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1 Introduction

Cluster decomposition of vacuum correlation functions is one of the basic results of quantum

field theory, which underlines the locality of interactions [1]. When a theory has a mass

gap m, connected correlations between spatially separated operators decay exponentially

with the distance,

〈φ(x)φ(0)〉 ∼ e−m|x|, for m|x| � 1. (1.1)

In a relativistic case this fundamental result readily follows from i.e. Källén-Lehmann spec-

tral representation and can be established in a number of ways [2]. For the discrete lattice

systems a similar result applies, but the derivation is much more involved [3, 4]. From here

it immediately follows that the connected correlator of several spatially separated operators

is also exponentially small. At the same time it is easy to see that the resulting exponent

is not optimal. For example we consider three equal-time points xµi = (0, ~xi) with all three

mutual distances being much larger than the inverse mass gap

m`i � 1, `1 = |~x2 − ~x3|, `2 = |~x3 − ~x1|, `3 = |~x1 − ~x2|. (1.2)

Without loss of generality throughout this paper we assume

`1 ≥ `2 ≥ `3. (1.3)

We are interested in calculating exponential suppression of

G123(x1, x2, x3) = 〈φ1(x1)φ2(x2)φ3(x3)〉. (1.4)

The composite operator φ1(x1)φ2(x2) can be thought of as a sum of local operators,

φ1(x1)φ2(x2) =
∑

k f(x1, x2)φk(x1). In the limit |x3 − x1| � |x1 − x2| this idea can

be made precise with help of the OPE decomposition. We note that while representing

– 1 –
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φ1(x1)φ2(x2) as a local operator, between two points x1, x2 we have to choose the point

closer to x3. Then in the limit m`2 � 1 the correlation function can be bounded with help

of (1.1)

|〈φ1(x1)φ2(x2)φ3(x3)〉| ≤ e−m`2 , m`2 � 1. (1.5)

It is easy to see though that the exponential factor in (1.5) is too naive. Indeed, when

all three points are simultaneous x0
i = 0, without loss of generality we can choose the

coordinate system such that point ~x3 sits at the origin, while ~x2 = (`1, 0, 0, . . . ) and ~x1 =

(a, b, 0, . . . ), where

a =
`21 + `22 − `23

2`1
, b =

√
D

2`1
, (1.6)

and

D = 2(`21`
2
2 + `22`

2
3 + `23`

2
1)− `41 − `42 − `43

= (`1 + `2 − `3)(`2 + `3 − `1)(`3 + `1 − `2)(`1 + `2 + `3) = 16S2(`1, `2, `3). (1.7)

(Here S(`1, `2, `3) is the area of the triangle with the sides `1, `2, `3 given by Heron’s for-

mula.) This is shown in figure 1, where we only keep first two components of ~xi, while

all others, as well as time component, are identically zero. Next, one can use Euclidean

quantization and choose time direction along (x2 − x3)µ,

G123 = 〈0|φ2(`1, 0)φ1(a, b)φ3(0, 0)|0〉 = 〈0|φ2(0, 0)e−(`1−a)Hφ1(0, b)e−aHφ3(0, 0)|0〉, (1.8)

resulting in the exponential suppression e−m`1 . This is better than (1.5). This simple

exercise shows that the exponential rate of suppressed of higher-point correlators imposed

by the two-point function is not optimal. In this paper we argue that the optimal rate of

suppression, i.e. the best rate which would universally apply to all theories and operators

φi, for the three-point correlator is given by the sum of distances to the operator locations

from the Fermat-Steiner point (4.11),

〈φ1(x1)φ2(x2)φ3(x3)〉 ∼ e−m`Fermat . (1.9)

This behavior was previously established in the context of certain two-dimensional mod-

els [5–7]. When the theory is confining it readily follows from the minimal length geometry

of flux tubes [8, 9], leading to the so-called Y-law. We extend (1.9) to non-confining the-

ories in any dimensions. We also consider configurations when the three points xµi do not

lie on the same spatial plane, while all three mutual intervals are space-like, and introduce

the notion of Fermat point in that case. We argue that the suppression rate of the higher

point correlation functions is determined by the shortest tree-level graph connecting all

points — the solution of the Euclidean Steiner tree problem.

