(4)
JJT = 2

(
1

d− 2
− 4γd

)
C , (2.10)

where

C =
d(d− 2)2

2(d− 1)2Sd
CJ , (2.11)

is related via the conformal Ward identity to the current two-point function

〈J(P1, Z1)J(P2, Z2)〉 = CJ
H12

(P12)d−1
. (2.12)

The symbol Sd = 2π
d
2 /Γ(d2) is the volume of a (d − 1)-dimensional sphere and γ is an

independent parameter that appears in the OPE (1.3). The parameter γ controls the

– 6 –
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anisotropy of the energy correlator of a state created by the current [34, 36, 37]. Positivity

of this energy correlator implies the bounds

− 1

4d
≤ γ ≤ 1

4d(d− 2)
, (2.13)

which are saturated by free scalars and free fermions, respectively. This bound was recently

proven relying only on unitarity and OPE convergence [38]. The parameter γ also has a

nice physical meaning from the perspective of the dual AdS description. The current

three-point function can be computed from the bulk action

SAdS = CJ

∫
dd+1x

[
−1

4
FµνF

µν + γL2WµντρFµνFτρ

]
(2.14)

where L is the AdS radius, W is the Weyl tensor and F is the field strength of the bulk

gauge field dual to the current. In this form, it is clear that γ does not contribute to the

two-point function of the current in the vacuum.

In the conformal bootstrap analysis of the four-point function 〈JJJJ〉 we normalize

all operators to have unit two-point function. Recall that the stress tensor has a natural

normalization due to the Ward identities,

〈T (P1, Z1)T (P2, Z2)〉 = CT
H2

12

(P12)d
. (2.15)

That means that we should multiply the OPE coefficients (2.10) by

1

CJ
√
CT

. (2.16)

This shows that CJ is not accessible in the bootstrap analysis of 〈JJJJ〉. On the other

hand, CT does affect the OPE coefficients of normalized operators. For comparison, we

recall the values of CT for free theories [41]. Each real scalar field contributes

CT =
1

S2
d

d

d− 1
. (2.17)

Each Dirac field contributes

CT =
1

S2
d

d

2
2[ d2 ] , (2.18)

where 2[ d2 ] is the dimension of the Dirac γ-matrices in d spacetime dimensions. Notice that

in d = 3, a complex scalar contributes the same as a Dirac fermion

C free
T =

3

S2
3

=
3

16π2
. (2.19)

This is the minimal matter content of free theories with a U(1) global symmetry.

– 7 –
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2.2 Four point function 〈JJJJ〉

The general structure of the four point function is5

〈J(P1, Z1) . . . J(P4, Z4)〉 =
v1−d

(P12 P34)d−1

∑
s

fs(u, v)Qs({Pi;Zi}) , (2.20)

where

u =
P12P34

P13P24
, v =

P14P23

P13P24
, (2.21)

are the usual conformal invariant cross ratios and Qs encode tensor structures in the

embedding formalism. In table 1 we list all the parity even structures Qs contributing to

the four point function. In general dimension they are 43. As explained below, when d = 3

they reduce to 41. In addition, since we are considering equal conserved currents, there are

two permutations which leave unchanged the conformal invariants u, v: 1234 → 2143 and

1234 → 3412. The action of these permutations simply sends one structure into another.

The final effect is to reduce the number of independent functions fs(u, v) that appear

in (2.20) to 19 (17 for d = 3). The transformation properties of each tensor structure,

together with a list of the independent ones is reported in table 1.

2.2.1 Crossing symmetry

The crossing symmetry 1234 → 2134 sends the cross ratios (u, v) into
(
u
v ,

1
v

)
. As usual in

the conformal bootstrap analysis, this crossing symmetry follows automatically from the

conformal block expansion in the (12)(34) channel associated to the three-point functions

studied in section 2.1.

On the other hand, the crossing symmetry 1234→ 3214 is not satisfied by the confor-

mal blocks in the (12)(34) channel and gives rise to non-trivial constraints on the operator

spectrum and OPE coefficients. The crossing symmetry 1234 → 3214 leads to6

fs(u, v) =
∑
s′

[ C13 ]ss′ fs′(v, u) , (2.22)

where the matrix [ C13 ] is a permutation, which can be decomposed as follows

[ C13 ] ≡ [ M ]−1 [ P ] [ M ] (2.23)

where [ P ] is a diagonal matrix with diagonal entries equal to ±1. This leads to a simpler

form of the crossing equations. Introducing new functions f̃s(u, v) =
∑

s′ [ M ]ss′fs′(u, v)

(see appendix D for the precise definitions), the crossing equations simplify to

f̃s(u, v) = −f̃s(v, u) , s = 1, 2, . . . , 7 and s = 19 ,

f̃s(u, v) = f̃s(v, u) , s = 8, 9, . . . , 18 . (2.24)

In other words, we have 8 odd and 11 even functions under the crossing symmetry u↔ v.

We will see that the functions f̃18 and f̃19 will disappear in 3 dimensions, hence the choice

to put them at the end of the list.

5The factor of v1−d is convenient to make the crossing equations simpler.
6These equations are derived for

√
u+
√
v 6= 1 where all the 43 tensor structures are linearly independent.

By continuity, the equations also hold for any u and v. This is indeed the case for the free theory examples

discussed in appendix A.
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2.2.2 Conservation

In the numerical conformal bootstrap approach one writes the four point function as a sum

of conformal blocks and imposes (a truncated version) of the 19 crossing equations (2.24).

Fortunately, we can use conservation of the external currents to reduce this large number

of crossing equations. Imposing conservation directly on the four point function produces

a set of differential constraints that the functions f̃s(u, v) must satisfy. The four point

function of three vectors and one scalar operator contains 14 independent tensor structures

(in any dimension). As a consequence, each conservation condition will produce 14 first

order differential equations of the form

19∑
s=1

[
[K(u, v)]isf̃s(u, v) + [Ku(u, v)]is∂uf̃s(u, v) + [Kv(u, v)]is∂vf̃s(u, v)

]
= 0 , (2.25)

where i = 1, . . . , 14. The first important observation is that the conformal block de-

composition7 automatically satisfies these equations.8 The second observation is that the

equations (2.25) are crossing symmetric. In other words, applying the crossing symmetry

u↔ v to (2.25) and using (2.24) we obtain an equivalent set of differential equations. This

means that if we use these differential equations to determine the functions f̃s evolving

from a crossing symmetric “initial condition”, then crossing symmetry is guaranteed ev-

erywhere. Therefore, if we start from a conformal block decomposition, it is sufficient to

impose crossing symmetry on a minimal set of data about the functions f̃s that determines

these functions everywhere via the differential equations (2.25).

To make this idea more precise it is convenient to introduce new coordinates

t = u− v , y = u+ v − 1

2
, (2.26)

which are represented in figure 3. We will think of the t as time and y as space. Crossing

symmetry (2.24) means that 8 functions f̃ are odd under time-reversal, while the remaining

11 functions are even. The conservation equations (2.25) become the following first order

time evolution equations

19∑
s=1

[
[K]isf̃s + [Ky]is∂yf̃s + [Kt]is∂tf̃s

]
= 0, i = 1, . . . , 14 , (2.27)

where [Kt] = [Ku]− [Kv] and [Ky] = [Ku] + [Kv] are 14× 19 matrices.

One can check that the matrix [Kt] has rank 12.9 That means that we can evolve 12

functions f̃s starting from an initial time slice, which we choose to be t = 0. Since the

functions f̃s are either even or odd under t→ −t, crossing symmetric boundary conditions

are obtained by simply imposing the odd ones to vanish on the line t = 0, while the even

ones are left unconstrained. One can explicitly check that the (7 dimensional) Kernel of

7See for instance (2.54) in the next section.
8In fact, we used this to cross check the computation of the conformal blocks.
9In fact, this is true for a generic choice of time coordinate around the point u = v = 1/4. The exception

being the coordinate y. In this special case, the rank of [Ky] is 10.
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u

v

y

t

1
4

1
4

Figure 3. Change of coordinates from the usual cross ratio u and v to the new ones y = u+v−1/2

and t = u − v. The conservation equation can be used to evolve 12 functions (6 even and 6 odd

under the action of [ P ]) from the line t = 0 to the full plane. We can further evolve 2 functions (1

even and 1 odd) from the point (t, y) = (0, 0), to the line t = 0.

[Kt] decomposes in two orthogonal subspaces (of dimension 5 and 2) associated to the

eigenvalues ±1 of the crossing symmetry matrix [ P ] defined in (2.23). This means that we

can evolve 8 − 2 = 6 odd functions and 11 − 5 = 6 even functions. One possible choice

is f̃1, . . . , f̃6 and f̃8, f̃9, f̃10, f̃11, f̃12, f̃14. Hence, by using 12 out of the 14 conservation

equations we reduced to the set of crossing symmetry conditions:

f̃s(u, u) = 0 for s = 1, 2, 3, 4, 5, 6

f̃s(u, v) = −f̃s(v, u) for s = 7, 19 (2.28)

f̃s(u, v) = f̃s(v, u) for s = 13, 15, 16, 17, 18

Note that the boundary condition on the line doesn’t constrain the even functions: any

initial condition f̃s, s = 8, 9, 10, 11, 12, 14 will be automatically evolved into a crossing

symmetric function.

In fact, this is still not the minimal set of data where we can impose crossing symmetry.

We will use the two remaining conservation equations to reduce further the set of crossing

symmetry equations. The remaining conservation equations are not evolution equations.

They are two constraint equations on the initial data at t = 0. One can check that at t = 0,

the first constraint equation only involves odd functions and the second only involves even

functions. More precisely, the first constraint equation can be written as

∂yf̃3(0, y) =
∑
s 6=3

As(y)∂yf̃s(0, y) +
∑
s

Bs(y)f̃s(0, y) , (2.29)

where the sum runs over the odd functions (s = 1, 2, . . . , 7 and s = 19) and the coefficients

As(y) and Bs(y) are regular at the crossing symmetric point y = 0. This means that
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it is sufficient to impose f̃3(t = 0, y = 0) = 0 because this equation will ensure that

f̃3(t = 0, y) = 0 for any y. Since the second constraint equation only involves even functions,

which are unconstrained at the initial surface t = 0 it is not useful to further reduce the

crossing symmetry constraints.

In the end the minimal set of crossing symmetry conditions is:

f̃3(1/4, 1/4) = 0 (2.30)

f̃s(u, u) = 0 for s = 1, 2, 4, 5, 6 (2.31)

f̃s(u, v) = −f̃s(v, u) for s = 7, 19 (2.32)

f̃s(u, v) = f̃s(v, u) for s = 13, 15, 16, 17, 18 (2.33)

where we went back to the original coordinates u and v. In agreement with [42] in general

d there are 7 equations in the “bulk”; additionally there are five constraints on the line

and one at a crossing-symmetric point. We remark that our analysis of the conservation

equations is valid only in a local neighbourhood of the crossing symmetric point u =

v = 1/4. However, this is sufficient for the numerical bootstrap algorithm where we only

consider a finite number of derivatives of the crossing equations at u = v = 1/4.

2.2.3 Three dimensions

In three dimensions not all 43 tensor structures of the four point function are linearly

independent. The easiest way to see this is to consider the embedding space tensor

WA1...A6
ij = Z

[A1

i ZA2
j PA3

1 PA4
2 PA5

3 P
A6]
4 , (2.34)

which vanishes identically in Rd+1,1 for d = 3. On the other hand, for any d, the contraction

W(12)(34) = ηA1B1 . . . ηA6B6W
A1...A6
12 WB1...B6

34 can be written as a linear combination of the 43

tensor structures Qs that form a basis for four-point functions of vector primary operators.

Therefore, in d = 3 this gives rise to a linear relation between the 43 tensor structures Qs.

Using the 3 invariants W(12)(34), W(13)(24) and W(14)(23) we obtain 2 independent relations

between the structures Qs in d = 3.10 These constraints can be found in appendix F. We

use these to express the structures Q31 and Q40 in terms of the other Qs. According to

the definitions in appendix D, this corresponds to the functions f̃18 and f̃19. The entire

argument about the conservation equations proceeds in the same way just dropping these

two functions.

In the end the minimal set of crossing symmetry conditions in d = 3 is as follows. It

includes five equations in the “bulk” [42], five constraints on a line, and one at a point:

f̃7(u, v) = −f̃7(v, u) (2.35)

f̃s(u, v) = f̃s(v, u) for s = 13, 15, 16, 17 (2.36)

f̃s(u, u) = 0 for s = 1, 2, 4, 5, 6 (2.37)

f̃3(1/4, 1/4) = 0 (2.38)

10One can check the identity W(12)(34) +W(13)(24) −W(14)(23) = 0 for any d.
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OA

O

∆ = ∆?
A ∆A

`A

`

Figure 4. The picture represents the conformal multiplet HO of an operator O with dimension

∆ and spin `. The arrows represent the descendant operators and the horizontal and vertical axis

are labeled respectively by the conformal dimensions and the spin. When the primary operator O
has dimension ∆ = ∆?

A, its descendant OA (with dimension ∆A = ∆?
A + nA and spin `A) becomes

primary. The state OA and all its descendants form a conformal multiplet of null states HOA
.

2.3 Conformal blocks

In this work we computed the conformal blocks (CB) for four external currents using the

recurrence relation of [43–45]. The existence of such recurrence relation comes from the

study of the analytic properties of the CBs as functions of the conformal dimension ∆

of the exchanged operator O. To see this, it is convenient to rewrite the CBs in radial

quantization as follows

∑
p,q

c
(p)
12Oc

(q)
34OG

(p,q)
O =

∑
|α〉∈HO

〈0|O1O2|α〉〈α|O3O4|0〉
〈α|α〉

, (2.39)

where HO is the conformal multiplet associated to the primary operator O. Tuning the

conformal dimension ∆ to some special values ∆?
A, it happens that one of the descendant

|OA〉 (with dimension ∆A = ∆?
A +nA and spin `A) becomes primary. Namely Kµ|OA〉 = 0

where Kµ is the generator of special conformal transformations. When this happens, |OA〉
becomes null, and so do all its descendants. Thus the representation HO becomes reducible

and it contains an irreducible sub representation HOA of null states as shown schematically

in figure 4.
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From formula (2.39) it is clear that the conformal blocks G
(p,q)
O have poles11 at ∆ = ∆?

A

because of the contribution of all the null states in HOA . All these contributions together

form a conformal block associated to the exchange of OA. Accordingly, the residue at the

pole ∆ = ∆?
A is proportional to the conformal block GOA ,

G
(p,q)
O =

∑
p′,q′

(RA)pqp′q′

∆−∆?
A

G
(p′,q′)
OA +O

(
(∆−∆?

A)0
)
, (2.40)

where the (RA)pqp′q′ are coefficients which depend on the representation of the operator O.

The previous discussion explains the pole structure of the conformal blocks. To com-

plete the recurrence relation we also need to obtain the asymptotic of conformal blocks

when ∆ → ∞. To this end it is convenient to write the conformal blocks in the basis of

four-point function tensor structures as we did in (2.20),

G
(p,q)
O ({Pi;Zi}) =

(
P24
P14

)∆12
2
(
P14
P13

)∆34
2

(P12)
∆1+∆2

2 (P34)
∆3+∆4

2

∑
s

g
(p,q)
O,s (r, η)Qs({Pi;Zi}) . (2.41)

Here r and η ≡ cos θ are the radial coordinates of [46], defined by

reiθ =
z

(1 +
√

1− z)2
, re−iθ =

z

(1 +
√

1− z)2
, (2.42)

where u = zz and v = (1 − z)(1 − z). The conformal blocks are not regular at ∆ → ∞
because of the essential singularity gO(r, η) ∝ (4r)∆, however we can factor it out and

define a new function hO which is well behaved

h
(p,q)
O,s (r, η) ≡ (4r)−∆g

(p,q)
O,s (r, η) −→

∆→∞
h

(p,q)
∞O,s(r, η) . (2.43)

So far the discussion was schematic and valid for any conformal block. We now want

to give more details for the case of four external vectors in three dimensions. We shall

construct the conformal blocks for generic external vector operators and only at the end

we will specialize to the particular case of equal conserved currents. The goal is to find the

conformal blocks

h
(p,q)
∆`+,s(r, η) p, q = 1 . . . 5 , (2.44)

h
(p,q)
∆`−,s(r, η) p, q = 1 . . . 4 , (2.45)

where12 s = 1, . . . 43. We obtain a set of recurrence relations for the conformal blocks

11In [44] it was shown that there can exist only simple poles in odd dimensions. In even dimensions higher

order poles can appear. However the CBs for even dimensions can be obtained by analytic continuation

from the odd dimensional case.
12The actual independent structures are 41, but we find it more convenient to work in the 43−dimensional

space and project out the final result into the 41−dimensional space.
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which are diagonal in the label s but which couple the labels p, q,

h
(p,q)
∆`+,s(r, η) = h

(p,q)
∞l+,s(r, η) +

5∑
p′,q′=1

∑
A∈A+

(R+A)pq,p′q′ (4 r)nA

∆−∆?
A

h
(p′,q′)
∆A`A+,s(r, η)

+
4∑

p′,q′=1

∑
A∈A−

(R+A)pq,p′q′ (4 r)nA

∆−∆?
A

h
(p′,q′)
∆A`A−,s(r, η) , (2.46)

h
(p,q)
∆`−,s(r, η) = h

(p,q)
∞l−,s(r, η) +

4∑
p′,q′=1

∑
A∈A+

(R−A)pq,p′q′ (4 r)nA

∆−∆?
A

h
(p′,q′)
∆A`A−,s(r, η)

+
5∑

p′,q′=1

∑
A∈A−

(R−A)pq,p′q′ (4 r)nA

∆−∆?
A

h
(p′,q′)
∆A`A+,s(r, η) . (2.47)

Here the label A stands for (T, n) where T is one of the four types I, II, III, IV and n is an

integer belonging to the set ST which can be finite or infinite depending on T . In particular

we have ∑
A∈A+

≡
∑

T=I,II,III

∑
n∈ST

,
∑
A∈A−

≡
∑
T=IV

∑
n∈ST

. (2.48)

We present here a table which specifies the labels A, ST , ∆?
A, nA, `A.

