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Locality and efficient evaluation of lattice composite fields:
Overlap-based gauge operators

Andrei Alexandru1 and Ivan Horváth2
1The George Washington University, Washington, D.C. 20052, USA

2University of Kentucky, Lexington, Kentucky 40506, USA
(Received 23 November 2016; published 30 January 2017)

We propose a novel general approach to locality of lattice composite fields, which in case of QCD
involves locality in both quark and gauge degrees of freedom. The method is applied to gauge operators
based on the overlap Dirac matrix elements, showing for the first time their local nature on realistic path-
integral backgrounds. The framework entails a method for efficient evaluation of such nonultralocal
operators, whose computational cost is volume independent at fixed accuracy, and only grows logarithmi-
cally as this accuracy approaches zero. This makes computation of useful operators, such as overlap-based
topological density, practical. The key notion underlying these features is that of exponential insensitivity
to distant fields, made rigorous by introducing the procedure of statistical regularization. The scales
associated with insensitivity property are useful characteristics of nonlocal continuum operators.

DOI: 10.1103/PhysRevD.95.014509

I. INTRODUCTION

Local quantum field theories are quantum field systems
with dynamics prescribed by local action density.When such
theories serve to describe particle interactions then, in
addition, n-point correlation functions of local operators
encode most of the interesting observables. The notion of a
local operator is thus deeply engrained in these descriptions.
Locality is rarely viewed as problematic or subtle in

formal continuum considerations. Indeed, the presence of
space-time derivatives invokes confidence that field vari-
ables separated by nonzero distance are not explicitly
coupled by the operator, consistently with the intuitive
meaning of locality. However, the concept becomes richer
once an actual definition of the theory, such as via lattice
regularization which we follow here, is carried out.
A common approach to formulating lattice-regularized

systems is to replace space-time field derivatives with
nearest-neighbor field differences. More generally, oper-
ators that only depend on field variables within fixed lattice
distance away from each other are referred to as ultralocal.
However, lattice operators with couplings extending to
arbitrary distances naturally arise in Wilson’s renormaliza-
tion group considerations. Moreover, chirality-preserving
Dirac operators of Ginsparg-Wilson type [1] are all of such
nonultralocal variety [2,3]. Locality becomes a more subtle
notion in these situations, and requires some care.
In this work, we consider nonultralocal operators asso-

ciated with overlap Dirac matrix D≡ fDx;yðUÞg [4] in the
context of QCD. Here the color-spin indices are implicit
and U≡ fUx;μg is the SU(3) lattice gauge field. There are
at least two relevant circumstances to consider. Firstly,
since

P
xψxðDψÞx prescribes interactions of quarks and

gluons, it is required to be a sum of local contributions.
Operator ðDψÞx thus has to be local with respect to both

fermionic and gauge variables. Secondly, there are inter-
esting gauge operators based on overlap matrix elements,
such as topological charge density [5,6], gauge action
density [7–9] or gauge field-strength tensor [7,10] con-
structed from Dx;xðUÞ. To be used in well-founded QCD
calculations, these objects need to be local in gauge
potentials.
While fermionic locality of the overlap operator was

studied in some detail [11], the aspects of gauge locality
have barely been considered. In fact, they were not studied
at all for realistic gauge fields of lattice QCD ensembles.
The theme of the present work is to examine this issue,
especially in relation to the above nonultralocal gauge
operators. The novelty of our approach is that it naturally
connects locality of an operator to efficiency achievable in
its evaluation. Consequently, the results that follow have
direct bearing on the practical use of these computationally
demanding objects.
To start describing our approach, recall that the modern

notion of locality for lattice-defined operators includes their
exponentially decreasing sensitivity to distant field variables.
Standard treatment formalizes this into exponential bound on
the corresponding field derivatives. For example, fermionic
locality of ðDψÞx then simply requires sufficiently fast decay
ofDx;y as y is taken increasingly far away from x. Albeit less
elegant due to gauge field entering in a more complicated
manner, this prescription can also be followed to study gauge
locality of ðDψÞx or locality of Dx;xðUÞ.
However, for our purposes it is fruitful to replace the