This paper is organizes as follows. In the next section we discuss three-point function

when all three points xµi belong to the same spatial plane. In section 3 we discuss possible

configurations of three points in the Minkowsi space when all mutual intervals are space-

like. Section 4 is devoted to calculation of the suppression rate of the three point function

for a general Minkowskian configuration. Section 5 concludes with a discussion of higher

point functions and implications for operator growth in relativistic theories.

– 2 –
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~x3 = (0, 0) ~x2 = (`1, 0)

~x1 = (a, b)

`1

`3`2

•

•

•

Figure 1. When the triangle inequality is satisfied, `2 + `3 > `1, the points belong to a spatial

plane and all three times can be chosen to be zero. By choosing an appropriate reference frame the

points can be brought to the configuration shown in this picture.

x3

x1

x2
•

•

•

y

x3

x1

x2
•

•

•

•

Figure 2. Simplest Feynman diagrams contributing to the connected part of (1.4).

2 Euclidean configuration

We start with the case when all points belong to a spatial plane, such that all three

operators are simultaneous x0
i = 0. We already know that in this case the exponential

suppression factor is not smaller than `1. To establish the optimal rate of suppression we

consider simplest Feynamn diagrams contributing to the connected part of (1.4). First class

of diagrams include no additional vertexes, but only propagators directly connecting some

of the operators φi. These diagrams are present in all theories, including non-interacting

ones. One of these diagrams is schematically depicted in figure 2 (left). Given that each

propagator G(xi− xj) is suppressed as e−m|~xi−~xj |, the optimal (largest universal) suppres-

sion is given by e−m(`2+`3). This is for example the suppression rate in a theory of free

massive scalar field ϕ when φ1 = ϕ, φ2 = ϕ2, φ3 = ϕ.

Another class of Feynman diagrams include one interaction vertex connected by prop-

agators with the original operators, see figure 2 (right),

I123 =

∫
ddy V (−∂xi)G(y − x1)G(y − x2)G(y − x3). (2.1)

Here V is a polynomial in derivatives acting on each “leg.” It depends on interaction.

Since we are only interested in the exponential factor the derivatives can be neglected

– 3 –
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and V can be substituted by a coupling constant. In principle, the propagators in (2.1)

can be different, we only assume that m is the lightest excitation propagating in each

channel. A crucial simplification comes from the fact that all operators are simultaneous

and the integral (2.1) can be calculated in the Euclidean space. Using Källén-Lehmann

representation in the coordinate space

G(x) =

∫ ∞
m

dµ2ρ(µ2)
1

2π

(
µ

2π|x|

)(d−2)/2

K(d−2)/2(µ|x|), |x|2 =
∑
µ

x2
µ, (2.2)

the integral of interest reduces to∫
ddy

K(d−2)/2(µ1|y − x1|)K(d−2)/2(µ2|y − x2|)K(d−2)/2(µ3|y − x3|)
(|y − x1||y − x2||y − x3|)(d−2)/2

, µi ≥ m. (2.3)

The integral over d-dimensional Euclidean space can be split into the integral over three

ball regions µi|y − xi| . 1 and the rest. Using the assumption m`i � 1, when y comes

close to one of the operators two other propagators can be bounded by exponents,∫
µ1|y−x1|.1

ddy G(y − x1)G(y − x2)G(y − x3) ≤ e−m(`2+`3)

∫
µ1|y−x1|.1

ddy G(y − x1), (2.4)

where we neglected order one factors which do not affect the leading exponent and also

have used that for t� 1,

0 < K(d−2)/2(t) < e−t. (2.5)

The integral ∫
m|y−x1|.1

ddy G(y − x1) (2.6)

may diverge in the UV if the UV dimension of φ1 is equal or greater than d/2. In (2.3) this

divergence will manifest after integrating over µ1. In this case the integral in (2.6) has to be

regularized by introducing an appropriate UV-cutoff. Importantly, (2.6) does not depend

on other points x2, x3 and upon regularization will become some `i-independent constant.