A ST ∆?
A nA `A

I, n [1,∞) 1− `− n n `+ n

II, n [1, `] 2 + `− n n `− n

III, n [1,∞) 3
2 − n 2n `

IV, n [1,min(2, `)] 2− n 2n− 1 `

(2.49)

Further details about the table (2.49) can be found in the appendix E. The conformal

blocks at large dimension h∞ are computed exactly by solving the Casimir equation at

leading order in the large ∆ expansion as explained in appendix E.4. The coefficients R

can be conveniently written in terms of three contributions

(R±A)pqp′q′ = (M
(L)
±A)pp′ QA (M

(R)
±A )qq′ , (2.50)

where the coefficient Q and the matrix M arise because of the different normalization of

the two and three point functions involving the primary descendants OA. Schematically,

〈OA|OA〉−1 =
QA

∆−∆?
A

〈O|O〉−1 +O
(
(∆−∆?

A)0
)
, (2.51)

〈O1O2|OA〉(p) =
∑
p′

(M
(L)
A )pp′ 〈O1O2|O〉(p

′) . (2.52)

In appendix E.3 we further detail how to obtain the coefficients R.

Notice that with formulas (2.46)–(2.47) one can obtain all the blocks correspondent to

four generic external vector operators. In this work however we only need the blocks for

– 14 –



J
H
E
P
0
5
(
2
0
1
9
)
0
9
8

conserved and equal currents. To obtain them we contract the labels p, q of the blocks with

some matrices m± which come from the conservation of the 3-point function of 〈JJO±〉
explained in section 2.1. We further contract the index s with a matrix [ M ] which simplifies

the crossing equation of 4 equal vector operators as explained in section 2.2,

g̃
(p̃,q̃)
∆`±,s̃(r, η) ≡ v1−d

∑
s

[ M ]s̃s
∑
pq

(m±)p̃p (m±)q̃q g
(p,q)
∆`±,s(r, η) . (2.53)

Here the matrix m+ is 2×5 while the matrix m− is 1×4, therefore p̃, q̃ = 1, 2 for the parity

even case and p̃, q̃ = 1 for the parity odd case. In appendix E.5 we give the precise form

of such matrices. The matrix [ M ] is 19 × 43 and it is defined in appendix D. It is worth

to stress that since the equations (2.46)–(2.47) are diagonal in s, it is possible to compute

only some structures, without having to compute the others. In the following sections we

will drop the tilde symbol above the labels p, q, s.

Using the OPE channel (12)(34), one obtains the following conformal block expansion13

f̃s(u, v) =
∑
O

∑
p,q

λ̃
(p)
JJOλ̃

(q)
JJO g̃

(p,q)
O,s (u, v) , (2.54)

where the functions f̃ were defined in section 2.2.2. For further details we refer the reader

to appendix E.

2.4 Bootstrap equations

Plugging the conformal blocks decomposition (2.54) into the three dimensional crossing

equations (2.35) we explicitly obtain 11 conditions which can be nicely written in vector

notation as

0 =
∑
O+

`≥2,even

(
λ̃

(1)
JJO+ λ̃

(2)
JJO+

)
~V∆`+

(
λ̃

(1)
JJO+

λ̃
(2)
JJO+

)
+
∑
O+,`=0

(
λ̃

(1)
JJO+

)2
~V∆++

∑
O−,`

(
λ̃JJO−

)2
~V∆`− .

(2.55)

Here λ̃
(i)
JJO+ , i = 1, 2 are the OPE coefficients defined in section E, while λ̃JJO− = λ̃

(1)
JJO− for

scalars and λ̃JJO− = λ̃
(2)
JJO− for higher `. In particular, for the stress energy tensor we have:

λ̃
(1)
JJT =

√
C free
T

CT

√
3(1− 12γ)

8
, λ̃

(2)
JJT =

√
C free
T

CT

√
3(5− 12γ)

4
. (2.56)

Finally, ~V∆+, ~V∆`− are 11-dimensional vectors and ~V∆`+ is a 11-vector of 2× 2 matrices.

Introducing the (anti)symmetric combination of conformal blocks defined in (2.53),

F̃
(p,q)
∆`±,s(u, v) = g̃

(p,q)
∆`±,s(u, v)− g̃(p,q)

∆`±,s(v, u) ,

H̃
(p,q)
∆`±,s(u, v) = g̃

(p,q)
∆`±,s(u, v) + g̃

(p,q)
∆`±,s(v, u) , (2.57)

13In appendix E, we compute the conformal blocks in a three-point function basis which is different from

the one of section 2.1, therefore the coefficients λ̃
(p)
JJO are just a linear transformation of the coefficients λ

(p)
JJO.
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we have

~V∆+ ≡



H̃∆0+,3(1
4 ,

1
4)

H̃∆0+,1(u, u)

H̃∆0+,2(u, u)

H̃∆0+,4(u, u)

H̃∆0+,5(u, u)

H̃∆0+,6(u, u)

H̃∆0+,7(u, v)

F̃∆0+,13(u, v)

F̃∆0+,15(u, v)

F̃∆0+,16(u, v)

F̃∆0+,17(u, v)



, ~V∆`− ≡



H̃∆`−,3(1
4 ,

1
4)

H̃∆`−,1(u, u)

H̃∆`−,2(u, u)

H̃∆`−,4(u, u)

H̃∆`−,5(u, u)

H̃∆`−,6(u, u)

H̃∆`−,7(u, v)

F̃∆`−,13(u, v)

F̃∆`−,15(u, v)

F̃∆`−,16(u, v)

F̃∆`−,17(u, v)



, ~V∆`+ ≡



s[H̃
(p,q)
∆`+,3(1

4 ,
1
4)]

s[H̃
(p,q)
∆`+,1(u, u)]

s[H̃
(p,q)
∆`+,2(u, u)]

s[H̃
(p,q)
∆`+,4(u, u)]

s[H̃
(p,q)
∆`+,5(u, u)]

s[H̃
(p,q)
∆`+,6(u, u)]

s[H̃
(p,q)
∆`+,7(u, v)]

s[F̃
(p,q)
∆`+,13(u, v)]

s[F̃
(p,q)
∆`+,15(u, v)]

s[F̃
(p,q)
∆`+,16(u, v)]

s[F̃
(p,q)
∆`+,17(u, v)]



. (2.58)

For any 2 × 2 matrix M , s[M ] ≡ (M + MT )/2 selects its symmetric part. In the above

expression we omitted the (p, q) upper indices when only one conserved conformal block is

allowed, namely for parity even scalars and parity odd operators.

2.5 Setting up the semi-definite programming

The feasibility of the above set of equations can be constrained using semidefinite program-

ming (SDP). We refer to [12] for details. To rule out a hypothetical CFT spectrum, we

must find a linear functional α such that

α[V0,+] ≥ 0, for the identity operator,

α[~V∆+] ≥ 0, for all scalar operators,

α[~V∆`+] � 0, for all parity even operators in the spectrum with ` even, (2.59)

α[~V∆`−] ≥ 0, for all parity odd operators in the spectrum with any ` 6= 1.

Here, the notation “� 0” means “is positive semidefinite”. Since the 11 crossing equations

have a different dependence on the conformal invariants u, v, it’s worth spelling out the

explicit form of the linear functional α we consider in this work. Let us remind the reader

the definition of the usual coordinates z, z:

u = zz v = (1− z)(1− z) (2.60)

Then, we define the family of linear functionals α acting on an 11-dimensional vector,

whose entries are functions of z, z

α[~V ] = α1V1

(
1

2
,

1

2

)
+

6∑
i=2

Λ/2∑
m=0

αi,m∂
2m
z Vi(z, 1− z)

∣∣∣∣
z= 1

2

+

11∑
i=7

∑
m+n<Λ

αi,mn∂
m
z ∂

n
z Vi(z, z)

∣∣∣∣
z=z= 1

2

(2.61)
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Although we didn’t write it explicitly, the linear functionals are parametrized by the in-

teger Λ, which indicates the order of derivatives considered. Notice that the action of the

functional on a vector of matrices results in a matrix, while its action on a vector of scalar

functions produces a number. The existence of such a functional for a hypothetical CFT

spectrum implies the inconsistency of this spectrum with crossing symmetry. In addition

to any explicit assumptions placed on the allowed values of ∆, we impose that all operators

must satisfy the unitarity bound

∆ ≥

{
`+ d− 2 ` > 0
d−2

2 ` = 0
, (2.62)

where d = 3 is the spacetime dimension.

The more information about the spectrum we use in (2.59), the easier it is to find a

functional α that excludes the putative CFT. In this work we mainly focus on assumptions

about the minimal values of operator dimensions in given sectors and the value of parameter

γ defined in section 2.1.1.

We will review the exact SDP problem to solve case by case in the next section.

3 Results

In this section we present the results of our numerical investigations. In what follows ∆±`
will denote the dimension of the first parity even/odd neutral spin ` operator. We will also

use (∆±` )′ to denote the second operator in the same sector.

3.1 Bounds on operator dimensions

We begin our journey in the space of CFTs with global symmetries by inspecting the

constraints imposed by crossing symmetry on the spectrum of scalar operators. As reviewed

in section 2.1, the OPE J × J contains both parity even and parity odd scalars. The

first issue we want to address is how large can the dimensions of these operators be.

To answer this question we solved the semi-definite problem (2.59) with the assumption

that all scalar parity-even/odd operators have dimension larger than ∆±0 correspondingly.

The allowed region is shown in figure 5. The very first surprising result is that crossing

symmetry is able to constrain the plane ∆+
0 ,∆

−
0 into a closed region, meaning that all

CFTs with global symmetry must have parity even and parity odd scalar operators. This

is completely universal: this result is only based on unitarity and associativity of the OPE.

To our knowledge this is the first completely general result for 3D unitary CFT with global

symmetry.14

Let us now describe the shape of figure 5. If we regard the boundary of the allowed

region as a function (∆−0 )max of ∆+
0 , then it can only be a monotonic non-increasing

function.15 Hence we expect the allowed region to be shaped by existing CFTs with the

14All previous results in the bootstrap literature assumed at least the presence of a scalar or fermion

operator with a given fixed dimension; theories with extended supersymmetry represent an exception:

scalars are contained in certain protected super-multiplets.
15If we can not exclude a theory with ∆+

0 = a and ∆−0 = b then we cannot exclude theories with ∆+
0 ≤ a

and ∆−0 ≤ b.
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Allowed region in the parity even/odd scalar sector (Λ=11,15,19,23)

● Free Boson
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Figure 5. Allowed region consistent with crossing symmetry assuming that all the parity-even

scalars appearing in the OPE J ×J have dimension larger than ∆+
0 and all parity-odd scalars have

dimensions larger than ∆−0 . The orange shaded region is allowed. Marks correspond to known

CFTs: free complex boson ((∆+
0 ,∆

−
0 ) = (1, 7)), free Dirac fermion ((∆+

0 ,∆
−
0 ) = (4, 2)) and GFVF

((∆+
0 ,∆

−
0 ) = (4, 5)). The red vertical line corresponds to the approximate dimension of the lightest

singlet operator in the interacting O(2) model: ∆+
0 = 1.5117. The blue shading shows the region

excluded by bootstrapping the four point function of identical parity odd scalars with the dimension

∆−0 . See text for more details. The best bound has been computed at Λ = 23 while gray lines

correspond to Λ = 11, 15, 19.

largest gap in the scalar sector. There are three solvable models that we can place in the

∆+
0 ,∆

−
0 plane: a free massless complex scalar field φ, a free massless 3d Dirac fermion ψ

and a Generalized Free Vector Field (GFVF). In the free scalar field case, the U(1) current

OPE schematically reads:

Jµ × Jν ∼ φ†φ︸︷︷︸
parity-even

+ εαβρφ†∂αφ∂
σ∂βφ

†∂σ∂ρφ︸ ︷︷ ︸
parity-odd

+ . . . , ∆+
0 = 1, ∆−0 = 7 . (3.1)

In the free fermion case, we find

Jµ × Jν ∼
(
ψψ
)2︸ ︷︷ ︸

parity-even

+ ψψ︸︷︷︸
parity-odd

+ . . . , ∆+
0 = 4, ∆−0 = 2 . (3.2)

Finally, the GFVF is equivalent to a free photon in AdS4. From the three dimensional

point of view it corresponds to a conserved current with a standard 2 point function,

and all higher point correlators satisfying Wick theorem. In this case the lightest scalar

operators are given by

Jµ × Jν ∼ JµJ
µ︸ ︷︷ ︸

parity-even

+ εµνρJµ∂νJρ︸ ︷︷ ︸
parity-odd

+ . . . , ∆+
0 = 4, ∆−0 = 5 . (3.3)
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Notice that the GFVF is technically a so called dead-end CFT, since it doesn’t contain

relevant scalar operators. On the other hand it doesn’t contain a local energy momentum

tensor either, since it corresponds to a U(1) gauge theory on a fixed AdS background

(infinite central charge CT and no dynamical gravity).

These solvable CFTs are marked in figure 5 as described in the caption. While the

boundary of the allowed region is close to the GFVF point, it is quite far from the point of

free boson theory. Instead it starts at higher values ∆−0 and after a small plateau it displays

a kink for values of ∆+
0 seemingly in correspondence to the interacting O(2) model. To our

knowledge the dimension of the leading parity odd scalar in this model is not known, neither

in the ε-expansion nor in the 1/N expansion. Accordingly, we conjecture that the lightest

parity odd operator in (3.1) in critical O(2) theory acquires a positive anomalous dimension.

One additional feature of figure 5 is the region extending to values ∆+
0 larger than

4 but requiring at the same time parity odd scalars with small dimension. Let us call

φ− the parity odd scalar operator with smallest dimension. The OPE of φ− with itself

would contain a parity even scalar operator16 with dimension ∆+
0 . Then, by bootstrapping

the four point function 〈φ−φ−φ−φ−〉 we can obtain an independent bound of the form

∆+
0 ≤ f(∆−0 ), for some function f . This bounds has been already obtained in past works

focused on the three dimensional Ising model [11, 12, 17]. For this work we extended these

results to larger values of ∆−0 . The blue shading in figure 5 represents the disallowed region.

We expect that the use of mixed correlators of scalars and conserved currents will shed

light on the fate of this region.

The existence of a CFTs with large gaps in the scalar sector, namely the GFVF, shapes

the bound shown in figure 5 for 1.6 . ∆+
0 . 4 and could potentially hide other theories

in the bulk of the allowed region. In order to better probe this region we explored the

constraints on theories with a finite value of the central charge. To do that, we modified the

conditions (2.59) and looked for a linear functional that satisfies the following requirements:

α

[
~V0+ +

C free
T

Cmax
T

~λT (γ)T · ~V3 2 + · ~λT (γ)

]
= 1, (normalization)

~λT (γ) ≡
√

3

8

(
1− 12γ

10− 24γ

)
,

α[~V∆+] ≥ 0, ∆ ≥ ∆+
0 , ` = 0

α[~V∆`+] � 0, ∆ ≥ `+ 1, ` ≥ 2 even

α[~V∆`−] ≥ 0, ∆ ≥ ∆−0 , ` = 0

α[~V∆`−] ≥ 0, ∆ ≥ `+ 1, ` ≥ 2

(3.4)

Compared to (2.59) we have modified the normalization condition in order to input a

specific value of γ and we have used (2.56). It is straightforward to show that the bound

obtained with a functional satisfying (3.4) only applies to CFTs with CT ≤ Cmax
T .

