Strategic Supplementation for Compensatory Growth in Tharparkar Calves Fed Low Quality Forages

S. K. Mahanta
Indian Grassland and Fodder Research Institute, India

M. M. Das
Indian Grassland and Fodder Research Institute, India

Follow this and additional works at: https://uknowledge.uky.edu/igc

Part of the Plant Sciences Commons, and the Soil Science Commons

This document is available at https://uknowledge.uky.edu/igc/23/2-1-1/10

The XXIII International Grassland Congress (Sustainable use of Grassland Resources for Forage Production, Biodiversity and Environmental Protection) took place in New Delhi, India from November 20 through November 24, 2015.

Published by Range Management Society of India

This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Strategic supplementation for compensatory growth in Tharparkar calves fed low quality forages

S. K. Mahanta*, M. M. Das
ICAR-Indian Grassland and Fodder Research Institute, Jhansi-284003, India
*Corresponding author e-mail: mahantaskan@gmail.com

Keywords: Compensatory growth, Feed restriction, Strategic supplementation, Tharparkar calves

Introduction
When animals are kept under feed restriction for a certain period of time followed by availability of feed again had high growth rate and even exceeded those of animals that were well fed throughout the same period (Tolla et al., 2003), because of physiological impulse called compensatory gain. Thus it improves feed efficiency and reduces feeding cost (Neto et al., 2011). However, when this happens in females growing calves it is desirable, provided it does not occur during puberty so that there is no reproductive damage. But compensatory growth varies depending upon the intensity and duration of under nutrition before re-alimentation. In the present study the effects of moderate level of feed restriction and later re-alimentation with strategic supplementation approach (a mixture of protein and energy sources) on nutritional status and growth performances were recorded in female growing calves.

Materials and Methods
Tharparkar female calves (18), divided into 3 groups (G1, G2 and G3), were fed rations of concentrate mixture and low quality forages (dry grass/wheat straw) as total mixed rations at different levels (100, 75 and 75%, respectively) of 300 g daily targeted growth (NRC, 1989) during feed restriction phase of 60 days duration. Calves under G1 group were offered diets to meet 100% of 300 g daily targeted growth, while both G2 and G3 groups were offered diets to meet only 75% of 300 g daily targeted growth. In re-alimentation phase of another 60 days duration, again calves of G1 group were continued under the same feeding regime, but calves of G2 and G3 groups were strategically supplemented with a mixture of barley and mustard cake @ 250 g/head/day, respectively, besides meeting 75% of nutritional requirements for control group (G1).

Results and Discussion
Feed restriction resulted decrease in intake of feed/dry matter (DM) and other nutrients. However, digestibility of nutrients like DM, OM, CP and NDF were comparable among the groups. Calves fed 100% of targeted growth (G1), gained their body weights @ 324 g/day, while those fed @ 75% of targeted growth (G2 & G3) gained body weights @ 258 & 249 g per day, respectively (Table 1). When those growing calves were strategically supplemented with a mixture of barley and mustard cake @ 250 g/head/d (G2) or 500 g/head/d (G3), besides meeting 75% of nutritional requirements for control group (G1) during re-alimentation phase, they gained weights @ 327 and 365 g/d, respectively. However, improved weight gain through strategic supplementation during re-alimentation phase was not adequate to compensate the lost body weight when compared to control group. On the contrary, feed restriction up to 40% of dry matter was recommended in Guzera female calves as nutrition management practice for efficient utilization of feed resources (Neto et al., 2011).

Table 1: Growth performances of experimental calves

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Treatment groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G1</td>
</tr>
<tr>
<td>Phase-I: Feed restriction</td>
<td></td>
</tr>
<tr>
<td>Initial weight (kg)</td>
<td>140.8</td>
</tr>
<tr>
<td>Final weight (kg)</td>
<td>160.2</td>
</tr>
<tr>
<td>Total gain (kg)</td>
<td>19.4a</td>
</tr>
<tr>
<td>Average daily gain (g)*</td>
<td>324a</td>
</tr>
<tr>
<td>Phase-II: Strategic re-alimentation</td>
<td></td>
</tr>
<tr>
<td>Initial weight (kg)</td>
<td>160.2</td>
</tr>
<tr>
<td>Final weight (kg)</td>
<td>180.9</td>
</tr>
<tr>
<td>Total gain (kg)</td>
<td>20.6</td>
</tr>
</tbody>
</table>
Average daily gain (g) | 344 | 327 | 365
---|---|---|---
Overall growth
Total gain (kg) | 40.1 | 35.1 | 36.9
Average daily gain (g) | 334 | 292 | 307

Means bearing different superscripts in a row differ significantly (* P < 0.05; **P<0.01)

Conclusion

It was concluded that strategic supplementation of a mixture of barley and mustard cake (@250-500 g/day) to female calves during re-alimentation phase improved weight gain, but it was not adequate to compensate the lost body weight when compared to calves fed for 300 g targeted growth without any feed restriction.

References

Acknowledgement

The authors duly acknowledge the financial help under AICRP Project to carry out this piece of work.