Investigation of the Fire Effects on Some Physico-Chemical Characteristics of Soil (Case Study: Miankaleh Rangeland, Iran)

Mohammadreza Tatian
University of Sari, Iran

Reza Tamartash
University of Sari, Iran

Maedeh Yousefian
Islamic Azad University of Tehran, Iran

Fatemeh Montazeri
University of Sari, Iran

Mehdi Jafari
Natural Resources Organization, Iran

Follow this and additional works at: https://uknowledge.uky.edu/igc

Part of the [Plant Sciences Commons](https://uknowledge.uky.edu/igc), and the [Soil Science Commons](https://uknowledge.uky.edu/igc)

This document is available at https://uknowledge.uky.edu/igc/22/2-9/7

The XXII International Grassland Congress (Revitalising Grasslands to Sustain Our Communities) took place in Sydney, Australia from September 15 through September 19, 2013. Proceedings Editors: David L. Michalk, Geoffrey D. Millar, Warwick B. Badgery, and Kim M. Broadfoot

Publisher: New South Wales Department of Primary Industry, Kite St., Orange New South Wales, Australia

This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Investigation of the fire effects on some physico-chemical characteristics of soil (case study: Miankaleh rangeland, Iran)

Mohamadreza Tatian A, Reza Tamartash A, Maede Yousefian B, Fatemeh Montazeri A and Mehdi Jafari C

A Agriculture Sciences and Natural Resources, University of Sari, Sari, Iran
B Range Science Department, Islamic Azad University of Tehran, Tehran, Iran
C Environmental Science, Natural Resources Organization, Sari, Iran

Contact email: mr_t979@yahoo.com

Keywords: Rangeland ecosystem, moisture, fire, organic carbon, vegetation growth.

Introduction

Fire is one of the ecological factors that can have positive and negative effects on ecosystem processes. Nevertheless, prescribed burning is considered to be an important tool for grassland management, particularly to manipulate the balance between grasses and shrubs (Scheintaub et al. 2009). In Iran, for example, Khodagholi et al. (2001) in the Saimirom rangelands of Isfahan Province suggest that fire reduces the shrubs cover and production and leads to the expansion of grasses. Sharifi and Imani (2006) showed that in the semi-steppe of Khalkhal Province shrub cover decreased in contrast to permanent grasses after fire was applied. However, others report that fire can reduce production and plant diversity due to affects on the range soil properties.

This research investigated the effects of fire on some soil physico-chemical characteristics in the Miankaleh rangeland in northern Iran.

Methods

Study area

Miankaleh is the only survivor of woody land and semi-woody land in the plains of Mazandaran Province, which is located on the southern coast of the Caspian Sea in northern Iran (36°25' to 36°55' N and 53°50' to 54°1'E). The elevation is between 25 to 28 m below sea level and it covers an area of 68800 ha.

Research Method

This study was done in the beginning of vegetative growth period. Soil sampling (0-15 cm) was done using a random-systematic method. Soil physico-chemical characteristics including texture, pH, Ec, organic carbon (OC), bulk density and moisture were measured using standard methods. Data were analyzed by t-Test in SPSS19 software.

Results

Fire had a significant effect on soil moisture ($P \leq 0.01$) and pH, Ec, organic carbon ($P \leq 0.05$). But there was no significant effect on soil bulk density (Table 1).

Table 1. Mean comparison of factors in the fired soil and unfired soil

<table>
<thead>
<tr>
<th>Factors</th>
<th>Unfired soil (0-15)</th>
<th>Fired soil (0-15)</th>
<th>Student-t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture (%)</td>
<td>24.2</td>
<td>22.8</td>
<td>0.001**</td>
</tr>
<tr>
<td>Organic carbon (%)</td>
<td>1.95</td>
<td>2.19</td>
<td>0.047*</td>
</tr>
<tr>
<td>Bulk density (g/cm3)</td>
<td>2.38</td>
<td>1.46</td>
<td>0.134**</td>
</tr>
<tr>
<td>pH</td>
<td>7.4</td>
<td>8.44</td>
<td>0.045*</td>
</tr>
<tr>
<td>Ec (dc/m)</td>
<td>453.6</td>
<td>523.6</td>
<td>0.12*</td>
</tr>
</tbody>
</table>

**Significance level 0.01, *Significance level 0.05, "Not significant.

Conclusion

Fire has positive and negative effects on woody lands. In this study it increased soil organic carbon, which is an important factor in nutrient cycling, supporting a previous finding (Carleton and Loftin 2000). These results confirm that the fire can increase salinity and decrease acidity in coastal regions with similar conditions. Moisture reduction is negative effect of fire in the woody and semi woody ecosystems that can be used to manage these ecosystems. Kristofo (2006) showed the effects of burning on soil properties and rangeland management over the long-term.

References

Figure 1. Comparison between unfired and fired soil parameters – (A) soil moisture; (B) organic carbon; (C) Ec; and (D) pH.