Semi-Inclusive π^0 Target and Beam-Target Asymmetries from 6 GeV Electron Scattering with CLAS

S. Jawalkar
Santa Clara University

S. Koirala
Old Dominion University

H. Avakian
Thomas Jefferson National Accelerator Facility

P. Bosted
College of William and Mary

K. A. Griffioen
College of William and Mary

See next page for additional authors
Authors

Semi-Inclusive π^0 Target and Beam-Target Asymmetries from 6 GeV Electron Scattering with CLAS

Notes/Citation Information

© 2018 The Authors. Published by Elsevier BV.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Due to the large number of authors, only the first 30 and the authors affiliated with the University of Kentucky are listed in the author section above. For the complete list of authors, please download this article or visit: https://doi.org/10.1016/j.physletb.2018.06.014

Digital Object Identifier (DOI)
https://doi.org/10.1016/j.physletb.2018.06.014
Semi-inclusive π^0 target and beam-target asymmetries from 6 GeV electron scattering with CLAS

S. Jawalkar ap,1, S. Koiraith ad, H. Avakian ai, P. Bosted ap,ai, K.A. Griffioen ap,*, C. Keith ai, S.E. Kuhn ad, K.P. Adhikari z,l, S. Adhikari l, D. Adikaram ad,2, Z. Akbar m, M.J. Amaryan ad, S. Anefalos Pereira r, J. Ball g, N.A. Baltzell aj, M. Battaglieri s, V. Batourine aj, I. Bedlinskiy w, A.S. Biselli i, S. Boiarinov ai, W.J. Briscoe o, J. Brock aj, W.K. Brooks ak, S. Bültmann ad, V.D. Burkert dl, Frank Thanh Cao h, C. Carlin aj, D.S. Carman aj, A. Celentano s, G. Charles ad, T. Chetry ac, G. Ciullo q,k, L. Clark am, L. Colaneri v, P.L. Cole p, M. Contalbrigo q, O. Cortes p, V. Crede m, A. D’Angelo ta, N. Dashyan ad, R. De Vita s, E. De Sanctis r, M. Defurne g, A. Deur aj, C. Djalali ah, G. Ddoga ad, R. Dupre v,ai, H. Egiyan aj,aa, A. El Alaoui ak,aa, L. El Fassi z, Elouadrhiri aj, P. Eugenio m, G. Fedotova ah,ag, S. Fegan am,3, R. Fersch h,ap, A. Filippi u, J.A. Fleming ai, T.A. Forest p, A. Fradi v,4, M. Garçon g, Y. Ghandilyan aq, G.P. Gilfoyle ac, K.L. Giovanetti x, F.X. Girod aj, C. Gleason ah, W. Gohn i,5, E. Golovatch ag, R.W. Gothe ah, M. Guidal v, N. Guler ad,6, L. Guo l,aj, H. Hakobyan ak,ac, C. Hanretty aj,m, N. Harrison aj, M. Hattaway a, D. Heddle ha,aj, K. Hicks ac, G. Hollis ah, M. Holtrop aa, S.M. Hughes al, Y. Iliev ah, D.G. Ireland am, B.S. Ishkhanov ag, E.L. Isupov ag, D. Jenkins an, H. Jiang ah, K. Joo i, S. Joosten ai, D. Keller ab,ac, G. Khachatryan aq, M. Khachatryan ad, M. Khandaker ah,7, A. Kim i, W. Kim y, A. Klein ad, F.J. Klein i, V. Kubarovsky aj, S.V. Kuleshov ak,aw, L. Lanza t, P. Lenisa q, K. Livingston am, H.Y. Lu ah, I.D. MacGregor am, N. Markov i, M. Mayer ad, M.E. McCracken e, B. McKinnon am, C.A. Meyer e, T. Mineeva ak,i, M. Mirazita l, V. Mokeev aj, R.A. Montgomery am, A. Movsisyan q, C. Munoz Camacho v, P. Nadel-Turonski aj, L.A. Net ah, S. Niccolai v, G. Niculescu i, M. Osipenko s, A.I. Ostrovidov m, R. Paremuzyan aa,aj, K. Park aj,ah, E. Pasyuk aj,b, E. Phelps ah, W. Phelps i, J. Pierce aj,8, S. Pisano v,1, O. Pogorelo w, J.W. Price c, Y. Prok ad,ac, D. Protopopescu am, B.A. Raue l,aj, M. Ripani s, D. Riser 1, A. Rizzo ta,af, G. Rosner am, P. Rossi aj,f, F. Sabatié g, C. Salgado ab, R.A. Schumacher e, E. Seder i, Y.G. Sharabian aj, A. Simonyan aq, L. Skorodumina ah,ag, G.D. Smith ai, D.I. Sober f, D. Sokhan am, N. Sparveris ai, I. Stankovic al, S. Strauch ah, M. Taiuti n,3, M. Ungaro aj,i, H. Voškanyan ae, E. Voutier v, N.K. Walford i, D.P. Watts al, X. Wei aj, L.B. Weinstein ad, M.H. Wood d, N. Zachariou ai, J. Zhang ao, Z.W. Zhao ad,ah

