The Use of Forensic DNA in Criminal Cases in Kentucky as Compared with Selected Other States

Judith E. Lewter
University of Kentucky

Follow this and additional works at: https://uknowledge.uky.edu/klj
Part of the Science and Technology Law Commons
Click here to let us know how access to this document benefits you.

Recommended Citation
Available at: https://uknowledge.uky.edu/klj/vol86/iss1/7
The Use of Forensic DNA in Criminal Cases in Kentucky as Compared with Selected Other States

BY JUDITH E. LEWTER*

INTRODUCTION

The use of technology to examine DNA strands in biological and medical fields has been around for many years, but its development in the area of forensic science began in the mid-1980s by the Federal Bureau of Investigation ("FBI"). The first case in which DNA was used by the FBI in the United States was in December, 1988. By the middle of 1989, however, after much publicity involving DNA, serious questions began to be raised in various scientific, legal, and forensic communities about its reliability and validity.

Part I of this Note discusses some of the technical aspects of DNA typing, or "DNA fingerprinting" as it is sometimes inaccurately called.

* J.D. expected 1998, University of Kentucky. The author wishes to thank the Fayette County Legal Aid Society for the use of its Resource Library. Also, special thanks to L. Skunk.

2 See NATIONAL RESEARCH COUNCIL, DNA TECHNOLOGY IN FORENSIC SCIENCE 1 (1992). This Note will deal exclusively with the use of DNA in criminal cases, since its use in civil cases, mostly paternity cases, does not involve the same problems and constitutional issues, nor the same admissibility issues. See also J.E.B. v. State, 606 So.2d 156 (Ala. Civ. App. 1992), rev'd on other grounds, 511 U.S. 127 (1994).

3 See NATIONAL RESEARCH COUNCIL, supra note 2, at 1.

4 See infra notes 11-58 and accompanying text.

5 The term "DNA fingerprinting" generally is used incorrectly in the United States, since DNA fingerprinting refers specifically to a certain technique in the analysis of DNA which is not often used in this country. See NATIONAL RESEARCH COUNCIL, supra note 2, at 4. The term is also incorrect in the sense that it is undoubtedly a subtle attempt to borrow from the credibility of true fingerprint identification to bolster its own credibility, although there are considerable major differences in the identification techniques involved. See id.

223
and its inextricable symbiotic brother, population genetics and the "product rule." Part II discusses the legal requirements for the introduction of scientific testimony in general, and DNA in particular, in criminal cases. Part III focuses on technical problems associated with the admissibility of DNA evidence and the statistical probabilities garnered from population genetics. Finally, Part IV discusses how Kentucky and selected other states have come to grips with the issues involved.

I. WHAT IS FORENSIC DNA TECHNOLOGY

A. In General

DNA is the active substance in all genes, carrying "the coded messages of heredity in every living thing: animals, plants, bacteria, and other microorganisms." Forensic DNA is the application of the use of DNA to legal issues, particularly for identification purposes. The DNA makeup of every human is unique, with the exception of identical twins. Each strand of DNA from the chromosome set of a single cell is approximately 1.5 meters in length. Since there are 100 trillion cells in the human body, there are ninety-three billion miles of DNA in each person, which equates to approximately 1000 times the distance from the Earth to the sun.

It is impossible to compare such great lengths of DNA to each other. And yet, since each 1.5-meter strand in each chromosome is repeated throughout all of the cells, if only that portion (1.5 meters) could be compared with another source, any match would be absolute. However, even that type of comparison cannot presently be done. Currently, only

6 The National Research Council has stated that it is meaningless to say that two DNA patterns match without stating the frequency in which such a match could occur by random chance. See id. at 9.

7 Id. at 76.

8 See infra notes 59-101 and accompanying text.

9 See infra notes 102-80 and accompanying text.

10 See infra notes 181-258 and accompanying text.

11 NATIONAL RESEARCH COUNCIL, supra note 2, at 2.

12 See id. at 3, 74.

a very tiny portion of a strand is compared with a similar section from another source in order to determine if the two samples could have come from the same source. A negative match is absolute. That is, if the laboratory finds that two samples are dissimilar, the inescapable conclusion is that they do not match and so are not from the same source.\footnote{See NATIONAL RESEARCH COUNCIL, supra note 2, at 9, 74-75.}

If there is a match between the two samples, it is necessary to compute the probability of such a match occurring between samples taken from randomly chosen sources.\footnote{See discussion infra notes 50-58 and accompanying text.} If the probability of a random match is determined to be sufficiently low, the match is strong evidence that the two samples came from the same person, rather than being a mere coincidence.\footnote{In some cases the odds of a random match have been estimated at one in many millions, or even billions. See, e.g., Martínez v. State, 549 So.2d 694 (Fla. Dist. Ct. App. 1989) (one in 234 billion); Andrews v. State, 533 So.2d 841 (Fla. Dist. Ct. App. 1988) (one in more than 800 million); Spencer v Commonwealth, 384 S.E.2d 775 (Va. 1989) (one in 135 million blacks).} Thus, the prosecution would argue, the person whose DNA sample matches the crime scene sample is guilty of the crime being investigated. Sometimes, however, the probability of a random match is not so persuasive, as in the New York City bombing of the World Trade Center; three percent of the population could have shared the same DNA characteristics as those in the sample of saliva found on an envelope that had been licked. This computed probability narrowed the group of potential suspects to just over 330,000 people in New York City alone, including the defendant, who could have been the source of the saliva. This obviously was not a powerful piece of evidence.\footnote{See Ronald S. Ostrowski, PCR, DQ, and Polymarkers: A New Generation of Forensic DNA Profiling, TRIAL BRIEFS 24-25 (Winter 1994-95).}

B. Techniques for Analyzing and Identifying Samples of DNA

1. Restriction Fragment Length Polymorphisms ("RFLP")

The most commonly used method to compare DNA samples is called the Restriction Fragment Length Polymorphisms test, generally referred to as RFLP. This test requires a larger sample\footnote{Compare Thomas M. Fleming, Annotation, Admissibility of DNA Identification Evidence, 84 A.L.R. 4th 313, 320 (1991) (stating that a sample of blood the size of a quarter, or a sample of semen the size of a dime, would be} than other methods used
to compare DNA samples, but gives a better probability of a match. RFLP takes advantage of the fact that each strand of DNA is composed of strings of four types of nucleotides, commonly represented by the letters A, C, G, and T, that occur in different combinations and lengths. Stated in the simplest terms, RFLP involves extracting a sufficient quantity of DNA from the samples to be compared and then analyzing the combinations of A, C, G, and T bases, along with the lengths of each base, in a seven-step process.

The first step is the extraction of the DNA from the tissue sample and its purification by the addition of certain chemicals. Once the DNA is separated and purified, certain enzymes, called restriction enzymes, are added to the DNA. These enzymes cut the DNA strands at certain points by recognizing specific sequences of base pairs. The lengths of these resulting fragments of DNA vary in each individual.

Next is a critical step called electrophoresis, where the fragment lengths of DNA are placed parallel to each other in separate tracks at one end of an agarose gel. A positive electrode is placed at the other end of the gel. Since the DNA strands carry a negative charge, they move toward the positive charge. Since shorter fragments travel faster than longer fragments, the technician can determine the length of a fragment by how far it travels through the gel in the allotted time.

19 One such method is the Polymerase Chain Reaction test. See discussion in notes 43-49 and accompanying text.

20 There are approximately three billion nucleotides in each set of 23 chromosomes. See NATIONAL RESEARCH COUNCIL, supra note 2, at 3. The letters A, C, G, and T stand for the bases adenine, cytosine, guanine, and thymine, respectively. See id. at 2.