above “differential” treatment of dependence on distant
fields with a direct “integral” approach. In other words, we
ask how well is it possible to know the value of a composite
operator Ox when the knowledge of fundamental fields is
restricted to some neighborhood of x. Exponentially sup-
pressed sensitivity to distant fields is then formalized as the
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existence of estimates whose precision exponentially
improves with the linear extent of these neighborhoods.
To explain this in more detail, consider operators Ox that

only depend on the gauge field,1 such as covariant discre-
tizations ofF ~FðxÞ. The simplest ultralocal option is based on
minimal gauge loops (plaquettes), but general OxðUÞ may
couple fields everywhere. We will use hypercubic neighbor-
hoods of x with “radius” r to define patchesUx;r ⊂ U of the
field, as illustrated in Fig. 1. Note that r ¼ ja is discrete at
finite lattice cutoff a. Faced with the task of estimating
OxðUÞ given an incomplete knowledge (Ux;r) of its argu-
ment, one is led to construct approximants Or

xðUÞ ¼
Or

xðUx;rÞ depending only on variables in the patch. If
δðr; UÞ≡ ∥OxðUÞ −Or

xðUÞ∥ denotes the associated error,
one may choose to formalize exponential insensitivity to
distant fields ofOx by requiring the existence ofOr

x and finite
positive constants B, R, s such that

δðr; UÞ ≤ B exp ð−r=RÞ; r ≥ s; ∀U: ð1Þ

But the notion so construed is unnecessarily strong since
violations of (1) involving configurations U that are sta-
tistically irrelevant in the path integral, are inconsequential in
the context of corresponding quantum theory. We thus
replace condition (1) by

δðr; pÞ ≤ B exp ð−r=RÞ; r ≥ s; ∀p < 1 ð2Þ

where δðr; pÞ is a statistical construct representing “errorwith
probability p,” effectively demanding that the bound is
satisfied up to events of probabilistic measure zero. In the
resulting procedure of statistical regularization, the bound
is examined at fixed certainty p, and this cutoff is eventually

lifted via the appropriatep → 1 limit (Sec. II). Note that tying
exponential insensitivity of an operator to path integral in
which it is used implies that minimal sensitivity range
R → R0 can have nontrivial dependence on the lattice
spacing. Locality then requires, among other things, that
R0ðaÞ vanishes in the continuum limit.
The notion of exponential insensitivity, outlined above,

admits arbitrary Or
x to be considered in Eq. (2). However, if

the property holds for Ox, the facilitating approximant is
clearly not unique, and different options may involve widely
varied degrees of computational complexity. In fact, albeit
coupling fewer degrees of freedom, computational demands
for most precise choices ofOr

x can be as large or larger than
those forOx itself. However, our goal here is not to determine
the best approximation. Rather, we are interested in finding
Or

x whose computational complexity scales with r=a in
qualitatively the same manner as that of Ox with L=a. Here
L ≫ r is the size of the system. Apart from demonstrating
exponential insensitivity, the existence of such approximants
would offer great computational advantage. Indeed, if the
program computing Ox has no a priori knowledge about
insensitivity, then single evaluation incurs cost growing at
least with the lattice 4-volume for nonultralocal operators of
interest here. This is reduced as

�
L
a

�
4þα

→

�
R
a
log

B
δ

�
4þα0

; α; α0 ≥ 0 ð3Þ

for the approximant that guarantees absolute precision δ.
Computation could thus be performed at a constant cost
(independent of the volume) that only depends logarithmi-
cally on the desired precision.
Our suggestion for constructing generic and practical

approximants Or
x of the above type is to treat the neighbor-

hood containing Ux;r as a finite system of its own. Indeed,
definition of nonultralocal Ox implicitly involves a
sequence of operators: one for each space-time lattice

FIG. 1. Gauge field patch involved in simplest gauge covariant operatorsOx (left) and the geometry of hypercubic neighborhoods with
radius r (right).