Thus, we conclude that the integral (2.1) over the ball regions around the original opera-

tors will give the same exponential suppression factor e−m(`2+`3) as the “non-interacting”

Feynman diagrams discussed above and shown in figure 2 (left).

The integral (2.3) over the rest of the d-dimensional space excluding the balls µi|y −
xi| . 1 can be bounded by ∫

ddy e−m(|y−x1|+|y−x2|+|y−x3|), (2.7)

where we used (2.5) and µi ≥ m. This integral can be extended back to the whole Euclidean

d-dimensional space, because the additional “added by hands” integrals of the exponent

e−m(|y−x1|+|y−x2|+|y−x3|) over the regions m|y− xi| . 1 is suppressed by e−m(`k+`l), i 6= k, l

and thus unimportant. The leading (optimal) exponent is given by the smallest value

min
y∈Rd

|y − x1|+ |y − x2|+ |y − x3|. (2.8)

– 4 –
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Clearly the minimum is achieved when y belongs to the same two-dimensional spatial plane

as xi. Hence minimization problem (2.8) becomes the famous Fermat-Torricelli problem

of finding a point on a plane such that total distance from the three vertexes of a given

triangle to that point is the minimum possible. It is easy to see that the minimal total

distance, which we denote `Fermat is not larger than `2 + `3. Hence all terms suppressed

as e−m(`2+`3) are subleading, while the optimal exponent is given by (1.9). The expression

for `Fermat in terms of `i will be given in (4.11) below.

The derivation above relied on the fact that all three points belong to a spatial plane,

hence the integral (2.1) can be written in the Euclidean space. This is not always possible,

even if all mutual intervals are space-like. In the next sections we consider the general case

and extend the notion of the Fermat point when the corresponding triangle is Minkowskian.

So far we have only considered the simples Feynman diagrams which corresponds to

the first order of perturbation theory. In fact this is sufficient to establish the result non-

perturbatively. We first discuss the case of the three-point function of fundamental fields

below. The case of composite operators is discussed in the appendix A.

The correlator of fundamental fields 〈ϕ1(x1)ϕ2(x2)ϕ3(x3)〉 can be calculated exactl

using the effective action formalism [10, 11]. Then the full connected correlator is given by

the tree-level diagram shown in the right panel of figure 2, which can be written as (2.1),

with Gϕ being the dressed propagator (2.2) and the interaction vertex V being the sum

of all 1PI diagrams with three legs. In the regime m|xi − y| & 1 the propagator can

be approximated by e−m|xi−y|, hence the effective value of the corresponding momentum

pi ∼ ∂i is of order m. In other words the calculation in the effective theory reduces to

the calculation of the tree-level diagram discussed above with the effective value of the

coupling constant V (pi ≈ m). The latter can be large if the theory is strongly coupled in

the IR. Importantly, this large factor is not `i-dependent, i.e. it remains the same while

the mutual distances between three points xµi are taken to infinity. Thus we find in full

generality the asymptotic behavior to be

|〈ϕ1(x1)ϕ2(x2)ϕ3(x3)〉| . V (m)e−m`Fermat , m`i � 1. (2.9)

3 Kinematics of three points in the Minkowski space

Our goal in this section is to consider all possible configurations of three points xµi in

the Minkowski space with the signature (+,−,−, . . . ), assuming their mutual intervals are

space-like,

(x2 − x3)2 = −`21, (x3 − x1)2 = −`22, (x1 − x2)2 = −`23, `1 ≥ `2 ≥ `3. (3.1)

Three points always belong to a two-dimensional plane spanned by the vectors

uµ = xµ2 − x
µ
3 , vµ = xµ1 − x

µ
3 . (3.2)

The signature of the embedded metric is given by the Gram matrix

g =

(
uµuµ u

µvµ
uµvµ vµvµ

)
=

(
−`21 (`23 − `21 − `22)/2

(`23 − `21 − `22)/2 −`22

)
. (3.3)

– 5 –
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~x3 = (0, 0) ~x2 = (0, `1)

~x1 = (t, a)

`1

`3`2

•

•

•

Figure 3. Simplest kinematics when the triangle inequality is violated `2 + `3 < `1 and three

points are inherently Minkowskian.