21 See NATIONAL RESEARCH COUNCIL, supra note 2, at 3-4.

23 See Bennett, supra note 18, at 146-47

24 See infra notes 102-35 and accompanying text for a discussion of possible problems associated with this step.

25 See Bennett, supra note 18, at 147
The results of the procedure thus far cannot be seen, so a fourth step is necessary to help make the fragments of DNA visible. A process called Southern blotting, or Southern transfer, is used to transfer the fragments from the gel to a nylon membrane. This is called a blot. At the same time, a chemical is used to split the base pairs on each fragment in half, lengthwise. This process is akin to unzipping a zipper.26

The fifth step, hybridization,27 involves locating various VNTRs28 on the blot.29 To determine these locations, the nylon blot is dipped in a solution of single-stranded30 radioactive probes31 that have been chemically engineered to band with an identical sequence of base pairs in the sample. This has the effect of placing a recognizable mark at each location. The blots are then cleaned of any unbonded probes.32

In order to analyze the results, the nylon blot is then placed on a piece of x-ray film and left for a period of time, from a few hours to several days.33 The radioactive probes expose the film, creating a picture that has been described as superficially resembling the bar graphs on items in a grocery store.34 This is called an autoradiograph,35 or autorad for short. The probes show up as black bands on the autorad, and since they are interlocked with the VNTRs, the location and size of the VNTRs can be found.36

The next step is the comparison of the bands on the tracks created from the crime scene sample with the bands on the tracks created from the sample from the suspect (the "otherwise known" sample).37 If the location and distribution of the bands on the tracks are not the same,

26 See id. at 147-48.
27 See id. at 148.
29 VNTRs are small segments of base pairs in the DNA that are tandemly attached and repeated frequently. See Bennett, supra note 18, at 145.
30 See id. at 148.
31 See Deftos, supra note 28, at 961 (the average test consists of three to four probes, each producing six to eight bands).
32 See Bennett, supra note 18, at 148.
33 See id.
34 See Deftos, supra note 28, at 961.
35 See id.
36 See Bennett, supra note 18, at 148-49. This is the so-called "DNA print."
37 See id. at 149.
there is no match, and the negative result is said to be conclusive.38 If the location and distribution of the bands on the tracks are similar enough39 to each other,40 there is said to be a match, which means, at this point, only that the suspect is "not excluded."41 The next step is to determine the significance of the match.42

2. Polymerase Chain Reaction ("PCR")

Another method of DNA identification is the Polymerase Chain Reaction ("PCR") procedure which is named after TAQ polymerase, the enzyme used in the process.43 The technique utilizes a much smaller sample than RFLP and has less ability to maximize the significance of possible matches.44 In this process, the sample of DNA to be used is again extracted, purified, and mixed with chemicals, including the TAQ polymerase enzyme. During successive cycles in a heating device, a specific "gene of interest" will be replicated billions of times.45 Then the amplified DNA is flooded over a nylon membrane that is marked with specific probes, each of which is designed to recognize one variant of the "gene of interest," called an allele.46 Wherever the probe recognizes a specific allele, a visible dot appears on the membrane.47

To determine if two DNA samples have come from the same person, it is necessary to examine the results to see if they have produced the

38 See id. (citing United States v. Jakobetz, 955 F.2d 786, 793 (2d Cir. 1992)).

39 See id. (explaining that the "match does not have to be exact" for a match to be declared).

40 Jakobetz, 955 F.2d at 793 (stating that the FBI will declare a match if the number of base pairs in the two bands differs less than 2.5%); Fishback v People, 851 P.2d 884, 888 (Colo. 1993) (stating that one private laboratory requires that the length of two fragments be within one millimeter of each other to declare a match).

41 Deftos, supra note 28, at 962.

42 See infra notes 50-58 and accompanying text.

43 See Fleming, supra note 18, at 322-23.

44 See Hoeffel, supra note 22, at 474.

45 See Fleming, supra note 18, at 323.

46 An allele is "one of two or more alternative forms of a gene" that occupies the same locus on homologous chromosomes. NATIONAL RESEARCH COUNCIL, supra note 2, at 75, 167

47 See Fleming, supra note 18, at 323.
same pattern of dots. If the results have not produced the same pattern of dots, there is no match between the two samples, so they could not have come from the same source. If the dot patterns do match, another step must be performed, as with RFLP, to determine the significance of the match.

C. The Use of Population Genetics and the Product Rule

Despite the fact that the DNA profiling technique is referred to by some as “DNA fingerprinting,” a match in a DNA test does not mean the same thing as a match of actual fingerprints. Typically, when a match of fingerprints is found, the result is regarded as an absolute. When a DNA match is found, it can only be stated that the person whose DNA is said to be a match with the crime scene sample can be included in the class of persons whose DNA could match. It is still necessary to ascertain the size of that class for the significance of the match to be determined.

Since humans are more alike than different in our physical makeup (two arms, legs, hands, etc.), much of the DNA pattern will be identical from one person to another. However, it has been calculated that any two human genomes differ at approximately three million sites. Therefore, if enough of those three million sites could be compared, a unique identification would theoretically be possible. At the present time, however, only a very few of those sites — typically three to five — are examined and analyzed, and it is possible that two persons could have the same DNA pattern at those few sites. The question then becomes, what are the odds of such a random match? This is where population genetics and the product rule come into the picture.

Using a specific database with as few as 200 to 300 people to represent the entire population, the first step in the process is to determine the frequency of the occurrence in that database of the specific allele type

48 See id.
49 DNA exclusions are easy to interpret. If technical aspects are different between two samples, it is definitive proof that the samples did not come from the same source. See NATIONAL RESEARCH COUNCIL, supra note 2, at 75.
50 See id. at 112 (stating that “only when DNA technology is capable of sequencing the entire three billion base pairs of a person’s genome could a DNA pattern be considered to be as constant and complete as a fingerprint pattern”).
51 The genome is the entire set of heredity factors in an organism as contained in the chromosomes. See id. at 3, 169.
52 See id. at 74.
53 See Hoeffel, supra note 21, at 489.
found at each of the loci (sites) used in the sample.54 Thus, even if the database being used has only 500 people, the result of the second step (multiplying the possibility of identical alleles at different locus points) can result in a staggeringly low probability, such as one in a billion,55 or even one in thirty billion.56 It is this set of numbers that gives the DNA findings their teeth. When a random match is said to be one in thirty billion, or even thirty million, such a small possibility of an innocent explanation for the match between a sample taken from a suspect and a sample found at the crime scene can have a devastating effect on a jury.57 The numbers usually generated by the PCR test are not nearly as high, which is one of the disadvantages of this test from the prosecution's viewpoint.58

\section*{II. LEGAL CONSIDERATIONS FOR ADMISSIBILITY IN CRIMINAL CASES}

A. \textit{The Frye Hearing}

In evaluating the admissibility of scientific testimony in criminal cases, most courts, including those in Kentucky,59 followed the standard set forth in \textit{Frye v. United States},60 until it was overruled61 in

\begin{footnotesize}
\begin{enumerate}
\item 54 See \textit{NATIONAL RESEARCH COUNCIL}, \textit{supra} note 2, at 75-76.
\item 55 See \textit{id}. at 76.
\item 56 See \textit{Hoeffel}, \textit{supra} note 22, at 488-89 (citing Alec J. Jeffreys et al., \textit{Hypervariable 'Minsatellite' Regions in Human DNA}, 314 \textit{NATURE} 67, 68 (1985)).
\item 57 See \textit{State v. Schwartz}, 447 N.W.2d 422 (Minn. 1989). The frequency expressed was one in 33 billion, and the court refused to admit these numbers due to their potentially exaggerated impact on the jury. See \textit{id}. at 424, 428-29.
\item 58 See George F Sensabaugh & Cecilia Von Beroldingen, \textit{The Polymerase Chain Reaction: Application to the Analysis of Biological Evidence}, in \textit{FORENSIC DNA TECHNOLOGY} 63, 78 (Mark A. Farley & James J. Harrington eds., 1991).
\item 59 See \textit{Harris v. Commonwealth}, 846 S.W.2d 678 (Ky. 1992), \textit{overruled by Mitchell v. Commonwealth}, 908 S.W.2d 100 (Ky. 1995).
\item 60 \textit{Frye v. United States}, 293 F 1013 (D.C. Cir. 1923). This case involved testimony offered by a defense expert concerning the results of an early forerunner of a polygraph test, the "systolic blood pressure deception test."
\item 61 Technically it was not overruled. The Supreme Court construed Federal Rule of Evidence 702 as superseding \textit{Frye}, and thus \textit{Frye} was dead. See \textit{Daubert v. Merrell Dow Pharmaceuticals, Inc.}, 509 U.S. 579, 587 (1993); \textit{infra} notes 70-91 and accompanying text.
\end{enumerate}
\end{footnotesize}
In rejecting the testimony offered, the Frye court stated that before scientific testimony could be introduced, "the thing from which the deduction is made must be sufficiently established to have gained general acceptance in the particular field in which it belongs." The court concluded that the test offered had not yet gained such understanding and scientific recognition among physiological and psychological authorities as to justify its introduction.

Most jurisdictions, including Kentucky, conducted a "Frye" hearing before trial to determine if proffered scientific testimony had been generally accepted in the scientific community. This was the standard applied when most of the DNA cases arose. There has been virtually no dispute that the underlying technology of DNA profiling has been generally accepted in the scientific community. Therefore, using the Frye test, most courts that have considered the issue have concluded that DNA profiling procedures and results are admissible.