16Unless there is symmetry argument preventing this from happening, this operator must coincide with

the smallest dimension parity even scalar operator entering the J × J OPE.

– 19 –



J
H
E
P
0
5
(
2
0
1
9
)
0
9
8

●●

■■

◆◆

1 2 3 4 5
Δ0
+

2

4

6

8

10
Δ0
-

γ=-1/12, CT≤ CT
free (Λ=19)

●●

■■

◆◆

1 2 3 4 5
Δ0
+

2

4

6

8

10
Δ0
-

γ=-1/24, CT≤ CT
free (Λ=19)

●●

■■

◆◆

1 2 3 4 5
Δ0
+

2

4

6

8

10
Δ0
-

γ=0, CT≤ CT
free (Λ=19)

●●

■■

◆◆

1 2 3 4 5
Δ0
+

2

4

6

8

10
Δ0
-

γ=1/48, CT≤ CT
free (Λ=19)

●●

■■

◆◆

1 2 3 4 5
Δ0
+

2

4

6

8

10
Δ0
-

γ=1/24, CT≤ CT
free (Λ=19)

●●

■■

◆◆

1 2 3 4 5
Δ0
+

2

4

6

8

10
Δ0
-

γ=1/16, CT≤ CT
free (Λ=19)

●●

■■

◆◆

1 2 3 4 5
Δ0
+

2

4

6

8

10
Δ0
-

γ=1/12, CT≤ CT
free (Λ=19)

●●

■■

◆◆

1 2 3 4 5
Δ0
+

2

4

6

8

10
Δ0
-

Summary: CT≤ CT
free (Λ=19)

Figure 6. Allowed region assuming that all parity-even scalars appearing in the OPE J × J have

dimension larger than ∆+
0 and all parity-odd scalars have dimensions larger than ∆−0 . We also

impose small central charge CT ≤ Cfree
T and fix γ to specific values within the range 12|γ| ≤ 1. The

bound has been computed at Λ = 19. See figure 5 for marks legend.

In figure 6, we again show the allowed region in the plane (∆+
0 ,∆

−
0 ) but requiring small

central charge CT ≤ Cmax
T = C free

T and for several specific values of the parameter γ defined

in (1.3). As expected, this excludes the GFVF which effectively has infinite central charge.
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Figure 7. Three dimensional view of figure 6.

More interestingly, one can observe that varying the parameter γ the bounds smoothly

interpolates two very different regimes. For γ ' 1/12, the free fermion theory drives the

shape of the bound, while as we decrease γ, the allowed region is entirely concentrated at

smaller ∆+
0 but large ∆−0 . Notice also that the maximum of ∆−0 is not reached at the free

boson theory but at slightly larger values of γ and ∆+
0 . These results are also shown as a

3D plot in figure 7.

In figure 8 we show the upper bound on the dimension of the second lightest parity even

scalar operator (∆+
0 )′ as a function of ∆+

0 . We performed the analysis with and without

forbidding relevant scalar parity odd operators. Next, in figure 9 we show the bound on

the dimension of the first non conserved spin-2 parity even operator (∆+
2 )′. Notice that

∆+
2 = 3 because the dimension of the stress tensor is fixed.17 Interestingly, both bounds

display a kink structure in the proximity of the location of the O(2) model. On the other

hand both the maximal allowed values of (∆+
0 )′ and (∆+

2 )′ at the kink are much larger

than the ones of the free O(2) model. It would be surprising if the interacting critical

O(2) model displayed such large anomalous dimensions. At this stage, it is unclear if the

kink feature is related to the O(2) model. It would be interesting to include correlations

functions of charged operators in our bootstrap study to further explore this region. We

leave this mixed correlator analysis for the future. Finally, notice that in figure 9 the region

∆+
0 & 4.52 is excluded if we also take into account the constraints coming from the four

point function of the lightest parity-odd scalar appearing in J × J (see figure 5).

17However, we do not exclude solutions where the OPE coefficient of the stress tensor vanishes (CT =∞).
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+)' as a function of Δ0
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-≥1/2, 3; Λ=19)
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■ O(2)

Figure 8. Upper bound on (∆+
0 )′, the dimension of the second lowest parity-even scalar operator

appearing in the OPE J×J when we assume that the theory contains a scalar parity-even operator

with dimension ∆+
0 . The red dot corresponds to the free boson ((∆+

0 , (∆
+
0 )′) = (1, 4)), and green

dot corresponds to interacting O(2) theory, while points for the free fermion and GFVF lie outside

the range of the plot. Lower curve assumes theory has no relevant scalar parity-odd operators. The

bounds have been computed with Λ = 19.

3.2 Central charge bounds

A well established feature of the conformal bootstrap is the possibility to place upper

bounds on OPE coefficients, or equivalently a lower bound on CT [5, 7, 9]. In this section

we investigate the minimal value of the central charge that a CFT with a continuous local

global symmetry is allowed to have, as a function of the parameter γ. To find such a bound,

we search for a functional α satisfying the properties:

α[~λT (γ)T · ~V3 2 + · ~λT (γ)] = 1, (normalization)

~λT (γ) ≡
√

3

8

(
1− 12γ

10− 24γ

)
,

α[~V∆+] � 0, ∆ ≥ 1/2, ` = 0

α[~V∆`+] � 0, ∆ ≥ (∆+
2 )′, ` = 2

α[~V∆`+] � 0, ∆ ≥ `+ 1, ` > 2 even

α[~V∆`−] ≥ 0, ∆ ≥ 1/2, ` = 0

α[~V∆`−] ≥ 0, ∆ ≥ `+ 1, ` ≥ 2

(3.5)

Notice that compared to (2.59) we have eliminated the assumption of the functional α

being positive on the identity operator contribution. As shown later, we will instead min-

imize −α[~V0 +]. Also, by fixing the normalization we input a specific value of γ. Here

~λT (γ) =
√
CT /C free

T

(
λ̃

(1)
JJT , λ̃

(2)
JJT

)
is a two dimensional vector of OPE coefficients, with
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Figure 9. Allowed region consistent with crossing symmetry assuming that all parity-even scalars

appearing in the OPE J × J have dimension larger than ∆+
0 and all parity-even spin-2 opera-

tors (except the energy momentum tensor) have dimensions larger than ∆+
2 . No other assump-

tion is imposed. The shaded region is allowed. Marks correspond to known CFTs: free boson

((∆+
0 , (∆

+
2 )′) = (1, 4)), free fermion ((∆+

0 , (∆
+
2 )′) = (4, 6)) and GFVF ((∆+

0 , (∆
+
2 )′) = (4, 4)). The

vertical red line corresponds to the central value of the allowed dimensions of the smallest dimen-

sion singlet operator in the O(2) model: ∆+
0 = 1.5117. The shaded blue region is excluded by

bootstrapping the four point function of the first parity odd scalar operator. See figure 5. The

bound has been computed at Λ = 23.

each component being a linear function of γ, and we have used (2.56). Finally, we intro-

duced a gap in the spin 2 even sector, and assume that, besides the energy momentum

tensor, whose dimension saturates the unitarity bound, all the parity-even spin-2 opera-

tors satisfy [O`=2] ≥ (∆+
2 )′. We will come back to this assumption later. Applying the

functional to the crossing equations (2.55) and using the results of section 2.1.1 one obtains

C free
T

CT
≤ −α[~V0 +] . (3.6)

Therefore, the optimal bounds on CT will be set by the functional minimizing −α[~V0 +],

subject to the constraints (3.5).

In figure 2, presented in the introduction, we show our best bound on the central charge

as a function of γ and how the bound improves when increasing the numerical power Λ.

As expected, inside the interval |12γ| ≤ 1, the bound seems to converge to a finite value,

while outside it improves by a order one factor at each step.

In figure 10 we display the zoomed version of the same plot. As discussed in sec-

tion 2.1.1, the two extremes of the interval 12|γ| ≤ 1 are saturated by the free complex

boson and the free fermion theory. In [47], it was shown that when γ assumes the extremal

values, the CFT must necessarily be free, i.e. all the correlators of the CFT must be equal

to those of a corresponding (bosonic or fermionic) free theory. One would therefore expect

the bound to approach the value of the central charge of a free complex boson or free
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Figure 10. a) Zoom in on the region |12γ| ≤ 1 of the lower bound on the central charge normalized

to the central charge of a free complex boson as a function of the parameter γ defined in (1.3). The

shaded region is allowed. Different curves corresponds to increasing the number of derivatives in-

cluded in the numerical problem. The bounds have been computed at Λ = 11, 15, 19, 23. The dashed

line corresponds to a linear extrapolation in Λ−1. b) Best bound on central charge in linear scale.

fermion given in eq. (2.19) at the extremes of the allowed interval. This doesn’t appear to

be the case with the current numerical power. Nevertheless we might hope to approach

the optimal bound in the limit Λ → ∞. In figure 11 we show a linear extrapolation of

the bounds computed at γ = ±1/12 for Λ = 11, . . . , 25. For γ = 1/12 a linear extrapo-

lation (upper blue line in figure 11) is consistent with an asymptotic bound CT ≥ C free
T .

Extrapolating the bound for γ = −1/12 is trickier. Although we expect the bound to be

CT ≥ C free
T , the linear fit (bottom red line in figure 11) clearly gives an asymptotic value

smaller than C free
T . Most likely, the linear extrapolation in Λ simply does not capture the

infinite number of derivatives limit. It is plausible that the apparent convergence of the

bound to a value smaller that C free
T is due to some hypothetical CFT with CT < C free

T and γ

close to −1/12. With the current numerical power we cannot make a conclusive statement

confirming or ruling out such a theory.

An interesting feature of figure 10 is that the central charge bound is well below C free
T

not only near 12|γ| = 1 but in the whole region 12|γ| ≤ 1. Based on previous works on con-

formal bootstrap [11, 17] we are keen to consider this as an indication that there might exist

a number of CFTs whose central charge is smaller than the free theory one. A largely ac-

cepted lore suggests that the central charge measures the number of degree of freedom in the

theory.18 Accordingly we expect a CFT with the central charge smaller than C free
T to have

minimal possible gloabal symmetry, i.e. only a global U(1). The critical O(2)-model is the

only known example of such a theory with CT ≈ 0.944. The other possible candidate, the

N = 2 Gross-Neveu model is in fact expected to have a central charge larger than C free
T (see

appendix A for a review). The critical O(2)-model clearly can not explain the current shape

of the bound. As the numerics improves, Λ→∞, we expect the optimal bound to become

significantly stronger and be saturated by the hypothetical new theories with CT ≤ C free
T .

18This is clearly the case for free theories and CFTs that are perturbatively away from a free theory.

– 24 –



J
H
E
P
0
5
(
2
0
1
9
)
0
9
8

●
●

●
●

●●

●●

●

●

●

●
●

●●
●

1
11

1
13

1
15

1
17

1
19

1
21

1
23

1
25

1
Λ

0.2

0.4

0.6

0.8

1.0

CT/CT
free

Extrapolation: γ=-1/12 (red),γ=1/12 (blue)

Figure 11. Extrapolation of the bound on central charge normalized to Cfree
T as a function of

the number of derivatives included in the semidefinite-programming Λ. The upper (blue) lines

corresponds to a linear fit of the bounds at γ = 1/12. In the limit Λ → ∞ the extrapolation

approaches the value 1. The lower curves correspond to a linear (red continuous) and quadratic

(red dashed) fit of the bounds at γ = −1/12. The linear fit predicts an asymptotic bound much

smaller than the free theory one. Other fits may predict a value of CT closer to Cfree
T . This is

exemplified by the quadratic fit.

Let us now discuss the role of the gap in the spin-2 parity even sector. The key

observation is that the proof of the conformal collider bound (2.13) elegantly obtained

in [38] relies on the assumption of the existence of a single energy momentum tensor. If

instead a CFT possesses several conserved spin-2 operators, the bound (2.13) must be

replaced by a bound on a weighted sum over the corresponding γ’s:

− 1

12
≤
∑
i

wiγi ≤
1

12
. (3.7)

Unfortunately, in our bootstrap analysis with a finite truncation parameter Λ, any parity

even spin-2 operator of dimension close to 3 is almost indistinguishable from another stress-

tensor. This is precisely the role played by the gap (∆+
2 )′ in (3.5): imposing a single energy

momentum tensor corresponds to input a gap strictly larger than 3. In figure 12 we show

the impact of this gap on the lower bound on the central charge of the theory. As expected,

the effect is stronger in the region disallowed by the bound (2.13) because the imposed gap

on the spin-2 sector implies uniqueness of the stress tensor. On the other hand, imposing

a gap like (∆+
2 )′ = 3.5 probably excludes most CFT’s with global symmetry bigger than

U(1). For example, consider the OPE of two conserved currents in the O(3)-model:

J iµ × Jkν ⊃ δikλJJTTµν + λJJOO
ik
µν (3.8)

where the spin-2 operator Oikµν transforms in the symmetric traceless representation of O(3).

When we restrict to a unique current, for instance to i = k = 3, the operator O33
µν is a
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Figure 12. Lower bound on the central charge as a function of the parameter γ defined in (1.3).

The grey line corresponds to not imposing any gap between the energy momentum tensor and the

next spin-2 parity even operator. The blue line shows how a gap (∆+
2 )′ = 3.5 impacts the strength

of the bound. While inside the interval |12γ| ≤ 1 the bound is marginally affected, the effect outside

the interval is dramatic.

singlet of the U(1) generated by J3
µ and we expect its dimension to be perturbatively close

to the unitarity bound. A similar argument holds for all O(N > 2) models: generically

there can be more than one spin-2 operator entering the J × J OPE, whose anomalous

dimension is 1/N suppressed. We expect that to properly constraint these theories one has

to bootstrap the four-point functions of full set of conserved currents.

A final comment regarding the comparison between our analysis and the case of boot-

strapping the stress-tensor four-point function is in order. Since the 3 point function of

three stress tensors is structurally different from the one of two stress tensor and a non

conserved spin-2 operator, there is no contribution in the 4 point function that could fake

a second energy momentum tensor. As a consequence, the uniqueness of Tµν is automatic

and in principle there is no need to impose a gap in the spin-2 even sector.

3.3 Central charge bounds with spectrum assumptions

In this section we investigate how the bounds on the central charge change when we intro-

duce additional assumptions on the spectrum of scalar operators or in the spin-4 parity-even

sector. We therefore replace the conditions (3.5) with the following conditions

α[~λT (γ)T · ~V3 2 + · ~λT (γ)] = 1, (normalization)

α[~V∆+] ≥ 0, ∆ ≥ ∆+
0 , ` = 0

α[~V∆`+] � 0, ∆ ≥ (∆+
2 )′, ` = 2

α[~V∆`+] � 0, ∆ ≥ ∆+
4 , ` = 4

α[~V∆`+] � 0, ∆ ≥ `+ 1, ` > 4, ` even

α[~V∆`−] � 0, ∆ ≥ ∆−0 , ` = 0

α[~V∆`−] � 0, ∆ ≥ `+ 1, ` ≥ 2

(3.9)
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Figure 13. a) Lower bound on the central charge normalized to the central charge of a free complex

boson as a function of the parameter γ defined in (1.3) assuming no relevant parity-odd scalars. b)

Lower bound on the central charge assuming no relevant parity-even scalars. The shaded regions

are excluded. The bounds have been computed at Λ = 23. The grey lines on both plots correspond

to the lower bound on CT /C
free
T without any assumption.

In figure 13a we show the impact of imposing the absence of relevant odd scalar op-

erators in the J × J OPE. This amounts to set ∆−0 = 3 while keeping all the other gaps

to their minimal value consistent with unitarity. As expected, the bound on the central

charge increases for positive values of γ, excluding the free fermion theory, which is indeed

ruled out by this assumption. Close to γ = −1/12 the bound is almost unaffected, consis-

tent with the conjecture that the left part of the plot is driven by the free boson theory

and possibly by the critical O(2)-model. Notice that in this analysis we haven’t made

any assumption about the parity-even spectrum, and in particular no assumption about

the number of relevant parity-even scalars. A second investigation, shown in figure 13b,

solely assumes that no relevant parity-even scalar operators are present. The impact of

this assumption is more dramatic: very small room is left for theories with CT < C free
T .