The trace of Gram matrix is negative, which means that at least one of the directions is

space-like. The signature of the other direction follows from the determinant,

det g = −D
4
. (3.4)

As follows from (1.7), the corresponding plane is space-like iff `1, `2, `3 satisfy all three

triangle inequalities `1 < `2 + `3, `2 < `3 + `1, `3 < `1 + `2. If we assume without loss of

generality that `i are ordered as in (1.3), then the points belong to a spatial plane whenever

`2 + `3 > `1. In this case time coordinate of all three points can be chosen to be zero, while

other coordinates can be brought to the form as in figure 1. If the triangle inequality is not

satisfied `2 + `3 < `1, it is impossible to choose the coordinate system such that all three

points are simultaneous. In this case the simplest kinematics is achieved in the coordinate

system such that xµ3 sits at the origin, xµ2 = (0, `1, 0, . . . ), and xµ1 = (t, a, 0, . . . ), where

a =
`21 + `22 − `23

2`1
, t =

√
−D

2`1
, (3.5)

see figure 3.

An interesting situation is when `2 + `3 = `1. In this case one of the directions is

light-like, and the general configuration can be brought to the form

xµ1 = (t, `2, t, . . . ), xµ2 = (0, `1, 0, . . . ), xµ3 = (0, 0, 0, . . . ), (3.6)

where the parameter t could be either zero or can be brought to be t = 1.

4 General configuration

To estimate the leading exponent in case when the configuration is Minkowskian we resort

to a massive ϕ3 theory when all three operators are the same φi = ϕ. Then the integral (2.1)

written in the momentum space is given by

I123 =

∫
ddk1

(2π)d

∫
ddk2

(2π)d
eik1(x1−x3)+ik2(x2−x3)

(k2
1 −m2 + iε)(k2

2 −m2 + iε)((k1 + k2)2 −m2 + iε)
. (4.1)

– 6 –
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~x3 = (0, 0) ~x2 = (0, `1)

~x1 = (a, b)

`1

`3`2

•

•

•

•

2mγ 2mβ

2mα

120◦

120◦
120◦

Figure 4. The sides xi−xj of the original triangle together with the lines connecting Fermat point

with the original points xi form three triangles, each has an obtuse angle of 120◦.

Using Schwinger parameter representation we can reduce the integral to

I123 =
id−3

(4π)d

∫ ∞
0

dα

∫ ∞
0

dβ

∫ ∞
0

dγ
1

(αβ + βγ + γα)d/2

exp

(
− i

4

α`21 + β`22 + γ`23
αβ + βγ + γα

+ i(α+ β + γ)(−m2 + iε)

)
. (4.2)

The main contribution comes from the saddle point,

`21 = 4m2(β2 + γ2 + βγ), (4.3)

`22 = 4m2(γ2 + α2 + γα), (4.4)

`23 = 4m2(α2 + β2 + αβ), (4.5)

provided it belongs to the octant α, β, γ ≥ 0. The equations (4.3)–(4.5) have a simple

geometric interpretation. It is a law of cosine for the triangles which has one angle equal

120◦ and the largest side (opposite to that angle) being one of the `i, while two other

sides being 2m multiplied by α, β, or γ. In other words, 2m multiplied by α, β, γ give the

distances from the original points xi to the point from which each side of the corresponding

triangle is “seen” at 120◦. Such a point exists only for triangles where the largest angle is

less than 120◦ and, when it exists, it is the Fermat point. This is shown in figure 4.