B. The Daubert Hearing

Daubert v. Merrell Dow Pharmaceuticals, Inc. did not involve or discuss the admissibility of DNA but simply the admissibility of expert scientific evidence in general. The Court determined that Frye was no longer relevant with the passage of Federal Rule of Evidence ("FRE") 702, which deals with the admissibility of scientific evidence in federal

62 Id.
63 Frye, 293 F. at 1014.
64 See id.
65 See supra notes 61-64 and accompanying text.
66 Apparently, this standard was construed as being more rigid than Federal Rule 702. In Daubert, the United States Supreme Court reversed the lower courts' decisions disallowing certain expert testimony on the ground that such evidence did not satisfy the standard set forth in Frye. See Daubert, 509 U.S. at 579.
68 See infra notes 242-58 and accompanying text, discussing cases disallowing the introduction of DNA evidence on bases other than the Frye standard.
69 But see infra notes 102-80.
courts, and discussed the new standards to be applied. FRE 702 provides:

If scientific, technical, or other specialized knowledge will assist the trier of fact to understand the evidence or to determine a fact in issue, a witness qualified as an expert by knowledge, skill, experience, training, or education, may testify thereto in the form of an opinion or otherwise.

The Court stated that "[n]othing in the text of this Rule establishes 'general acceptance' as an absolute prerequisite to admissibility," and that adopting a "rigid 'general acceptance' requirement" would be contrary to the "liberal thrust" of the Federal Rules and their "general approach of relaxing the traditional barriers to 'opinion testimony.'" The Court proceeded to provide some "general observations" to help the trial judge assess the admissibility of disputed scientific evidence by evaluating whether the "reasoning or methodology underlying the testimony is scientifically valid and whether that reasoning or methodology properly can be applied to the facts in issue." A key question for the trial judge is whether the scientific theory or technique can be or has been tested.

71 See id. at 587
73 Daubert, 509 U.S. at 588.
74 Id. The Court called the general acceptance test "uncompromising." Id.
75 Id.
76 Id. (citing Beech Aircraft Corp. v. Rainey, 488 U.S. 153, 169 (1988)).
77 Id. at 593. In a concurring-in-part, dissenting-in-part opinion, Chief Justice Rehnquist, joined by Justice Stevens, criticized the majority for these "observations," calling them unnecessary, too general, vague, and abstract. See id. at 598.
78 Id. at 592-93.
79 The Court stated: "'Scientific methodology today is based on generating hypotheses and testing them to see if they can be falsified.'" Id. (quoting Michael D. Green, Expert Witnesses and Sufficiency of Evidence in Toxic Substances Litigation: The Legacy of Agent Orange and Bendectin Litigation, 86 N.W L. Rev 643, 645 (1992)). Chief Justice Rehnquist, in his concurring/dissenting opinion, said, "I am at a loss to know what is meant when it is said that the scientific status of a theory depends on its 'falsifiability,' and I suspect
Other general considerations discussed by the Court include whether the theory or technique has been subjected to peer review and publication, the rate of error of a particular scientific technique, and the general acceptance standard inherited from Frye. The Court referred to its new standard as a flexible inquiry to determine scientific validity of the proffered testimony with a focus solely on principles and methodology. The Court also pointed out that FRE 403, which permits a court to exclude evidence if its probative value is substantially outweighed by the danger of unfair prejudice, is an added safeguard.

In a further discussion of the topic of relevance under FRE 702, Daubert referred to a requirement called “fit.” The Court explained this issue as simply “whether expert testimony proffered in the case is sufficiently tied to the facts of the case that it will aid the jury in resolving a factual dispute.” The problem is that “scientific validity for one purpose is not necessarily scientific validity for other, unrelated purposes,” and the entire forensic DNA process was adapted from

some [federal judges] will be, too.” Id. at 600.

Falsifiability of a scientific premise simply refers to whether there is any evidence that can be offered or there are tests that can be performed, even in principle, to prove the theory is false. If not, the validity of the theory cannot be confirmed either.

[W]hat characterizes the empirical method is its manner of exposing to falsification, in every conceivable way, the system to be tested. Its aim is not to save the lives of untenable systems but, on the contrary, to select the one which is by comparison the fittest, by exposing them all to the fiercest struggle for survival.

See Daubert, 509 U.S. at 593.

See id. at 594 (citing United States v. Smith, 869 F.2d 348 (7th Cir. 1989)).

See id. The Court said that a “reliability assessment does not require, although it does permit, explicit identification of a relevant scientific community and an express determination of a particular degree of acceptance within that community.” Id. (citing United States v. Downing, 753 F.2d 1224, 1238 (3d Cir. 1985)).

See id. at 594-95.

See id. at 595.

Id. at 591.

Id.

Id., see infra notes 102-35 and accompanying text for a discussion of the importance of DNA “fit” issues.

1997-98] FORENSIC DNA IN CRIMINAL CASES 233
the medical diagnostic DNA process, which has a totally different purpose.

It may be premature to determine if Daubert will have any impact on DNA issues. With courts generally allowing DNA testimony in criminal cases under the "general acceptance" test of Frye, described by the Daubert Court as being "rigid" and "uncompromising," certainly the more "flexible" test of Daubert under FRE 702, designed for "relaxing the traditional barriers to 'opinion' testimony," would not appear to create major roadblocks. However, the Supreme Court has yet to enter the playing field to discuss the "fit" portion of Daubert and its application to DNA.

C. Admissibility by Statute.

Many states have enacted statutes to cover the admissibility of DNA evidence in civil and/or criminal cases. Some of them deal with admissibility in paternity and other civil matters only and say nothing of criminal proceedings. Some states have established data

88 Daubert, 509 U.S. at 588.
89 Id. at 596.
90 Id. at 594.
91 Id. at 588 (quoting Beech Aircraft Corp. v. Rainey, 488 U.S. 153, 169 (1988)).
92 Such statutes could run into difficulty with courts based upon the separation of powers doctrine because they usurp the judicial function of determining court rules. In Kentucky, for example, when the legislature passed the so-called Truth in Sentencing statute (KY. REV STAT. ANN. § 532.055 (Banks-Baldwin 1974)), the Kentucky Supreme Court held in Reneer v. Commonwealth, 734 S.W.2d 794 (Ky. 1987), that the statute was a violation of the separation of powers doctrine, but the court upheld the statute based on the principle of "comity."
94 See ARK. CODE ANN. § 9-27-342 (Michie 1995); GA. CODE ANN. § 19-7-46 (1997); MICH. COMP. LAWS ANN. § 722.716 (West 1996); N.M. STAT. ANN.
banks to obtain and store DNA records of certain people, often persons convicted of specific felonies or of crimes against persons in order to help identify a repeat offender through DNA comparisons. Some of the state statutes dealing with DNA specifically provide for the admissibility of such evidence in criminal cases without expert testimony establishing the reliability of the evidence.

On the other hand, Alabama's statute allows DNA evidence only by way of expert testimony if the trial court determines the testimony meets the requirements of Daubert. Alaska's statute does not mention Daubert but provides that in a criminal proceeding "evidence of a DNA profile is admissible if the court finds that the technique underlying the evidence is scientifically valid."

For instance, Alabama's statute specifically states that many types of crimes are committed by repeat offenders and therefore establishes a DNA data bank of persons convicted of felonies and attempts to commit felonies. See Ala. Code § 36-18-20 (1996).

For example, Tennessee provides:

In any civil or criminal trial, hearing or proceeding, the results of DNA analysis are admissible in evidence without antecedent expert testimony that DNA analysis provides a trustworthy and reliable method of identifying characteristics in an individual's genetic material upon a showing that the offered testimony meets the standards of admissibility set forth in the Tennessee Rules of Evidence.

Alaska Stat. § 12.45.035(a) (Michie 1996). The statute specifically states that it is not necessary to prove that the DNA evidence has general acceptance in the relevant scientific community. See t.
Most statutes do not specifically mention population genetics in connection with DNA evidence, but Minnesota's law includes one that does:

In a civil or criminal trial or hearing, statistical population frequency evidence, based on genetic or blood test results, is admissible to demonstrate the fraction of the population that would have the same combination of genetic markers as was found in a specific human biological specimen. "Genetic marker" means the various blood types or DNA types that an individual may possess.100

Interestingly, the Minnesota Supreme Court rejected such testimony in a case decided after the statute was enacted, although the statute was not in effect until after the trial and thus was specifically not considered in the appeal.101

III. TECHNICAL PROBLEMS FOR ADMISSIBILITY UNDER \textit{Frye} AND \textit{Daubert}

\textbf{A. Problems Concerning the Technology}

The scientific principles involved in comparison of DNA profiles are not a problem either in the scientific community or in the courts.102 It is not generally questioned that the underlying theories and even the techniques used in DNA testing are valid.103 The potential problems lie elsewhere.