Although we haven’t performed a careful extrapolation we believe this window will close

in the limit of infinite number of derivatives Λ →∞.

Finally, in figure 14 we combine both assumptions to study the central charge limits

for the case of dead-end CFTs, namely those CFTs without any relevant scalar operator.

As the name suggests, these CFTs would be stable under any scalar deformation and

therefore would represent an attractive point for all the renormalization group flows driven

by rotation-preserving deformations. While we expect such CFTs with a large central

charge (from weakly coupled abelian gauge theory in AdS4), there are no known examples

with small values of CT . Interestingly, at present, our limits do not preclude the existence

of dead-end CFTs with CT /C
free
T ∼ O(1).

We now move to exploring the dependence of the central charge bound on the gap in

the spin-4 parity-even sector. This can be done by tuning the parameter ∆+
4 in (3.9) while

setting all other gaps to their minimal value consistent with unitarity. The value of the

– 27 –



J
H
E
P
0
5
(
2
0
1
9
)
0
9
8

-1 - 1
2 0 1

2 1
12γ

0.5

1

2

5

CT/CT
free

Lower bound on CT (Δ0
+≥3, Δ0

-≥3, Λ=23)

Figure 14. Lower bound on the central charge normalized to the central charge of a free complex

boson as a function of the parameter γ assuming that both parity-even and parity-odd scalar

operators are absent. The shaded region is allowed. The bounds have been computed at Λ = 19.

The dashed blue line corresponds to the bounds shown in figure 13a and figure 13b. The gray line

corresponds to the lower bound without any assumption.

gap ∆+
4 can be considered as a knob to interpolate from free theories to holographic CFTs.

Indeed, the J×J OPE in free CFTs contains a conserved spin-4 parity even operator. When

going to interacting CFTs, its dimension must be lifted [48] and the operator acquires a

positive anomalous dimension. On the other hand, in holographic CFTs the lightest spin 4

operator is the “double-trace” operator ∼ J(µ1
∂µ2∂µ3Jµ4) of dimension 6, with corrections

suppressed as 1/N . As we increase the value of the gap, we exclude more and more

theories, and it is natural to expect that the only solution still consistent with crossing

symmetry are those which have a large central charge. This behavior is indeed realized in

figure 15a, where we show the lower bound on the central charge as a function of γ for

several values of ∆+
4 . As anticipated, the bound grows with the gap. By increasing the

numerical power one can presumably make the bound much stronger. In figure 15b we

performed an extrapolation in the number of derivatives of the central charge limit when

∆+
4 = 6 for the central value γ = 0. The extrapolation suggests that ∆+

4 = 6 implies

CT =∞, in agreement with the holographic interpretation.19

3.4 Hunting the O(2)-model

So far we have investigated bounds on the central charge under very general assumptions on

the spectrum of CFTs. However, they do not appear to be saturated by any known CFT.

The extrapolation in the number of derivatives shown in figure 11 suggests that in this limit

19Recall that the anomalous dimension ∆+
4 − 6 ∼ 1/CT must be negative due to Nachtman’s theo-

rem [49, 50].
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Figure 15. a) Central charge bound as a function of γ for several values of the gap in the

spin-4 parity even sector, ∆+
4 = 5.25, 5.5, 6. As we increase the gap, solutions consistent with

crossing symmetry must develop a larger central charge. b) Extrapolation of the bound on CT for

γ = 0,∆+
4 = 6. Both axis are in logarithmic scale. Linear fit shown as a solid red line suggests that

the bound on CT diverges as Λ→∞.

we can make contact with a known result, namely the free fermion theory. On the other

hand, theories such as the O(2) model seem to remain in the bulk of the regions allowed

by crossing symmetry. In oder to understand the reason for this it is useful to inspect the

solution of crossing along the boundary extracted with the extremal functional20 method

introduced in [51] and successfully used in [17, 19] to extract the spectrum of the three

dimensional Ising model. We observe that all the extremal solutions contain odd operators

with ` ≥ 2 and dimension saturating the unitarity bound ∆−` = `+ 1 (or very close to it).

On the contrary, all known theories display a larger gap. For instance, free theories and

GFVF satisfy ∆−` = `+ 3 (see appendix A). Basically, the extra gap comes from the need

to contract ε-tensor indices with derivatives.

It is natural to expect that the O(2) model also displays an extra gap for all parity

odd operators with spin ` ≥ 2. Hence, in order to make contact with the O(2) model, we

replace the conditions (3.5) with the following requirements:

α[~λT (γ)T · ~V3 2 + · ~λT (γ)] = 1, (normalization)

α[~V∆+] ≥ 0, ∆ ∈ [∆min
ε ,∆max

ε ](` = 0)

α[~V∆+] ≥ 0, ∆ ≥ ∆+
0 (` = 0)

α[~V∆`+] � 0, ∆ ≥ ∆+
2 , ` = 2

α[~V∆`+] � 0, ∆ ≥ `+ 1, ` > 4, ` even

α[~V∆`−] � 0, ∆ ≥ ∆−0 , ` = 0

α[~V∆`−] � 0, ∆ ≥ `+ τ−all, ` ≥ 2

(3.10)

20We remind the reader that on the boundary of the allowed region the solution of the truncated crossing

equation is unique and it is given by the zeros of the linear functional α.
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Figure 16. a) Lower bound on the central charge normalized to the central charge of a free complex

boson as a function of the parameter γ. Different lines corresponds to increasing values of twist

of the parity odd operators of spin ` ≥ 2: τ−all = 1, 2, 2.5, 2.8, 3. b) Lower bounds on the central

charge with τ−all = 2 for increasing numerical power: Λ = 19, 23.

The novelty in the above conditions consists in raising the twist of all parity odd operators

to τ−all ≥ 1, and imposing that relevant parity even scalar must be confined in a narrow

interval ∆ ∈ [∆min
ε ,∆max

ε ] = [1.5092, 1.5142], for which we take the rigorous bound from

previous bootstrap studies [18]. In figure 16a we show the impact of varying τ−all from 1

to 3. Interestingly the bounds start developing more and more pronounced minima as

we increase the value of τ−all. In addition, the left part of the bound is insensitive to this

parameter, while the right part heavily depends on it. Although from figure 16a it would

be tempting to set τ−all = 3, the large spin analysis discussed below suggests that this is

not possible. Nevertheless we expect that τ−all = 2 is a safe assumption. With this choice

in (3.10), we can obtain a rigorous bound on the parameter γ for theories with the central

charge smaller than the free theory one:

γ ∈ [−0.0824,−0.0494] rigorous (assuming (3.10), τ−all = 2) (3.11)

The above interval has been computed at Λ = 25, however, as shown in figure 16b, the

bounds are still not converged. Using a linear extrapolation we estimate a bound

γ ∈ [−0.081(1),−0.060(1)] extrapolation (assuming (3.10), τ−all = 2) (3.12)

Let us comment on the consistency of our assumption that the dimension of the leading

twist parity odd operators of spin ` ≥ 2 in the O(2) model is not too far from 3, which

is the free theory value.21 The leading correction to the dimension of these operators in

the large spin expansion has been computed in [50] using analytic bootstrap techniques. It

21Schematically, these operators have the form O−µ1...µ`
∼ ενρ(µ1

Jν∂µ2 . . . ∂µ`)J
ρ.

– 30 –



J
H
E
P
0
5
(
2
0
1
9
)
0
9
8

was found that:

δO−`
= ∆O−`

− `− 3 = −12(1− 144γ2)

CTπ4`
+ . . . (3.13)

Notice that the leading correction in the above formula is negative whenever γ satisfies the

conformal collider bound. Moreover, our estimate γO(2) ∼ −1/12 is compatible with the

assumption of small anomalous dimension δO−`
.

3.5 Comments on parity non preserving theories

While the main focus of this work was to obtain bounds on parity preserving theories, in

this section we shall argue that many of the constraints that we found should also apply

to theories which do not preserve parity.

In a parity non preserving theory, it is useless to classify local operators according

to their parity. Moreover, correlation functions do not transform in a definite way under

parity. In order to understand some important feature of the bootstrap equations for parity

non preserving theories we now explain how to generalize the discussion on three and four

point functions of sections 2.1 and 2.2. To extend the discussion on three point function

it is sufficient to say that both the parity even t+ (2.4) and parity odd t− (2.7) structures

can appear for the exchange of a given operator O, schematically

J × J ∼ (t+ + t−)O . (3.14)

In order to characterize the four point function one needs to add to the set of tensor

structures Qs of (2.20), new structures Q−s which are parity odd (and therefore proportional

to the epsilon tensor), schematically

〈JJJJ〉 ∼ fsQs + f−s Q
−
s . (3.15)

Since the structures Qs and Q−s differ by an epsilon tensor, the crossing equations for fs
and for f−s do not mix, namely

fs(u, v) =
∑
s′

Mss′fs′(v, u) , f−s (u, v) =
∑
s′

M−ss′f
−
s′ (v, u) , (3.16)

for some matrices M,M ′. Thus, the crossing equations (2.22) used in this work are a closed

subset of the full set of crossing equations in a non parity invariant theory. The additional

set involving f−s (u, v) can be obtained generalizing the discussion of section 2.2.

Finally, in order to conclude that the constraints obtained in this work also apply to

parity breaking theories one needs to check that the functions fs(u, v) admit the same

conformal block decomposition assumed here. This is indeed the case, since the crossed

terms arising from the mixing of structures t+ and t− in (3.14) only contributes to f−s ,

schematically:

fs ↔ t+t+ + t−t− , f−s ↔ t+t− + t−t+ . (3.17)
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Figure 17. A zoom of figure 5. The red point has been obtained bisecting along the line ∆+
0 = ∆−0

to 10−3.

We conclude that the bounds that we obtained by studying crossing symmetry of fs
are also valid for parity non preserving theories. To be precise the bounds only apply once

we give up the notion of parity of operators, therefore all the gaps ∆±` on the spectrum of

parity ± operators of spin ` should be replaced by gaps ∆` on the spectrum of operators

of spin `

∆±` → ∆` . (3.18)

For example the bound on the gap ∆+
0 and ∆−0 of figure 5 should be rephrased as

a bound on the gap of the first scalar operator ∆0. In particular by considering the

intersection of the line ∆+
0 = ∆−0 and the bound of figure 5 we obtain (see figure 17)

∆0 < 4.158 . (3.19)

The bounds on central charge of subsection 3.2 and 3.3 are left unchanged. Notice that

every time we consider a different gap in the sector ∆+
` and ∆−` (for a given spin `), we

should consider that the plot is valid only for ∆` = max[∆+
` ,∆

−
` ]. For instance the bound

in figure 12 is understood with assumptions on the gap ∆′2 on the first spin two operator

after the stress tensor. Similarly figure 14 is the bound for parity non preserving theories

with no relevant singlets (the plots 13a and 13b in this context descend trivially from 14).

4 Conclusions

In this work we have used the numerical conformal bootstrap to study the space of three

dimensional conformal field theories with (at least) a global U(1) symmetry. We did this

by analyzing the four point function of identical conserved currents. We have shown that,

analogously to the case of the correlation function of 4 scalars or 4 fermions, unitarity

and OPE associativity alone let us carve out the parameter space of CFTs. Inspecting

the allowed values of scalar operator dimensions we found that any CFT with a conserved

spin-1 current must contain both parity even and parity odd scalars. The boundary of the

allowed region displays a non trivial structure with multiple features. In particular a kink

appears close to the location of the O(2) model, providing an upper bound on the dimension
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of the first parity odd scalar ∆−0 ≤ 7.65(1). A similar kink is present in the bound on the

second spin-2 parity even operator. Also, we excluded the existence of dead-end CFTs with

central charge smaller than twice the central charge of a free 3d Dirac fermion. We also

explored bounds on the central charge with several assumptions on the CFT spectrum. In

this case we observed a slower numerical converge. Nevertheless we found clear evidence

of the conformal collider bounds for spin-1 currents [34–37].

The present work paves the way to many generalizations and extensions. Given the

special role that the O(2) model seems to play in our exclusion bounds, it is natural to

expect that a mixed scalar-current bootstrap analysis will allow to precisely determine the

spectrum of the theory [52]. Similarly, one could consider multiple correlators including

external fermionic charged operators in order to narrow down the location of the N = 2

Gross-Neveu model.

As mentioned several times, the results of this work are very general and apply to

CFTs with a continuous global symmetry that admits a local conserved current.22 On the

other hand, by studying a single current inside a larger symmetry, we loose the ability

to distinguish operators that are singlets under the entire global symmetry group from

those that instead are only invariant under the specific U(1) considered. As an example,

spin-2 operators with dimension close to the unitarity bound but not singlet under the

full global symmetry are difficult to distinguish from the energy momentum tensor in the

numerical analysis. As we have seen in section 3.2 this dramatically affects the bound on

the central charge. Hence, in order to obtain numerical evidences of the conformal collider

bounds we restricted to theories with a finite gap between the energy momentum tensor

and the dimension of the next spin-2 operator. While we expect this merely represents a

technical assumption for theories with global U(1) symmetry, it might not apply to CFTs

with larger symmetry group. In this case, it will be important to bootstrap the full set

of correlation functions 〈Ja1
µ1
Ja2
µ2
Ja3
µ3
Ja4
µ4
〉, with ai spanning all the generators of the global

symmetry. This set up would also allow to specify the global symmetry by inputting

the group structure constants fabc and to put a bound on the current central charge CJ .

The analysis will require a minor modification of the present framework. All necessary

conformal blocks required for this analysis have been already computed in the current

work. The main difference will be represented by the higher number of crossing conditions.

Finally, the same investigation presented in this work can be extended to higher di-

mensions with minor modifications. The recurrence relation presented in appendix E could

be generalized in order to build conformal blocks in any dimension. Alternatively, the fun-

damental results obtained in [53–55] allows us to compute the conformal blocks in four

dimensions in closed form. Moreover, the analysis of the crossing equations in section 2.2

is valid in any spacetime dimension. This direction would be of particular interest in pres-

ence of N = 1 4D supersymmetry. Indeed, the U(1) R-symmetry current Jµ is embedded

in the Ferrara-Zumino supermultiplet, which also contains the energy momentum tensor as

a super-descendant. The study of Jµ correlation functions will provide a universal handle

22A trivial example of a theory with a global symmetry but no conserved current is a free complex field

in AdSd+1 with mass strictly larger than −(d2 − 4)/4, which is the dual of a Generalized Free Field in d

spacetime-dimensions with scaling dimension ∆ > (d− 2)/2.
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on all local SCFTs, allowing in principle to discover theories we currently know nothing

about [56].

This work represents a first exploration of an uncharted territory. Very much like

15th century navigators, we landed and explored the border of a whole new world. We

created a first map of the landscape of CFTs with global symmetries which will serve as a

roadmap for further investigations. We are confident that future expeditions will lead to

finer understanding of this space.
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A Spectrum of simple theories

A.1 Free scalar theories

The simplest example of CFT in 3 dimensions with U(1) global symmetry is the theory of

free complex scalar field ϕ. The central charge of this theory CT = C free
T was given in (2.19).

The global U(1) current is given by the conventional expression Jµ = iϕ∂µϕ− iϕ∂µϕ. The

lightest parity even neutral scalar ϕϕ has dimension ∆+
0 = 1. The lightest parity-odd

scalar is more complicated. Normally, one can build a parity-odd scalar out of two vectors

εµνλJµ∂νJλ , (A.1)

but in case of one complex field this combination vanishes. Hence the lightest parity-odd

scalar has more derivatives

iεµνλJµ(∂ρ∂νϕ)(∂ρ∂λϕ) (A.2)

and is of dimension ∆−0 = 7.

A complex field ϕ can be decomposed into two real fields. One can consider a more

general case of N free real fields ϕi. This theory has O(N) global symmetry, N(N − 1)/2
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currents J
[ij]
µ = ϕ[i∂µϕ

j] and

CT =
N

2
C free
T . (A.3)

The lightest parity-even scalar ϕiϕ
i still has the same dimension ∆+

0 = 1. When N ≥ 4

one can combine two mutually commuting currents J
[ij]
µ and J

[kl]
ν with four distinct i, j, k, l

into a dimension ∆−0 = 5 parity-odd scalar

O
[ijkl]
− = 4εµνρφ[i∂µφ

j∂νφ
k∂ρφ

l] = −εµνρJ [ij]
µ ∂νJ

[kl]
ρ . (A.4)

This operator is charged under full O(N) but is neutral under some generators, including

J
[ij]
µ and J

[kl]
µ . Depending on the choice of the generator Jµ = ωijJ

ij
µ the OPE two identical

Jµ will or will not include (A.4). For example the OPE of two Jµ = J
[12]
µ will remain

the same as in the theory of one complex boson, with ∆−0 = 7, while the OPE of two

Jµ = (J
[12]
µ + J

[34]
µ )/21/2 will include (A.4), leading to ∆−0 = 5.