1This is the context for which we develop the method in detail
here. Including other fundamental fields is conceptually analogous
with specifics, especially as it relates to fermions, forthcoming.
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involved in the process of taking the infinite-volume limit.
Considering L4 lattices and making the L dependence
explicit for the moment (Ox → Ox;L), the replacement

Ox;LðUÞ → Ox;L→2rþaðUx;rÞ≡Or
xðUx;rÞ ¼ Or

xðUÞ ð4Þ

offers a generic scheme for obtaining candidate approx-
imants. Note that L=a is defined to count the sites and
hence 2rþ a is the “size” of the lattice system contained in
hypercubic neighborhood with radius r. Variations on this
prescription discussed in the body of the paper correspond
to different treatment of boundaries in the subsystem
associated with the patch. We refer to approximants of
type (4) as boundary approximants since they test sensi-
tivity to the boundary created by the restriction U → Ux;r.
If they exhibit the behavior (2), then Ox is exponentially
insensitive to distant fields, and a stronger notion of locality
(boundary locality) can be built around this concept.
The paper is organized as follows. In Sec. II we introduce

the concept of exponential insensitivity to distant fields via
statistical regularization. Given its pivotal role in the
present discussion, this is carried out in detail so that
relevantly distinct behaviors are discerned, and the subtle-
ties known to us are all accounted for. A notable feature of
the resulting framework is that the removal of lattice and
statistical cutoffs necessitates not only a nondivergent
exponential range R0, but also a nondivergent auxiliary
(nonunique) scale ρ0 representing the threshold distance for
validity of the bound. This part concludes with connecting
the locality to exponential insensitivity and defining it
correspondingly. In Sec. III the stronger notions of boun-
dary insensitivity and boundary locality are put forward,
emphasizing their practical relevance. In particular, the
consequences of this property for efficient evaluation of
computable nonultralocal operators is discussed in detail.
The possibility that suitably constructed boundary approx-
imant can also serve as a standalone ultralocal operator,
interesting in its own right, is suggested here as well. In
Sec. IV we investigate the properties of basic overlap-based
gauge operators in the proposed framework. Our numerical
results in pure glue theory readily show the weak form of
insensitivity (for any fixed statistical cutoff) at the lattice
level, and the corresponding weak form of locality in the
continuum. They also lend an initial support to full
insensitivity (statistical cutoff removed) sufficiently close
to the continuum limit, and the associated locality.2 To
illustrate the practical aspects of exponential insensitivity,
we discuss in Sec. V the use of boundary approximants
for efficiently computing the “configurations” of overlap-
based topological density. This lattice topological field
was crucial for identifying the low-dimensional long-
range topological structure in QCD vacuum [12]. The

insensitivity properties tested here make large scale com-
putations of this type practical since, at fixed accuracy,
the cost per configuration is simply proportional to the
volume, similarly to the case of generic ultralocal gauge
operators.

II. EXPONENTIAL INSENSITIVITY
TO DISTANT FIELDS

The concept of exponential insensitivity to distant fields
is central to this work, and we thus begin by working out
the necessary details. The issues in need of attention arise
mostly due to the quantum setting we are dealing with. To
see this, consider some extended operator (functional)
Ox½A� of gauge fields A≡ fAμðyÞg in the continuum
space-time. The analog of Eq. (1), involving spherical
neighborhoods of x in Euclidean space, is intended to
characterize exponential insensitivity of Ox. However, the
required bound may not hold, or even be meaningful, for
arbitrary A, and yet be satisfied by a subset of fields relevant
to the situation at hand. Indeed, the proper definition
requires specifying the class of fields in question.
Problems involving classical dynamics of Ox naturally
come with needed analytic restrictions since they deal with
fields A obeying classical equations of motion.3

However, in field theory regularized and quantized via
lattice path integral, there is no a priori restriction on the
fundamental fields (“configurations”) U: there is only a
hierarchy induced by their statistical weights. While this
forces one to adopt the notion of exponential insensitivity
involving all lattice fields in principle, it also makes room
for the concept to be viable even when there are sufficiently
improbable configurations violating any exponential
bound. Indeed, we are led to a statistical approach respect-
ing the path-integral hierarchy of fields and, at the same
time, facilitating the systematic separation of potential
outliers in the process we refer to as statistical regulariza-
tion. Its idea is to replace the sharp construct of least upper
bound with the statistical “least upper bound with proba-
bility p.” Before defining the concept in Sec. II C, we need
to discuss some preliminaries.

A. The setup

Unless stated otherwise, the position coordinates of
an underlying infinite system are spanned by entire
d-dimensional hypercubic lattice with cutoff a, i.e.