To further simplify (4.2) we introduce Feynman parameters a, b, c subject to constraints

a, b, c ≥ 0, a+ b+ c = 1, (4.6)

and Schwinger parameter t,

α = ta, β = tb, γ = tc. (4.7)

The integral over t can be calculated, yielding

I123 =
2(im)d−3

(4π)d

∫
∆
da db

Kd−3(ml)

ld−3(ab+ bc+ ca)d/2
, l2 =

a `21 + b `22 + c `23
ab+ bc+ ca

. (4.8)

– 7 –
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The integral in (4.8) is over the triangle (4.6). Macdonald function Kd−3(t) is positive

definite and can be approximated by an exponent for large values of the argument. It is

thus clear that the integral (4.8) in the limit m`i � 1 is saturated by the maximal value

of l(a, b, c) inside the triangle (4.6). We start our analysis with the conventional Euclidean

case when `2 + `3 > `1. When all angles of the original triangle are smaller than 120◦, i.e.

`22 + `2`3 + `23 > `21, the Fermat point is located strictly inside the original triangle, all three

lengths α, β, γ > 0 and l(a, b, c) achieves it maximum inside (4.6),

max
∆

l(x, y, z) = `Fermat =

√
1

2
(`21 + `22 + `23 +

√
3D). (4.9)

When (`22 + `2`3 + `23)/`21 decreases and becomes smaller than 1, the obtuse angle becomes

equal or large 120◦, then the Fermat point coincides with the vertex of the obtuse angle

xµ1 . In this case the maximum of l(a, b, c) is achieved at the boundary a = 0,

max
∆

l(a, b, c) = `Fermat = `2 + `3, (4.10)

and the contributions of both Feynman diagrams depicted in figure 2 is of the same order.

When `1 further grows and approaches `1 = `2 + `3 the triangle degenerates into a spatial

line or belongs to a plane with one direction being light-like, see (3.6). When `1 > `2 + `3
the triangle inequality is violated and the triangle is inherently Minkowskian, see figure 3.

In all cases `1 ≥ `2 + `3 the maximum of l(a, b, c) is achieved on the boundary a = 0

and is given by (4.10). In other words we can define Fermat point for all cases when

(`22 + `2`3 + `23) ≤ `21 as being the vertex of the “obtuse angle” xµ1 . Finally we have

`Fermat =

{√
1
2(`21 + `22 + `23 +

√
3D), `22 + `2`3 + `23 > `21,

`2 + `3, `22 + `2`3 + `23 ≤ `21.
(4.11)

5 Discussion

In this paper, we have argued that the connected part of a three-point function in a general

relativistic quantum field theory with a mass gap m decays as

〈φ1(x1)φ2(x2)φ3(x3)〉 ∼ e−m`Fermat , (5.1)

where `Fermat (4.11) is the total distance from the Fermat point to the operator locations

xi. When the mutual distances (3.1) satisfy (`22 + `2`3 + `23) ≤ `21 (this also includes all

inherently Minkowksian configurations), the Fermat point coincides with the edge of the

obtuse angle x1. We first considered purely Euclidean configurations and established (5.1)

at first order in perturbation theory, while also explaining why exactly the same calculation

is valid non-pertrubatively for to the calculation in the effective theory. Then we calculated

the corresponding Feynman diagram explicitly for an arbitrary configuration of xµi in the

theory of massive scalar field and saw that continuation into Minkowski space does not

dramatically change the result.

It is an interesting question to extend our consideration to a general n-point function

〈φ1(x1) . . . φn(xn)〉 assuming all mutual intervals xi−xj are space-like. When all operators

– 8 –
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are simultaneous, x0
i = 0, the problem can be formulated in the Euclidean space, and

similarly to the discussion in section 2, we expect that the largest (least suppressed) term

will be given by a tree-level Feynman diagram connecting all original points and the addi-

tional vertexes, such that the total Euclidean distance of the corresponding graph would

me minimal. In other words, the leading exponent will be given by the total length of

the graph solving the Euclidean Steiner problem [12]. Such a graph typically consists of

the Fermat-Steiner points each connecting three lines, with all angles being 120◦. This

similarity with the three-point case suggests that for the Minkowsian configurations, when

the choice x0
i = 0 is not possible, the answer will only change in the way that some of

the graph vertexes will merge. It should be noted, that finding optimal graph of the Eu-

clidean Steiner problem, and thus in turn calculating higher order correlation function, is

NP hard [13, 14]. It would be interesting to understand the interplay between the complex-

ity of corresponding optimization problem and elegance of the close cousins of correlation

functions — tree-level scattering amplitudes in field theory [15–18]. It should be also noted

that the Steiner problem in the hyperbolic space appears in the holographic context as an

effective description of large c conformal blocks [19]. Another curious connection is between

optimal Euclidean trees and minimal surfaces (soap films) [20]. We leave it as an intrigu-

ing question for the future to explore if these connections may lead to new computational

techniques or optimization algorithms.