In the theory of a free complex boson, the four-point function of currents can be easily

calculated explicitly. Using the symmetry properties of table 1 and the crossing symmetry

conditions (2.24) together with the definitions in (D.2), the vector of 43 structures in

d-dimensions can be compactly written as:

fs =
{
f1, f2, f̂1, f4, f5, f5, f7, f8, f9, f̂9, f8, f̂5, f̂4, f̂7, f̂5, f̂5, f̂4, f̂7, f̂5, f8, f9, f̂9, f8, f7, f5, f5,

f4, f28, f29, f29, f31, f̂29, f̂28, f34, f29, f̂29, f34, f̂28, f29, f̂31, f̂29, f̂29, f28

}
(A.5)

where f̂i ≡ u−1+dv1−dfi(v, u). Finally, the 11 independent functions appearing in the above

equation are:

f1 =
(

(−2 + d)2v−d/2
(

2uvd/2 + ud/2
(
v + vd/2

)))
/(2u),

f9 =
1

2
(−2 + d)3u

1
2

(−1+d)√v

f2 =
1

2
(−2 + d)2u−1+ d

2 v−d/2
(
uvd/2 + ud/2

(
v + 2vd/2

))
,

f28 =
1

2
(−2 + d)4ud/2v1− d

2 ,

f4 =
1

2
(−2 + d)3ud/2v

1
2
− d

2 ,

f29 = −1

2
(−2 + d)4u

1
2

(−1+d)v
3
2
− d

2 ,

f5 = −1

2
(−2 + d)3u

1
2

(−1+d)v1− d
2 ,

f31 =
1

2
(−2 + d)4u−1+ d

2 v1− d
2

(
v + vd/2

)
,

f7 =
1

2
(−2 + d)3u−1+ d

2 v
1
2
− d

2

(
v + vd/2

)
,

f34 =
1

2
(−2 + d)4ud/2v1− d

2 ,

f8 = 0 .

(A.6)
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First few terms in the conformal block decomposition of (A.6) are summarized in the table

below. In particular it shows that the second lightest parity-odd scalar

ϕϕ∂µϕ∂µϕ (A.7)

appearing in the OPE of two currents has dimension (∆+
0 )′ = 4. This is because dimension

3 operator ∂µϕ∂µϕ is not a primary. Similarly, second lightest spin-2 operator ϕϕTµν also

has dimension (∆+
2 )′ = 4.

∆ ` 4∆(λ̃
(1)
JJO+)2 4∆λ̃

(1)
JJO+ λ̃

(2)
JJO+ 4∆(λ̃

(2)
JJO+)2

1 0 4 0 0

4 0 4 0 0

6 0 256
105 0 0

8 0 48
77 0 0

10 0 131072
75075 0 0

3 2 12 72 432

4 2 0 0 768

6 2 1112
245 −1984

245
117248

245

8 2 963584
72765 −2023424

24255
6815744

8085

10 2 1196480
231231 −3650560

231231
197918720

231231

5 4 35 980 27440

6 4 0 0 442368
7

8 4 171392
7623 −3384320

7623
144711680

7623

10 4 132841472
2147145 −20922368

17745
71189430272

2147145

7 6 231
2 7623 503118

8 6 0 0 14376960
11

10 6 6208
55 −3861504

715
263061504

715

9 8 6435
16

96525
2 5791500

10 8 0 0 2424963072
143

∆ ` 4∆(λ̃JJO−)2

7 0 768
5

9 0 8192
91

5 2 768

7 2 18432
35

9 2 7577600
7007

6 3 3072
35

8 3 4096
11

10 3 507904
1573

7 4 9728
3

9 4 41656320
11011

8 5 737280
539

10 5 6356992
1859

9 6 2301952
143

10 7 214810624
19305

(A.8)

The OPE coefficients λ̃JJO± in the above tables are defined in appendix E.5.

A.2 Critical O(N) models

The spectrum of critical O(N) models at large N is in many ways similar to that one of

free theories. Including leading 1/N corrections the central charge is given by [57, 58] (also

see [43] for further references)

CT =
N

2
C free
T

(
1− 40

9π2N
+ . . .

)
. (A.9)
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The main difference is the dimension of the lightest parity even scalar. At large N its

dimension approaches 2,

∆+
0 = 2− 32

3π2N
+ . . . (A.10)

The dimensions of the parity-odd scalars are less studied. For N = 2, 3, the lightest parity

odd scalar appearing in the OPE of two currents has the same quantum numbers as (A.2)

and is expected to have dimension ∆−0 ≈ 7. For N ≥ 4 there is also a parity-odd operator in

the representation of (A.4). Thus for some generators Jµ = ωijJ
ij
µ we still expect ∆−0 ≈ 7

while for others ∆−0 ≈ 5.

For small N = 2, 3, . . . certain dimensions and central charge are known with a good

precision from the conformal bootstrap and Monte-Carlo simulations [18, 20, 43, 59]. We

report some of them in the table below:

N 2 3 4

CT /C
free
T 0.944 1.416 1.892

∆ε 1.51124(22) 1.5939(10) 1.6649(35)

∆ε′ 3.795(9) 3.782(12) 3.774(12)

∆T 1.237(4) 1.211(3) 1.189(2)

(A.11)

Here ε,ε′ are the first and second singlet scalar operators appearing in the OPE φa × φb,
while Tab is the leading scalar operator transforming in the tensor traceless representation of

O(N). Under a given U(1) ⊂ O(N), Tab decomposes into neutral and charged components.

The neutral ones are allowed to enter the OPE of the conserved current associated with

the U(1). This means that

∆+
0 = ∆ε, (∆+

0 )′ = ∆ε′ for O(2)

∆+
0 = ∆T , (∆+

0 )′ = ∆ε for O(N ≥ 3)

A.3 Free fermion theories

In three dimensions, a free Dirac fermion ψ is invariant under a global U(1) symmetry.

This theory has the same central charge as a free complex scalar, CT = C free
T . The lightest

parity-odd scalar ψψ has dimension ∆−0 = 2, while lightest parity-even scalar (ψψ)2 has

dimension ∆+
0 = 4. The four point function of the conserved current Jµ = ψσµψ can be

easily calculated explicitly. The four point function contains two distinct contributions fs =

fdisc
s − f con

s /Υ where the disconnected piece fdisc
s is given by (A.23), while the connected

one is given below. Also, Υ = Tr1 denotes the trace of the identity in γ-matrix algebra

in d-dimensions, 1 = (γ1)2 (Υ = 2 in 3 dimensions). Following the same conventions as
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in (A.5), we have:

f con
1 =u−1+ d

2 v−d/2
(
−u1+ d

2 +ud/2(1+v)+(−1+v)
(
−1+vd/2

)
−u
(

1+vd/2
))

,

f con
2 =u−1+ d

2 v−d/2
(
u+u1+ d

2−uvd/2−ud/2(1+v)+(−1+v)
(

1+vd/2
))

,

f con
4 =−2ud/2v

1
2
− d

2

(
−1+ud/2+vd/2

)
,

f con
5 = 2u

1
2

(−1+d)v1− d
2

(
−1+ud/2+vd/2

)
,

f con
7 =−2u−1+ d

2 v
1
2
− d

2

(
ud/2(1+v)+(−1+v)

(
−1+vd/2

))
,

f con
8 = 0,

f con
9 =−2u

1
2

(−1+d)v
1
2
− d

2

(
1+ud/2−vd/2

)
,

f con
28 = 4ud/2v1− d

2

(
−1+ud/2+vd/2

)
,

f con
29 =−4u

1
2

(−1+d)v
3
2
− d

2

(
−1+ud/2+vd/2

)
,

f con
31 = 4u−1+ d

2 v1− d
2

(
ud/2(1+v)+(−1+v)

(
−1+vd/2

))
,

f con
34 = 4ud/2v1− d

2

(
−1+ud/2+vd/2

)
.

(A.12)

A first few terms in the conformal block decomposition of (A.12) are summarized in the

table below.

∆ ` 4∆(λ̃
(1)
JJO+)2 4∆λ̃

(1)
JJO+ λ̃

(2)
JJO+ 4∆(λ̃

(2)
JJO+)2

4 0 4 0 0

6 0 256
105 0 0

8 0 48
77 0 0

10 0 131072
75075 0 0

3 2 0 0 192

6 2 296
35 −2752

35
34304

35

8 2 676864
72765 −446464

24255
3948544

8085

10 2 182080
21021 −1602560

21021
24248320

21021

5 4 0 0 2240

6 4 0 0 36864

8 4 278912
7623 −7470080

7623
247930880

7623

10 4 98435072
2147145 −1516617728

2147145
54330294272

2147145

7 6 0 0 16632

8 6 0 0 10076160
11

10 6 116544
715 −6226944

715
386924544

715

9 8 0 0 102960

10 8 0 0 167903232
13

∆ ` 4∆(λ̃JJO−)2

2 0 32

7 0 768
5

9 0 8192
91

5 2 768

7 2 18432
35

9 2 7577600
7007

6 3 3072
35

8 3 4096
11

10 3 507904
1573

7 4 9728
3

9 4 41656320
11011

8 5 737280
539

10 5 6356992
1859

9 6 2301952
143

10 7 214810624
19305

(A.13)

The OPE coefficients λ̃JJO± in the above tables are defined in appendix E.5.
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A.4 QED3

A theory of Nf Dirac fermions ψi in 3d coupled to a U(1) gauge field Aµ flows to a non-

trivial IR fixed point if Nf is sufficiently large. This theory has global SU(Nf ) flavor

symmetry, with the currents Ja, with a = 1, 2, . . . , N2
F − 1. Flavor symmetry might be

spontaneously broken for small Nf by chiral condensate. Besides this there is a topological

U(1), with the topological current J top ∝ ?F . The operators charged under this U(1) are

monopole operators. When Nf is odd the theory is not parity-invariant [60]. Accordingly

we consider only even Nf such that the effective number of Majorana fermions N = 2Nf

is a multiple of four. For large N , the central charge is given by [61]

CT =
N

2
C free
T

(
1 +

4192− 360π2

45π2N
+ . . .

)
(A.14)

For minimal possible value N = 4 this gives CT ≈ 2.72C free
T . This result is valid only if

there is no spontaneous symmetry breaking.

Identifying the lightest parity even and odd scalars appearing in the OPE of two

currents requires consideration. Since monopole operators are charged under topological

U(1) they are excluded from the OPE of both J top × J top and Ja × Ja. First, we consider

OPE of two J top which contains only SU(Nf ) singlets. For large N , the lightest parity-odd

singlet scalar ψiψ
i has dimension [62, 63]

∆−0 = ∆0 = 2 +
256

3π2N
+ . . . (A.15)

while lightest parity-even scalar is a combination of (ψiψ
i)2 and F 2

µν of dimension

∆+
0 = ∆′0,− = 4 +

128(2−
√

7)

3π2N
+ . . . (A.16)

The OPE of two flavor currents include all fields charged in representations appearing

in the product of two adjoints. In this case the lightest parity-odd scalar is in adjoint

representation of SU(Nf ), (On=1)ij = ψiψj . At leading order it has dimension [62, 63]

∆−0 = ∆1 = 2− 128

3π2N
+ . . . (A.17)

which is smaller than ∆0. Similarly, the lightest parity-even operator is (On=2)
[ij]
[kl] =

ψiψjψkψl of dimension

∆+
0 = ∆2 = 4− 128

π2N
+ . . . (A.18)

which is smaller than ∆′0,− = 4 + 128(2−
√

7)
3π2N

+ . . . and the dimension of the adjoint operator

O′1,− made out of four ψ’s, ∆′1,− = 4 + 16(25−
√

2317)
3π2N

+ . . . .

We see that in both cases at large N , ∆+
0 ≈ 4 and ∆−0 ≈ 2, and from this point of

view QED3 is similar to the free fermion theory.
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A.5 Gross-Neveu models

One Dirac spinor can be decomposed into two Majorana spinors. A theory of N ≥ 2

free Majorana fermions has O(N) symmetry, while the dimension of lightest parity even

and odd scalars remain the same for all N . Upon adding a parity-odd scalar field φ with

quartic interaction which couples to Majorana fermions via Yukava coupling ψiφψ
i, the

theory flows into an interacting fixed point characterized by O(N) symmetry. The lowest

parity-odd scalar φ has dimension [64–66] (also see [15] for further references)

∆−0 = 1− 32

3π2N
+ . . . (A.19)

The lightest parity-even scalar φ2 has dimension

∆+
0 = 2 +

32

3π2N
+ . . . (A.20)

while the central charge is given by [67]

CT =
N

2
C free
T

(
1 +

8

9π2N
+ . . .

)
. (A.21)

Below we compare CT and ∆+
0 ,∆

−
0 for small N found using leading 1/N expansion and

Pade extrapolation of ε-expansion in d = 2, 4 [67, 68]23 and bootstrap techniques [16].

N 2 3 4

N/2 + 4/(9π2) 1.045 1.545 2.045

CT /C
free
T Pade 1.190 1.486 2.029

1− 32/(3π2N) 0.46 0.64 0.73

∆−0 Pade 0.656 0.688 0.753

∆−0 Bootstrap 0.660 0.724 0.772

2 + 32/(3π2N) 2.54 2.36 2.27

∆+
0 Pade 1.75 2.285 2.148

∆+
0 Bootstrap 2.14 2.17 2.25

(A.22)

It is worth noting that, similar to critical bosonic O(N) theories, central charge of Gross-

Neveu models even for small N is substantially close to the free theory counterpart.

A.6 Generalized free vector field

The generalized free vector field (GFVF) is a theory of a conserved current Jµ (of dimension

d − 1) with the standard two-point function and all higher-point correlation functions

23To calculate CT for small N we follow Pade approximation procedures developed in [67]. Namely we

employ Pade[4,1] or Pade[1,4] choosing the one which has no poles in the interval 2 < d < 4. Namely Pade[1,4]

for N = 3, 4 and Pade[4,1] for N = 2.
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satisfying Wick theorem. In particular the four-point function of currents 〈JJJJ〉 includes

only the disconnected piece (all other components are zero),

f1 = 1 , f2 = ud−1 , f3 = ud−1v1−d . (A.23)

This theory contains no stress-energy tensor, i.e. C−1
T = 0. The only operators present in

the spectrum are those build of Jµ. In particular the lightest parity even scalar JµJµ has

dimension ∆+
0 = 4 and parity-odd scalar given by (A.1) has dimension ∆−0 = 5. GFVF

is dual to U(1) gauge theory in AdS4 in the limit of zero Newton constant, when only

disconnected Witten diagrams contribute. In the table below, we list some OPE coefficients

that we obtained from the conformal block expansion of 〈JJJJ〉 in d = 3 dimensions.

∆ ` 4∆(λ̃
(1)
JJO+)2 4∆λ̃

(1)
JJO+ λ̃

(2)
JJO+ 4∆(λ̃

(2)
JJO+)2

4 0 8
3 0 0

6 0 512
315 0 0

8 0 512
385 0 0

10 0 262144
225225 0 0

4 2 0 0 512

6 2 2048
245 −11776

245
161792

245

8 2 1998848
218295 −3473408

72765
18219008

24255

10 2 6103040
693693 −33095680

693693
626524160

693693

6 4 0 0 294912
7

8 4 278528
7623 −6619136

7623
235667456

7623

10 4 294649856
6441435 −476053504

585585
164580294656

6441435

8 6 0 0 10485760
11

10 6 1048576
6435 −17825792

2145
29360128

55

10 8 0 0 1879048192
143

∆ ` 4∆(λ̃JJO−)2

5 0 256
3

7 0 512
5

9 0 131072
1001

5 2 512

7 2 24576
35

9 2 6553600
7007

6 3 24576
175

8 3 65536
231

10 3 2097152
4719

7 4 8192
3

9 4 47185920
11011

8 5 2621440
1617

10 5 16777216
5577

9 6 2097152
143

10 7 234881024
19305

(A.24)

The OPE coefficients λ̃JJO± in the above tables are defined in appendix E.5.

B Relations between parity odd structures

Parity odd conformally invariant three point functions can be construct using the ε-tensor.

