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1 Introduction

Conformal Field Theories in two dimensions describe one dimensional systems at critical-

ity, most notably string theoretic worldsheet. Thermalization of two-dimensional theories

came to the focus of attention recently in the context of entanglement spreading following

a quantum quench [1–3]. Additional motivation to study 2d theories comes from holo-

graphic duality, which relates thermal properties of boundary CFTs to black hole physics

in AdS3 [4–14]. Thermal partition function of 2d CFTs on a torus is a well-studied object

which exhibits elegant mathematical properties making a connection with the theory of

modular forms [15, 16]. In the thermodynamic limit, when the size of spatial circle ` goes

to infinity, torus degenerates into a cylinder and thermal partition function becomes par-

ticularly simple. At the level of free energy it only depends on central charge c and inverse

temperature β,

F =
c π2`

6β
. (1.1)

The peculiar property of conformal field theories in two dimensions is that, in addition

to energy, there is an infinite number of local conserved charges associated with quantum

KdV algebra [17–19]. Whenever a system has additional conserved quantity, e.g. total

– 1 –
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number of particles, its thermal properties are described by the grand canonical ensemble,

with the effective number of particles controlled by the value of chemical potential [20]. In

principle similar logic applies when there are many conserved quantities. When the system

is integrable the number of conserved quantities becomes infinite, raising the question if

such a system would even approach thermal equilibrium, and what that equilibrium state

might be. These questions have drawn significant attention recently because of experimen-

tal realizations of such a scenario [21]. The prevailing view is that integrable system would

evolve toward a state described by the Generalized Gibbs Ensemble (GGE) [22–24], which

includes all conserved mutually-commuting charges Qk,

Z = Tr
(
e−
∑
k µkQk

)
, Q1 = H, µ1 = β. (1.2)

The value of corresponding chemical potentials, also called fugacities, µk should be chosen

such that the ensemble (1.2) would have the same value of conserved charges as the initial

state. Applying this logic to the two-dimensional CFTs it is natural to expect that e.g. fol-

lowing a quantum quench these theories would thermalize to a state which has the same

local properties as the GGE decorated by higher qKdV charges [25–31]. This expectation

motivates our study of GGE of two-dimensional theories in this paper.

We start with a CFT on a spatial circle of length `, such that Euclidean space-time

is parametrized by a holomorphic coordinate ω = u + it. The latter is related to the

conventional coordinate on the plane via z = e
2πi
`
ω. In addition to the Hamiltonian

H = Q1 =

∫ `

0
duT (u), (1.3)

conformal theory always has an infinite tower of mutually commuting qKdV charges [17]

Q3 =

∫ `

0
du : T (u)2 :, Q5 =

∫ `

0
du : T (u)3 : +

c+ 2

12
: T ′(u)2 :, . . . (1.4)

By convention qKdV charges are parametrized by odd numbers Q2k−1, k ≥ 1. We are

interested in calculating

Z = Tr
(
e−βH−

∑∞
k=2 µ2k−1Q2k−1

)
. (1.5)

When all µ2k−1 = 0 for k ≥ 2, (1.5) is the regular partition function on a torus with the

modular parameter τ = i β
2π` . In particular partition function is invariant under modular

transformations of τ . Turning on µ2k−1 would break modular invariance, although Z still

exhibits some interesting properties under modular transformations [32]. In this work we

focus on thermodynamic limit `→∞, while β, µ2k−1 are kept fixed. Our goal is to calculate

the extensive part of free energy F = logZ,

F =
c π2`

6β
f(β, µ2k−1, c) + o(`). (1.6)

We show that at infinite central charge f can be expressed in terms of an algebraic relation,

while leading 1/c corrections can be reformulated as a straightforward sum over Young

tableaux which leads to a concise and explicit answer (2.52).

– 2 –
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In the second part of the paper we compare local properties of the GGE (1.5) with those

of an individual energy eigenstate. We find that at infinite central charge local properties

of a highly excited Virasoro primary eigenstates exactly match those of the GGE for any

values of the fugacities µ2k−1. In this sense heavy primary states can be regarded as thermal

at leading order in c. At the same time when central charge is finite, GGE and a primary

eigenstate are always distinguishable in terms of expectation values of local operators. In

other words, it is impossible to tune the fugacities µ2k−1 such that the GGE would have

the same values of qKdV charges Q2k−1 as a heavy CFT primary. This conclusion is

intriguing because it clearly shows that local properties of 2d CFTs upon equilibration are

not always governed by the generalized ensemble of the form (1.5). Our finding emphasizes

that integrable structure of 2d theories may preclude them to thermalize in the sense that

local properties of the equilibrated state may lack universality.

2 Generalized Gibbs Ensemble in the thermodynamic limit

The crucial simplification of thermodynamic limit `→∞ is that saddle point approxima-

tion becomes exact. We first illustrate that in the case of the conventional Gibbs ensemble

Z(β) = Tr(e−βH), H =
L0 − c/24

`
. (2.1)

Here Ln is the conventional Virasoro algebra generator related to the stress tensor on

the plane,

T (z) =
∑
n

Ln
zn+2

, (2.2)

while the Hamiltonian of CFT on a circle is given by (1.3).1 The sum in (2.1) goes over all

states in the Hilbert space,

|mi,∆〉 = L−m1 . . . L−mk |∆〉, mi ≥ mj for i ≥ j, (2.3)

parametrized by the dimension of Virasoro primary ∆ and sets {mi},
∑k

i=1mi = n, ar-

ranged in the dominance order. Using the degeneracy of H, L0|mi,∆〉 = (∆ + n)|mi,∆〉
the partition function can be represented as a double sum,

Z(β) =
∑
∆

∑
n=0

P (n) e−
β
`

(∆+n). (2.4)

In what follows we are only interested in the extensive part of free energy, and therefore

we dropped the explicitly c-dependent term in H. The sum
∑

∆ goes over all Virasoro

primaries including possible multiplicities, and P (n) is the number of integer partitions —

Young tableaux consisting of n elements. For large n [33],

P (n) ≈ eπ
√

2n
3 (2.5)

1The stress tensor on the cylinder T (u) is related to the stress tensor on the plane T (z) via the standard

conformal transformation.