Many-point correlation functions considered in this paper, with all operators mutu-

ally commuting, can be understood as a very simple cousins of the out of time ordered

correlation functions [21–23], which are efficient probes of the operator growth and scram-

bling [24–29]. Similarly, our results also have interesting implications for the operator

growth in relativistic theories. We start with the two point function. Consider two oper-

ators located at the origin xµ2 = (0, 0) and xµ1 = (t, a), t < a, (for simplicity we consider

two-dimensional Minkowski space). The operator φ1(t, a) = e−iHtφ1(0, a)eitH can be un-

derstood as a non-local operator at time t = 0 spread inside the light-cone region from a−t
to a + t. The detailed structure of this operator is complicated, but inside the correlator

〈φ1φ2〉, from the point of view of the operator φ2(0, 0) operator φ1(t, a) will be perceived

as a local operator sitting at (0,
√
a2 − t2). This is an exact result dictated by Lorentz

symmetry. Now we consider three operators inserted at the points xµi shown in figure 5.

The operator φ1(t, a) = e−iHtφ1(0, a)eitH is spread between the points A = (0, a − t) and

B = (0, a+t) at time t = 0 and is non-local. The leading behavior of the 3-point correlation

function is given by (4.10),

〈φ1(t, a)φ2(0, `1)φ3(0, 0)〉 ∼ e−m(`2+`3). (5.2)

Hence, at leading order, φ1(t, a) is perceived by φ2(0, `1) and φ3(0, 0) as a local operator

sitting at the points A′ = (0, `1 − `3) and B′ = (0, `2) correspondingly. These points are

inside the lightcone of x1 = (t, a) bounded by points A and B and satisfy the condition

that the distance between x2 and A′ plus the distance between x3 and B′ is equal to

`2 + `3. This result would not be surprising (and would be exact) if we considered the

disconnected contributions associated with 〈φ1φ2〉〈φ3〉 and 〈φ1φ3〉〈φ2〉. Rather, this applies

to the connected part of 〈φ1φ2φ3〉 and is no longer guaranteed by Poincare symmetry.
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~x3 = (0, 0) ~x2 = (0, `1)

~x1 = (t, a)

(0, a− t) (0, a+ t)A′

(0, `1 − `3)
•

B′

(0, `2)
•

A
•

B
•

`1

`3`2

•

•

•

Figure 5. Time evolved operator φ1(t, a) = e−iHtφ1(0, a)eiHt at time t = 0 is confined to the

light-cone area inside the AB interval.

Perceived locality of e−iHtφ1(0, a)eitH suggests a particular structure of the time-evolved

local operators in relativistic theories.

An important and interesting question would be to generalize our results to lattice

systems. While the exponential rate of cluster decomposition for two operators is under-

stood [3, 4, 30], generalization to three and more operators is a non-trivial task. Borrowing

from the technique of establishing correlation length at finite temperatures [31, 32], we

expect the leading exponent to be given by the shortest path on the lattice connecting

all operators, i.e. rectilinear Steiner tree problem for cubic lattices. Furthermore, opera-

tor growth in lattice models with short-range interactions exhibit an emergent light-cone

structure [25–27, 33–35] and in many models full relativistic symmetry is known to emerge

at large distances. It would be very interesting to understand the microscopic origin of the

perceived locality of e−iHtφ1(0, a)eitH from the point of view of the other operators in the

correlation function in such models.
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A Composite operators

In this appendix we consider a three-point function of renormalized composite operators

〈[O1](x1) [O2](x2) [O3](x3)〉. As usual, the renormalized [Oi](x) is given by the mixing

of bare Oi(x) with all possible operators of lower dimension. In the minimal subtraction

scheme, the coefficients of various operators participating in the definition of [Oi](x) contain

an ascending series of poles such that insertion of the renormalized operator into any

correlation function of the fundamental fields is finite.
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x3

x1

x2
•

•

•

6-point

vertex
p1 q2

p2q1

p3q3

V6

Figure 6a. Tree-level diagram in the effective

theory without interacting vertexes.