In d = 3, there are six parity odd building blocks:

εij ≡ ε(Zi, Zj , P1, P2, P3) ε̃ij ≡ ε(Pi, Pj , Z1, Z2, Z3) (i, j = 1, 2, 3) . (B.1)

However, not all of them are independent. To see this we use the following identity

0 = det

(
(P1 · Ξ) (P2 · Ξ) (P3 · Ξ) (Z1 · Ξ) (Z2 · Ξ) (Z3 · Ξ)(
P1

)
A

(
P2

)
A

(
P3

)
A

(
Z1

)
A

(
Z2

)
A

(
Z3

)
A

)
(B.2)
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where Ξ is an arbitrary 5 dimensional vector. The determinant vanishes automatically

because the first row of the matrix is a linear combination of the other 5 rows. By choosing

for instance Ξ = P1 one gets

− (P1 · P2)ε(P1, P3, Z1, Z2, Z3) + (P1 · P3)ε(P1, P2, Z1, Z2, Z3) (B.3)

− (P1 · Z2)ε(P1, P2, P3, Z1, Z3) + (P1 · Z3)ε(P1, P2, P3, Z1, Z2) = 0 (B.4)

Similarly one can get two more equations by choosing Ξ = P2, P3. All together these

relations allow to express ε̃ij in terms of linear combination of εij only.

In addition, one can find linear relations involving only the three εij . This follows

immediately if we choose Ξ orthogonal to the three P ’s. This is achieved with

ΞA =
[
ZA1 (P1 ·X+)− PA1 (Z1 ·X+)

]
(P2 · P3) + (X−)A(Z1 ·X−) , (B.5)

where

(X±)A = PA2 (P1 · P3)± PA3 (P1 · P2) . (B.6)

One can easily check that

Ξ · Z1 = −2(P1 · P2)(P1 · P3)(P2 · P3)V 2
1,23 (B.7)

Ξ · Z2 = 2(P1 · P2)(P1 · P3)(P2 · P3)(H12 + V1,23V2,31) (B.8)

Ξ · Z3 = 2(P1 · P2)(P1 · P3)(P2 · P3)(H13 + V1,23V3,12) (B.9)

and conclude that (B.2) reduces to

V 2
1,23ε23 − (H12 + V1,23V2,31)ε13 − (H13 + V1,23V3,12)ε12 = 0 . (B.10)

Similarly, we can find another 2 equations by permuting the 3 points. These relations

were taken into account in the construction of conformal invariant three point functions in

section 2.1.

C Basis for four point function

Conformal invariant tensor structures for four point functions are constructed using the

building blocks Hij and Vi,jk defined in equation (2.3). However, not all combinations are

linearly independent. In fact, it is sufficient to use the following set:

{H12, H13, H14, H23, H24, H34, V1,23, V1,43, V2,34, V2,14, V3,21, V3,41, V4,21, V4,32} (C.1)

All others can be expressed in terms of a linear combination of the above. For instance the

following identity holds:√
−2(Pi · Pj)(Pi · Pk)(Pj · Pk)(Pi · Pl)Vi,jk +

√
−2(Pi · Pj)(Pi · Pl)(Pj · Pl)(Pi · Pk)Vi,kj

+
√
−2(Pi · Pl)(Pi · Pk)(Pl · Pk)(Pi · Pj)Vi,kl = 0 . (C.2)

Out of the above list one can construct 43 tensor structure. These are listed in table 1.
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s Qs 1234→ 3412 1234→ 2143 Indep

1 H12H34 1 1 1

2 H13H24 2 2 2

3 H14H23 3 3 3

4 H12V3,21V4,12 27 4 4

5 H12V3,21V4,32 26 6 5

6 H12V3,41V4,12 25 5 5

7 H12V3,41V4,32 24 7 7

8 H13V2,14V4,12 11 20 8

9 H13V2,14V4,32 9 21 9

10 H13V2,34V4,12 10 22 10

11 H13V2,34V4,32 8 23 8

12 H14V2,14V3,21 19 16 12

13 H14V2,14V3,41 17 17 13

14 H14V2,34V3,21 18 18 14

15 H14V2,34V3,41 16 19 12

16 H23V1,23V4,12 15 12 12

17 H23V1,23V4,32 13 13 13

18 H23V1,43V4,12 14 14 14

19 H23V1,43V4,32 12 15 12

20 H24V1,23V3,21 23 8 8

21 H24V1,23V3,41 21 9 9

22 H24V1,43V3,21 22 10 10

23 H24V1,43V3,41 20 11 8

24 H34V1,23V2,14 7 24 7

25 H34V1,23V2,34 6 26 5

26 H34V1,43V2,14 5 25 5

27 H34V1,43V2,34 4 27 4

28 V1,23V2,14V3,21V4,12 43 28 28

29 V1,23V2,14V3,21V4,32 39 30 29

30 V1,23V2,14V3,41V4,12 35 29 29

31 V1,23V2,14V3,41V4,32 31 31 31

32 V1,23V2,34V3,21V4,12 42 36 32

33 V1,23V2,34V3,21V4,32 38 38 33

34 V1,23V2,34V3,41V4,12 34 37 34

35 V1,23V2,34V3,41V4,32 30 39 29

36 V1,43V2,14V3,21V4,12 41 32 32

37 V1,43V2,14V3,21V4,32 37 34 34

38 V1,43V2,14V3,41V4,12 33 33 33

39 V1,43V2,14V3,41V4,32 29 35 29

40 V1,43V2,34V3,21V4,12 40 40 40

41 V1,43V2,34V3,21V4,32 36 42 32

42 V1,43V2,34V3,41V4,12 32 41 32

43 V1,43V2,34V3,41V4,32 28 43 28

Table 1. The third and fourth column show how the structures map to each other under the

special permutations that preserve the cross ratios. The 43 structures split into 19 multiplets under

these permutations. In the last column, we show in red the label of the 19 independent functions

fs(u, v) that multiply each multiplet.
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D Simplifying crossing

The functions f̃s are defined by the following linear map,

f̃s̃(u, v) =

43∑
s=1

[ M ]s̃s fs(u, v) , s̃ = 1, . . . , 19 . (D.1)

Here [ M ] is a 19× 43 matrix defined by

f̃1 = f28 − f33 f̃8 = f34

f̃2 = f29 − f32 f̃9 = f28 + f33

f̃3 = f7 − f14 f̃10 = f29 + f32

f̃4 = f4 − f13 f̃11 = f7 + f14

f̃5 = f5 − f12 f̃12 = f4 + f13

f̃6 = f9 − f10 f̃13 = f5 + f12

f̃7 = f1 − f3 f̃14 = f9 + f10

f̃19 = f31 − f40 f̃15 = f8

f̃16 = f1 + f3

f̃17 = f2

f̃18 = f31 + f40

(D.2)

where we suppressed the arguments (u, v) from all functions f̃s and fs.

E Conformal blocks

In this appendix we explain how to obtain the recurrence relation for the conformal blocks

of four external vector operators in d = 3 defined in section 2.3. In particular we will show

how to compute all the ingredients of formulae (2.46)–(2.47) by using the conventions and

ideas introduced in [44].

E.1 Conventions for JJJJ

In this section we define our conventions for the conformal blocks. We are interested in

finding all the CBs for four generic external vectors

〈J1J2J3J4〉 =
∑
O+

5∑
p,q=1

J1 J3

p
O+

q

J2 J4

+
∑
O−

4∑
p,q=1

J1 J3

p
O−

q

J2 J4

, (E.1)

where the operators Ji have spin 1 and dimension ∆i and O± are operators with spin `

dimension ∆ and parity ±.
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As a first step we explain our convention for the labels p, q of the OPE. We define the

leading OPE in terms of a linear combination of tensor structures

O±(x, z)J1(0, z1) ∼ J2(0, ∂z2)

(x2)α±

∑
q

c
(q)
12O± t

(q)
`±(x, z, z1, z2) , (E.2)

where zµ are null polarization vectors. Here ∼ means that we are considering only the

channel of the OPE in which O± × J1 exchanges the operator J2 (therefore omitting all

the other possible exchanged primaries), and taking into account only the leading term of

the OPE for xµ → 0 (therefore omitting all the contribution of the descendant operators).

We also define

α+ ≡
∆ + ∆1 −∆2 + `+ 2

2
, α− ≡

∆ + ∆1 −∆2 + `+ 1

2
. (E.3)

The various OPE coefficients c
(q)
12O± multiply the tensor structures t

(q)
`±(x, z, z2, z3), which

are Lorentz invariant and satisfy

t
(q)
`+(µx, λz, λ1z1, λ2z2) = µ`+2λ`λ1λ2 t

(q)
`+(x, z, z1, z2) , (E.4)

t
(q)
`−(µx, λz, λ1z1, λ2z2) = µ`+1λ`λ1λ2 t

(q)
`−(x, z, z1, z2) . (E.5)

The sum over q in (E.2) runs from one to five for parity even operators, since we can build

the following five structures

t
(1)
`+ (x, z, z1, z2) ≡ (x · z)`(z1 · z2)x2 ,

t
(2)
`+ (x, z, z1, z2) ≡ (x · z)`(x · z1)(x · z2) ,

t
(3)
`+ (x, z, z1, z2) ≡ (x · z)`−1(z · z1)(x · z2)x2 ,

t
(4)
`+ (x, z, z1, z2) ≡ (x · z)`−1(z · z2)(x · z1)x2 ,

t
(5)
`+ (x, z, z1, z2) ≡ (x · z)`−2(z · z1)(z · z2)x4 .

(E.6)

Notice that for ` = 0 only t(1) and t(2) survive and for ` = 1 all are allowed except t(5).

These structures are related by a simple linear transformation to the structures of the main

text. To be more precise, the basis

T
(q)
+ =

{
V1,23V2,31V

`
3,12, H12V

`
3,12, H13V2,31V

`−1
3,12 , H23V1,23V

`−1
3,12 , H13H23V

`−2
3,12

}
(E.7)

can be related to t
(q)
`+ →

∑5
q′=1[M+]qq′ T

(q′)
+ by

M+ =


0 −1 0 0 0

1 0 0 0 0

0 2 −1 0 0

0 0 0 1 0

0 0 0 −2 1

 . (E.8)
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Similarly for parity odd operators with generic spin there are four allowed tensor struc-

tures which can be build by using the three dimensional epsilon tensor (see appendix E.5.2)

t
(1)
`− = ε(x, z1, z2)(x · z)`

t
(2)
`− = ε(x, z, z1)(x · z2)(x · z)`−1

t
(3)
`− = ε(x, z, z2)(x · z1)(x · z)`−1

t
(4)
`− = [ε(x, z, z1)(z · z2) + ε(x, z, z2)(z · z1)](x · z)`−2x2 .

(E.9)

Again it is clear that for ` = 0 there is only t(1) and for ` = 1 only t(1), t(2), t(3). The basis

in embedding space

T
(q)
− =

{
V2,31ε13V

`−1
3,12 , V1,23ε23V

`−1
3,12 , H23ε13V

`−2
3,12 , H13ε23V

`−2
3,12

}
(E.10)

can be related to t
(q)
`− →

∑4
q′=1[M−]qq′ T

(q′)
− for ` ≥ 2 by means of the following matrix

M− =


0 4 0 0

0 0 −1 0

−2 −2 2 −2
1
2

1
2

3
2 −

1
2

 . (E.11)

E.2 Null states

In this section we write all the possible primary descendant states that can be exchanged

when the external operators are all vectors.

In d = 3 the only irreducible representations of the rotation group are traceless and

symmetric tensors of spin `. We consider such a primary state of spin ` and we contract it

with null polarization vectors zµ as follows

|O; z〉 ≡ zµ1 . . . zµ`O
µ1...µ`(0)|0〉 ≡ O(z, 0)|0〉 . (E.12)

It is possible to recover the expressions with the indices

Oµ1...µ`(x) =
1

`!(d2 − 1)`
Dµ1
z · · ·Dµ`

z O(z, x) , (E.13)

by acting with the differential operator Dz of [40, 69],

Dµ
z =

(
d

2
− 1 + z · ∂z

)
∂µz −

zµ

2
∂z · ∂z . (E.14)

The primary descendant states are of four possible types which are additionally labeled

by an integer n (n runs over all positive integers for type I and type II, and over a finite set

for type III and IV). We define each descendant state |OA; z〉 by the action of an operator

DA (built as a linear combination of many Pµ, the generators of the translations) on a

primary state |O; z〉
|OA; z〉 = DA|O; z〉 . (E.15)
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The operators DA can be fixed by asking that Kµ|OA; z〉 = 0 when ∆ = ∆?
A. This is

simply the requirement that when ∆ = ∆?
A, the descendants |OA; z〉 become primaries.

The operators DA can be written in the following compact form [44]

DI,n ≡ cI,n (z · P )n , (E.16)

DII,n ≡ cII,n (Dz · P )n , (E.17)

DIII,n ≡ cIII,n V 1
2
V 3

2
· · · Vn− 1

2
, (E.18)

DIV,n ≡ cIV,n E V1 V2 · · · Vn−1 , (E.19)

where Vj and E are defined by

Vj = (j + `)(`− j)P 2 − 2(P · z)(P ·Dz) , (E.20)

E = εµνσP
µzνDσ

z . (E.21)

The coefficients c are unimportant normalization constants that we are free to set to any

value. For convenience, we choose

cI,n = 1 = cIV,n , cII,n =
1(

1
2 − `

)
n

(−`)n
, cIII,n =

1(
`− n+ 1

2

)
2n

. (E.22)

We want to stress that the operators of type I, II and III, do not change the parity of

the state on which they are applied, while the one of type IV does, namely

DA|O±〉 =

{
|O±A〉 A = (I, n), (II, n), (III, n)

|O∓A〉 A = (IV, n)
. (E.23)

Using the definitions (E.16)–(E.19) and the commutation relations of the conformal algebra,

we can compute the residue QA at the pole ∆?
A of the inverse of the norm of the primary

descendant states

〈OA; z|OA; z〉−1 =
QA

∆−∆?
A

〈O; z|O; z〉−1 +O((∆−∆?
A)0) . (E.24)

The result for the four types is

QI,n = − 2−n

(n− 1)!n!
,

QII,n =
(−2)−n

(n− 1)!n!

(2n− 2`− 1)

(2`+ 1)

(−`)n
(`− n+ 1)n

,

QIII,n = − (−4)−2n

(n− 1)!n!

(
`− n+ 1

2

)(
`+ n+ 1

2

) 1(
1
2 − n

)
2n

,

QIV,n =
2

(2n− 1)!(2n− 2)!

1

(1− 2`)2

1

(−`− n+ 1)2n−2(`− n+ 1)2n
.

(E.25)
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E.3 The residue RA

The residue RA is obtained using formula (2.50), where QA are defined in (E.25).

The matrices MA can be defined by the action of differential operator DA on the tensor

structures appearing in the leading OPE (E.2). For the first three types we have

DA
t
(q)
`±(x, z, z1, z2)

(x2)α±
=
∑
q′

(
M

(L)
±A

)
qq′

t
(q′)
`A±(x, z, z1, z2)

(x2)α±A
A =


I, n

II, n

III, n

, (E.26)

where the matrices M+A are 5 × 5 while the M−A are 4 × 4. The exponent α±A is equal

to α± where we replace `→ `A and ∆→ ∆ + nA. Moreover, we set ∆ = ∆?
A.

The type IV is slightly different since it changes the parity of the primary state,

therefore

DA
t
(q)
`±(x, z, z1, z2)

(x2)α±
=
∑
q′

(
M

(L)
±A

)
qq′

t
(q′)
`A∓(x, z, z1, z2)

(x2)α∓A
A = IV, n . (E.27)

In this case M+IV is a rectangular matrix 5× 4 while M−IV is 4× 5.

The definitions given here can be directly used to compute M . However there can be

better strategies to implement this computation. One possible strategy is to act with each

building block differential operator contained in DA (namely P · z, P · Dz, Vj and E) on

the set of tensor structures, in order to obtain a correspondent building block matrix that

rotates the tensor structures. The full result can be computed as products of these building

block matrices, as detailed in [44]. A new strategy is explained in appendix E.6.1, where

we show how to obtain MA for the types (I, n), (II, n), (III, n) in a closed form by doing a

trivial computation.

It is worth commenting that by direct computation one can check that MIV,n vanishes

for n > 2 which means that only two poles of type (IV, n) contribute, namely ∆ = 0, 1 as

mentioned in appendix E.6.4.

E.4 Conformal block at large ∆

In this section we explain how to compute h∞, the large ∆ limit of the conformal blocks.