H∞ ≡ fxjxμ ¼ anμ; nμ ∈ Z; μ ¼ 1; 2;…; dg ð5Þ

The general case where infinite volume involves a subset of
points in H∞ is described in Appendix D, and allows
e.g. for applying our methods to arbitrary spatial geometry,

2The precise meaning of these qualifications on insensitivity/
locality is given in the body of the paper.

3Mere definition of Ox½A� directly in the continuum often
forces A to satisfy certain analytic properties.
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or to theories at finite temperature. The hypercubic neigh-
borhood of point x with radius r is

Hx;r ≡ fy ∈ H∞jjxμ − yμj ≤ r; ∀μg
r ∈ fjajj ¼ 1; 2; 3;…g≡ Na ð6Þ

We consider operator Ox ¼ OxðUÞ, composed of gauge
field U ≡ fUy;μg, in theory defined by SðUÞ, namely the
effective gauge action after integrating out quark fields, if
any. This quantum dynamics is infrared regularized on
symmetric lattices of ðL=aÞ4 sites centered around x, i.e.
the center of the lattice is at x for L=a odd, and at xþ
ða=2;…; a=2Þ for L=a even. Each Hx;r contained within
given finite system is assigned a hypercubic field patch

Ux;r ≡ fUy;μ ∈ Ujy; yþ μ̂ ∈ Hx;rg; 2rþ a < L: ð7Þ

Note that Ux;r does not include links “dangling” with
respect to Hx;r. For example, the set of red links in Fig. 1
(left) is Ux;r¼a. Any operator Or

x with range in the normed
space of Ox and satisfying Or

xðUÞ ¼ Or
xðUx;rÞ, will be

referred to as approximant of Ox with radius r.

B. Kinematics of exponential bounds

Important technical aspect of the analysis that follows
involves sufficiently detailed description of exponential
bounds which we now discuss. Generic real-valued “error
function”

0 ≤ δðrÞ < ∞; r ∈ Na ð8Þ

is said to be exponentially boundable if there are finite
positive R, Δ, s such that

δðrÞ ≤ Δ exp

�
−
r − s
R

�
; r ≥ s ∈ Na: ð9Þ

Note that, in this form, the prefactor Δ specifies the bound
at threshold distance s. Our goal is to identify a region
in parameter space R > 0, Δ > 0, s ∈ Na, if any, where
(9) holds.
Explicit solution to this problem is obtained by rewriting

(9) as

Δ ≥ exp ð−s=RÞ supfδðrÞ exp ðr=RÞjr ≥ sg≡ Δ0ðR; sÞ:
ð10Þ

Thus, for given ðR; sÞ, the indicated range of valid Δ
materializes, as long as Δ0ðR; sÞ < ∞. At the same time,
finiteness of Δ0ðR; sÞ only depends on R. Indeed, s → s0
induces at most a finite change inΔ0 since the sets involved
in suprema only differ by finite number of finite elements.
Consequently, the following defines an s-independent
object:

R0 ≡ inffR > 0jΔ0ðR; sÞ < ∞g ≥ 0 ð11Þ

namely the effective range of δðrÞ. Exponential bound-
ability of δðrÞ is equivalent to R0 < ∞, and the parameter
domain of validity for (9) is R > R0, s ∈ Na,Δ ≥ Δ0ðR; sÞ.
We will work with description of this domain in which the
threshold error Δ, rather than threshold distance s, enters as
an unconstrained free parameter. Since Δ0ðR; sÞ is decreas-
ing in s, and lims→∞Δ0ðR; sÞ ¼ 0, its “inverse” defines the
desired representation, namely

R > R0 Δ > 0 s ≥ s0ðR;ΔÞ≡minfrjΔ0ðR; rÞ ≤ Δg:
ð12Þ

Function s0ðR;ΔÞ is a core size outside of which a bound
with desired ðR;ΔÞ sets in.
This detailed kinematics of exponential bounds acquires

relevance in quantum setting, where ultraviolet and stat-
istical regularizations produce error functions depending
on associated cutoffs. It turns out that monitoring cutoff
dependence of R0 alone is not sufficient to ensure requisite
bounds upon regularization removal, and information in s0
is also needed. To that end, it is useful to treat s0 as a
continuous entity (like R0) so that trends can be detected
even for small changes in the cutoffs. We thus extend
Δ0ðR; sÞ at fixed R, into a decreasing continuous map
Δ0ðR; ρÞ from ρ ∈ ð0;∞Þ onto ð0;∞Þ. Omitting the R
dependence, the exponential behavior of Δ0ðsÞ motivates a
practical choice

