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We present the first nonperturbatively renormalized determination of the glue momentum fraction hxig in
the nucleon, based on lattice-QCD simulations at the physical pion mass using the cluster-decomposition
error reduction technique. We provide the first practical strategy to renormalize the gauge energy-
momentum tensor nonperturbatively in the regularization-independent momentum-subtraction (RI/MOM)
scheme and convert the results to the MS scheme with one-loop matching. The simulation results show that
the cluster-decomposition error reduction technique can reduce the statistical uncertainty of its
renormalization constant by a factor of Oð300Þ in calculations using a typical state-of-the-art lattice
volume, and the nonperturbatively renormalized hxig is shown to be independent of the lattice definitions of
the gauge energy-momentum tensor up to discretization errors. We determine the renormalized

hxiMS
g ð2 GeVÞ to be 0.47(4)(11) at the physical pion mass, which is consistent with the experimentally

determined value.

DOI: 10.1103/PhysRevD.98.074506

I. INTRODUCTION

A longstanding problem raised by deep-inelastic scatter-
ing and Drell-Yan experiments on the nucleon is that the
gluons contribute almost as large a fraction of the nucleon
momentum as the quarks [1,2], contradicting the naive quark
model. Themomentum fractions of the quarks andglue equal
the second moments of their respective parton distribution
functions (PDFs) fpðxÞ (p ¼ u; ū; d; d̄; s;…; g),

hxip ¼
Z

1

0

dxxfpðxÞ; ð1Þ

where the PDF can be determined from global fits of
experimental results with certain assumptions about their
functional forms. The recent CT14NNLO global PDF fit [2]

yields hxiMS
g ð2 GeVÞ ¼ 0.42ð2Þ, and the value at the TeV

scale will be around 0.5, which is irrespective of its value at

lower scales. Besides the importance in understanding the
nucleon momentum, the value of hxig is also an important
input to obtain the glue contributions to the nucleonmass and
spin [3,4], so calculating it from a first-principle lattice-QCD
simulation is of fundamental interest, in addition to providing
an independent input and check of the experimental PDF
determinations.
Lattice calculations of hxig in the nucleon [4–7] have been

significantly refined in the last ten years. However, values of

hxiMS
g ð2 GeVÞ vary widely; two quenched calculations

found 0.43(9) and 0.33(6) [4,5], and recent dynamical
Nf ¼ 2 calculation obtained 0.267(22)(30) [6,7].
The recent quenched (Refs. [4,5]) and dynamical

(Refs. [6,7]) lattice calculations of hxig used different lattice
definitions of the gauge energy-momentum tensor (EMT)
with the one-loop renormalization based on the lattice
perturbation theory (LPT). It is known that LPT is poorly
convergent at one-loop level without smearing of the gauge
EMT [8,9], and LPT calculations beyond one-loop level are
extremely difficult.Whether smearing of the gauge EMTcan
improve the convergence of LPT remains an open question,
but it was found inRef. [10] that hypercubic (HYP) smearing
[11] of the glue operator can change the bare glue matrix
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element by a factor of ∼3. Nonperturbative renormalization
(NPR) of hxig is thus essential to check whether different
lattice definitions of the gauge EMT and smearing can
provide a consistent prediction of hxig.
In this work, we present the first NPR of the gauge EMT

using the cluster-decomposition error reduction (CDER).
We confirm that nonperturbatively renormalized hxig is
independent of the lattice definition of the gauge EMT and
whether the HYP smearing is applied to it.
The glue NPR technique that we introduce will be

applicable for the quantities beyond the hxig. State-of-
the-art calculations of the glue spin contribution to the
proton spin [10] and the glue transversity in hadrons [12]
have been presented recently; the renormalization of the
glue operators in these calculations are determined at the
one-loop level or neglected entirely. Approaches that target
the entire glue PDF instead of the moments, like large-
momentum effective theory [13] and the lattice cross
section approach [14], have been explored recently. NPR
will be also essential to obtain accurate predictions for
those quantities.
In the rest of the paper, we will start from the simulation

strategy of NPR in Sec. II. Then, in Sec. III, this strategy is
tested in several cases including the quenched, 2-flavor, and
2þ 1-flavor ones. Based on those tests, a prediction of the
renormalized hxig is provided in Sec. IV, with controllable
systematic uncertainties from NPR. Our findings in this
work are summarized in Sec. V, and the additional
discussion on the cases with more than one step of HYP
smearing is presented in the Appendix.