a Argonne National Laboratory, Argonne, IL 60439, United States of America
b Arizona State University, Tempe, AZ 85287-1504, United States of America
c California State University, Dominguez Hills, Carson, CA 90747, United States of America
d Canisius College, Buffalo, NY, United States of America
e Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
f Catholic University of America, Washington, DC 20064, United States of America
g CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
h Christopher Newport University, Newport News, VA 23606, United States of America
i University of Connecticut, Storrs, CT 06269, United States of America
j Fairfield University, Fairfield, CT 06824, United States of America
k Università di Ferrara, 44121 Ferrara, Italy
l Florida International University, Miami, FL 33199, United States of America
m Florida State University, Tallahassee, FL 32306, United States of America
n Università di Genova, 16146 Genova, Italy
o The George Washington University, Washington, DC 20052, United States of America
p Idaho State University, Pocatello, ID 83209, United States of America

https://doi.org/10.1016/j.physletb.2018.05.014

0370-2693/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Despite several decades of research, the spin structure of the proton remains incompletely understood [1]. The quark and gluon spins can only partially account for the total proton spin of 1/2, leaving the deficit to be found in quark and gluon orbital angular momenta. The orbital motion of quarks about the proton's spin axis can be observed in deep-inelastic lepton scattering (DIS) when a knocked-out quark has momentum transverse to the direction of momentum transfer. Although the struck quark acquires transverse momentum in the hadronization process, there remains enough of a remnant of the original quark orbital motion to probe quark spin–orbit correlations. The theoretical motivations and early experiments measuring these transverse-momentum distributions (TMDs) have demonstrated that the theory is sound and the experiments are feasible [2]. In this Letter we report results of unprecedented accuracy in measurements of spin–azimuthal asymmetries in neutral pion production in semi-inclusive DIS (SIDIS), which provides important information on the quark structure of the proton, complementary to that from charged pions. DIS experiments have mapped the unpolarized structure function f_1 and the polarized structure function g_1 over a wide range of longitudinal momentum fraction x and momentum transfer Q^2. These provide a one-dimensional picture of nucleon structure. SIDIS provides access to the three-dimensional structure of the nucleon via a new set of structure functions that depend on the transverse momentum of the quark. The scattered lepton and the leading hadron are detected in coincidence. Eight leading-order (i.e. leading twist) [3] transverse-momentum distributions (TMDs) exist for the different beam and target polarizations, which describe the correlations between a quark’s transverse momentum and the spin of the quark or the parent nucleon. These correlations mani-
fest themselves in different spin-dependent azimuthal moments of the cross section, generated either by correlations in the distribution of quarks or in the fragmentation process, often referred to as the Sivers [4] and Collins mechanisms [5], respectively.

For a longitudinally polarized nucleon, we have access to two leading-twist TMDs, \(g_{1L}\) and \(h_{1L}\), which respectively describe longitudinally and transversely polarized quarks in a longitudinally polarized nucleon, and four higher-twist TMDs, \(f_{1L}^\perp\), \(g_{1L}^\perp\), \(h_{1L}\), and \(e_1\) [6] that describe various quark–gluon correlations that vanish as \(Q^2 \rightarrow \infty\).