– 3 –
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and the sum over n can be substituted by an integral. Similarly, the sum over ∆ in (2.4)

can be substituted by an integral multiplied by the density of primaries given by Cardy

formula [34]. Combining all together gives

Z(β) =

∫
d∆ e

π
√

2
3

(c−1)∆
∫
dn e

π
√

2n
3 e−

β
`

(∆+n) = eF , F =
c π2 `

6β
. (2.6)

It is easy to see that in the limit `→∞ the saddle point approximation is exact,

L = π

√
2

3
(c− 1)∆ + π

√
2n

3
− β

`
(∆ + n), (2.7)

∆∗ = (c− 1)π2`2/6β2, n∗ = π2`2/6β2,
∂L
∂∆

∣∣∣∣
∆∗,n∗

=
∂L
∂n

∣∣∣∣
∆∗,n∗

= 0, (2.8)

F = L(∆∗, n∗) =
c π2 `

6β
. (2.9)

2.1 GGE at infinite central charge

Our next step is to decorate the partition function by higher qKdV charges,

Z(β, µ2i−1) = Tr
(
e−βH−

∑
k µ2k−1Q2k−1

)
. (2.10)

We start our analysis with Q3 (1.4). The expression for Q3 in terms of Virasoro generators

can be found in [17] (in our case expression for Q3 is different by an overall factor 1/`3).

Using the explicit form of Q3 we split it into two parts as follows

Q3 = Q̂3 + Q̃3 (2.11)

`3Q̂3 =

(
L2

0 −
c+ 2

12
L0 +

c(5c+ 22)

2880

)
, `3Q̃3 = 2

∞∑
n=1

L−nLn. (2.12)

The term Q̃3 is defined such that it annihilates primary states, Q̃3|∆〉 = 0, while the rest is

degenerate and depends only on the combination ∆ +n. Using scaling with ` of the saddle

point values ∆∗ ∼ `2 and n∗ ∼ `2 we immediately find that L0-independent term from Q̂3

would give 1/`3 contribution to free energy, while − c+2
12 L0 will contribute as ∼ 1/`. Hence

in the thermodynamic limit these terms can be neglected. Assuming for simplicity that

only µ3 is turned on we get,

Z(β, µ3) =
∑
∆

∑
n=0

P (n) e−
β
`

(∆+n)−µ3
`3

(∆+n)2+L̃(c,µ3/`3,∆,n), (2.13)

eL̃(c,µ3/`3,∆,n) ≡ 1

P (n)

∑
{m}=n

〈mi,∆|e−µ3Q̃3 |mi,∆〉. (2.14)

In (2.14) the sum is over sets {mi} satisfying
∑

imi = n, i.e. over the partitions of n.

A crucial simplification, which will be justified in the next section, is that Q̃3 does not

contribute to free energy at leading order in 1/c expansion. Hence at infinite central charge

– 4 –
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one can simply take L̃ to be zero,

Z(β, µ3) =

∫
d∆

∫
dn eL, (2.15)

L = π

√
2

3
(c− 1)∆ + π

√
2n

3
− β

`
(∆ + n)− µ3

`3
(∆ + n)2. (2.16)

Adding higher charges can be done in a similar way. Thus Q5, also given in [17], can be

split into

Q5 = Q̂5 + Q̃5 (2.17)

`5Q̂5 =

(
L3

0 −
c+ 4

8
L2

0 +
(c+ 2)(3c+ 20)

576
L0 −

c(3c+ 14)(7c+ 68)

290304

)
, (2.18)

`5Q̃5 =
∑

n1+n2+n3=0
n1, n2, n3 6=0

: Ln1Ln2Ln3 : +
∞∑
n=1

(
c+ 11

6
n2 − 1− c

4

)
L−nLn +

3

2

+∞∑
r=1

L1−2rL2r−1.

Normal ordering in : Ln1Ln2Ln3 : means that the operators ordered to satisfy n3 ≥ n2 ≥ n1.

Again Q̃5 is chosen to annihilate primary states, while Q̂5 is a function of L0. It is easy to

see from `-scaling of saddle point values of ∆, n that only L3
0 term from Q̂5 contributes to

the extensive part of free energy. Similarly to the case of Q3, we drop Q̃5 at leading order

in c. The rest is straightforward and can be generalized to all Q2k−1. After integrating

over n the partition function can be reduced to the integral over E = ∆ + n,

Z(β, µ2k−1) =

∫
dE eLE , LE = π

√
2

3
cE − β

`
E − µ3

`3
E2 − µ5

`5
E3 − . . . . (2.19)

It is easy to see than that free energy will depend on the inverse temperature β and

fugacities µi only through the combinations

F =
c π2`

6β
f0(t2k−1), t2k−1 =

(
c π2

6β2

)k−1
µ2k−1

β
. (2.20)

Free energy F admits perturbative expansion in t2i−1 at any value of c, while expansion

in µ2k−1 breaks down for large central charge. In principle f0 is given by the algebraic

equation specifying the saddle point E∗ of (2.19),

LE =
c π2`

6β
s0, E∗ =

c π2`

6β
e∗, (2.21)

s0 = 2
√
e− e− t3e2 − t5e3 − . . . , (2.22)

f0 = s0(e∗),
∂s0

∂e

∣∣∣∣
e∗

= 0. (2.23)

In practice perturbative expansion of f0 is easier to recover iteratively. We notice that at

leading order in c the expectation values of Q2k−1 are given by `(E∗/`2)k. In terms of the

partition function (2.19) this can be rewritten as a differential equality

−`−1∂µ2k−1
logZ = (−`−1∂β logZ)k, (2.24)

– 5 –
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or in terms of variables t2k−1,

(f0 + 3t3∂t3f0 + 5t5∂t5f0 + . . . )2 + ∂t3f0 = 0 , (2.25)

(f0 + 3t3∂t3f0 + 5t5∂t5f0 + . . . )3 + ∂t5f0 = 0 , (2.26)

. . .