II. NPR SIMULATION STRATEGY

At tree level, the gauge EMT T̄ g;μν ≡ FμρFνρ − 1
4
gμνF2

includes nine Lorentz structures,

T̄ ð0Þ
g;μν ¼ ð2pμpνgρτ − pμpρgντ þ p2gρμgντ − pτpνgρμ

− pνpρgμτ þ p2gρνgμτ − pτpμgρν

þ gμνðpτpρ − p2gτρÞÞAρðpÞAτð−pÞ; ð2Þ

where μ and ν denote the external Lorentz indices of the
EMT and ρ (or τ) is the Lorentz index of the external gluon
state Aρ=τ. As discussed in Ref. [15], 2pμpνgρτ is the only
structure free of mixing with the unphysical terms of the
gauge EMT (gauge dependent term and ghost term) and is
thus the best choice to consider the renormalization of the
gauge EMT without the mixing calculation with unphys-
ical terms.
While taking the physical condition pρ¼pτ ¼ 0, p2 ¼ 0

[15] in the Minkowski space will isolate this term, the on-
shell condition p2 ¼ 0 is not satisfied on the lattice. One
can, however, choose other conditions on the lattice to
isolate this term. More precisely, the RI/MOM renormal-
ization constant of the off-diagonal pieces of the gauge

EMT at the renormalization scale μ2R ¼ p2 can be defined
using the following approach, which is analogous to that
commonly used for the quark bilinear operators [16],

Z−1ðμ2RÞ ¼
�
N2

c − 1

2
ZRI
g ðμ2RÞ

�−1

×
VhT̄ g;μνTr½AρðpÞAρð−pÞ�i
2pμpνhTr½AρðpÞAρð−pÞ�i2

����p2¼μ2
R
;

ρ≠μ≠ν;
pρ¼0

¼ p2hT̄ g;μνTr½AρðpÞAρð−pÞ�i
2pμpνhTr½AρðpÞAρð−pÞ�i

����p2¼μ2
R
;

ρ≠μ≠ν;
pρ¼0

; ð3Þ

where the index ρ is not summed and V is the physical
volume of the lattice. The final expression on the right-hand
side of Eq. (3) does not depend on the renormalization
constant

ZRI
g
hTr½AρðpÞAρð−pÞ�i

V
¼ N2

c − 1

2

1

p2
ð4Þ

in the RI/MOM scheme, as it is cancelled by the inverse of
the hTr½AρðpÞAρð−pÞ�i in its definition.
The Landau gauge-fixed gluon field AρðpÞ used above is

defined from the gauge links UμðxÞ as

AρðpÞ ¼ a4
X
x

eip·ðxþ1
2
ρ̂Þ
�
UρðxÞ − U†

ρðxÞ
2ig0a

�
traceless

: ð5Þ

Note that, even though the operator T̄ may be HYP
smeared, no smearing will be applied to the gauge field
AρðpÞ, since the gauge action is not smeared and no
reweighting is applied to the configurations. Similarly,
the RI/MOM renormalization constants of the traceless
diagonal pieces of the gauge EMT can be defined by

Z−1
T ðμ2RÞ ¼

p2hðT̄ μμ − T̄ ννÞTr½AρðpÞAρð−pÞ�i
2p2

μhTr½AρðpÞAρð−pÞ�i
����p2¼μ2

R
;

ρ≠μ≠ν;
pρ¼0;
pν¼0

: ð6Þ

The bare lattice gauge EMT can be defined by the clover
definition of the field tensor Fμν [4,5],

T̄ ðaÞ
g;μν¼2a4

X
x

Tr

�
FμρFνρ−

1

4
gμνF2

�
ðxÞ;

FμνðxÞ¼
i

8a2g
½P½μ;ν� þP½ν;−μ� þP½−μ;−ν� þP½−ν;μ��ðxÞ; ð7Þ

where the plaquette Pμ;νðxÞ¼UμðxÞUνðxþaμ̂ÞU†
μðxþaν̂Þ×

U†
νðxÞ with U−νðxÞ¼U†

νðx−aν̂Þ and P½μ;ν�≡Pμ;ν−Pν;μ.
The bare traceless diagonal component T̄ g;μμ also has a
simpler definition (the plaquette definition) [6,7]:

YI-BO YANG et al. PHYS. REV. D 98, 074506 (2018)
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T̄ ðbÞ
g;μμ ¼ −4

g2

�X
ν≠μ;x

Tr½Pμ;νðxÞ� −
1

4

X
ρ≠ν;x

Tr½Pρ;νðxÞ�
�
: ð8Þ

Different definitions and choices of smearing on the links
UμðxÞ in these definitions of T̄ g yield different bare hadron
matrix elements, but the renormalized results should agree
up to Oða2Þ correction.
After the renormalization constant Z−1ðμ2RÞ is obtained

perturbatively or nonperturbatively under the lattice regu-
larization at μ2R ¼ p2, the matching factor to convert the
result to the MS scheme should be calculated using
dimensional regularization. At the μR used in this work,
the one-loop corrections to match the MS scheme at 2 GeV
are at a few percent level [17]. The mixing with the quark
EMT is also small [17] and will be considered as a
systematic uncertainty; more detailed discussions of the
matching and mixing effects can also be found there.
Calculation of the correlation function

C3ðpÞ ¼ hT̄ μνTr½AρðpÞAρð−pÞ�i

¼
�Z

d4xd4yd4zeipðx−yÞT̄ μνðzÞTr½AρðxÞAρðyÞ�
�

ð9Þ
is numerically challenging, even when the gluon propagator
has been determined at better than the 1% level.
Figure 1 illustrates this difficulty: the light-colored bands
in the background show the direct calculations of
Z−1
T ða2p̂2 ≡ 4

P
μsin

2 apμ

2
Þ (with the condition that two

components of p are zero and
P

μp
4
μ=ð

P
μp

2
μÞ2 < 0.55)

based on the definition in Eq. (9), on 356 configurations of the
2þ 1-flavor RBC/UKQCD domain-wall fermion Iwasaki
gauge ensemble “48I” with lattice spacing a ¼ 0.114 fm,
mπ ¼ 140 MeV and lattice volume L3 × V ¼ 483 × 96

(L ¼ 5.5 fm) [18]. The statistical uncertainties are very large,
and Z−1

T cannot be resolved at any scale.
However, we can apply the CDER technique to reduce

the errors [19]. The cluster-decomposition principle enun-
ciates that correlerators fall off exponentially in the distance
between operator insertions and implies that integrating the
correlator over this distance beyond the correlation length
will only garner noise and not signal. The CDER technique
will cut off the volume integral beyond a characteristic
length, and then one can gain a factor of

ffiffiffiffi
V

p
in the signal-

to-noise ratio [19]. Applying CDER to C3ðpÞ in Eq. (9)
introduces two cutoffs, r1 between the glue operator and
one of the gauge fields and r2 between the gauge fields in
the gluon propagator, and then leads to the cutoff correlator:

CCDER
3 ðpÞ≡

�Z
jrj<r1

d4r
Z
jr0j<r2

d4r0
Z

d4x

× eip·r
0
T̄ μνðxþ rÞTr½AρðxÞAρðxþ r0Þ�

�
: ð10Þ

For example, with cutoffs r1 ¼ 0.9 fm, r2 ¼ 1.3 fm, the
statistical uncertainty can be reduced by a factor of
approximately 300. This is close to the square root of
V2 over the product of four-dimensional spheres with radii
r1 and r2, 2V=ðπ2r21r22Þ ≃ 263. Using these parameters, a
very clear signal can be resolved, shown as the red dots
and blue boxes in Fig. 1, for Z−1

T with and without HYP
smearing, respectively. The values of Z−1

T differ by a factor
of ∼3 for the calculations with or without the HYP
smearing, at a2p̂2 ∼ 1.
A naive cost estimate for the partial triple sum on the

volume V in Eq. (10) isOðVr41r42Þ, but the practical cost can
be reduced to OðV logVÞ by applying the fast Fourier
transform several times [19] using the following strategy:
(1) Construct Or0

μνðxÞ ¼
R
jr0j<r2

d4r0T̄ μνðxþ r0Þ by Fou-
rier transforming T̄ μνðxÞ and fðxÞ ¼ θðr2 − jxjÞ,
multiply the transformed functions together in mo-
mentum space, and then perform the anti-Fourier
transform.

(2) Calculate Br0
ρμνðxÞ ¼ AρðxÞT̄ r0

μνðxÞ.
(3) Apply the cluster decomposition toR

d4xd4yeip·ðx−yÞBr0
ρμνðxÞAρðyÞ [19]: perform the

Fourier transform (FT) for both A and B, applying
the anti-FT to AðpÞBð−pÞ; apply the cut gðxÞ ¼
θðr1 − jxjÞ in coordinate space; and then FT the
product.