The HERMES Collaboration made the first observation of a single-spin asymmetry (SSA) in semi-inclusive DIS pion electroproduction [7]. This spawned a number of additional measurements of SSAs and double spin asymmetries (DSAs) using polarized hydrogen and deuterium targets [8-9]. The target SSAs for proton and deuterium targets published by HERMES [10-13] and COMPASS [14, 15], provided the first, direct indication of significant interference terms beyond the simple sine-wave (\(x = 0\)) picture. These asymmetries become larger with increasing \(x\), suggesting that spin–orbit correlations are more relevant for the valence quarks.

Measurements of SSAs at Jefferson Lab (JLab) with longitudinally polarized proton [16] and transversely polarized neutron [17-20] targets suggest that spin–orbit correlations are significant for certain combinations of quark and nucleon spins and transverse momenta. Large spin-azimuthal asymmetries were observed at JLab using a longitudinally polarized beam [21,22] in one case and a transversely polarized \(^3\)He target in the other [23]. These results are consistent with the corresponding HERMES [24] and COMPASS [25] measurements, which were interpreted in terms of higher-twist contributions related to quark–gluon correlations.

Previous CLAS measurements [16] improved the world data set in two ways: they showed the first hint of a non-zero \(\sin 2\phi_h\) azimuthal moment for charged pions, and they extracted azimuthal moments in multi-dimensional kinematic bins. COMPASS extended the proton DSAs to low-\(x\) [26] using a muon beam and a polarized \(^{12}\)C target, and they were able to extract the dependence on \(P_T\), albeit with low statistical accuracy above \(x = 0.2\).

The world’s SSAs and DSAs are dominated by the charged pion results. High statistical accuracy is still needed to study asymmetries as two-dimensional functions of \(P_T\) and \(x\) in order to access the transverse-momentum dependence of different partonic distributions, most notably the helicity distribution, \(g_1^\perp\). This is true especially for the case of the neutral pion. This paper presents new results intended to help correct this deficiency.

The electroproduction of neutral pions has several important advantages compared to charged pions: 1) suppression of higher-twist contributions at large hadron energy fraction \(z\) [27], which are particularly important at JLab energies where small-\(z\) events are contaminated by target fragmentation; 2) reduction of the background from diffractive \(\rho\) decays into pions, which mar the interpretation of the charged single-pion data; 3) similarity of fragmentation functions for \(u\) and \(d\) quarks leading to \(\pi^0\), which reduces the dependence of the DSAs on the fragmentation functions at large \(x\), where valence quarks dominate; and 4) suppression of spin-dependent fragmentation for \(\pi^0\), due to the roughly equal magnitude and opposite sign of the Collins fragmentation functions for up and down quarks [13,15,28-30]. These factors simplify the interpretation of \(\pi^0\) SSAs and DSAs. Furthermore, neutral pions are straightforward to identify with little background using the invariant mass of two detected photons.

The azimuthal angular dependence \(\phi_h\) of the asymmetry in the yield for the observed hadron around the direction of momentum transfer provides our experimental observable. Longitudinally polarized beams and targets give access to longitudinal target SSAs and the longitudinal DSAs as a function of \(\phi_h\, 4\)-momentum transverse \(Q^2\), Bjorken \(x\), transverse hadron momentum \(P_T\), and hadron energy fraction \(z\). These spin asymmetries are defined in the laboratory frame, for which beam and target polarizations are along the beam-line (L) or unpolarized (U). From the \(\phi_h\)-dependence of these asymmetries (defined on the left-hand side of Eq. (1) for SSAs and Eq. (2) for DSAs) we can extract the experimental azimuthal moments (given on the right-hand side of Eqs. (1) and (2)) using the \(\phi_h\)-dependence:

\[
\frac{1}{P_T f} \left[\begin{array}{c} \sin \phi_h \\ \cos \phi_h \cos \phi_h + A_{UU} \sin \phi_h \sin 2\phi_h \\ A_{UU} \cos \phi_h \cos \phi_h + A_{UL} \sin \phi_h \sin 2\phi_h \end{array} \right] = \left(\begin{array}{c} Y_{LL} + Y_{UU} + Y_{UL} + Y_{LU} \\ 1 + A_{UU} \cos \phi_h \cos \phi_h + A_{UL} \sin \phi_h \sin 2\phi_h \end{array} \right),
\]