For the Taylor expansion of f0 equations (2.25), (2.26), etc. yield iterative relations which

can be easily solved,

f0 = 1− t3 + 4t23 − 24t33 − t5 + 12t3t5 − 132t23t5 + 9t25 − 234t3t
2
5 − 135t35 + . . . (2.27)

An elegant expression for f0 in terms of the perturbative series in t2k−1 was given recently

in [35].

2.2 GGE at finite central charge

When the central charge is finite, extensive part of free energy acquires 1/c corrections,

F =
c π2`

6β

(
f0 +

f1

c
+
f2

c2
+ . . .

)
. (2.28)

Functions fk admit Taylor expansion in terms of t2k−1 (2.20). For k ≥ 2, fk depends only

on t2i−1, i ≥ k, and start with a term linear in t2k−1. Thus, if expressed in terms of µ2k−1,

extensive part of free energy is polynomial in c. To calculate f1, f2, . . . we need to take

into account additional contribution to the effective action,

eL̃(c,µ2k−1/`
2k−1,∆,n) ≡ 1

P (n)

∑
{m}=n

〈mi,∆|e−µ3Q̃3−µ5Q̃5−...|mi,∆〉. (2.29)

2.2.1 1/c corrections from Q̃3

We start with the case when only µ3 6= 0, (2.14). It is easy to see that the operator Q̃3

written in the basis (2.3) is not more than linear in c and ∆,

Q̃3 = c Q̃c3 + ∆ Q̃∆
3 + Q̃

(0)
3 . (2.30)

Matrices Q̃c3, Q̃
∆
3 have lower-triangular form with the diagonal elements being

`3Q̃c3|mi,∆〉 = λ|mi,∆〉+ . . . , λ =
1

6

(∑
i

m3
i −mi

)
, (2.31)

`3Q̃∆
3 |mi,∆〉 = ν|mi,∆〉+ . . . , ν = 4n. (2.32)

Because of the triangular form, c λ+ ∆ ν are the eigenvalues of c Q̃c3 + ∆ Q̃∆
3 . To estimate

contribution of each term in (2.30) toward free energy in the appendix A we calculate

`3〈Q̃3〉∆,n ≡
`3

P (n)

∑
{m}=n

〈mi,∆|Q̃3|mi,∆〉 = (a0c+ b0)n2 + 4∆n+O(`3), (2.33)

– 6 –
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in the limit of infinite n, assuming n,∆ ∼ `2. The n-independent coefficients

a0 =
2

5
, b0 = 4. (2.34)

We note that leading n-scaling in (2.33) is fixed to be n2 lest the contribution of Q̃3 diverge

in the thermodynamic limit `→∞. At leading order in c this is easy to see directly from

the sum over Young tableaux in (2.33),

1

P (n)

∑
{m}=n

(
1

6

∑
i

m3
i

)
= a0n

2 +O(n). (2.35)

For large n there are exponentially many ways to represent n as a sum of integers with

the typical partition consisting of ∼
√
n terms with each term being of order mi ∼

√
n.

From here it immediately follows that
∑

im
3
i ∼
√
n×n3/2 ∼ n2. After substituting scaling

of saddle-point values ∆∗ ∼ c`2, n∗ ∼ `2 into (2.33) we find that both c Q̃c3 and ∆ Q̃∆
3

contribute toward f1 and potentially to f2, while Q̃
(0)
3 contributes to f2 only. So far we are

interested only in f1 we can simplify (2.14) to be

eL̃(c, µ3/`3,∆,n) ≡ e−
µ3
`3

4n∆

P (n)

∑
{m}=n

e−
µ3
`3

c
6

∑
im

3
i , (2.36)

L̃ = −µ3/`
3 4n∆− a0 (c µ3/`

3)n2 − a1 (c µ3/`
3)2n7/2 − a2 (c µ3/`

3)3n5 + . . .

(2.37)

The expansion (2.37) assumes `3/(c µ3)� n� 1. Sum over Young tableaux (2.36) provides

a non-perturbative definition of L̃. It is a simplified version of the sums appearing in [36].

A few first coefficients ai are calculated in the appendix B.

In principle effective action (2.37) together with (2.16) completely determines f1(t3)

via maximization over ∆ and n, but there is a direct way to obtain f1 bypassing this step.

We first notice that at leading order in c effective action (2.16) as a function of ∆ reduces

to (2.19) and therefore saddle-point value of ∆∗ is fixed by (2.22) independently of the

value of n∗,

∆∗ =
cπ2`2

6β2
(e∗ +O(1/c)) . (2.38)

In case when only t3 is “turned on” e∗ can be found explicitly,

e∗ =

(
t3 −

(
t33 + 27t43 + 33/2t

7/2
3

√
2 + 27t3

)1/3
)2

6t23

(
t33 + 27t43 + 33/2t

7/2
3

√
2 + 27t3

)1/3

= 1− 4t3 + 28t23 − 240t33 + 2288t43 − 23296t53 +O
(
t63
)
.