When appellate courts first considered the admissibility of DNA evidence under \textit{Frye}, the issue was discussed in terms of "general acceptance" in the scientific community.104 Of course, DNA profiling through RFLP analysis was accepted by scientists. It had been used for years in research.105 However, to say that the procedure used for

100 MINN. STAT. § 634.26 (1996).
101 See State v. Schwartz, 447 N.W.2d 422 (Minn. 1989) (holding that DNA testing is admissible under \textit{Frye}, but must be available for independent review by opposing counsel); discussion infra notes 251-58 and accompanying text.
102 See Scheck, \textit{supra} note 67
103 See Richard Lempert, \textit{The Suspect Population and DNA Identification}, 34 JURIMETRICS J. 1, 2 (1993).
104 See, e.g., Andrews v. State, 533 So.2d 841 (Fla. Dist. Ct. App. 1988) (discussing the "general acceptance" test at length but ultimately applying a "relevancy/reliability" test instead).
105 See Hoeffel, \textit{supra} note 22, at 475-76.
medical diagnosis was accepted by the scientific community is not the same as saying that the use of DNA in forensics is "generally accepted." The techniques in the two areas are very different, with many potential problems in forensics that are not present in medical diagnosis.\footnote{Research-oriented DNA analysis typically involves comparisons of the DNA between family members to detect possible inheritance of disease-causing genes or comparisons with known standards to detect mutations. See Scheck, supra note 67, at 1964.}

One obvious, but crucial, difference is that in medicine the samples of DNA are "clean," with no contamination, and are taken from known sources. Any questionable or ambiguous results can be repeated for verification.\footnote{See NATIONAL RESEARCH COUNCIL, supra note 2, at 52.} The process involves discrete alternatives\footnote{For instance, the question might ask which of two alleles a child inherited from a parent. See id.} and has a built-in consistency check against artifacts.\footnote{Artifacts can occur in any laboratory and can lead to an incorrect interpretation if not recognized. See id. at 52, 54.} It never requires the use of population genetics or statistical probabilities. In short, diagnostic DNA is not used to identify a source.\footnote{See Hoeffel, supra note 22, at 478.} On the other hand, the forensic use of DNA often involves contaminated or degraded samples, possibly from multiple unknown sources. When the sample from a crime scene is limited, as it generally is, the test cannot be repeated. Any possible match then involves the questionable use of statistical analysis of population genetics to give it significance.\footnote{See NATIONAL RESEARCH COUNCIL, supra note 2, at 52-53.}

Mere acceptance of a procedure by research scientists may not be the best index of whether it should be accepted for identification purposes in criminal prosecutions.\footnote{Research scientists can deal with high rates of error and unreliability in their procedures. When something interesting is found in an experiment, the procedure can be repeated many times to assure its accuracy. Errors will stand out in research procedures because the findings are inconsistent with scientific knowledge and theory. In a forensic laboratory, the situation is completely different since tests cannot be repeated, and the only time an error may "stand out" is when it is inconsistent with the prosecutor's case. See William C. Thompson & Simon Ford, DNA Typing: Acceptance and Weight of the New Genetic Identification Tests, 75 VA. L. REV 45, 56-57 (1989).} The probability is very high that the sample obtained from a crime scene is contaminated with bacteria, which contains DNA like every other species. The probe could bind with DNA
from the bacteria and produce a misleading result.113 Part of the problem in People v. Castro,114 the first case to reject the use of DNA evidence in a criminal trial, involved the use of probes known to be contaminated with bacteria. Lifecodes, the private company that conducted the DNA testing, ignored the contaminated probes and declared the sample to be a match with the defendant’s DNA. In order to get a match between the samples of blood taken from the defendant’s watch and the victim of a murder, Lifecodes chose to ignore two extra bands on the autoradiograph from the watch stain.115

An examination of the problems in Castro should bring pause to any court considering the introduction of DNA evidence, because the case involved a hearing on admissibility in which experts testified for twelve weeks. Initially, Lifecodes declared a match, which led to the criminal charge. After twelve weeks of expert testimony, some of the Lifecodes experts changed their minds and recanted their match-call testimony116 What if Castro had not been represented by Barry Scheck and Peter Neufeld? What if the defense had not attacked the DNA evidence with experts of its own, as has been the situation in many trials? The defense in Castro was able to find many blunders made by Lifecodes in its procedures that changed the complexion of that case and undoubtedly influenced the entire recent history of forensic DNA.117 How many blunders have gone undetected when the defense did not have the resources for such an all-out assault on the laboratory?

A process that is so incredibly complex has many facets that can give rise to problems. Many lawyers and judges118 do not have the knowledge to deal with these issues, or the time to study to become knowledgeable.119 One aspect of the laboratory environment that can lead to erroneous interpretation is referred to in the literature as laboratory “slop”120 brought about by the “inevitable variability and imperfection

113 See Hoeffel, supra note 22, at 480, 482.
114 People v. Castro, 545 N.Y.S.2d 985 (Sup. Ct. 1989). This case is discussed at length in Hoeffel, supra note 22, at 477-78.
115 See Hoeffel, supra note 22, at 480.
116 See id. at 478.
117 See id.
118 See supra note 79. In fact, Chief Justice Rehnquist admitted that not even he understood the meaning of falsifiability. In light of this admission, how will he deal with the entire DNA issue?
119 Not every criminal defendant can afford to hire a separate DNA lawyer to supplement his regular trial attorney, as O.J. Simpson did.
120 See Hoeffel, supra note 22, at 481.
of testing conditions." For example, the DNA patterns may be
difficult to read for a variety of reasons, such as variations in the
thickness and consistency of the gels used in the electrophoresis
stage or variations in the temperature and voltage level used in the
process.

There are many possible errors at every step of the process. For
instance, in the Southern blot procedure, bubbles on the nylon membrane
may prevent the transference of some DNA bands and cause them to
disappear. Some faint bands of DNA may be very difficult to see and
thus cause the interpretations to vary. There is also disagreement on
the significance of "band shifting" and how to deal with it. In
addition to these major hurdles, an overall problem is that there are no
"uniform standards and quality controls" to ensure common proce-
dures and accurate interpretations of results. There are recommendations,
but no requirements. Some laboratories have adopted the guidelines
published by TWGDAM, a group coordinated by the FBI.

With all of the complexities of the DNA profiling process, some
experts believe that the most common error in the process is human
error. The National Research Council asserted that laboratory errors
will happen in the best laboratories, "even when the analyst is certain that
every precaution" has been taken to prevent error. The Council

121 See id.
122 See id., Thompson & Ford, supra note 112, at 87 n.188.
123 See Thompson & Ford, supra note 112, at 91 n.200.
124 In People v. Castro, 545 N.Y.S.2d 985 (Sup. Ct. 1989), experts disagreed
on how many bands they could see. See Hoeffel, supra note 22, at 481.
125 See NATIONAL RESEARCH COUNCIL, supra note 2, at 61, see also People
v Keene, 591 N.Y.S.2d 733 (Sup. Ct. 1992) (holding DNA evidence inadmis-
sible when it was impossible to conclude whether method used by laboratory was
generally accepted); infra notes 250-51 and accompanying text.
126 Hoeffel, supra note 22, at 479 (citing Eric Lander, DNA Fingerprinting
on Trial, 339 NATURE 501 (1989)).
127 Technical Working Group on DNA Analysis Methods.
128 See State v. Schwartz, 447 N.W.2d 422 (Minn. 1989) (explaining the
nature and work of TWGDAM).
129 See Bennett, supra note 18, at 154 (citing Lawrence B. Ebert, Comment,
Frye after Daubert: The Role of Scientists in Admissibility Issues As Seen
Through Analysis of the DNA Profiling Cases, 1993 U. CHI. L. SCH.
ROUNDTABLE 219, 243).
130 NATIONAL RESEARCH COUNCIL, supra note 2, at 89.
pointed out that early in the DNA approach there were high rates of false positives due to laboratory error.\footnote{131}

With the new criteria for the admissibility of expert testimony set forth in Daubert,\footnote{132} some issues that did not arise under the Frye question of general acceptance could surface.\footnote{133} For instance, the “fit” requirement\footnote{134} could lead to some interesting discussions, since the issue of DNA admissibility deals with whether the undoubtedly valid and reliable technique used in medicine and diagnostic laboratories can be transferred to forensics and be equally valid and reliable.\footnote{135}