The CDER with symmetric cutoffs

C3ðpÞ≈
�Z

jrj<r1

d4r
Z
jr00j<r3

d4r00
Z

d4x

×eip·ðrþr00ÞT̄ μνðxÞTr½Aρðx− rÞAρðxþ r00Þ�
�

ð11Þ

can also be efficient if a V logV implementation can be
obtained.

FIG. 1. The glue operator renormalization constants Z−1
T in M̄S

at 2 GeV with and without CDER (i.e., cutoffs on the distance
between the gauge fields/operator). Without CDER, the errors are
large, and the signal cannot be resolved (bands in the back-
ground). The errors can be reduced by a factor of ∼300 with
r1 ¼ 0.9 fm, r2 ¼ 1.3 fm, shown by the red dots (blue boxes) for
Z−1
T with (without) HYP smearing.
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III. TESTS ON CDER

Since the number of configurations in the 48I ensemble
at mπ ¼ 140 MeV is limited, we turn to three ensembles
with smaller volume and larger statistics to check the
systematic uncertainties of the CDER approach. To reduce
statistical uncertainties then provide a stronger check, we
will apply one step of HYP smearing on the gauge EMTs
used in this section.

A. Quenched ensemble 24Q

We calculated Zð1-HYPÞwithout CDER on decorrelated
70,834 configurations of a quenched Wilson gauge ensem-
ble “24Q” with a ¼ 0.098 fm and L3 × V ¼ 243 × 64 and
compared them with those on 708 of the 70,834 configu-
rations (pick 1 per 100 configuration numbers) with CDER.
The CDER results with r1 ≥ 0.8 fm and r2 ≥ 1.1 fm agree
with the CDER-free results for all a2p̂2. Figures 2–4 show
the Z−1 and Z−1

T results with a2p̂2 ¼ 2.00, 2.48, and 3.00,
respectively. In those figures, the red bands show the results
on 70,834 configurations without CDER, and the black
boxes show the results with r1 ¼ 0.7 × r2 ¼ R agree with

the red bands for all the R’s not smaller than 0.7 fm. Results
with the cutoff on either r1 or r2 set to ∞ (the green
triangles and purple dots) are also shown in the figures,
and it is obvious from the leftmost data points that the
cutoff effects on r2 are as strong as those on r1 when
r1 ¼ 0.7 × r2. Thus, setting the r1;2 with this relation can be
a proper choice to simplify the parameter tuning. The
results also demonstrate that cutoffs on either r1 or r2 also
reduce the statistical uncertainties of Z−1. As shown in
Figs. 2–4, the full-statistics CDER results (red crosses)
actually saturate at R > 0.8 fm or so and are consistent
with both the full-statistics non-CDER results and the
1%-statistics CDER results as expected.

B. Two-flavor ensembles 24C/12C

We also studied the dynamical case. We calculated
Z−1ð1-HYPÞ with CDER on 2,123 configurations of the
two-flavor clover fermion Lüscher-Weisz gauge ensemble
“24C” with lattice spacing a ¼ 0.117 fm, mπ ¼ 450 MeV,
and L3 × V ¼ 243 × 64 [20]. For comparison, we repeat
the calculation of Z−1 on 21,166 configurations on the 12C
ensemble (with the same lattice setup as 24C except a
smaller volume 123 × 24) without CDER. Figure 5 shows
similar R-dependence plots for the dynamical case with
24C and 12C lattices (a ¼ 0.117 fm, mπ ¼ 450 MeV,
L3 × V equal to 243 × 64 and 123 × 24, respectively).

FIG. 2. The cutoff R dependence for r1;2 of the renormalization
constant Z−1ð2 GeVÞ and Z−1

T ð2 GeVÞ on the 24Q ensemble with
a2p2 ¼ 2.00. Calculations on 300 configurations with r1 ≥
0.7 fm and r2 ≥ 1.0 fm are consistent with those using 70,834
configurations without any cutoff. The result is less sensitive to
the cutoff r1 than r2; thus, most of the variance reduction comes
from reducing r1, while reducing r2 is also useful. The green/
black/red data are shifted horizontally to enhance legibility.