\[
\frac{1}{P_T f} \left[\begin{array}{c} \sin \phi_h \\ \cos \phi_h \cos \phi_h + A_{UU} \sin \phi_h \sin 2\phi_h \\ A_{UU} \cos \phi_h \cos \phi_h + A_{UL} \sin \phi_h \sin 2\phi_h \end{array} \right] = \left(\begin{array}{c} Y_{LL} + Y_{UU} + Y_{UL} + Y_{LU} \\ 1 + A_{UU} \cos \phi_h \cos \phi_h + A_{UL} \sin \phi_h \sin 2\phi_h \end{array} \right),
\]

The first (second) superscript on the yield \(Y\) denotes the sign of the beam (target) polarization. The first (second) subscript on the azimuthal moment \(A\) denotes whether the beam (target) is polarized or not. The superscript on \(A\) denotes the azimuthal moment. No superscript, as in \(A_{LL}\), denotes a \(\phi_h\)-independent asymmetry. The angle \(\phi_h\) is the hadron azimuthal angle with respect to the lepton plane as defined in the Trento convention [31]. We normalized the asymmetries using experimentally determined beam and target polarizations, \(P_b\) and \(P_t\), respectively, and the dilution factor \(f\), which accounts for the unpolarized material in the target.

In this letter, we present the results for the target SSA \(A_{UL}\) and the longitudinal DSA \(A_{LL}\) for \(\pi^0\) production in SIDIS using the CLAS detector at JLab [32] with the addition of a small-angle inner calorimeter (IC) for photons. The experiment (eg1-dvcs) took place from February to October, 2009 [33,34]. We scattered longitudinally polarized electrons off a longitudinally polarized solid \(^{14}\)NH\(_3\) target and collected a total of 30 mC of charge at a beam energy of 5.94 GeV. We detected scattered electrons and neutral pions in coincidence using CLAS. The present SIDIS data constitute a subset of our inclusive measurements [33], and they improve the older CLAS eg1b \(\pi^0\) measurements [16] by an order of magnitude in integrated luminosity.

We determined the beam polarization (about 85%) using a Möller polarimeter [35] and deduced the target polarization from the product of beam and target polarization (about 65%) obtained from \(e^+\) elastic scattering. We polarized the protons in \(^{14}\)NH\(_3\) via Dynamic Nuclear Polarization [36]. The CLAS acceptance for scattered electrons \((17^\circ < \theta < 50^\circ)\) was constrained by the IC at small angles and the polarized target walls at large angles.

Together, the CLAS electromagnetic calorimeter (EC) and the IC were able to detect photons from \(\pi^0\) decay over a range of angles from 4\(^\circ\) to 50\(^\circ\). We selected neutral pions by reconstructing the invariant mass of two photons, \(M_{\gamma\gamma}\) [37]. We analyzed separately three neutral pion topologies, EC–EC, EC–IC, and IC–IC, to take full advantage of the improved energy resolution of the IC and the larger angular range of the EC. Neutral pion mass cuts for EC–EC, EC–IC, and IC–IC were (0.10, 0.17), (0.102, 0.17), and (0.105, 0.185) GeV, respectively.

Additionally, we applied fiducial cuts to both the EC and IC and removed tracks around the edges of the EC where there was a higher negative pion contamination in the electron sample. We also removed events on the inner edge of the IC (hot blocks close to the beam line), as well as blocks on the outer edges of the
We defined our variables using the Trento Convention [31], and selected SIDIS events by imposing kinematic cuts on the squared 4-momentum transfer \(Q^2 > 1 \text{ GeV}^2 \), Bjorken-\(x \) (0.12 < \(x \) < 0.48), the target plus virtual photon invariant mass \((W > 2 \text{ GeV}) \), the fractional energy of the \(\pi^0 \) (0.40 < \(z \) < 0.70), and the missing mass \((M_{\text{miss}} > 1.5 \text{ GeV}) \), which suppressed the contributions from target fragmentation and exclusive events. We divided the data into 4 bins in \(x \), 9 bins in \(Q^2 \), 4 bins in \(z \), 6 bins in \(P_T \), and 12 bins in \(\phi_h \). Here, \(\phi_h \) is the azimuthal angle around the direction of momentum transfer. Because beam and target polarization lie along the beam direction, all asymmetries were corrected by a depolarization factor.