\section*{B. Problems With Population Genetics and the Product Rule}

Problems in getting DNA evidence before a jury often involve population genetics and the product rule.\footnote{136} There is considerable controversy about the method of obtaining a statistical correlation between the sample and the population as a whole.\footnote{137} As stated previously, the statistical significance of a match is determined in a two-step process.\footnote{138} First, the probability of each matching band being present in a sample by random chance is ascertained using a database of DNA profiles. Second, the probability of all matching bands being present by random chance is calculated by multiplying the frequencies of each separate band.\footnote{139} For instance, if the odds of the first band being located in a random sample are five in one hundred and the odds of the second band are seven in one hundred, the overall odds of both being found in the same sample, thirty-five in ten thousand, are determined by multiplying those two figures. When this number is multiplied two or three more times, the odds against a random match become very high.

\begin{itemize}
\item \footnote{131} See id. at 88-89.
\item \footnote{132} Daubert v Merrell Dow Pharmaceuticals, Inc., 509 U.S. 579 (1993).
\item \footnote{133} See Frye v. United States, 293 F 1013 (D.C. Cir. 1923), discussed supra notes 59-69 and accompanying text.
\item \footnote{134} This requires “proof that a scientific technique is valid for the purpose to which it is being applied.” Scheck, supra note 67, at 1962.
\item \footnote{135} For a thorough discussion of some of the technical pitfalls in the process of DNA profiling that are beyond the scope of this Note, see Hoeffel, supra note 22, and Scheck, supra note 67, and the many references therein.
\item \footnote{136} See, e.g., State v Bible, 858 P.2d 1152 (Ariz. 1993).
\item \footnote{137} See NATIONAL RESEARCH COUNCIL, supra note 2, at 74-75.
\item \footnote{138} See supra notes 50-58 and accompanying text.
\item \footnote{139} See Scheck, supra note 67, at 1970-71.
\end{itemize}
One problem with this process is the size of the database. There is no consensus for how large a database must be to accurately represent the entire population. One estimate states the probability that two persons might by chance have the same DNA profile as one in thirty billion. This was based on a study of fourteen British Caucasians.140 Studies published by Lifecodes, the testing laboratory in Castro,141 consisted of the DNA profiles of between 200 and 300 people taken from blood banks in the New York area.142

Another problem arises from two major assumptions that provide the entire basis for this statistical evidence.143 The first necessary assumption is that the population database used for comparison is in Hardy-Weinberg equilibrium.144 This requires that there be no correlation between the two alleles, one from the mother and one from the father, found at the same locus.145 In other words, the mating process must be completely random.146 The other assumption underlying the validity of the product rule is that the bands produced by each probe are independent of the bands produced by the other probes.147 In technical terms, the assumption is that they are in "linkage equilibrium."148

One of the major problems with these assumptions is that they discount the possibility of the existence of subgroups within the

140 See Hoeffel, supra note 22, at 488-89 (citing Jeffreys et al., supra note 56, at 68).
141 People v. Castro, 545 N.Y.S.2d 985 (Sup. Ct. 1989).
142 See Thompson & Ford, supra note 112, at 84 n.177
143 See NATIONAL RESEARCH COUNCIL, supra note 2, at 5.
144 "Hardy-Weinberg equilibrium depends on a truly random population with a thoroughly mixed gene-pool." Bennett, supra note 18, at 151.
145 See id. (citing Sherry J. Whitney, Note, State v. Bible: The Admissibility of Forensic DNA Profiling and Statistical Probability Evidence in Arizona Criminal Proceedings, 26 ARIZ. ST. L.J. 593, 600 (1994)); infra notes 255-58 and accompanying text (discussing State v. Bible, 858 P.2d 1152 (Ariz. 1993), which held that evidence should have been excluded because statistical methods were not accepted by scientific community).
146 The term "random mating" refers to the assumption that alleles will not have some influence on mate selection. See Thompson & Ford, supra note 112, at 85.
147 See id.
population where there are distinct allele frequencies.149 Such subgroups may occur in a given population when the mating is not entirely random,150 and these subgroups may have allele frequencies very different from the population as a whole.151 Databases generally are divided into classes based on race, such as Caucasian, black, and Hispanic, and ignore evidence of genetic substructures within these broad categories.152 They also ignore the fact that such groups do not mate completely randomly.153 If there is a population substructure within the broad racial group154 of the database, it is not valid to assume independence of the alleles, and therefore the product rule is not valid.155

How the product rule can create a small but misleading percentage is demonstrated by calculating the percentage of fair-skinned, blond, blue-eyed people in Europe. First, if a survey showed that one in ten people were blond, one in ten people had blue eyes, and one in ten people had fair skin, the product rule would multiply .1 by .1 by .1 to determine the frequency of all three characteristics appearing in one person: 1 in 1000. Yet that figure would be very misleading because it ignores the fact that such traits tend to occur together in Nordic people, and the actual probability of persons having all three traits would be much higher than the 1 in 1000 obtained by the product rule.156 Clearly, some alleles are not independent of each other despite procedural assumptions.157

Since there is not a counterpart in the diagnostic use of DNA profiling to the population genetics and product rule required for it to be used in forensics, it has been more difficult for prosecutors to show general scientific acceptance of this procedure under the Frye rule.158

\begin{flushleft}
149 See id.
151 See NATIONAL RESEARCH COUNCIL, supra note 2, at 48.
152 See Lewontin & Hartl, supra note 148, at 1746.
153 See id.
154 This would be a subgroup whose allele frequencies would differ significantly from the loci used by the laboratories.
155 See Scheck, supra note 67, at 1971.
156 See NATIONAL RESEARCH COUNCIL, supra note 2, at 76.
157 The FBI has begun to reassess the assumptions. While generally using databases consisting of either Caucasians, blacks, or Hispanics, the FBI plans in the future to use databases obtained from nearby regions rather than the national race-based pools of the population at large. See Christopher Anderson, FBI Gives in on Genetics, 355 NATURE 663, 663 (Feb. 1992).
158 See, e.g., State v Bible, 858 P.2d 1152 (Ariz. 1993) (discussed infra notes
Due in part to the controversy generated by these problems, some courts have refused to allow DNA evidence.\(^\text{159}\)

C. Recommendations of the National Research Council

1. 1992 Recommendations

Because of the rising tide of questions about DNA typing in the aftermath of many well-publicized criminal cases, calls were made for an in-depth study of the problems, as well as recommendations, relating to DNA testing.\(^\text{160}\) The first study by the National Research Council ("NRC") was concluded and published in 1992.\(^\text{161}\) The reaction to the report and its recommendations was mixed. The FBI protested that it was pro-defendant,\(^\text{162}\) while some population geneticists claimed it favored the prosecution.\(^\text{163}\) Some courts have reversed convictions based upon the report\(^\text{164}\) and have cited it as evidence of a lack of general acceptance of the statistical methods of interpreting data.\(^\text{165}\)

Noting the lack of disagreement concerning the underlying principles of DNA typing, the NRC emphasized that there still could be a question of whether a particular typing method is "scientifically appropriate"\(^\text{166}\) for forensic use. The Council reported that "too many methods exist or are planned, and too many issues must be addressed in detail"\(^\text{167}\) for the report to provide technical descriptions of DNA typing. The report even made a disparaging comment about legislation that authorizes the admission of DNA results into evidence,\(^\text{168}\) calling such statutes "vague-

\(^{159}\) See infra notes 251-58 and accompanying text.

\(^{160}\) See NATIONAL RESEARCH COUNCIL, supra note 2, at vii.

\(^{162}\) See Defos, supra note 28, at 964.

\(^{163}\) See Kreiling, supra note 161, at 458-59.

\(^{166}\) The report stated that it is "meaningless" to speak of the reliability of DNA profiling in general without specific reference to a particular method. NATIONAL RESEARCH COUNCIL, supra note 2, at 52.

\(^{167}\) Id.

