Management of Foliar Diseases of Forage Sorghum

Ritu Mawar
Indian Grassland and Fodder Research Institute, India

D. P. Awasthi
Agartala University, India

Upasana Rani
Punjab Agricultural University, India

D. K. Banyal
CSK Himachal Pradesh Agricultural University, India

Follow this and additional works at: https://uknowledge.uky.edu/igc

Part of the [Plant Sciences Commons](https://uknowledge.uky.edu/igc), and the [Soil Science Commons](https://uknowledge.uky.edu/igc)

This document is available at https://uknowledge.uky.edu/igc/23/2-2-1/12

The XXIII International Grassland Congress (Sustainable use of Grassland Resources for Forage Production, Biodiversity and Environmental Protection) took place in New Delhi, India from November 20 through November 24, 2015.

Published by Range Management Society of India

This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Management of foliar diseases of forage sorghum

Ritu Mawar1*, D. P. Awasthi2, U. Rani3, D. K. Banyal4
1Indian Grassland and Fodder Research Institute, Jhansi-284003, India
2Agartala University, Agartala, Tripura, India,
3Punjab Agricultural University, Ludhiana, India,
4CSK Himachal Pradesh Agricultural University, Palampur, India
*Corresponding author e-mail: mawar_ritu@rediffmail.com

Keywords: Carbendazim, Foliar spray, Propiconazole, Seed treatment, Trichoderma viride

Introduction
Sorghum (Sorghum bicolor L. Moench.) is an important food, feed, fodder and fuel crop grown in India. It forms staple food for poor class of people living in the dry tracts of the country. The crop is mostly grown during Kharif and Rabi seasons in Maharashtra, Karnataka, Andhra Pradesh and Madhya Pradesh states. It is also very popular as green forage in most parts of north India and nearly 2.5 million ha area is planted during kharif. In summer, under irrigated conditions, multicut sorghum is very popular. Forage sorghum is characterized by quick growth, high biomass accumulation, dry matter content and wide adaptability beside drought withstanding ability. It is also suitable for silage and hay making. The losses caused by diseases were estimated to be 12% (Frederiksen, 1986). With the change in climate, cropping pattern and with the introduction of high yielding varieties and hybrids of sorghum for cultivation, the disease scenario has also changed. Forage sorghum is suffered by charcoal rot, downy mildew, foliar diseases like zonate leaf spot, anthracnose and leaf blight. The disease is serious both in grain as well as fodder sorghum as it reduces yield and quality of fodder considerably. Disease resistance, cultural, biological and fungicides have been utilized to manage sorghum diseases (Frederiksen, 2000). The present study was undertaken to find out suitable management practice for foliar diseases of forage sorghum.

Materials and Methods
The experiment was conducted in the year 2012 and 2013 of Kharif season at four different locations of All India Coordinated Research Project on Forage Crops namely, Indian Grassland and Fodder Research Institute, Jhansi, Orissa University of Agriculture & Technology, Bhubaneswar, Punjab Agricultural University, Ludhiana and CSK Himachal Pradesh Agricultural University, Palampur. The experiment was laid out in randomized block design with 10 treatments namely T1 = Seed treatment with carbendazim (2 g/kg of seed), T2 = Seed treatment with T. viride (5g/kg of seed), T3 = Two foliar sprays of T. viride (0.5%), T4 = Two foliar sprays of propiconazole (0.1%), T5 = Two foliar sprays of copper oxychloride (0.3 %), T6 = Seed treatment with carbendazim (2 g/kg of seed) + Two foliar sprays of propiconazole (0.1), T7 = Seed treatment with T. viride (5g/kg of seed) + Two foliar sprays of propiconazole (0.1 %), T8 = Seed treatment with carbendazim (2 g/kg of seed) + Two foliar sprays of copper oxychloride (0.3%), T9 = Seed treatment with T. viride (5g/kg of seed) + Two foliar sprays of copper oxychloride (0.3 %) and T10 = Control and replicated 3 times for each treatment. The size of plot was 4 m x 3 m, row to row spacing was 30 cm. Recommended agronomic practices including fertilizer doses and intercultural operations were adopted. Foliar applications of fungicides were given at evening time. The spray was applied with the help of a knapsack sprayer at evening. All the 10 plots of each replication were treated at a time avoiding the drifts of spray fluid on neighboring plots.