We calculated the corresponding SIDIS yields by scaling the events by the charge measured with the Faraday Cup in Hall B. We scaled the raw asymmetries by the beam and target polarization for \(A_{LL} \) and by the target polarization for \(A_{\pi^0} \). In order to remove contributions from the unpolarized part of the \(^{14}\text{NH}_3 \) target, we normalized the raw asymmetries by the dilution factor (about 3/17), which we calculated using a kinematically dependent model [38] optimized to fit the ratio of SIDIS events [39] from reference targets. The dilution model takes into account the SIDIS cross section per nucleon and an attenuation factor due to final state interactions of the \(\pi^0 \) in the target. The relative uncertainty in the dilution factor, due to the determination of the length of the frozen target, is 3%, and the uncertainty from the model dependence is 5%. Systematic uncertainties also resulted from the beam and target polarizations, background subtractions, and radiative corrections. Additionally, we studied the systematic fitting uncertainties for the moment extraction in detail. The strong dependence of the dilution factor for \(\pi^0 \)S on different kinematic variables is one of the main sources of systematic uncertainty. We also estimated via Monte Carlo simulation the uncertainties on the moment extraction, especially due to the imprecisely measured \(\cos \phi \) and \(\cos 2\phi \) dependence in the asymmetry denominators.

We performed radiative corrections on the data following the theoretical developments in Ref. [40]. We evaluated the spin-dependent radiative corrections using the Mo–Tsai formalism [41] in the angle peaking approximation (photon emission along the incident and scattered electron directions only) and the equivalent radiator approximation (radiation from the same nucleus as the hard scattering process is equivalent to an external radiator of a few percent). We used fits to the world data on spin-dependent exclusive and inclusive \(\pi^0 \) electroproduction cross sections and evaluated the radiative tails for each helicity combination separately using a Monte-Carlo integration technique. The net effect was relatively small in most kinematic bins, and is included in the systematic uncertainty budget.

The main goal of this experiment was the extraction of SSAs and DASs in fine bins in \(x \) and transverse hadron momentum \(P_T \). We show here representative results. Fig. 1 shows \(A_{LL} \) for \(\pi^0 \) as a function of \(P_T \), together with curves calculated for our kinematics using different theoretical approaches to parton distributions [42, 43]. The general magnitude is predicted well by these calculations, while the \(P_T \)-dependence is less well described. The dependence of the DSA on \(P_T \) indicates that spin orbit correlations may be significant, and that these dependencies are sensitive to details of the momentum distributions of the polarized quarks. Because \(A_{LL} \) is related to the ratio of polarized to unpolarized structure functions, this suggests that transverse momentum is correlated with spin orbit interaction. Extraction of the underlying quark transverse momentum \(k_T \) of the helicity distributions, however, will require an established framework for TMD extraction from a combination of measurements with unpolarized and polarized targets [44].

Fig. 1. The moment \(A_{LL} \) versus \(P_T \) for \(\pi^0 \) compared with calculations using the quantum statistical approach to parton distributions [42, 43] (gray bands). The dashed, dotted, and dash-dotted curves are calculations assuming that the \(g_1 \) to \(f_1 \) transverse-momentum width ratios are 0.40, 0.68, and 1.0, respectively, using a fixed width for \(f_1 \) (0.25 GeV) [45]. The error bars represent the statistical uncertainties, whereas the yellow bands represent the total experimental systematic uncertainties.

Fig. 2. The \(\sin 2\theta_h \) moments for \(A_{UL} \) plotted versus \(x \) (left) and \(P_T \) (right) compared to previous CLAS measurements [18] (which had a lower \(z \) threshold of 0.3, no IC, and much lower integrated luminosity) and theory predictions (gray band) [10,11,13](PhysRevD.77.014023). The error bars represent the statistical uncertainties whereas the yellow bands represent the total experimental systematic uncertainties.