Then leading 1/c correction to free energy can be found now by plugging ∆∗ back into (2.16)

and keeping O(c0) terms,

e
π2`
6β

f1 = e
−π

2

√
∆∗
6c

∑
{mi}

e−
β
`
n−6

µ3
`3
n∆∗−µ3

`3
c
6

∑
im

3
i . (2.39)

– 7 –
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Here n =
∑

imi and the sum goes over all Young tableaux. This sum can be calculated by

rewriting (2.39) using free boson representation.2 Namely, each set mi will be parametrized

by the set of integer numbers rk, where rk is the number of times natural number k appears

in the set mi. Then the sum over all sets {mi} is equivalent to the sum over all rk and

∑
i

mi =
∞∑
k=1

k rk,
∑
i

m3
i =

∞∑
k=1

k3rk. (2.40)

For any coefficients x, y > 0 we find∑
{mi}

e−x
∑
imi−y

∑
im

3
i =

∞∑
r1=0

∞∑
r2=0

. . . e−
∑
k rk(xk+yk3) =

∞∏
k=1

(
1− e−xk−yk3

)−1
. (2.41)

This infinite product can be consequently rewritten as an exponent of the sum of logarithms.

Going back to (2.39) this gives

π2`

6β
f1 = −π

2`

6β

√
e∗ −

∞∑
k=1

log

(
1− e−

β
`

(1+6t3e∗)k− t3
π2 (β` )

3
k3
)
. (2.42)

The effective variables in (2.42) is the combination βk/` and in the limit ` → ∞ the sum

over k can be substituted by an integral, yielding

f1 = −
√
e∗ − 6

π2

∫ ∞
0

dk log
(

1− e−(1+6t3e∗)k−t3k3/π2
)
. (2.43)

A few first terms in Taylor series expansion of f1 can be easily calculated by expanding

this expression in t3,

f1 = −22

5
t3 +

2096

35
t23 −

4464

5
t33 +

82304

5
t43 +O

(
t53
)
. (2.44)

This agrees with the perturbative calculation of [35].

2.2.2 1/c corrections from Q̃5

Adding µ5 to consideration is straightforward. We notice that Q̃5 is not more than

quadratic in c and ∆,

Q̃5 = c2Q̃cc5 + c∆Q̃c∆5 + ∆2Q̃∆∆
5 + c Q̃c5 + ∆Q̃∆

5 + Q̃
(0)
5 , (2.45)

and all three matrices Q̃cc, Q̃c∆, Q̃∆∆
5 are lower-triangular in the basis (2.3). Their diagonal

matrix elements are easy to calculate,

`5Q̃cc5 |mi,∆〉 = α|mi,∆〉+ . . . , α =
1

12

(∑
i

m5
i

6
− 5m3

i

12
− mi

4

)
, (2.46)

`5Q̃c∆5 |mi,∆〉 = δ|mi,∆〉+ . . . , δ =
∑
i

5

6
m3
i −mi, (2.47)

`5Q̃∆∆
5 |mi,∆〉 = γ|mi,∆〉+ . . . , γ = 12n. (2.48)

2We thank Nikita Nekrasov for help with the following calculation.
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Only these three matrices contribute toward f1 via

eL̃(c, µ3/`3, µ5/`5,∆,n) ≡ e−
µ3
`3

4n∆−µ5
`5

12n∆2

P (n)

∑
{m}=n

e
−
(
cµ3
6 `3

+
5c∆µ5

6 `5

)∑
im

3
i−

c2µ5
72`5

∑
im

5
i . (2.49)

Next steps are completely analogous to the case with only Q3. At leading order in c saddle

point value of ∆ is fixed by

s0 = 2
√
e− e− t3e2 − t5e3, (2.50)

f0 = s0(e∗),
ds0

de

∣∣∣∣
e∗

= 0, ∆∗ =
cπ2`2

6β2
e∗, (2.51)

while f1 is given by

f1 = −
√
e∗ − 6

π2

∫ ∞
0

dk log
(

1− e−(1+6t3e∗+15t5(e∗)2)k−(t3+5t5e∗)k3/π2− 1
2
t5k5/π4

)
. (2.52)

A few first terms in Taylor series expansion are

f1 = −22

5
t3 −

302

21
t5 +

2096

35
t23 +

14328

35
t3t5 +

51168

77
t25 + . . . (2.53)

Generalization to include higher charges is conceptually straightforward. The leading

term f0 is given by (2.22) with s0 = 2
√
e − e −

∑∞
j=2 t2j−1e

j . We expect that all higher

charges Q̃2j−1 also have lower-triangular form at leading in order c, and therefore (2.29) will

reduce to an appropriate sum over Young tableaux, yielding an appropriate generalization

of (2.52).

3 Comparison of GGE with eigenstate ensemble

3.1 Eigenstate Thermalization Hypothesis

Eigenstate Thermalization Hypothesis (ETH), developed in the works of Deutsch and Sred-

nicki in the 90s [37, 38] (also see [39, 40] for an earlier work on the subject) is the idea that

individual energy eigenstate of a sufficiently complex “chaotic” many-body quantum sys-

tem exhibits thermal properties. ETH provides a mechanism explaining thermalization of

isolated quantum systems. Extensive numerical studies during last decade have supported

the expectation that ETH is a general property of quantum many-body systems, unless

the system exhibits an extensive number of conserved quantities [41].

At the colloquial level the ETH promotes a highly excited energy eigenstate of a

quantum system to the “eigenstate ensemble” stating that the latter can describe ther-

mal properties of a quantum system in the same way as the conventional canonical and

micro-canonical ensembles. The discrepancy between e.g. expectation values of local quan-

tities in these different ensembles then would be suppressed in the thermodynamic limit.