To do so, we are going to solve the Casimir differential equation at the leading order for

large ∆ with the appropriate initial condition for G
(p,q)
∆`± when x12, x34 → 0.

The Casimir equation can be schematically expressed as

1

2
(J1 + J2)2 G

(p,q)
∆`±({Pi;Zi}) = c∆`G

(p,q)
∆`±({Pi;Zi}) , (E.28)

where JABi ≡ i(PAi ∂
B
Pi
− PBi ∂APi + P ↔ Z). We consider the leading order in ∆ of (E.28)

and we substitute the definitions (2.41) and g
(p,q)
∆`±,s(r, η) = (4r)∆h

(p,q)
∆`±,s(r, η). The result is

a set of 43 coupled first order differential equations for the functions hs

∂rhs =
43∑
t=1

Ms t(r, η)ht , (E.29)
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where M is a 43 × 43 matrix of explicitly known rational functions of r and η and where

we dropped all the labels of hs (which will be reintroduced when we will fix the initial

condition of the Casimir equation). Since the 43 equations (E.29) are of the first order, we

have 43 independent solutions h
(s′)
s , labeled by s′ = 1 . . . 43. We then use the ansatz

h(s′)
s (r, η) ≡ A(r, η)P (s′)

s (r, η) , (E.30)

A(r, η) ≡
(
1− r2

)−3− d
2

(1 + r2 − 2rη)
1
2
−∆12+∆34 (1 + r2 + 2rη)

5
2

+∆12−∆34
, (E.31)

to obtain a set of differential equations for the 43 functions P
(s′)
s . This ansatz, inspired by

the solution of the scalar Casimir at large ∆, has the property of eliminating completely

the dependence on ∆12 = ∆1 − ∆2 and ∆34 = ∆3 − ∆4 from the differential equation.

Moreover it turns out that we can easily fix all the functions P
(s′)
s (r, η) since they are

simply polynomials in r (of maximal degree 12) and η. Notice also that we are leaving d

unfixed: in fact the solution that we find works in any dimension. We can further choose

a basis such that

P (s′)
s (0, η) = δs

′
s , s, s′ = 1, . . . , 43 . (E.32)

The functions h∞ can then be written as a linear combination of the 43 functions h
(s′)
s as

follows

h
(p,q)
∞`±,s(r, η) =

43∑
s′=1

h(s′)
s (r, η)f

(p,q)
`±,s′(η), (E.33)

where the functions f are constants of integration that can be fixed by imposing the

correct initial condition for the differential equation. In particular with our conventions

f
(p,q)
`±,s (η) ≡ h

(p,q)
∞`±,s(0, η). Therefore we can fix them by studying the OPE limit (namely

x2 → x1 and x4 → x3 which also imply r → 0) of G
(p,q)
∆`±. As explained in [44], by studying

the OPE limit of G
(p,q)
∆`± we obtain the following equation, that can be used to define the

functions f ,

t
(p)
`± (x̂12, I(x24) ·Dz, I(x12) · z1, z2)t

(q)
`±(x̂34, z, I(x34) · z3, z4)

`!(h− 1)`
≈

43∑
s=1

f
(p,q)
`±,s (η)Qs . (E.34)

Here Qs are the 43 four point function tensor structures in the OPE limit x2 → x1 and

x4 → x3. Our choice of structures Qs is such that the 43 structures remain finite and

linearly independent in this limit. The contractions with the tensor I denote I(x) · z =

z − 2x(x · z)/x2 and η ≈ −x̂12 · I(x24) · x̂34.

As a last remark we want to stress that from this computations, all the functions

h
(p,q)
∞`+,s were found in generic dimensions. However the leading term of the blocks h

(p,q)
∞`−,s is

by construction related to the three dimensional case. Nevertheless to generalize it to any

dimension it straightforward. To that end it is sufficient to replace f
(p,q)
`−,s with the OPE

limit of the higher dimensional conformal blocks for the exchange of operators in the SO(d)

representations (`, 1), (`, 2) and (`, 1, 1) [70].
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E.5 Tensor structures for equal and conserved currents

In this section we obtain the matrices m± which are needed in order to obtain the blocks

of conserved equal currents, according to (2.53).

E.5.1 Parity even

In the OPE of two identical operators O1 = O2 there is a smaller set of allowed tensor

structures in comparison to the one defined in section E.1. The invariance under the

exchange of O1 and O2 can be easily formulated in terms of the OPE by asking that the

a linear combination
∑5

q=1 c
(q)t

(q)
`+ of the OPE structures is invariant under the map

x → −x
z1 → I(x) · z2

z2 → I(x) · z1

. (E.35)

This automatically gives the following set of constraints on the coefficients c(q),

c(1)
(
(−1)` − 1

)
= 0

c(2)
(
(−1)` − 1

)
+ 2

(
c(3) + c(4) + 2c(5)

)
(−1)` = 0(

c(4) + 2c(5)
)

(−1)` + c(3) = 0(
c(3) + 2c(5)

)
(−1)` + c(4) = 0

c(5)
(
(−1)` − 1

)
= 0

. (E.36)

Solving this set of constraints one can define a new set of allowed tensor structures.

From (E.36) it is clear that for ` = 0 we have just two possible structures, for even ` > 0

we have four, while for odd ` we always have one.

When O1 = J1 is a conserved current, we have

∂z1 · ∂x1J1(x1, z1) = 0 =⇒ ∂z1 · ∂x1

∑5
q=1 c

(q)t
(q)
`+(−x1, z, z1, z2)

(x2
1)α+

= 0 . (E.37)

The conservation condition applied to the OPE provides a constraint on the allowed com-

binations of the OPE coefficients,{
−2(α+ − 1)c(1) − 2(α+ − 1)c(3) + c(2)(−2α+ + d+ `+ 1) = 0

−2(α+ − 2)c(5) + c(4)(−2α+ + 2h+ `+ 1) + c(1)`+ c(3) = 0
. (E.38)

This implies that for ` = 0 there exists only one allowed structure, for ` = 1 there are two,

and for ` > 1 there are always three.

To find all the allowed structures for equal conserved currents we can solve simultane-

ously the systems (E.36) and (E.38). We decide to define the basis t̃ of the tensor structures

for conserved and equal currents as the following linear combination of the basis of generic

external vectors

t̃
(p̃)
∆`+(x, z, z1, z2) =

5∑
p=1

(m+)p̃p t
(p)
`+ (x, z, z1, z2) , (p̃ = 1, 2) , (E.39)
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where

m+ =

(
(2−∆)(`+ ∆) (∆− `)(`+ ∆) 2`(∆− 2) 0 −`(∆− 2)

`−∆ + 2 0 −`+ ∆− 2 ∆− ` `−∆ + 1

)
. (E.40)

In particular for odd values of ` there are no allowed structures while in the case ` = 0 only

t̃(1) is allowed. Instead for all even ` > 0 both structures are allowed. The OPE coefficients

c̃ in the basis t̃ are related to the ones of section E.1 by

c
(p)
12O+ =

2∑
p̃=1

λ̃
(p̃)
12O+(m+)p̃p . (E.41)

E.5.2 Parity odd structures in three dimensions

In equation (E.9) we defined the leading OPE of two spin one operators J1 and J2 with a

pseudo-tensor O− of spin ` and dimension ∆. Notice that we did not include the structures

ε(z, z1, z2)x2(x · z)`−1 , ε(x, z, z1)(z · z2)(x · z)`−2x2 , (E.42)

since they can be written as linear combinations of the previous structures t`−. In fact we

have the following two identities

0 = det

 x2 x · z x · z1 x · z2(
x
)
µ

(
z
)
µ

(
z1

)
µ

(
z2

)
µ

 = x2ε(z, z1, z2)− (x · z)ε(x, z1, z2)

+(x · z1)ε(x, z, z2)− (x · z2)ε(x, z, z1) ,

(E.43)

0 = det

 z · x 0 z · z1 z · z2(
x
)
µ

(
z
)
µ

(
z1

)
µ

(
z2

)
µ

 = (z · x)ε(z, z1, z2) + (z · z1)ε(x, z, z2)

−(z · z2)ε(x, z, z1) ,

(E.44)

which reduce the space of six possible tensor structures to just four independent ones. We

also remind that in the case of ` = 0 there is only one structure t
(1)
`−, while for ` = 1 we

have three possible structures t
(1)
`−, t

(2)
`−, t

(3)
`−.

In the case of equal operators we need to find the linear combinations of (E.9) that

are invariant under the map (E.35). We obtain that for ` = 0, 1 we can only have a single

structure, while for ` > 1 there are two. For two different conserved currents one would

have one single structure for ` = 0, two for ` = 1 and three for ` > 1. For conserved equal

currents in three dimensions we obtain just one structure t̃∆`− that takes two different

forms for ` even and ` odd,

t̃∆`−(x, z, z1, z2) =
∑
p

(m−)p t
(p)
`− (x, z, z1, z2) (E.45)

with

m− =

{
(∆− 3, `, `, 0) ` even,

(0,∆− `− 3,∆ + `+ 1, 1−∆) ` > 1, odd.
(E.46)

For the special case ` = 1 there are no allowed tensor structures. For ` = 0 instead t̃∆`− is

still allowed. We define the OPE coefficient c̃ in the basis t̃ by

c
(p)
12O− = λ̃12O−(m−)p . (E.47)
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E.6 Comments on the recurrence relation

In this appendix we explain some new technical developments on the conformal block

recurrence relations which were obtained as a part of this work. Findings presented in this

section will be useful for the task of computing the full set of conformal blocks needed

to implement the numerical conformal bootstrap in any spacetime dimension and for any

“low spin” external operator.

E.6.1 New strategy to compute the matrices MA

The matrices MA are not trivial to compute using the strategy proposed in appendix E.3.

This is due to the fact that the first three types (I, n), (II, n), (III, n) have the label n which

in principle can take infinitely many values. The label n is also related to the degree of the

differential operator which one has to apply to the structures, therefore it may look very

nontrivial to obtain closed form results for MA. However there is a simple way to compute

the matrices MA in a closed form, which we are going to explain in this section. For this

purpose we define the conformal blocks Ĝ
(p,q)
O in the basis of the differential operators

Ĝ
(p,q)
O ≡ D

(p)
leftD

(q)
rightGO (E.48)

where GO is the scalar block. The blocks in the basis used in this paper are related to

Ĝ
(p,q)
O as

Ĝ
(p,q)
O =

∑
p′q′

(nO)pp′(nO)qq′G
(p′,q′)
O , (E.49)

where nO are matrices of coefficients independent of the cross-ratios. In the differential

basis the residues at the poles are diagonal in the labels p and q,

Ĝ
(p,q)
O = D

(p)
leftD

(q)
right

m
(L)
A QAm

(R)
A

∆−∆?
A

GOA +O
(
(∆−∆?

A)0
)

=
m

(L,p)
A QAm

(R,q)
A

∆−∆?
A

D
(p)
leftD

(q)
rightGOA +O

(
(∆−∆?

A)0
)

=
r

(p,q)
A

∆−∆?
A

Ĝ
(p,q)
OA +O

(
(∆−∆?

A)0
)
, (E.50)

where m
(L)
A QAm

(R)
A ≡ rA is the residue of the scalar block and r

(p,q)
A ≡ m(L,p)

A QAm
(R,q)
A . The

coefficient m
(p)
A is morally the same as mA since the differential part of the operator D(p)

clearly does not act on the residue rA. However the operators D(p) also act by shifting ∆12

(or ∆34) by some units. Therefore the coefficient m
(p)
A is trivially obtained by implementing

such shifts on mA.

Knowing m
(p)
A , it is trivial to obtain MA in a closed form, just by performing a change

of basis from the differential basis to the one that we need. For example for the parity even

conformal blocks we got

(
M

(L)
+A

)
pq

=

5∑
p′=1

(
n−1

∆?
A,`,+

)
pp′

m(L,p′)
(
n∆A,`A,+

)
p′q

, A =


I, n

II, n

III, n

(E.51)
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where

m
(L,1)
A = m

(L,2)
A = m

(L,5)
A = m

(L)
A , (E.52)

m
(L,3)
A = m

(L)
A

∣∣∣
∆12→∆12−2

, m
(L,4)
A = m

(L)
A

∣∣∣
∆12→∆12+2

, (E.53)

and where m
(L)
A are the scalar coefficients [44],

m
(L)
I,n ≡ (−2i)n

(
−n+ ∆12 + 1

2

)
n

, (E.54)

m
(L)
II,n ≡

(−i)n
(−n+∆12+1

2

)
n

(2h+ `− n− 2)n

(h+ `− n− 1)n
, (E.55)

m
(L)
III,n ≡

(−4)n(h− n− 1)`

(
−h−`−n+∆12+2

2

)
n

(
h+`−n+∆12

2

)
n

(h+ n− 1)`
. (E.56)

The 5×5 matrix n∆,`,+ implements the change of basis from the differential operator basis

to the basis (E.6) that is used in this paper,

n∆,`,+ ≡


`− β 2β(∆− β) (β − 1)` `(β −∆) (1−`)`

2

−1 0 0 0 0

1− β 2(β − 1)β (1− β)` (1− β)` (`−1)`
2

β −∆− `+ 1 2(β −∆)(β −∆ + 1) `(∆− β) `(∆− β) (`−1)`
2

β −∆ 2β(∆− β) `(β −∆) (β − 1)` (1−`)`
2

 , (E.57)

where β = (∆12 + ∆ + `)/2. Similarly one can obtain the matrices for the parity odd

conformal blocks. With this method we cannot fix the residue of the fourth type, since

the scalar block does not have any pole of type IV. However these are just two new poles

which can be easily investigated by a direct computation.

E.6.2 Simplifications of the recurrence relations

In this appendix we mention some interesting ways to simplify the recurrence relations

which were not adopted in this work, but could be very useful for future investigations.

The first remarkable simplification of the recurrence relation comes from equa-

tion (E.50). Using the basis of the differential operators it is possible to define a fully

diagonal recurrence relation of the form

h
(p,q)
∆`,s(r, η) = h

(p,q)
∞∆`,s(r, η) +

∑
A

(4r)nA
r

(p,q)
`A

∆−∆?
A

h
(p,q)
∆A`A,s

(r, η) . (E.58)

Here r
(p,q)
A is a constant which is obtained by shifting the scalar constant rA. From (E.50)

it is also clear that the labels A, `A, nA and ∆A appearing in this recurrence relation

would be the same as in the scalar relation [44]. The form (E.58) is much more convenient

to compute complicated conformal blocks (for example, for four external stress tensors)

since it decouples all the recurrence relations. However, in order to obtain such a beautiful
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result, one has to pay a price. In fact in this basis function h∞ is a polynomial in ∆. The

order of such polynomial depends on the choice of the external operators and it is related

to the matrix that changes basis from the usual ∆-independent three point functions basis

(for example the leading OPE basis (E.6) used in this paper) to the differential one (for

example (E.48) that can be obtained by implementing the change of basis (E.57) which

is ∆-dependent). The fact that h∞ is a polynomial in turn implies that to obtain h∞ we

need to solve the Casimir equation at sub-leading orders in large ∆.

Similarly one could implement the recurrence relation for the conformal blocks directly

in the basis of conserved equal currents (E.39). This was already successfully tried for one

external conserved current in general dimension [44]. This approach would also give rise to

important simplifications since we would just have 5 coupled recurrence relations instead

of 41 (an even more drastic simplification would appear in the case of four external stress

tensors). However, also in this case, the behaviour at large ∆ of the blocks would change.

In particular since the coefficients of (E.40) are polynomial of order two in ∆ (and we have

to contract twice these matrices with the conformal blocks), we would need to solve the

Casimir equation at four subleading orders in large ∆.

It is also interesting to notice that one could implement the recurrence relation for the

conformal blocks in the basis of equal vectors obtained by solving for example (E.36). This

basis is very convenient since it does not depend on ∆ and therefore it does not modify

the behaviour at large ∆ of the conformal blocks. It is therefore very simple to implement

such a change and it would introduce a significant simplification.

In this work we decided to stick to the most conservative recurrence relation valid for

any external vector even if we had all the ingredients necessary to apply any of the previous

simplifications (in fact we managed to solve the Casimir equation to many subleading orders

in large ∆). We did not further analyzed the simplified recurrence relations since the actual

algorithm was already efficient enough for the computations done in this work. However it

would be very interesting to obtain very efficient formulas for this and for more complicated

conformal blocks valid in any dimensions. To do so it may be worth to implement the ideas

mentioned in this section.