Studies of the Collins fragmentation functions at the e+e− machines, BELLE [28,46,47], BABAR [48,29], and BESIII [30], indicate that the \(\pi^+ \) Collins fragmentation functions \(H_{1\pi^+}^+ \) are large and have opposite signs for the favored and unfavored cases. Because fragmentation into \(\pi^0 \) is essentially the average of the \(\pi^+ \) and \(\pi^- \) cases, this suggests a significant suppression of the Collins fragmentation function for \(\pi^0 \). The measured \(\sin 2\theta_h \) moment of the single target spin asymmetry \(A_{UL}^{\text{spin}} \), which at leading twist has only a contribution from the Collins function coupled to the chiral-odd TMD, \(H_{1\pi^0}^+ \), is shown in Fig. 2. This Kotzinian–Mulders SSA [49], provides a unique opportunity to check the Collins effect. Our measurement of \(A_{UL}^{\text{spin}} \) for \(\pi^0 \) is consistent with zero as expected.

A significant \(\sin 2\theta_h \) modulation of the target spin asymmetry has been observed for neutral pions by the HERMES Collaboration [8]. There have been several attempts to describe the \(\sin 2\theta_h \) moment of this asymmetry using twist-3 contributions originating from the unpolarized fragmentation function \(D_3 \) and the Collins fragmentation function \(H_{1\pi^0}^+ \) [50–53]. Recently the effects of the
twist-3 TMDs f_L^1 and h_1 have been calculated in two different spectator-di-quark models [54,55]. Our data for $A_{UL}^{\sin \phi_1}$ (shown in Fig. 3 together with equivalent data from [9] at higher beam energies) is plotted versus x and P_T. The data suggest that a Sivers-type contribution coming from the convolution of f_L^1 and D_1 (dashed curve from Ref. [55] in Fig. 3) indeed may be dominating the $\sin \phi_1$ moment of A_{UL}, and quark–gluon correlations are significant for $x > 0.2$.

The x-dependence of A_{UL} is consistent with HERMES measurements [9] in both magnitude and x-dependence. The increasing P_T-dependence is also consistent with HERMES. Precise direct comparisons, however, require taking out the kinematic factor $\sqrt{2E(1+\ell)}$ from the structure functions, and adding a factor of Q to account for the higher twist nature of this asymmetry, as defined in Ref. [6]. Tables with detailed relevant information on double and single target spin asymmetries for $ep \to e'\pi^0X$, extracted for multidimensional bins including x, z and P_T-dependences, are available at arXiv:1709.10054.

In summary, kinematic dependencies of single and double spin asymmetries for neutral pions have been measured in multidimensional bins over a wide kinematic range in x and P_T using CLAS with a polarized proton target. Measurements of the P_T-dependence of the double spin asymmetry, performed for the first time for different x-bins, indicate the possibility of different average transverse momenta for quarks aligned or anti-aligned with the nucleon spin. A non-zero $\sin \phi_1$ target single-spin asymmetry was measured for neutral pions with high precision, indicating that the target SSA may be generated through the Sivers mechanism. A small $\sin \phi_1$ moment of the target SSA is consistent with expectations of strong suppression of the Collins effect for neutral pions, due to cancellation of roughly equal favored and unfavored Collins functions. The extent to which higher twist contributes to these extracted moments at relatively low Q^2 constitutes a large part of the upcoming CLAS program with 11 GeV beams.

We thank the accelerator staff, the Physics Division, the Target Group, and the Hall-B staff at JLab for their outstanding efforts that made this experiment possible. This work was supported in part by the U.S. Department of Energy and the National Science Foundation, the French Commissariat à l’Energie Atomique, the French Centre National de la Recherche Scientifique, the Italian Istituto Nazionale di Fisica Nucleare, the National Research Foundation of Korea, the United Kingdom’s Science and Technology Facilities Council, and the Southeastern Universities Research Association (SURA), which operates the Thomas Jefferson National Accelerator Facility for the United States department of Energy under contract DE-AC05-06023177.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.physletb.2018.06.014.

References