FIG. 3. The cutoff R dependence of the renormalization
constant Z−1ð2 GeVÞ and Z−1

T ð2 GeVÞ on the 24Q ensemble
with a2p2 ¼ 2.48.
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The red bands show the results on 21,166 configurations
without any cutoff, and the data points show the CDER
results. They are all consistent for all the R’s not smaller
than 0.9 fm. The uncertainty of the full-statistics CDER
results are not much smaller than the non-CDER ones since
the volume is too small to make the CDER efficient.
For the cutoffs on the radii r1 and r2, they should

correspond to the respective correlation lengths between
the relevant operators. r1 is between the gauge field and the
EMT operator. Taking the vector meson ωð780Þ as an
estimate, the correlation length 3=mω ∼ 0.76 fm (at three
times the Compton wavelength, the Yukawa potential has
fallen by 95%) is close to 0.9 fm that we take for r1. On
the other hand, the gluon has a “dynamical mass” mg ∼
550 MeV in the small momentum region [21,22]. This gives
an estimate of the correlation length of 3=mg ∼ 1.2 fm,
which is close to the 1.3 fm cutoff used for r2.
As in Fig. 6, we should choose r1 ≥ 0.9 fm and r2 ≥

1.3 fm on 24C (black crosses) to get the results consistent
with those on 12C without CDER (the red boxes). If we fit
the CDER result of Z−1 on 24C with a polynomial form
including a2np̂2n (n ≤ 2) terms in the range a2p̂2 ∈ ½1.5; 5�,
the result is 2.63(5) with χ2=d:o:f: ¼ 0.80. Figure 6 also
shows Z−1ð1-HYPÞ with either smaller r1 (the purple band)
or r2 (the green band). These two cases have distinct
systematic bias in the form of oscillation in a2p̂2 although

the statistical uncertainties are smaller. If we fit the corre-
sponding datawith previous fitting setup, the χ2/d.o.f. will be
6.1 and 28.9 in two cases respectively and then are not
acceptable. Thus, whether χ2=d:o:f: is around 1 can provide
consistent criteria on the systematic uncertainties introduced
byCDER, especially in the case (likes 48I)we cannot resolve
any signal without CDER.

FIG. 4. The cutoff R dependence of the renormalization
constant Z−1ð2 GeVÞ and Z−1

T ð2 GeVÞ on the 24Q ensemble
with a2p2 ¼ 2.96.

FIG. 5. The cutoff R dependence of the renormalization
constant Z−1ð2 GeVÞ on the 24C/12C ensembles with a2p2 ¼
2.00 and 2.48.

FIG. 6. The M̄S renormalization constant Z−1ð2 GeVÞ on the
24C ensemble as a function of a2p̂2, with different cutoffs on the
gluon field-operator correlation (r1) and propagator (r2). A high-
statistics calculation without cutoff on a lattice with smaller
volume but the same paramters is also presented (red boxes) for
comparison.
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C. 2 + 1-flavor ensembles 48I

Before the end of this section, a few R-dependence tests
on 48I, the ensemble we will use for the final result, are
provided in Fig. 7.
In the upper panel of Fig. 7, the Z−1

T ð2 GeVÞ case with
a2p2 ¼ 2.00 is presented using a similar style as the
previous plots in this section, while the bands are based
on the results with the CDER cutoffs r1¼0.7×r2¼0.9 fm.
It is obvious that the cutoffs on r1;2 are necessary as the
errors with either an r1 or r2 cutoff only are very large. The
central panel of Fig. 7 shows the cutoff R dependence with
r1 ¼ 0.7 × r2 ¼ R at a2p2 ¼ 2.00, 2.48, 2.97, and 3.48.
All the data points with R > 0.9 fm are consistent with the
band based on the data point at R ¼ 0.9. In the lower panel

of Fig. 7, the cutoff R ¼ 0.7 × r2 dependences at different
a2p̂2 are presented with fixed r1 ¼ 0.9 fm. Thus, the
uncertainty with larger r2 is smaller, and then consistency
is more obvious. As an estimate of the systematic uncer-
tainty due to the choice of r2, we take the 2% fluctuation of
the gluon propagator at r2 ¼ 1.3 fm as the systematic error
in our final prediction.