\(^{168}\) See supra notes 92-101 and accompanying text.
ly worded” and suggesting that they be limited to the only method in general use at the time.\footnote{169}

One of the procedures recommended by the NRC to help authenticate a match result is the practice of sample splitting\footnote{170} suggested by critics of forensic laboratories.\footnote{171} “The idea is to split the DNA sample being examined and have it tested independently by two or more different laboratories using different DNA loci and different ‘match’ criteria.”\footnote{172} This procedure, one of the few ways in which a DNA match can be tested, is significant given \textit{Daubert’s} admissibility standards, which include “testability” as a factor.\footnote{173}

One of the most important recommendations made by the NRC regarding the procedures used for DNA typing was that an accreditation program be established requiring all laboratories conducting DNA testing to be accredited and to follow standard protocols. A failure to obtain accreditation after a suitable period of time would render test results inadmissible in court. The most controversial recommendation of the NRC suggests the use of a modification of the product rule, the statistical method generally used to calculate the frequency of a possible random match. The NRC called its modification the “ceiling principle.”\footnote{174} The ceiling principle is designed to obtain a much more conservative frequency figure. The method involves taking random samples from fifteen or twenty different genetically homogeneous groups and determining the allele frequency at certain loci. Then, when applying the product rule, the laboratory would use either the actual frequency of the alleles as found in the subgroups, or five percent, whichever is higher.\footnote{175}

\begin{footnotes}
\footnote{169} This would be the “conventional RFLP analysis of single-locus probes on Southern blots.” The report said, “We trust that courts will recognize the limitations inherent in such statutes.” \textsc{National Research Council, supra} note 2, at 52.
\footnote{170} \textit{See id.} at 67
\footnote{172} Scheck, \textit{supra} note 67, at 1969.
\footnote{173} \textit{See id.}
\footnote{174} \textit{See National Research Council, supra} note 2, at 82. There are several technical recommendations made by the NRC that are beyond the scope of this Note. \textit{See id.} at 72-73.
\footnote{175} The purpose of sampling various populations is to examine whether some alleles have considerably higher frequencies in particular subgroups than in the general population — presumably because of
approach to calculating population frequencies has been criticized both as “extremely conservative”176 and as not conservative enough.177 In response to the criticism and the promise of the FBI to fund another study, the NRC agreed to reconsider this recommendation.178

2. 1996 Recommendations

After further studies, the NRC published another book that modified the original recommendations. An early report on the findings released in May 1996 revealed the NRC’s new position: Since sufficient data has been obtained for various subgroups, it is no longer necessary to utilize the “ceiling principle” previously recommended.179 The NRC continues to recommend accreditation for laboratories conducting DNA profiling and various processes to assure quality control. These include the

generic drift. It is matches at such alleles that might be accorded too much evidentiary weight, if the general population frequency were used in calculating the probability of a match.176

\textit{Id. at} 83-84.

178 See Scheck, supra note 67, at 1972; see also infra notes 219-24 and accompanying text.

179 See Bureau of National Affairs, Inc., 10 CRIMINAL PRACTICE MANUAL 202 (May 22, 1996). In proposing the elimination of the ceiling principles recommended in the 1992 book, the new National Research Council book suggested that any error in the frequencies based upon the now conceded effects of subpopulations would be less than ten fold in either direction of the result reached from the general product rule. Thus, in place of any ceiling principle it recommended that the frequencies of a random match be estimated to be within a factor of ten of the actual number obtained from the product rule. See \textit{National Research Council, The Evaluation of Forensic DNA Evidence} 156-58 (1996). The new book suggested that with probabilities of one in 100 million or less, an error of ten fold either way would not effect the result. \textit{Id. at} 151. This book further pointed out that the Kentucky State Police Forensic Crime Laboratory uses the population of the United States as a cut off point, simply saying that the probability of a random match is less than one in whatever the population is, rather than an actual lower number such as one in a billion. This method is currently not recommended by the National Research Council. See \textit{Id. at} 136.
confirmatory testing of split samples, preferably by a separate laboratory, to avoid match errors. The NRC also recommends that laboratories adopt and adhere to standards such as those developed by TWGDAM and urges further research into the use of marker systems, with respect to quantity and quality, with a goal of making each DNA profile unique (except for identical twins).180

IV ADMISSIBILITY IN KENTUCKY AND SELECTED OTHER STATES

A. Treatment of DNA in Kentucky

Kentucky has no statute specifically referring to the admissibility of DNA evidence, so this decision is left to the discretion of the trial court. There are only two reported cases that have ruled on the admissibility of DNA evidence. In\textit{ Harris v. Commonwealth}181 and\textit{ Mitchell v. Commonwealth}182 the Supreme Court of Kentucky held that the trial judge did not abuse his or her discretion in permitting the introduction of DNA evidence.183 The first case,\textit{ Harris}, was decided under the \textit{Frye} general acceptability regime.184 The second case,\textit{ Mitchell}, was decided after \textit{Daubert}185 and therefore simply adopted the test set forth in \textit{Daubert}.186 Since Kentucky's rule on expert testimony, Kentucky Rule of Evidence 702, is a duplication of FRE 702, on the basis of which \textit{Daubert} was decided,187 the court simply reiterated the general requirements discussed in \textit{Daubert} and concluded that the trial court had not abused its discretion.

The critical aspect of Kentucky's case law thus far has been the court's refusal to state categorically that DNA evidence is per se admissible. Both decisions limited their holdings to the facts involved,

\begin{footnotes}
\footnotetext[180]{See Bureau of National Affairs, Inc., supra note 179, at 203-04.}
\footnotetext[181]{\textit{Harris v. Commonwealth}, 846 S.W.2d 678 (Ky. 1992), overruled by \textit{Mitchell v. Commonwealth}, 908 S.W.2d 100 (Ky. 1995).}
\footnotetext[182]{\textit{Mitchell v. Commonwealth}, 908 S.W.2d 100 (Ky. 1995), overruuling \textit{Harris v. Commonwealth}, 846 S.W.2d 678 (Ky. 1992).}
\footnotetext[183]{See \textit{Harris}, 846 S.W.2d at 678; \textit{Mitchell}, 908 S.W.2d at 100.}
\footnotetext[184]{See supra notes 59-69 and accompanying text.}
\footnotetext[185]{See supra notes 70-91 and accompanying text.}
\footnotetext[186]{\textit{Mitchell} overruled \textit{Harris} insofar as the standard used in the latter was said to be \textit{Frye}.}
\footnotetext[187]{KY. R. EVID. 702 became effective in July 1992 after the trial in \textit{Harris}. See \textit{Mitchell}, 908 S.W.2d at 101.}
\end{footnotes}
with the simple ruling that the trial court did not abuse its discretion. The Supreme Court of Kentucky has left open the general issue of DNA admissibility until the proper case comes along, specifically one where a hearing is held with experts called by both sides or by the trial court to supplement or rebut the prosecution’s case.188

The evidence in \textit{Harris} concerning DNA was that “the DNA profile of the semen found on the [rape] victim matched the DNA profile of the blood given by Harris.”190 A special agent from an FBI laboratory testified at trial that all four probes matched, and “the likelihood of finding another unrelated individual from the black population, having a DNA profile like Mr. Harris, is approximately one in eight million.”191

A pretrial motion had been filed in the case to preclude the introduction of DNA evidence. A pre-trial hearing192 was held in which the Commonwealth called two experts to testify, and the defense called none.193 The first expert, Dr. Dwight Adams of the FBI laboratory, testified to the procedure used for obtaining a DNA sample from a vaginal swab and analyzing it. He said that the FBI used the RFLP technology and that this type of analysis had been used “in the medical field for the diagnosis of cancer and other diseases since the late 1970s or early 1980s and that the FBI began to use DNA for identification purposes in the mid-1980s.”194 With regard to the accuracy of the procedure, he stated that the FBI had a protocol for the analysis of RFLP that was followed all the way through and never varied.195 He testified that he routinely is subject to proficiency tests and that he “has yet to

188 The \textit{Harris} court said it was “unwilling, at this time, to embrace conclusively this ‘extraordinarily powerful and promising innovation.’” \textit{Harris}, 846 S.W.2d at 681 (quoting United States v. Two Bulls, 918 F.2d 56, 59 (8th Cir. 1990), appeal dismissed, 925 F.2d 1127 (1991)).

189 The court has stated that, at least for now, it will consider DNA evidence on a case-by-case basis. \textit{See id.}, Mitchell, 908 S.W.2d at 101.

190 \textit{Harris}, 846 S.W.2d at 679.

191 \textit{Id.} (quoting Dr. Dwight Adams, special agent in the DNA Analysis Unit).

192 The hearing was held on October 3, 1990. \textit{Id.} at 680. This would have been before much of the controversy about DNA, including the NRC report of 1992 (\textit{see NATIONAL RESEARCH COUNCIL, supra note 2}) and the \textit{NATURE} (\textit{see Lander, supra note 126}) article from 1992, in which the FBI apparently backed away from some of its assumptions concerning the statistical calculations.

193 \textit{See Harris}, 648 S.W.2d at 680.

194 \textit{Id.}

195 \textit{See id.}
make a mistake on a test." He also opined that the statistical method used was "very conservative."