logΔ0ðρÞ≡
�
LinðlogΔ0ðsÞ; ρÞ for ρ ≥ a

−1þ a=ρþ logΔ0ðaÞ for ρ < a
ð13Þ

where LinðfðsÞ; ρÞ denotes linear interpolation of fðsÞ via
variable ρ. The arbitrary completion for ρ < a only serves
to realize the desired range. With Δ0ðR; ρÞ so fixed, the
associated core-size function ρ0ðR;ΔÞ is uniquely defined
via Δ0ðR; ρ0Þ ¼ Δ, guaranteeing that

δðrÞ≤Δexp

�
−
r− ρ

R

�

for r≥ ρ R>R0 Δ> 0 ρ≥ ρ0ðR;ΔÞ: ð14Þ

Note that setting R ¼ R0 to optimize the bound at large
distances is not always possible since ρ0ðR;ΔÞmay diverge
for R → Rþ

0 . This occurs when δðrÞ decays as an expo-
nential modulated by an unbounded function, e.g.
δðrÞ ∝ r expð−r=R0Þ. Such cases require R in (14) that
may be arbitrarily close but larger than R0, as indicated.
However, setting ρ ¼ ρ0ðR;ΔÞ, whenever finite, always
produces a valid bound

δðrÞ ≤ Δ exp

�
−
r − ρ0ðR;ΔÞ

R

�
; r ≥ ρ0ðR;ΔÞ: ð15Þ
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Vice versa, when ρ0ðR;ΔÞ is ill defined (infinite), there is no
exponential bound involving range R and threshold error Δ.
The core-size function is thus a master construct containing
complete information on exponential bounds of δðrÞ. The
bounds in 2-parameter family (15) are optimal in that they
cover the maximal range of distances for given ðR;ΔÞ.

C. Statistical regularization

Given a composite field OxðUÞ and its approximant
Or

xðUÞ ¼ Or
xðUx;rÞ, the properties of the latter are described

by distribution PrðδÞ of its errors over the path-integral
ensemble. The corresponding cumulative probability func-
tion FrðδÞ is explicitly given by

FrðδÞ≡ hHðδ − ∥OxðUÞ −Or
xðUÞ∥Þi PrðδÞ≡ d

dδ
FrðδÞ
ð16Þ

withH denoting a Heaviside step function and h…i the path-
integral average specified by SðUÞ. This information can be
recast into error bounds δðr; pÞ satisfied by fractionsp of the
overall population with smallest deviations by imposing

Frðδðr; pÞÞ≡ p ð17Þ

i.e. by inverting FrðδÞ. By construction, the meaning of
δðr; pÞ is that of an “error bound with probabilityp”: ifOr

x is
used to estimate Ox, the expected error is less than δðr; pÞ
with probabilityp. This family of error functions is central to
the analysis proposed here.
For Ox to exhibit exponential insensitivity to distant

fields, statistically regularized by fixed 0 < p < 1, we

require that δðr; pÞ decays at least exponentially at asymp-
totically large r, i.e. that it is exponentially boundable.
The advertised “separation of potential outliers” is thus
accomplished by fixing the degree of certainty p in
examining the influence of distant fields on error.
Examples of measured r dependencies for several over-
lap-based operators are shown in Fig. 2, with details
described in Sec. III. The observed behavior is clearly
compatible with exponential falloff at rates depending very
weakly (if at all) on p.
Exponential insensitivity at any nonzero p is in itself

(without p → 1 considerations) a notable feature of non-
ultralocal lattice operator. Indeed, at minimum, it signals
the existence of insensitive subpopulation in the path
integral, which can be useful computationally and other-
wise. We formalize this lattice concept as follows.
Definition 1.—(exponential insensitivity at fixed p)
Let OxðUÞ be the operator with values in normed space

and SðUÞ the action of Euclidean gauge theory, both
defined on hypercubic lattices of arbitrary size L. We
say thatOx is exponentially insensitive to distant fields with
respect to S at probability p, if there is an r-dependent
approximant Or

xðUÞ ¼ Or
xðUx;rÞ such that

(i) The infinite-volume limit δðr; pÞ≡ limL→∞
δðr; p; LÞ of its error function exists.