Holographic CFTs are expected to be complex enough to exhibit thermalization starting

from a sufficiently excited pure state. On the dual gravity side this is a process of black

hole formation via gravitational collapse. Consequently holographic CFTs are expected to

exhibit eigenstate thermalization, at least in some form.
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A basic argument of [42] shows that CFTs can not satisfy the conventional form of

ETH when all sufficiently excited energy eigenstates are thermal. This is because in the

latter case all eigenstates would have to exhibit the same thermal properties: expectation

value of a local operator O would be a function of effective temperature, i.e. would depend

on energy only

〈E|O|E〉 = Oeth(β(E)). (3.1)

Operator-state correspondence allows reformulation (3.1) in terms of OPE coefficients.

Then it can be easily shown that the primary states and the descendants can not both

satisfy (3.1) with the same function Oeth.

It was proposed in [43] that the non-trivial content of ETH is not the equivalence

between individual eigenstates and thermal ensemble, but the equivalence of individual

eigenstates from a certain class with each other. Then the equivalence with the thermal

ensemble would follow automatically, provided the original class of eigenstates is wide

enough. This idea lead [42] to propose the following formulation of local ETH in CFTs: (3.1)

should apply to any local operator O but be limited only to primary (Virasoro-primary in

2d) states |E〉. In this formulation Oeth(β) is not necessarily related to thermal expectation

value of O. For conformal theories in d ≥ 3 it was further argued in [44] that the primary

states dominate the microcanonical ensemble and therefore in the thermodynamic limit

Oeth(β) coincides with the conventional thermal expectation value of O. The d = 2 case is

a subject of discussion below.

In 2d we need to distinguish two cases: when O is a Virasoro descendant of identity or

not. In the former case the local ETH (3.1) is automatic — the corresponding heavy-heavy-

light OPE coefficient is fixed by Virasoro algebra and is a smooth function of E, dimension

of the Virasoro primary state |E〉. In the latter case, when O is not a descendant of identity,

there are no known explicit examples when (3.1) is satisfied with a smooth Oeth(β). There

is a general expectation though that this is the case for certain large central charge theories,

including holographic CFTs. In d = 2 thermal expectation value of any such O is zero (be-

cause thermal cylinder is conformally flat). It is therefore often assumed that in sufficiently

complex 2d theories corresponding heavy-heavy-light OPE is suppressed by the dimension

of the heavy operator. Dominance of the vacuum conformal family or the “identity block”

in the OPE of two heavy primaries is an underlying assumption in many works on large

central charge theories in the context of ETH and thermalization [10, 14, 42, 45–53].

Leaving aside the behavior of O outside of vacuum conformal family, below we focus

on the case when O is a Virasoro descendant of identity. Local ETH (3.1) is automatic in

this case, but function Oeth(β) a priory has no interpretation in terms of thermal physics.

A natural question then would be to compare Oeth(β) with thermal expectation value of

the operator O,

Oth(β) =
1

Z(β)
Tr(O e−βH). (3.2)

It was expected that at infinite central charge locally eigenstate is equivalent to the thermal

ensemble [6], which is indeed the case, Oeth = Oth. At the same time Oeth and Oth do not
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match at the subleading order in 1/c [44, 46–49]. A naive explanation of this discrepancy

is that the “eigenstate ensemble” |E〉 has positive value of qKdV charges and hence should

be compared not with (3.2) but with the full Generalized Gibbs Ensemble

OGGE(β, µi) =
1

Z(β, µi)
Tr
(
O e−βH−

∑
k µ2k−1Q2k−1

)
, (3.3)

with the fugacities µi chosen to match quantum numbers of |E〉. This is the comparison

performed below.

3.2 Comparison at infinite central charge

From now on we restrict to the case when |E〉 is a heavy scalar Virasoro primary. To

achieve finite energy density and thus finite effective temperature in the thermodynamic

limit the dimension E should scale as `2,

`→∞, E/`2 = fixed. (3.4)

A Virasoro descendant of identity O can be either a quasi-primary or a total derivative.

In the latter case by Lorentz invariance Oeth = OGGE = 0. When O is a quasiprimary

of dimension 2k, Oeth is non-trivial in the thermodynamic limit (3.4) only if O includes

(T . . . (TT ))︸ ︷︷ ︸
k times

. One can always choose a basis at the level 2k such that a unique quasi-

primary with non-vanishing expectations value (3.1) in the thermodynamic limit is the

density of KdV charge O = q2k−1 [44],

Q2k−1 ≡
∫ `

0
du q2k−1. (3.5)

To investigate the equality of the eigenstate and generalized Gibbs ensembles we compare

〈E|q2k−1|E〉 =
1

`
〈E|Q2k−1|E〉 =

(
E

`2

)k
, E, `→ +∞, (3.6)

and

〈q2k−1〉GGE =
1

`
〈Q2k−1〉GGE ≡ −

1

`
∂µ2k−1

logZ, (3.7)

for k ≥ 2. For k = 1 the equality between 〈E|T |E〉 and 〈T 〉GGE,

E = 〈H〉GGE (3.8)

is the relation which defines effective temperature β in terms of E/`2. The expectation

values (3.6) satisfy 〈E|q2k−1|E〉 = 〈E|q1|E〉k, q1 ≡ T . Therefore for the equality between

the eigenstate and generalized Gibbs ensembles to hold it is necessary for the GGE partition

function to satisfy (2.24). This is the case at leading order in central charge for any values

of µ2k−1 as discussed in section 2.1. Hence we establish that for the descendant of identity

O = q2k−1, at leading order in central charge expectation value in a primary state is the

same as in the generalized Gibbs ensemble for any choice of µ2k−1. The same conclusion,

– 11 –



J
H
E
P
0
1
(
2
0
1
9
)
0
9
8

about the equivalence of the eigenstate and the GGE for any choice of µ2k−1 also trivially

applies to all other descendants of identity, because for them at leading order in central

charge both (3.1) and (3.3) are zero. Equivalence for all µ2k−1 is consistent with the

holographic interpretation that at infinite central charge classical black hole in AdS3 is

dual to (1.5) for any values of µ2k−1 [29]. Also see [54] for bulk interpretation of the KdV

charges in terms of boundary gravitons.