IV. RENORMALIZED hxig ON 48I

Given the success of CDER in resolving a clean signal of
Z−1
T , it is nevertheless important to confirm that the

renormalized hxig is independent of the lattice definition
of T̄ g or whether the HYP smearing is applied, up toOða2Þ
corrections. Figure 8 gives the CDER results on the 48I
ensemble as the functions of a2p̂2. The red dots and blue
boxes show Z−1

T with and without HYP smearing, respec-
tively, using the clover definition in Eq. (7); the green
triangles show the HYP-smeared case using the plaquette
definition in Eq. (8), Z̄−1

T . The a2p̂2 dependence and the
a2p̂2 → 0 limit of the renormalization constants are differ-
ent between the different definitions, while the presumed
rotation symmetry breaking between Z−1 (black triangles)
and Z−1

T is consistent with zero within the uncertainties.
With the functional form Z−1

T ða2p̂2Þ ¼ Z−1
T ð0Þ þ C1a2p̂2þ

C2a4p̂4, we fit the range a2p̂2 ∈ ½1.5; 5� (the lighter
area in Fig. 8) and obtain Z−1

T ð0-HYPÞ¼ 0.257ð25Þð5Þ,
Z−1
T ð1-HYPÞ ¼ 0.946ð26Þð19Þ, and Z̄−1

T ð1-HYPÞ ¼
1.05ð35Þð21Þ, where the second error is an estimate of
the systematic uncertainty from the 2% truncation error of
the gluon propagator at r2 ∼ 1.3 fm. The χ=d:o:f. for all the
cases are smaller than 1.
To determine the bare hxig, the following ratio is calcu-

lated in the rest frame of the nucleon on 81 configurations of
the 48I ensemble with a partially quenched valence overlap
fermion for the pion mass mπ ∈ ½135; 372� MeV,

FIG. 7. The cutoff R dependence of the renormalization
constant Z−1

T ð2 GeVÞ on the 48I ensemble.

FIG. 8. The M̄S at 2 GeV renormalization constants as
functions of a2p̂2, for the gauge EMT operators. The red dots
and blue boxes show the Z−1

T with and without HYP smearing
using the clover definition (CLV), and the green triangles show
the HYP-smeared case using the plaquette definition (PLQ). The
result of Z−1 with HYP smearing and the clover definition (purple
triangles) are also plotted for the comparison.
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Rðtf; tÞ ¼
4h0jΓe

R
d3yχðy⃗; tfÞT̄ g;44ðtÞχ̄ð0⃗; 0Þj0i

3MNh0jΓe
R
d3yχðy⃗; tfÞχ̄ð0⃗; 0Þj0i

; ð12Þ

where χ is the nucleon interpolation field, Γe is the unpo-
larized projection operator of the proton, and MN is the
nucleon mass. When tf is large enough, the derivative of the
t-summed ratio Rðtf; tÞ becomes the glue momentum
fraction in the nucleon, as applied in the recent high-accuracy
nucleon matrix element calculation [23],

R̄ðtfÞ≡
X

0<t<tf

Rðtf; tÞ −
X

0<t<tf−1
Rðtf − 1; tÞ

¼ hxibareg þOðe−δmtfÞ; ð13Þ

up to the excited-state contamination at Oðe−δmtfÞ. The
calculation setup is the same as for our previous work on the
glue spin [10]: a 4 × 4 × 4 smeared grid source with low
mode substitution [24] is used for the nucleon two-point
functions, and all the time slices are looped over to increase
statistics.We followed the same strategy in Ref. [19] to apply
CDER to the numerator of Rðtf; tÞ. With a cutoff around
1 fm, which is enough as demonstrated in the NPR cases
studied here, the statistical uncertainties of R̄ðtfÞ can be
reduced by a factor of ∼10. The systematic uncertainties in
bare R̄ðtfÞ due to CDER will be investigated in the future
following the strategy inRef. [19]. The renormalized R̄ðtfÞ at
mπ ¼ 372 MeV is shown in Fig. 9 as a check with the best
signals we have. The errors from ZT and the bare R̄ðtfÞ are
combined in quadrature. As shown in that figure, even
though the renormalization constants with or without
HYP smearing differ by a factor of ∼3 as we saw in
Fig. 8, the renormalized R̄RðtfÞ≡ ZTR̄ðtfÞ are consistent
within 2σ for tf ≥ 4.