(ii) δðr; pÞ is exponentially boundable.
Here Ux;r is the patch of U contained in hypercubic
neighborhood of x with radius r. □

This definition categorizes lattice operators at given
position in terms of their dependence on remote fields.
Abbreviating exponential insensitivity to distant fields
as “insensitivity”, if there is no p > 0 at which Ox is
insensitive, then Ox is sensitive, while in the opposite case

FIG. 2. The behavior of δðr; pÞ at fixed p for overlap-based gauge operators (Sec. IV). Note that Trγ5Dx;x ∝ qðxÞ (topological density)
has the strongest dependence on p.

LOCALITY AND EFFICIENT EVALUATION OF LATTICE … PHYSICAL REVIEW D 95, 014509 (2017)

014509-5



it is said to contain an insensitive component. When the
latter holds for all p < 1 then Ox is referred to as weakly
insensitive provided that the “outliers” do not contribute
finitely to Ox in p → 1 limit.4 Weakly insensitive operator
is under exponential control with any preset probability
short of certainty which, among other things, can provide
a powerful advantage for its evaluation. Finally, if remov-
ing statistical cutoff (p → 1) in weakly insensitive Ox
leaves some exponential bounds in place, we speak of
insensitive operator. However, the process of cutoff
removal needs to be specified and discussed in some
detail.

D. The removal of statistical cutoff

Imposing the statistical cutoffp turns a quantum situation,
involving path integral over fields, into classical-like setting
specified by single error function δðr; pÞ. Regularized
exponential insensitivity to distant fields is synonymous
with its exponential boundabilitywhich, in turn, is equivalent
to the associated effective range R0ðpÞ being finite. It is thus
tempting to conclude that limp→1R0ðpÞ < ∞ is the proper
requirement for weakly insensitive operator Ox to be fully
insensitive.
However, this cutoff-removal prescription is not sufficient

because it does not guarantee the existence ofp-independent
exponential bound. For example, consider the family of
error functions δðr; pÞ taking constant valueΔ for r ≤ r0ðpÞ,
and decaying as pure exponential of range R0 for r > r0ðpÞ.
With Δ and R0 being p independent, if radius r0ðpÞ of
the constant core grows unbounded as the cutoff is lifted
[limp→1r0ðpÞ ¼ ∞] then there is no exponential bound valid
for all p < 1, albeit the condition of finite limiting range is
readily satisfied.
The possibility of such behavior should not be too

surprising in light of our analysis in Sec. II B, and its
result (14). Indeed, the subset of parameter space ðR;Δ; ρÞ
describing valid exponential bounds is determined not only
by R0ðpÞ but also by the core size ρ0ðR;Δ; pÞ. Finiteness of
both is needed in p → 1 limit, namely

lim
p→1

R0ðpÞ < ∞ and ∃R > 0;

Δ > 0∶ lim
p→1

ρ0ðR;Δ; pÞ < ∞: ð18Þ

The example of previous paragraph violates the second
condition which is, strictly speaking, alone sufficient

for insensitivity since it implies finite limiting range.5

However, keeping both requirements explicit is more
reflective of steps involved in determination of insensitivity
in practice. The equivalent formal definition, given below,
closely mimics this process and is tailored for the eventual
step of ultraviolet cutoff removal. Instead of ðR;ΔÞ, this
formulation specifies the bounds of δðr; pÞ via relative
parameters ðκ; EÞ, namely

R ¼ κR0ðpÞ; κ > 0 Δ ¼ Eh∥Ox∥i; E > 0

ρ0ðR;Δ; pÞ → ρ0ðκ; E; pÞ ð19Þ

and monitors the finiteness of ρ0ðκ; E; pÞ in p → 1 limit.
At fixed κ > 1, i.e. κR0ðpÞ > R0ðpÞ, this limiting
process is manifestly well defined for weakly insensitive
operator. Introduction of E corresponds to measuring the
error in units of typical magnitude of the operator, which is
inconsequential at fixed ultraviolet cutoff but essential
for taking the continuum limit. Indeed, since the
operator values depend on lattice spacing, a meaningful
assessment of insensitivity is to be performed at fixed E.
Reparametrization (19) puts optimal bounds (15) of δðr; pÞ
into the form