Figure 6b. V6 vertex represents a sum over

all 1PI Feynman diagrams with six external legs.

The momenta are taken to flow inwards.

Our analysis is parallel to the discussion of 〈ϕ(x1)ϕ(x2)ϕ(x3)〉 in the main body of the

text with one important exception. While in the case of fundamental fields it is enough to

focus on the three-point interaction vertex of the effective action, in the case of composite

operators it is necessary to account for all possible skeleton diagrams with external legs

matching fundamental fields in the composite operators Oi(x), 1 ≤ i ≤ 3.

Below we illustrates this idea for a particular choice Oi = ϕ2. There are several types

of contributions in this case. The simplest skeleton diagram shown in figure 6a includes

no interaction vertexes, while the legs are fully dressed propagators Gϕ (2.2). This type

of diagrams was discussed in the main text. It is easy to see that it contributes at the

subleading order as e−m(`1+`2+`3). Another skeleton diagram includes the interaction vertex

given by the sum of all 1PI diagrams with six external legs (sextic vertex in the effective

action shown in figure 6b, see [10, 11]). Yet other diagrams originate from the connected

tree-level diagrams shown in figure 7 (these are skeleton diagrams built from the cubic

and quartic vertices of the effective action). Their sum corresponds to an effective sextic

vertex which is essential for evaluating the 〈[ϕ2](x1) [ϕ2](x2) [ϕ2](x3)〉 correlator. In the

momentum space the effective vertex takes the form1

V̄ eff
6 (pi, qi) = −V̄6(pi, qi) + 27 V̄3(p1 + q1, p2 + q2, p3 + q3)

3∏
i=1

V̄3(pi, qi,−pi − qi)Gϕ(pi + qi)

− 54 V̄4(p1 + q1, p2 + q2, p3, q3)

2∏
i=1

V̄3(pi, qi,−pi − qi)Gϕ(pi + qi) , (A.1)

where in the r.h.s. (A.1) we assume full symmetrization with respect to pi, qi and Gϕ is the

dressed propagator (2.2), whereas V3 and V4 represent the sum of all 1PI diagrams with

three and four external legs respectively.

In the regime of large separations m|xi−xj | � 1, i 6= j, the structure of the interaction

vertices V3, V4 and V eff
6 tremendously simplifies. As discussed in section 2, in this limit

1Bar over the vertices indicates that we strip off the momentum conservation delta function.
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V3

V3

V3 V3

p3 + q3

p1 + q1 p2 + q2

p3q3

p1

q1

p2

q2

V4

V3 V3

p1 + q1 p2 + q2

p3q3

p1

q1

p2

q2

Figure 7. Two skeleton diagrams built out of the effective action vertices V3 and V4 with 3 and 4

external legs respectively.

the external momenta modes pi and qi can be identified with the mass scale m of the

excitations created by ϕ. In particular, the full connected correlator in this limit takes

the form

〈[ϕ2] [ϕ]2 [ϕ3]2〉 −→
m|xi−xj |�1

6! V̄ eff
6 (pi, qi ≈ m)

∫
ddy Gϕ2(y − x1)Gϕ2(y − x2)Gϕ2(y − x3) ,

(A.2)

where Gϕ2(x) this time denotes square of the Källén-Lehmann representation (2.2). In

other words the calculation reduces to the tree-level diagram discussed in the text with

certain `i-independent effective coupling constant V (pi ≈ m) and slightly modified prop-

agator. Similar simplification holds for other composite operators and effective vertices.

Hence, we find in full generality the asymptotic behavior

|〈[O1](x1) [O2](x2) [O3](x3)〉| . V (m) e−m`Fermat , m `i � 1. (A.3)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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