3.3 Discrepancy at finite central charge

At finite central charge the relations (2.24) are not automatically satisfied. Using the

expansion (2.28), at leading order in 1/c one finds from (2.25), (2.26),

2(f0 + 3t3∂t3f0 + 5t5∂t5f0 + . . . )(f1 + 3t3∂t3f1 + 5t5∂t5f1 + . . . ) + ∂t3f1 = 0, (3.9)

3(f0 + 3t3∂t3f0 + 5t5∂t5f0 + . . . )2(f1 + 3t3∂t3f1 + 5t5∂t5f1 + . . . ) + ∂t5f1 = 0, (3.10)

. . .

In principle one can hope these equations would specify a set of t2k−1 such that (3.9), (3.10),

. . . are satisfied, which would ensure equivalence between the eigenstate and generalized

Gibbs ensembles at the level of the expectation values of q2k−1 at first subleading order

in 1/c. It should be noted though that the equations (3.9), (3.10), . . . have no small

parameter, because when written in terms of variables t2k−1 they are c-independent. Thus

one would need to know full function f1(t3, t5, . . . ) to find a possible solution. In this sense

the problem of matching fugacities µ2k−1 to a primary state is non-pertrubative, i.e. it

requires knowledge of free energy at all orders in µ2k−1, even for large c [44].

Although we do not know the full function f1(t3, t5, . . . ), a simple argument shows that

a solution of (3.9) and more generally of (2.24) does not exist for finite but large c. Let us

compare (3.6) with (3.7) for Q3 by calculating the difference between the two,

`−1 (〈Q3〉GGE − 〈E|Q3|E〉) = `−1
(
〈Q̂3〉GGE + 〈Q̃3〉GGE

)
−
(
E

`2

)2

. (3.11)

Using explicit expression for Q̂3 (2.11) we find that in the thermodynamic limit the expec-

tation value of Q̂3 is given by the saddle point,

`−1〈Q̂3〉GGE =

(
E∗

`2

)2

+O(1/`). (3.12)

The saddle point value E∗ = ∆∗+n∗ is equal to the energy E of state |E〉 due to (3.8). The

values of ∆∗, n∗ should be determined from the full effective action L+L̃ (2.16), (2.29). The

full effective action is not known, but both ∆∗ and n∗ scale with the system size as ∼ `2.

Furthermore, up to 1/c corrections ∆∗ ≈ E∗ = E and therefore ∆∗/`2 is a positive number

in the thermodynamic limit. Using (3.11) and (3.12) we find the discrepancy between the

eigenstate and GGE expectation values to be

`−1 (〈Q3〉GGE − 〈E|Q3|E〉) = `−1〈Q̃3〉GGE (3.13)

=
e−L̃(∆∗,n∗)

` P (n∗)

∑
{m}=n∗

〈mi,∆
∗|Q̃3e

−µ3Q̃3−µ5Q̃5−...|mi,∆
∗〉.
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So far we are interested in the leading in c behavior of (3.13) we can substitute Q̃3 by

a lower-triangular matrix c Q̃c3 + ∆∗Q̃∆
3 , Q̃5 can be substituted by the lower-triangular

c2Q̃cc5 + c∆∗Q̃c∆5 + (∆∗)2Q̃∆∆
3 , and so on. Then average of ∆∗Q̃∆

3 is simply equal to

4∆∗n∗/`3, while the average of c Q̃c3 can be rewritten as an average over Young tableaux,

〈Q̃c3〉GGE =
e−L̃(∆∗,n∗)

6 `3P (n∗)

∑
{m}=n∗

(∑
i

m3
i

)
e
−µ3
`3

( c6
∑
im

3
i+4∆∗n∗)−µ5

`5

(
c2

72

∑
im

5
i+...

)
−...

+O(c0).

In the thermodynamic limit this is equal to a (n∗)2/`3, where a is some non-negative func-

tion of µ3, µ5, . . . . When all µ2k−1 = 0, it reduces to a0 = 2/5, (2.34). Thus we finally have

`−1 (〈Q3〉GGE − 〈E|Q3|E〉) =
a (n∗)2 + 4∆∗n∗

`4
+O(c0). (3.14)

The important point here is that the discrepancy (3.14) can be zero if and only if n∗ = 0.

The value of n∗ can be interpreted as the effective level of Virasoro descendants which give

main contribution to the partition function. It is a priory expected that the discrepancy

between the primary state and the GGE would vanish if n∗ = 0, i.e. if primaries dominate

the partition sum. The non-trivial result here is that (3.14) vanishes only if n∗ = 0.

It is easy to see that primaries do not dominate the partition sum because of the

factor P (n) accounting for the exponential growth of the number of descendants with n.

Using (2.16), (2.36), (2.37), (2.49) the effective action for n can be rewritten in terms of

the variable n = n/`2 which remains finite in the thermodynamic limit,

Leff(n) = `

(
π

√
2n

3
− L

)
, (3.15)

L = (β + 6µ3∆∗/`2 + . . . )n + µ3(1 + ca0 + b0 + . . . )n2 +O(n5/2).