Results and Discussion
The results of the trial revealed that all the treatments were found to be significantly effective to reduce disease severity compared to control plot where no management practice was followed. At all the locations lowest disease severity was recorded in treatment T6 where, seed treatment with carbendazim @ 2 g/kg of seed + two foliar sprays of propiconazole @ 0.1% was applied. However, it was at par with treatment T7 where seed treatment with T. viride @ 5g/kg of seed + two foliar sprays of propiconazole @ 0.1 % was applied at IGFRI, Jhansi., OUAT, Bhubaneswar and PAU, Ludhiana. This variation in result may be accredited to variation in pathogen type and environment, both in micro and macro level. From the above results it can be concluded that the efficacy of foliar spray of fungicide propiconazole and seed treatment with carbendazim or Trichoderma viride is significantly effective against foliar diseases of forage sorghum (Table 1).The findings may be further supported by work done by Harlapur et al., (2007) who reported that propiconazole @ 0.1 per cent was effective, against Exserohilum turcicum in Maize. Jadhav et al., (2009) evaluated bio control activity
of Trichoderma harzianum, Trichoderma viride, Pseudomonas fluorescens and Bacillus subtilis against Colletotrichum gloeosporioides Penz, and reported that bioagent Trichoderma viride showed maximum growth reduction in growth of C. gloeosporioides (84.26 %) than all other bio-agents. Jagtap et al. (2013) evaluated efficacy of ten fungicides in vitro with three different concentrations against Colletotrichum capsici (Syd.) Butler and Bisby by poisoned food technique and reported that propiconazole (0.05%) was found to be significantly superior among all the treatments against Colletotrichum capsici (Syd.) Butler and Bisby. Among different bio-agents namely, Trichoderma viride, Gliocladium spp., Trichoderma harzianum, Trichoderma koningii and Pseudomonas fluorescens used T. harzianum was observed more the most effective than other with percent inhibition of 53.33 % followed by T. viride with 52.32 %. Likewise Jegathambigai et al. (2009) also reported that in the field trials, seed treatment with a spore suspension of Trichoderma completely eliminated leaf spot disease in Chrysalidocarpus lutescens caused by Helminthosporium.

Table 1: Efficacy of various treatments against leaf blight disease severity at different locations.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Leaf blight disease severity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jhansi</td>
</tr>
<tr>
<td>T1: Seed treatment with carbendazim @ 2g/kg seed</td>
<td>6.6</td>
</tr>
<tr>
<td>T2: Seed treatment with @ T. viride 5g/kg seed</td>
<td>11.6</td>
</tr>
<tr>
<td>T3: Two foliar sprays of @ T. viride 0.5%</td>
<td>15.0</td>
</tr>
<tr>
<td>T4: Two foliar sprays of propiconazole @ 0.1%</td>
<td>5.0</td>
</tr>
<tr>
<td>T5: Two foliar sprays of copper oxy chloride @ 0.3%</td>
<td>13.3</td>
</tr>
<tr>
<td>T6: T1 + two foliar sprays of propiconazole @ 0.1%</td>
<td>3.3</td>
</tr>
<tr>
<td>T7: T3 + two foliar sprays of propiconazole @ 0.1%</td>
<td>8.3</td>
</tr>
<tr>
<td>T8: T1 + two foliar sprays of copper oxy chloride @ 0.3%</td>
<td>10.0</td>
</tr>
<tr>
<td>T9: T3 + two foliar sprays of copper oxy chloride @ 0.3%</td>
<td>15.0</td>
</tr>
<tr>
<td>T10: Control</td>
<td>18.3</td>
</tr>
<tr>
<td>CD (p=0.05)</td>
<td>8.0</td>
</tr>
</tbody>
</table>

Conclusion

Forage sorghum suffers from foliar diseases like anthracnose, zonate leaf spot and various types of leaf blights. The present case of study was conducted to manage above mentioned foliar diseases of forage sorghum at different locations of India in a collaborative approach. The result revealed that in all tested locations disease severity was lowest in treatment where, seed treatment with carbendazim @ 2 g/kg of seed + two foliar sprays of propiconazole @ 0.1% was applied.

References