We fit R̄ðtfÞ to a constant in the range tf ≥ 7a to obtain
hxig and plot itsm2

π dependence in Fig. 10.With a linear fit to
m2

π formπ < 400 MeV on the 1-HYP-smeared data with the

clover definition, we obtain hxiMS
g ð2 GeVÞ at the physical

pion mass as 0.47(4)(11). The variance of the values from
three definitions, the uncertainties of the renormalization
constants, and the mixing effect from the quark momentum
fraction hxiq (which is estimated by 1 − hxig times the
one-loop mixing coefficient 0.1528 [17]) are combined in
quadrature as the systematic uncertainty. The prediction is
consistent with the global fitting result CT14 [2] 0.42(2) in
MS at the same scale. Themajor systematic uncertainty is the
mixing from the quark and can be eliminated with a similar
nonperurabtive calculation with the quark external states.

V. SUMMARY

In summary, we have presented a systematic implemen-
tation of NPR for the glue momentum fraction hxig.
We demonstrated that the CDER technique can provide
an unbiased improvement on the lattice with the cutoffs
r1 ∼ 0.9 fm and r2 ∼ 1.3 fm and that the renormalized hxig
is insensitive to the lattice definition of the gauge EMT or
HYP smearing within uncertainties.
Our calculation also shows that HYP smearing can make

the a2p̂2 dependence of the renormalization constant much
stronger than the case without HYP smearing, even though
the a2p̂2-extrapolated value can be closer to 1. The cases
with more steps of HYP smearing are shown in the
Appendix.
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APPENDIX: THE DISCRETIZATION ERROR
WITH MORE STEPS OF HYP SMEARING

In this section, we repeat the NPR and matrix elements
calculation on 48I, but with two and five steps of HYP
smearing.
As shown in the left panel of Fig. 11, Z−1

T becomes
increasingly nonlinear on a2p̂2 when more HYP-smearing

steps are applied on the gauge EMT. Without HYP
smearing, the a2p̂2 dependence of Z−1

T can be well
described by a linear term, and the coefficient of the next
order a4p̂4 term is consistent with zero. With more HYP-
smearing steps, the coefficients of the a2p̂2 and a4p̂4 terms
increase significantly. Since all momenta p on the external
legs of the gauge EMT will be integrated in the hadron
matrix element, a2np̂2n corrections will result in Oða2nÞ
discretization errors at finite lattice spacing. From the
renormalized R̄ðtfÞ in the right panel of Fig. 11, the results
with two steps of HYP smearing still agree with the results
with 1 step of HYP smearing, but if we jump to the five-
step HYP smearing used by some previous studies, the
a2np̂2n corrections will be much larger, and the renormal-
ized result will have large systematic uncertainties from
determining Z−1

T (green triangles and blue boxes).
In the 5-HYPcase,with the same rangea2p̂2 ∈ [1.5,5] and

the polynomial form up to the a4p̂4 term, Z−1
T ð5-HYPÞ ¼

0.663ð35Þ is obtained with χ2 ¼ 0.8 (the default fit). If the
a6p̂6 term is added and the range is switched toa2p̂2 ∈ ½1; 4�,
Z−1
T ð5-HYPÞ will jump to 1.11(11) with χ2 ¼ 0.4 (the tuned

fit). The data of Z−1
T ð5-HYPÞ (the green triangles) with the

band from the default fit (the green band) and tuned fit
(the blue band) are plotted in the left panel of Fig. 11, and the
renormalized R̄ðtfÞ with both fits of Z−1

T are shown in the
right panel. The errors from ZT and the bare R̄ðtfÞ are
combined in quadrature. It is obvious that the renormalized
R̄ðtfÞ with five-step HYP smearing (green triangles) based
on the default fit of Z−1

T is much higher than those with one
and two steps ofHYP smearing. Even though the consistency
can be improved if the tuned fit of Z−1

T is applied (the blue
boxes), the systematic uncertainties from the fit of Z−1

T will
make the final uncertainties in the five-step HYP-smearing
case larger than the cases with fewer steps of HYP smearing.

FIG. 11. The M̄S 2GeV renormalization constantsZ−1
T and renormalized R̄ðtfÞwith one, two, and five steps of HYP smearing are shown

as the red dots, purple reversed triangles, and green triangles, respectively. Both the blue and green bands are the fit of the 5-HYP data, with
the regions a2p̂2 ∈ ½1; 4� and [1.5,5], respectively. The renormalized R̄ðtfÞ in the 2-HYP case is still consistent with the 1-HYP case even
though thea2p̂2 dependence ofZ−1

T is quite different for tf ≥ 3, but the 5-HYPcasewill bevery sensitive to the fit ofZ−1
T and then has a large

systematic uncertainties.
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