Since L(n) admits an expansion in powers of n starting from one, n = 0 can not be a

solution of ∂Leff/∂n = 0 and the maximum of Leff is achieved at positive n = n∗/`2.

From here it follows that for large c both 〈Q3〉GGE and 〈E|Q3|E〉 scale as c2, while their

difference is non-zero and scales as c. This proves (3.6) and (3.7) for Q3 are always different

for large but finite c for any values of µ2k−1. A similar argument would also apply to Q5

and higher charges.

4 Discussion

In this paper, we studied Generalized Gibbs Ensemble (1.5) of 2d CFTs in the limit when

the size of the spatial circle ` goes to infinity. We have observed that qKdV charges Q2k−1

can be split into a sum of two terms: first term Q̂2k−1 survives in the infinite c limit and is

a function of L0, while second term Q̃2k−1 is 1/c suppressed and is positive semi-definite.

Furthermore leading in 1/c expansion part of Q̃2k−1 assumes a simple lower-triangular form,

if written in the conventional basis (2.3). Using this result we have explicitly calculated

extensive contribution to free energy in the infinite central charge limit (2.20), (2.22), (2.23),

and reduced calculation of leading 1/c correction to a sum over Young tabluex. The latter
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can be computed explicitly, provided the expression for the qKdV charge in terms of

Virasoro algebra generators is known. We have calculated this correction for the first

two qKdV charges Q3, Q5 (2.52). Our results suggest adding higher qKdV charges at

leading 1/c order will be straightforward, and we hope to report f1(t3, t5, t7, . . . ) which

includes higher fugacities soon. Since the first two orders in 1/c expansion turned out to

be easily tractable, next natural question would be to understand the structure of the GGE

partition function at the 1/c2 order. We leave this task for the future. Another important

direction is to calculate sub-extensive corrections to free energy, even at leading order in

c. The logarithmic ln ` and O(`0) terms would follow from the saddle point approximation

of (2.16), while higher order terms in 1/` expansion will require more work.

Leading 1/c corrections to the GGE free energy calculated in this paper are of interest

from the point of view of AdS/CFT correspondence. They encode quantum corrections on

the gravity side and contain information about individual black hole microstates [55]. While

from the point of view of local probes the heavy states are thermal at infinite c limit [6, 56],

this is no longer the case at finite c. In this paper we compared a heavy Virasoro primary

state with the GGE and found that the two are always locally distinguishable no matter

what the values of the qKdV fugacities are. At the technical level this comes from the split

of Q3 into Q̂3 and Q̃3. The expectation value of Q̂3 is the same in the primary eigenstate

and the GGE for any values of the fugacities, but the expectation value of Q̃3 is different.

The operator Q̃3 annihilates the primary state, while its expectation value in the GGE at

leading order in c is strictly positive. A similar result applies to higher charges as well.

This mismatch between the eigenstate and the GGE is surprising. Large central charge

theories are expected to be chaotic and thermalize [57], in full consistency with holographic

expectations. Yet, we find that in large c CFTs, not only in the non-interacting examples

studied previously [27, 58, 59], there are initial configurations labeled by the macroscopic

(extensive) values of qKdV charges which fail to thermalize i.e. be described by the GGE

upon equilibration.

The breakdown of ergodicity observed in this paper emphasizes the question of content

and meaning of the Eigenstate Thermalization Hypothesis in 2d CFTs. First, it should be

noted that ETH is always satisfied on average, i.e. when (3.1) is averaged over exponentially

many eigenstates with similar energy. In fact the same applies to the off-diagonal matrix

elements, on average they are exponentially small and described by a smooth form-factor.

These is true for any theory, or in fact any system with a sufficiently large Hilbert space, and

can be seen as a consequence of typicality. Correctness of ETH on average was confirmed

for 2d CFT recently in [51–53, 60]. As expected the obtained results are valid for any value

of central charge, which confirms its kinematic Hamiltonian-independent origin. Arguably,

the non-trivial content of ETH should be stronger and apply only to a subclass of chaotic

theories. Second, the conventional understanding of Eigenstate Thermalization suggests

that (certain) individual energy eigenstates should be compared directly with a thermal

ensemble or its kin. We would like to argue for 2d CFTs this is not the correct approach.

As was discussed in section 3.1, primary energy eigenstates are indeed thermal in the sense

that (3.1) is equal to (3.2), but only at infinite c, while this equality immediately breaks

already at first subleaiding 1/c order [44, 46–49]. A natural generalization of this idea
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would be to require the primaries to match the GGE. It was shown in this paper to fail at

finite c as well. Besides the discrepancies at the level of local observables at finite c, there

are other indications that the conventional form of ETH does not apply to primary states.

As a non-local probe of thermal behavior one can consider Renyi entropy of an interval,

when the size of the interval scales with `. In this limit eigenstate and thermal Renyi

entropies are different even when ETH is obeyed, but in the latter case the expression for the

eigenstate entropy was conjectured in [43] in terms of the density of states. This conjecture

was later studied and verified numerically in [61] for non-integrable spin-chains. At the

same time this conjectural form fails badly for large c conformal theories [14]. Another

potentially related result is the breakdown of the KMS conditions by a heavy primary

state [9]. All this strongly suggests that matching individual primary sates directly to a

thermal or generalized thermal ensemble is incorrect. Maybe then the focus should be on

the descendants? A simple qualitative argument shows that heavy descendants also can

not be thermal. If the state has energy E = ∆ + n, n � ∆, through Virasoro algebra

its properties are completely fixed in terms of |∆〉, which at least at infinite c, matches

thermal state at wrong temperature. Non-thermal behavior of heavy descendant states

was recently rigorously shown in [50].