The other expert witness was Dr. David Goldman, Chief of Genetics Research at the National Institute of Health and an expert in molecular biology and population genetics. He testified that the DNA testing procedures used by the FBI were variations of procedures that were in very wide use, that there were no substantial differences in the tests, and that they were "extraordinarily accurate." He noted that these tests have undergone extensive peer review and are widely accepted in the scientific community and that the frequency calculations are "conservative and objective."

The trial court concluded that since thirty-eight states had accepted this procedure and since DNA testing was widely accepted by the scientific community as a "reliable and accurate technological procedure, its results were admissible." Concluding that the trial court had not abused its discretion in letting the evidence in, the court nevertheless held that since DNA profiling is a relatively new procedure and "has been the subject of controversy in both the legal and scientific fields," it would be prudent to determine admissibility on a case-by-case basis.

The next case was Mitchell, decided in 1995 after more national controversy on the DNA issue. The Kentucky Supreme Court refused to rule that DNA is either not admissible per se or that it is admissible per se, still opting for a case-by-case analysis. The court stated that Daubert required a pretrial hearing for the judge to determine whether "the reasoning or methodology underlying the testimony is scientifically valid and whether that reasoning or methodology can be applied to the facts in issue."
The court stated that the requirement that the testimony "pertain to 'scientific knowledge' establishes a standard of 'evidentiary reliability'"\(^{205}\). A trial court should consider (1) "whether the scientific knowledge being presented has been tested, whether it has been subject to peer review, and publication"; (2) the "evidence's known rate of error"; and (3) "whether the evidence has a particular degree of acceptance in the relevant community"\(^{206}\).

In *Mitchell*, as in *Harris*, the defendant had confessed to the police.\(^{207}\) Perhaps the confession helped authenticate the match by the laboratory and acted as a sufficient test of the procedure. At any rate, both Kentucky cases involved instances where the defendant had confessed, thus making the DNA evidence superfluous. In *Mitchell* the court did not discuss the specific details of the DNA evidence as it did in *Harris*, but simply concluded that there was no abuse of discretion under the requirements of *Daubert*\(^{208}\).

The Kentucky Supreme Court is certainly aware of the controversy over this type of evidence, having cited cases in *Harris* from the beginning of the controversy.\(^{209}\) A true test of admissibility will occur only when DNA evidence plays a major role in a case and there is expert testimony on both sides. Only then can the court focus on all of the controversial issues to be decided.

It should be realized that it has been less than one decade since forensic DNA jumped into the legal arena.\(^{210}\) It was touted in the beginning as the "greatest boon to forensic medicine and law since fingerprinting,"\(^{211}\) with claims like "disputing the technology is like disputing the law of gravity,"\(^{212}\) and statistical estimates of a random

\(^{205}\) Id. (quoting *Daubert*, 509 U.S. at 579).

\(^{206}\) Id. at 102 (quoting Leslie Abramson, Kentucky Practice: Criminal Practice and Procedure § 27.83 n.2 (Supp. 1994)).

\(^{207}\) See id.

\(^{208}\) See id.

\(^{209}\) See *Harris* v. Commonwealth, 846 S.W.2d 678, 681 (Ky. 1992) (citing United States v. Two Bulls, 918 F.2d 56, *appeal dismissed*, 925 F.2d 1127 (8th Cir. 1991); Commonwealth v Cumin, 565 N.E.2d 440 (Mass. 1991)).

\(^{210}\) See National Research Council, supra note 2, at 1 (stating that the FBI began using DNA in cases in 1988. The first appellate decision on DNA was Andrews v. State, 533 So.2d 841 (Fla. Dist. Ct. App. 1988)).

\(^{211}\) Hoeffel, supra note 22, at 466 (citing Jean L. Marx, *DNA Fingerprinting Takes the Witness Stand*, 240 Science 1616 (1988)).

\(^{212}\) Id. (citing Debra Cassens Moss, *DNA — The New Fingerprints*, A.B.A.)
match going into the millions or billions. Yet, after lengthy hearings, some of the tests have been shown to be badly flawed. There has also been a considerable amount of controversy concerning the statistical evidence before and after the NRC recommended a major change concerning the product rule in 1992. Had the NRC’s ceiling principle been applied to the cases where the frequency rates were stated to be in the millions or billions, the probability of a random match would have been considerably different.

The NRC recommended many changes in 1992, including accreditation of testing laboratories and sample splitting, long after many courts had permitted the use of DNA evidence without such safeguards. Many states have enacted statutes requiring DNA evidence to be admitted, even without expert testimony to accompany it. The NRC has criticized this type of blanket statute. There is a serious lack of consistency among the players in the DNA field. Since the huge numbers can be very prejudicial, it is important that scientists achieve a consensus at some point. A sampling of some of the cases in other jurisdictions on this controversial subject shows the wisdom of the Kentucky Supreme Court in adopting a wait-and-see, case-by-case attitude.

B. Cases from Other States That Have Admitted DNA Evidence

While it is true that many states have permitted the introduction of DNA evidence, that fact alone is not dispositive of any issue. Many of those cases involved the ill-conceived statutes criticized by the NRC, while in others the defense either did not object to the admission of DNA evidence or called no expert witnesses to rebut the prosecution’s evidence. In addition, the methodology used for a specific case may be different from that used for another. That fact should be considered, in light of Daubert and Mitchell, in determining if the specific technique meets the standards of admissibility. It is not simply DNA that is at issue, but the particular technique used by the testing laboratory, the database

J., May 1, 1988, at 66, 69-70 (paraphrasing David Housman, Professor of Biology, Massachusetts Institute of Technology)).

213 See supra note 16.
214 See infra notes 242-50 and accompanying text.
215 See NATIONAL RESEARCH COUNCIL, supra note 2, at 82.
216 The ceiling principle is much more conservative than the standard product rule. See id. at 83.
217 See supra note 95.
218 See NATIONAL RESEARCH COUNCIL, supra note 2, at 52.
used to find a match, and the validity of the statistical calculations.219 Accordingly, the decisions of other courts that have permitted the use of DNA evidence are no more controlling than those that have rejected it. A study of the individual cases shows, however, that there exists much controversy within the field. Significant scientific controversy should be settled by scientists, not courts, and the subject of the controversy should not be admitted into evidence until the controversy is settled.220

In \textit{Andrews v. State},221 DNA evidence, including statistical calculations showing the odds of a random match as being one in 800 million, was deemed admissible.222 That court found persuasive the fact that DNA had been used for years in the diagnosis and treatment of diseases. The case, decided in 1988, predated almost all of the controversy surrounding the use of DNA evidence.223 Another case permitted DNA evidence and statistical analysis showing odds of one in 234 billion of a random match.224 In these cases, the NRC recommendation in 1992 concerning the use of a ceiling principle would have lowered these odds by millions and billions, respectively 225

\textit{Washington v. Copeland}226 admitted both DNA evidence and statistical calculations, holding that the standard for admissibility in Washington was still the general acceptance test of \textit{Frye}, even though Washington had a statute identical to the Federal Rule of Evidence interpreted in \textit{Daubert}, and the case was decided long after \textit{Daubert}.227 The court believed that judges "do not have the expertise required to

219 See NATIONAL RESEARCH COUNCIL, supra note 2, at 52.
220 See Reed v. State, 391 A.2d 364, 371 (Md. 1978) (opining that courts should be reluctant to resolve the disputes of science. "It is not for the law to experiment but for science.") (citing State v. Cary, 239 A.2d 680, 684 (N.J. Super. Ct. Law Div. 1968)).
222 This was the first appellate court to approve the use of DNA-typing evidence in a criminal case. See Bennett, supra note 18, at 141.
223 The \textit{Castro} decision, which was the first case to reject DNA evidence, was decided in 1989. See People v. Castro, 545 N.Y.S.2d 985 (Sup. Ct. 1989). The Hoeffel Note, see supra note 22, which discussed many significant problems with DNA evidence, was published in 1990.
224 See Martinez v. State, 549 So.2d 694 (Fla. 1989).
225 See NATIONAL RESEARCH COUNCIL, supra note 2.
226 State v. Copeland, 922 P.2d 1304 (Wash. 1996).
227 See id. at 1314-15.
decide whether a challenged scientific theory is correct’ and added that the court does not itself assess the validity of scientific evidence.

United States v. Bonds, decided by the United States Court of Appeals for the Sixth Circuit, is further illustrative of the DNA problem. The trial court allowed DNA evidence in, then a year after the convictions and while the case was on appeal, the NRC published its book with recommendations and criticisms of the current procedures. Affirming the trial court’s decision to permit the introduction of DNA evidence, the Sixth Circuit refused to permit consideration of the NRC book in the appeal and ordered references thereto to be struck from the appellant’s brief. This case, therefore, is of limited significance since the NRC recommendations will be relevant in any case arising after their promulgation.