E.6.3 A new implementation of the recurrence relation

In this section we want to comment on a new way to implement the recurrence relations,

which was adopted in this work. We will exemplify the method for the case of four external

vectors in three dimensions, but one can implement it also in any other case. It is convenient

to introduce the notation

h
(p,q)
∆`±,s(r, η) ≡

∞∑
m=0

rmh
(p,q)
∆`±,s[m](η) , (E.59)

where h
(p,q)
∆`±,s[m](η) are the coefficient of the expansion in r of the conformal blocks, which

are just functions of η. We shall drop the dependence on η in the following formulae for

convenience. The recurrence relation can be easily casted in the following r-independent
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``+m`0

m

m

Figure 18. This plot shows which information is used to compute the block h
(p,q)

∆`,s
[m], represented

as the red dot. In order to build this block one needs to know all the h
(p′,q′)
∆`,s [m] for ` = max[0, `−

m], . . . , `+m and m = m− |`− `|.

form24

h
(p,q)
∆`±,s[m] = h

(p,q)
∞`±,s[m] +

∑
A

∑
p′,q′

(4)nA
(R±A)pp′qq′

∆−∆?
A

h
(p′,q′)
∆A`A±A,s[m− nA] . (E.60)

Since nA > 1 it is clear how to use the formula to build h[m] from the knowledge of h[m]

with m < m. However it is interesting to notice that the blocks h
(p,q)
∆`±,s[m] for m < m are

called in the recurrence relation with different spins `A. In particular in order to know

h
(p,q)

∆`+,s
[m] (or h

(p,q)

∆`−,s[m]) one needs to know25 h
(p′,q′)
∆`±,s[m− 1] with ` = `− 1, `, `+ 1, which

can be computed knowing h
(p′′,q′′)
∆`±,s [m− 2] with ` = `− 2, `− 1, `, `+ 1, `+ 2 and so on, until

h
(p′′′,q′′′)
∆`±,s [0] with ` = max[0, `−m], . . . , `+m. Therefore formula (E.60) can be conveniently

implemented as a recurrence relation in spin. In figure 18 it is shown how to build h
(p,q)

∆`±,s[m]

using the information of the conformal blocks at different spins and lower value of m.

The code that we implemented uses this strategy to compute all the blocks with various

spins at once. Given the inputs of m and `, it starts by computing all the blocks for m = 0

and ` = 0, . . . , `+m, then it computes all the blocks with m = 1 and ` = 0, . . . , `+m− 1,

and so on, until one obtain the blocks with m = m and ` = 0, . . . , `. The output of the

algorithm is therefore a list of all the blocks with m ≤ m and ` ≤ `, but it also generates

blocks with higher spins and lower m. With this algorithm we were able to obtain the blocks

with m = 50 and ` = 40, as showed in figure 19. Each dot in the picture corresponds to

41 exact functions of ∆ and η: h
(p,q)
∆`+,s[m] for p, q = 1, . . . 5 and h

(p,q)
∆`−,s[m] for p, q = 1, . . . 4

24Formula (E.60) is a more compact way to write (2.46)–(2.47). We hope not to confuse the reader with

this change of notation. The simbol ±A = ± for the first three types, while ±IV,n = ∓.
25We put primes in the label p and q to stress that we need all the blocks for any p and q, since (E.60)

couples those labels. On the other hand s is diagonal so we can study one vale of s at the time.
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`90400

m

50

Figure 19. Schematical representation of the computation of the blocks performed in this paper.

for a given structure s. This algorithm should be repeated 19 times, which correspond to

the number of structures s that we considered.

E.6.4 The recurrence relation in any dimension

In this section we review how to write recurrence relations for conformal blocks in any

dimension d [44, 45]. We do this in order to comment on some subtleties involving the

dependence on d of the recurrence relations.

From representation theory we know the full set of poles ∆?
A of a bosonic conformal

block G
(p,q)
∆` for the exchange of the most generic SO(d) representation ` = (l1, . . . , l[ d

2
]).

In odd dimensions all the poles are simple and the residues at the poles ∆?
A are linear

combinations of conformal blocks G
(p′,q′)
∆A,`A

associated to the exchange of a (null) primary

descendant in the SO(d) representation `A = (∆A, l1A, . . . , l[ d
2

]A), namely

G
(p,q)
∆` (xi) ∼

1

∆−∆?
A

∑
p′,q′

(R`A)pp′qq′G
(p′,q′)
∆A`A

(xi) . (E.61)

In the following table we write the full set of poles ∆?
A and the labels associated to the

primary descendants ∆A, `A

A ∆?
A nA liA

Ik, n : n ∈ [1, lk−1 − lk] k − lk − n n li + nδik

IIk, n : n ∈ [1, lk − lk+1 ] d+ lk − k − n n li − nδik
III, n : n ∈ [1,∞) d

2 − n 2n li

IV, n : n ∈ [1, l[ d
2

]]
d+1

2 − n 2n− 1 li

(E.62)
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where k = 1, . . . , [d2 ], n is an integer and ∆A = ∆?
A + nA. We can then reconstruct the full

conformal block by summing over all the poles in ∆ and over the regular part. In radial

coordinates this can be done by writing

g
(p,q)
∆`,s (r, η) = (4r)∆h

(p,q)
∆`,s(r, η) , (E.63)

where

h
(p,q)
∆`,s(r, η) = h

(p,q)
∞`,s(r, η) +

∑
A

∑
p′,q′

(4r)nA
(R`A)pp′qq′

∆−∆?
A

h
(p′,q′)
∆A`A,s

(r, η) , (E.64)

and the regular part h
(p,q)
∞`,s(r, η) ≡ lim∆→∞ h

(p,q)
∆`,s(r, η).

We would like to point out the difference between the behavior of the recurrence

relations when d is an odd integer and when it is a continuous analytic variable. The

even-dimensional case is obtained as a limit of general d.

First we want to comment on the types Ik, IIk. We want to show that there may be

more poles associated to these types when we do not fix the spacetime dimension. In fact

the label k is bounded to be in the set 1, . . . , [d2 ]. While for any concrete integer d this

range is finite, when d is not fixed this range is virtually infinite. When d is not fixed the

range only truncates because of the choice of the external operators. In fact, at a given

pole of type A, the residue is a conformal block hOA . However OA may be labeled by

an SO(d) representation which cannot possibly couple to the external operators, namely

OA /∈ (O1×O2)∩ (O3×O4). This phenomenon is particularly relevant for the types (Ik, n)

(or (IIk, n)) when k > 1. In fact in these cases the SO(d) representation of OA is different

from the one of O, since the Young tableau associated to OA has n more boxes (or n less

boxes) in its k-th row. As an example, if we consider any choice of traceless and symmetric

external operators in any dimension, the label k is bounded to take the values k = 1, 2, 3.

When d is fixed to an odd integer instead we have a finite number of k independently of

the choice of the external operators. For example in three dimensions the types Ik and IIk
exist just for k = 1 and similarly for d = 5 we only have k = 1, 2.

The reverse phenomenon happens for the type IV. In generic dimensions the type

(IV, n) cannot appear since n runs in the set [1, l[ d
2

]]. In fact, since d is not specified, the

label l[ d
2

] of the exchanged operator has to vanish for any choice of the external operators.

Instead, for d integer, l[ d
2

] is well defined and the poles of type IV may appear depending

on the choice of the external operators.

The fact that some poles exist only in integer dimensions and that others exist only

when d is not integer may seem paradoxical, since we claim that the recurrence relations

are analytic functions of d. The resolution of the paradox comes from the fact that the

poles of type Ik, IIk which disappear at integer values of d, are exactly replaced by the poles

of type IV which exist only at d integer.

For example in the case of 4 external vectors in generic d, besides the poles of type

I1, II1 and III (which are present also in the scalar case), there are also new poles coming

from type I2, n = 1, 2, II2, n = 1, 2, I3, n = 1, II3, n = 1. We can read their position

from the table (E.62). Once we set the value of d = 3, we obtain three new poles at

positions ∆ = 0, 1, 2. On the other hand when we consider the table (E.62) directly in three
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dimensions, we predict ` new poles of type IV at the positions ∆ = 1, 0,−1, . . . ,−` + 2.

One can check that, rather magically, the residues R correspondent to type IV vanish for

n > 2 giving poles only at ∆ = 1, 0. In a similar way one can prove that the pole at

position ∆ = 2 predicted in general dimension has a vanishing residue when d = 3.

F Details about numerical implementation

Let us describe the numerical implementation one step at a time.

1. As explained in appendix E, conformal blocks are naturally computed in a basis with

43 tensor structures. However, in three dimensions there exist two linear relations

among the 43 tensor structures, the first task we need to perform is to express the

three dimensional crossing equations in terms of the 43 (19 for equal currents) original

functions.

In our basis of tensor structures, the two linear relations read:(
u2+(−1+v)2−2u(1+v)

)
Q2+

(
−u2−(−1+v)2+2u(1+v)

)
Q3+4uvQ8−2

√
u
√
v(−1+u+v)Q9

−2
√
u
√
v(−1+u+v)Q10+4uvQ11+2u

√
v(1−u+v)Q12+2

√
u(1+u−v)vQ13

+2
√
u
(
1+u2−v−u(2+v)

)
Q14+2u

√
v(1−u+v)Q15+2u

√
v(1−u+v)Q16+2

√
u(1+u−v)vQ17

−2
√
u
(
−1−u2+v+u(2+v)

)
Q18+2u

√
v(1−u+v)Q19+4uvQ20−2

√
u
√
v(−1+u+v)Q21

−2
√
u
√
v(−1+u+v)Q22+4uvQ23−4u2vQ28+4u3/2v3/2Q29+4u3/2v3/2Q30

−4u(−1+v)vQ31+4(−1+u)u3/2√vQ32−4u(1+u)vQ33−4(−1+u)uvQ34+4u3/2v3/2Q35

+4(−1+u)u3/2√vQ36−4(−1+u)uvQ37−4u(1+u)vQ38+4u3/2v3/2Q39

−4u
(
1−2u+u2−v

)
Q40+4(−1+u)u3/2√vQ41+4(−1+u)u3/2√vQ42−4u2vQ43 = 0

(
u2+(−1+v)2−2u(1+v)

)
Q1+

(
−u2−(−1+v)2+2u(1+v)

)
Q3+2u(−1+u−v)

√
vQ4

−2
√
u(1+u−v)vQ5−2

√
u(1+u−v)vQ6−2

√
v
(
(−1+v)2−u(1+v)

)
Q7+2u

√
v(1−u+v)Q12

+2
√
u(1+u−v)vQ13+2

√
u
(
1+u2−v−u(2+v)

)
Q14+2u

√
v(1−u+v)Q15+2u

√
v(1−u+v)Q16

+2
√
u(1+u−v)vQ17+2

√
u
(
1+u2−v−u(2+v)

)
Q18+2u

√
v(1−u+v)Q19

−2
√
v
(
(−1+v)2−u(1+v)

)
Q24−2

√
u(1+u−v)vQ25−2

√
u(1+u−v)vQ26+2u(−1+u−v)

√
vQ27

+4uv(1−u+v)Q28+4
√
u(1+u−v)v3/2Q29+4

√
u(1+u−v)v3/2Q30+4v

(
1−(2+u)v+v2)Q31

+4u3/2(−1+u−v)
√
vQ32−4u(1+u−v)vQ33+4uv(−u+v)Q34+4

√
u(1+u−v)v3/2Q35

+4u3/2(−1+u−v)
√
vQ36−4u(u−v)vQ37−4u(1+u−v)vQ38+4

√
u(1+u−v)v3/2Q39

−4u
(
1+u2−u(2+v)

)
Q40+4u3/2(−1+u−v)

√
vQ41

+4u3/2(−1+u−v)
√
vQ42+4uv(1−u+v)Q43 = 0 (F.1)

In this project we choose to eliminate structures Q31 and Q40 using this two identities.

This is motivated by their invariance under the permutations 1234 ↔ 3412 and

1234 ↔ 2143, as shown in table 1, and by the fact that they do not mix under

crossing (see eq. (2.24) and appendix D). Also, inverting (F.1) in terms of this pair

does not introduce any singularity at the crossing symmetric point u = v = 1/4.26

26On the contrary, this choice is not optimal when performing the conformal block decomposition by

matching powers of r: this is because it would introduce additional singularities at r = 0. For such an

exercise it is more convenient to invert eq. (F.1) for Q37 and Q38.
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Finally we plug in the expression of Q31 and Q40 in the tensor structure expansion of

the four point function (2.20) to obtain the expression of the 17 independent functions

in terms of the original 19:

43∑
s=1

fs(u, v)Qs =

41∑
s=1

f3D
s (u, v)Qs . (F.2)

Note that, despite the index s on the r.h.s. of the above expression runs from 1 to

41, there are only 17 distinct functions f3D
s (u, v).

2. Next, we pass to the basis that diagonalizes crossing symmetry. This is done by

defining the 17 functions f̃s shown in (D.2).

3. As described in [12], the problem of finding α satisfying (2.59) can be transformed

into a semidefinite program. The form of the functional α is given in (2.61). The first

step is to compute the derivatives of the vectors V+,V`+ and V`− defined in (2.58).

To do this, we started directly from the explicit form of the conformal blocks as a

power series in the variable r defined in (2.42).

4. Once we take the derivatives and set r = 3 − 2
√

2 and η = 1, these expressions

reduce to rational approximations for conformal blocks in the variable ∆. Keeping

only the polynomial numerator in these rational approximations, (2.59) becomes a

“polynomial matrix program” (PMP), which can be solved with SDPB [71]. We use

Mathematica to compute and store tables of derivatives of conformal blocks. An-

other Mathematica program reads these tables, computes the polynomial matrices

corresponding to the ~V ’s, and uses the package SDPB.m to write the associated PMP

to an xml file. This xml file is then used as input to SDPB. Our settings for SDPB are

given in table 2.

As discussed in section 2.2.2, the minimal crossing constraints consist in 5 bulk equa-

tions, 5 boundary equations and one constraint at a point. Once one considers derivatives

of the crossing equations at a given point, the conservation equations (2.27) (and their

derivatives at the crossing symmetric point u = v = 1/4) simply become a set of linear

relations between various derivatives of the functions f̃s. We explicitly checked that the set

of derivatives included in the numerical bootstrap has maximal rank, i.e. there is no linear

dependence induced by the conservation equations. Also, we explicitly checked that the

system made by the conservation equations and their derivatives at the crossing symmetric

point can be used to determine neglected components.

Because the functions involved have definite symmetric properties under z → z, the

number of non-vanishing derivatives included for a given Λ is:

dim(α) = 5
bΛ+2

2 c(b
Λ+2

2 c+ 1)

2
+ 5bΛ + 2

2
c+ 1. (F.3)
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Λ 11 15 19 23

order 30 40 40 50

spins SΛ=11 SΛ=15 SΛ=19 SΛ=23

precision 448 576 768 896

findPrimalFeasible True True True True

findDualFeasible True True True True

detectPrimalFeasibleJump True True True True

detectDualFeasibleJump True True True True

dualityGapThreshold 10−30 10−30 10−30 10−70

primalErrorThreshold 10−30 10−30 10−40 10−70

dualErrorThreshold 10−30 10−30 10−40 10−70

initialMatrixScalePrimal 1040 1050 1050 1060

initialMatrixScaleDual 1040 1050 1050 1060

feasibleCenteringParameter 0.1 0.1 0.1 0.1

infeasibleCenteringParameter 0.3 0.3 0.3 0.3

stepLengthReduction 0.7 0.7 0.7 0.7

choleskyStabilizeThreshold 10−40 10−40 10−100 10−120

maxComplementarity 10100 10130 10160 10180

Table 2. SDPB parameters for the computations of scaling dimension bounds in this work. For

CT bounds we need to set all of the Boolean parameters in the table to False. In addition to that,

we used dualityGapThreshold = 10−6, while all the rest of the parameters were kept at the same

values as for the dimension bounds.

The degree of the numerator and denominator is controlled by the order of the con-

formal blocks expansion in r, or equivalently by the number of poles kept in the recursion

relations (2.46)–(2.47). Contrary to previous conformal bootstrap works [12], we used the

obtained expressions as they are, without employing any further approximation. Approxi-

mations might be useful to push to higher number of derivatives.

Finally, we must choose which spins to include in the PMP. We have chosen the

number of spins to depend on Λ as follows

SΛ=11 = {0, . . . , 24} ∪ {29, 30},
SΛ=15 = {0, . . . , 34} ∪ {39, 40},
SΛ=19 = {0, . . . , 40} ∪ {49, 50},
SΛ=23 = {0, . . . , 40} ∪ {44, 45, 49, 50, 59, 60}. (F.4)
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