To conclude, we suggest that the nontrivial content of ETH in 2d CFTs is that for

heavy primary states function Oeth (3.1) is a smooth function of energy, without it being

directly related to thermal physics [42]. In this sense our findings do not signal violation

of ETH, in fact, we have explained in section 3.1 that for local probes from the vacuum

conformal family this version of ETH is trivially satisfied. For this version of ETH to be

physically interesting it should be established also for the probes outside of the vacuum

family by demonstrating that at least in certain large c theories all heavy-heavy-light

OPE coefficients are smooth function of the heavy operator’s dimension, or small. This

is a challenging task without an immediate ways to approach it. Our point here is that

answering this question is crucial to understand if 2d CFTs exhibit an additional structure

of heavy energy eigenstates beyond those imposed by symmetries and typicality.

A Computation of a0, b0

In this section we show how to calculate

`3〈Q̃3〉∆,n ≡
`3

P (n)

∑
{m}=n

〈mi,∆|Q̃3|mi,∆〉 = (a0c+ b0)n2 + 4∆n+O(`3), (A.1)

in the limit when ∆, n ∼ `2. An analogous calculation can be also found in [32]. Re-

call that Q̃3 = 2
∑
L−kLk. The expectation value 〈Q̃3〉∆,n can be thought of as trace

q−n−∆ Tr(qL0Q̃3) over a subspace with fixed n and ∆ spanned by the states (2.3). Using

cyclic property of trace one can easily get [62]

〈L−kLk〉∆,n = qk〈LkL−k〉∆,n =
qk

1− qk
〈[Lk, L−k]〉∆,n =

=
qk

1− qk
(

2k〈L0〉∆,n +
c

12
(k3 − k)

)
,

(A.2)
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where q = e−
β
` . Summing (A.2) over k one obtains

〈Q̃3〉∆,n = 4σ1〈L0〉∆,n +
c

6
(σ3 − σ1), (A.3)

where

σ1 =
∑
k

kqk

1− qk
, (A.4)

σ3 =
∑
k

k3qk

1− qk
. (A.5)

Expectation value 〈L0〉∆,n is just equal to n+ ∆ and the sums σ1, σ3 can be evaluated in

thermodynamic limit by replacing the sum over k by an integral
∑

k →
∫
dk. In this limit

σ1 →
`2π2

6β2
, (A.6)

σ3 →
`4π4

15β4
. (A.7)

The final step is to recall that if we sum Tr(qL0Q̃3) over n main contribution will be given

by a particular saddle point value n = `2π2

6β2 . Thus substituting `2π2

6β2 by n we get

〈Q̃3〉∆,n = 4n(n+ ∆) +
2

5
c n2. (A.8)

As a result, a0 = 2
5 and b0 = 4. It is straightforward but tedious to generalize the above

calculation to higher orders to obtain a1, a2 etc. from (2.37).

B Effective action at 1/c

In this section we show how to calculate the effective action (2.37), which is a partition

function decorated by the first non-trivial qKdV charge Q3 restricted to a particular large

descendant level n,

eL̃(c, µ3/`3,∆,n) ≡ e−
µ3
`3

4n∆

P (n)

∑
{m}=n

e−
µ3
`3

c
6

∑
im

3
i . (B.1)

We remind the reader that first 1/c correction to free energy f1 calculated in section 2.2.1

is given by (compare with (2.39))

e
π2`
6β

f1 = e
−π

2

√
∆∗
6c

∑
n

P (n) e−
β
`
n−µ3

`3
2n∆∗+L̃(c, µ3/`3,∆∗,n). (B.2)

To calculate L̃ we introduce an auxiliary partition function of the same kind, which depends

on arbitrary parameter x,

eF(x) =
∑
n

P (n) e−
x
`
n+

µ3
`3

4n∆+L̃(c, µ3/`3,∆,n). (B.3)
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In the limit of large ` this sum is saturated at some saddle point n∗,

F(x) = π

√
2n∗

3
− x

`
n∗ +

µ3

`3
4n∗∆ + L̃(c, µ3/`

3,∆, n∗), (B.4)

which is related to x and µ3 via n∗ = −`dFdx . “Free energy” F can be calculated exactly

the same way f1 was calculated in section 2.2.1,

F(x) = −`
∫ ∞

0
dk ln

(
1− e−xk−

c
6
µ3k3

)
. (B.5)

After changing the integration variable k → k/x and expanding in µ3 one finds

F(x) =
`

x

(
π2

6
− π4cµ3

90x3
+

2π6c2µ2
3

189x6
− 4π8c3µ3

3

135x9
+

40π10c4µ4
3

243x12
+ . . .

)
(B.6)

Using the explicit expression (B.5) we can relate n∗ and x,

n∗

`2
=

d

dx

∫ ∞
0

dk ln
(

1− e−xk−
c
6
µ3k3

)
, (B.7)

and solve this equation perturbatively with respect to x by expanding in µ3,

x=
π`√
6n∗
− 4cµ3n

∗

5`2
+

144
√

6c2µ2
3(n∗)5/2

25π`5
− 20736c3µ3

3(n∗)4

25π2`8
+

4762368
√

6c4µ4
3(n∗)11/2

125π3`11
+. . .

Plugging this back into (B.4) and finally renaming n∗ into n gives (compare with (2.37))

µ3

`3
4n∆ + L̃(c, µ3/`

3,∆, n) = −π
√

2n

3
+
x(n)

`
n+ F(x(n)) (B.8)

= −2

5
(c µ3/`

3)n2 +
288
√

6

175π
(c µ3/`

3)2n7/2 − 20736

125π2
(c µ3/`

3)3n5

+
732672

√
6

125π3
(c µ3/`

3)4n13/2 . . . (B.9)

Generalization to include Q5 and higher charges would be tedious but straightforward.
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