In *Bonds,* using a database of its own agents, the FBI, in April 1989, originally calculated the odds of a random match as being one in 270,000. Thereafter, in May 1990, the FBI modified its procedures and revised its match estimate to one in 35,000. The latter was used in court. The standard for admissibility at the time of the trial was FRE 702, before the Supreme Court interpreted it in *Daubert.* *Daubert* was decided while the appeal was pending, so the appellate court examined the evidence from the hearing and applied the rules of *Daubert* to it. The appellate attorneys, however, were not provided an opportunity to brief the new issues.

United States v. Bonds is a perfect example why the Supreme Court of Kentucky has been wise to adopt a wait-and-see approach. The entire DNA profiling process was undergoing change before, during, and after

228 *Id.* at 1312 (quoting State v Cauthron, 846 P.2d 502, 505 (Wash. 1993), *partially abrogated by* State v. Copeland, 922 P.2d 1304 (1996)).
229 See *id.*
230 United States v Bonds, 12 F.3d 540 (6th Cir. 1993).
232 See *Bonds,* 12 F.3d at 551-53.
233 The database consisted of 225 randomly chosen Caucasian agents. See *id.* at 551 n.5.
234 The FBI had just begun using DNA in case work shortly before this, in late 1988.
235 See *Bonds,* 12 F.3d at 550 n.3, 551.
236 The trial occurred in 1991, one year before the NRC report was released. See NATIONAL RESEARCH COUNCIL, *supra* note 2.
237 The case was argued in December of 1992 and decided in December 1993, with rehearing denied in February 1994. See *Bonds,* 12 F.3d at 540.
the trial, with more changes arising during the appeal. No procedure could be deemed “generally accepted” by the scientific community because numerous changes were occurring rapidly.\(^{238}\)

Another issue of concern arises when the published protocol for profiling DNA is not followed by a laboratory. Is the result still reliable? Does the procedure used still pass the “general acceptance” test? The more specific issue is whether this goes to the admissibility of the profiling evidence or its weight. The federal circuits have split on this issue, with the Eighth Circuit ruling that it goes to the admissibility of the evidence,\(^{239}\) while the Ninth Circuit holds that it only goes to its weight.\(^{240}\) *Daubert* does not provide any guidance in resolving this issue.\(^{241}\)

C. Cases From Other States That Have Refused Admission

1. Refusal to Admit All DNA Evidence

The only cases that have rejected DNA evidence outright have done so on the basis of faulty technique, not because the theory or scientific validity of DNA profiling was in doubt.\(^{242}\) In *People v. Castro*, during the twelve-week hearing to determine the admissibility of DNA evidence that showed a match, the state’s expert witness from the testing laboratory testified that, among other problems, the laboratory continued to use a probe even though it had been contaminated with bacteria and that was known early in the process.\(^{243}\) In addition, in order to call a match, the laboratory simply ignored extra bands that were observed in one sample, not testing them to see if they were the result of contamination. Based on the problems with the specific work done by the laboratory in that instance, DNA evidence was rejected by the court, although its use was not ruled out in general.\(^{244}\)

\(^{238}\) The case exemplifies the problem with announcing a rigid rule of law where technology and procedures are undergoing fairly rapid changes.

\(^{239}\) See United States v. Martinez, 3 F.3d 1191 (8th Cir. 1993).

\(^{240}\) See United States v. Chuscilly, 30 F.3d 1144 (9th Cir. 1994).

\(^{242}\) See Bennett, *supra* note 18, at 170.

\(^{244}\) See id.
In *State v. Schwartz*, DNA evidence showing a match was not admitted because the testing laboratory had not conformed with appropriate quality control standards. One problem cited by the court was that a match call was made on certain samples even though the band patterns did not fit the laboratory's match standards. Further, the court pointed out that during blind proficiency tests, the laboratory had incorrectly identified two of forty-four samples as coming from the same subject, which, according to some experts, was above the acceptable error rate threshold. The laboratory had also failed to publish data concerning its methodology.

Failure to offer any evidence of general scientific acceptance of the protocol of the RFLP methodology and failure to show that the statistical analysis was performed in accordance with accepted methodology were fatal in *People v. Venegas*. Similarly, in *People v. Keene*, disagreement by expert witnesses as to whether a method used by the laboratory to correct for band shifting was generally accepted in the molecular genetics community prevented admissibility of DNA evidence, where no other forensics laboratory used the procedure.

The fact that few courts have rejected DNA evidence, although it has been offered in many cases, reflects the relative ease with which prosecutors may introduce testimony that a match exists. The science on the actual profiling does not appear to be in dispute, and either there is very little controversy concerning a particular methodology, or the issues simply have not been raised in the trial. That leaves population genetics as the primary area of dispute.

2. Refusal to Admit Evidence of Population Genetics

By far the greatest concern expressed by courts dealing with the complexities of DNA profiling has been in the area of statistical analysis.
of the frequency of a random match. Since the release of the NRC report, many courts have deemed such evidence inadmissible.251

In State v. Pennell,252 the court refused to permit evidence of the frequency of a DNA pattern because the database from which the evidence was derived had not been shown to be in Hardy-Weinberg equilibrium.253 The possibility of a random match was one in 180 billion, according to the laboratory, but if the database was not in Hardy-Weinberg equilibrium, the laboratory’s use of probability statistics could not be considered to be based on reliable scientific assumptions.254

In State v. Bible,255 the court stated that it was indisputable that the statistical method for calculating the frequencies of random matches was not accepted by the scientific community and that the trial court had erred by admitting probability testimony based on the product rule.256 Some courts have reversed cases based on the recommendations of the NRC report, ruling that the report indicated a lack of general acceptance of the then-current method of interpreting the data.257 There have been several other cases where evidence of low frequency rates based on the product rule was not allowed.258

251 See Scheck, supra note 67, at 1965 n.20 (stating that “the overwhelming majority of appellate decisions in Frye jurisdictions [since the publication of the NRC report] have rejected methods used by the major forensic laboratories for making statistical estimates”).

253 See id. at *1.

254 See id. at *5.

256 See id. at 1188 n.27 (citing People v. Barney, 10 Cal. Rptr. 2d 731, 744 (Ct. App. 1992), abrogated by People v. Wilds, 37 Cal. Rptr. 2d 351 (Ct. App.), review granted, 39 Cal. Rptr. 2d 406 (1995)).

CONCLUSION

The Supreme Court of Kentucky's decision to take a wait-and-see attitude shows an understanding of the great amount of controversy that has surrounded the new forensic adaptation of medical and diagnostic analysis of DNA. The NRC, in both its 1992 report and 1996 report, made several recommendations for laboratories conducting DNA testing. One of the most significant aspects of both reports is the suggestion that courts disallow any evidence from an unaccredited laboratory. If the evidence shows that a laboratory has not complied with the recommendations, the Kentucky Supreme Court should refuse to permit DNA evidence.

The Kentucky high court's patience in avoiding a definitive ruling is commendable in view of the magnitude of the controversy that has raged around this highly complex issue. The NRC itself has said that the technology of DNA profiling is always changing. To say that DNA evidence is admissible in all cases without specifying which test was used, whether the protocol was properly followed, or whether the database was shown to be in Hardy-Weinberg equilibrium is simply to ignore the issues. Until all of the issues are resolved by the scientists in the field, a case-by-case approach is the only reasonable way to handle the question of whether DNA evidence is admissible, because rapidly changing technology makes the accuracy of one test not necessarily a true measure of the accuracy of all procedures.

unusual position of allowing in DNA testimony if the probability figure was calculated based on "the most conservative of all estimates.

259 See Bureau of National Affairs, Inc., supra note 179, at 204.

260 At the time of publication, the FBI crime lab's DNA unit had recently announced that the agency's techniques for matching DNA samples to a single individual have matured to the point where an FBI expert witness can state flatly, without qualification, that there is a DNA match. This conclusiveness is shown when the probability exceeds one in 260 billion. The Earth's population is approximately 5.8 billion. The FBI currently uses six different genetic pattern sites, with two more to be added next year. Each new site increases the odds that a DNA match will be unique to one individual and exclude others from possibility. A new technique called chemiluminescence allows DNA to be processed in two weeks instead of the previous three-month lag time. Paul Recer, *FBI Says DNA Evidence Technique Now Improved to Certainty*, THE ASSOCIATED PRESS, Nov. 12, 1997