δðr; pÞ ≤ Eh∥Ox∥i exp
�
−
r − ρ0ðκ; E; pÞ

κR0ðpÞ
�
;

r ≥ ρ0ðκ; E; pÞ ð20Þ

and the aforementioned definition of exponential insensi-
tivity is as follows.
Definition 2.—(exponential insensitivity)
Let OxðUÞ be a weakly insensitive operator with respect

to SðUÞ, implying the existence of approximants Or
xðUÞ ¼

Or
xðUx;rÞ characterized by finite length scales R0ðpÞ,

ρ0ðκ; E; pÞ, for all 0 < p < 1, κ > 1, E > 0. If there is
Or

x and κ, E for which the finite limits below exist

lim
p→1

R0ðpÞ≡ R0 < ∞ and

lim
p→1

ρ0ðκ; E; pÞ≡ ρ0ðκ; EÞ < ∞ ð21Þ

we say that Ox is exponentially insensitive with respect
to S. □

Note that the p-independent optimal bound for given
ðκ; EÞ is obtained by inserting R0 and ρ0ðκ; EÞ into
formula (20). There are two points regarding Definition
2 we wish to emphasize.

(i) It is shown in Appendix B that, if ρ0ðκ; EÞ < ∞, then
ρ0ðκ0; E0Þ < ∞ for all ðκ0; E0Þwith E0 > 0 and κ0 ≥ κ.

4The second requirement bars a logical possibility that
samples defying any exponential bound would finitely
influence Ox albeit forming a set of measure zero. The
property expressing the absence of such singular behavior is
formulated in Appendix A and will be referred to as
regularity. It is automatically satisfied by bounded lattice
operators with bounded approximants, such as those studied
here.

5Indeed, finite limiting core size implies R0ðpÞ ≤ R, ∀p < 1,
because ρ0ðR;Δ; pÞ is nondecreasing in p. Moreover, since
R0ðpÞ is also nondecreasing, the p → 1 limit exists and satisfies
limp→1R0ðpÞ ≤ R < ∞.
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Thus, the threshold relative error E remains an
unconstrained free parameter to keep fixed in
p → 1 limit: its choice is purely a matter of practical
convenience. However, Appendix B also shows that
finiteness of ρ0 is not guaranteed for 1 < κ0 < κ.
As a practical consequence, examining a single
value ρ0ðκ; EÞ is not always sufficient to determine
insensitivity. Indeed, if ρ0ðκ; EÞ is infinite, there may
be κ0 > κ for which ρ0ðκ0; EÞ is finite.

(ii) As discussed in Sec. II B, there is a class of error
functions δðr; pÞ obeying an exponential bound with
R set to the effective range R0ðpÞ. In this case the
p → 1 limiting procedure at κ ¼ 1 can be set up and
examined. This, however, cannot be assumed in
general.

E. The removal of ultraviolet cutoff

The prescription of monitoring ρ0 at fixed ðκ; EÞ as
statistical cutoff is lifted (p → 1 limit) is directly applicable
to the process of ultraviolet cutoff removal (a → 0 limit).
Indeed, an uncontainable core can emerge in the process of
continuum limit as well. The importance of fixing E is
further underlined by the fact that h∥Ox∥i is a dependent,
making it imperative that the approximation error (and thus
core size ρ0) relates to this changing typical magnitude in
fixed proportion.
We now formulate this precisely in order to classify

continuum operators defined by arbitrary lattice prescrip-
tions in terms of their sensitivity to distant fields. Making
the dependence on lattice spacing explicit, the error
function δðr; p; aÞ assigned to the pair Ox and Or

x depends
on both cutoffs, as do the associated characteristics
R0ðp; aÞ, ρ0ðκ; E; p; aÞ. Following the structure of our
formalism at fixed ultraviolet cutoff, the first step is to
define the continuum version of exponential insensitivity at
fixed p.
Definition 3.—(exponential insensitivity at fixed p—

continuum)
Let OxðUÞ be the lattice operator exponentially insensi-

tive with respect to SðUÞ at given p and lattice spacings
0 < a < a0 i.e. sufficiently close to the continuum limit.
Thus, there exist approximants Or

xðUÞ ¼ Or
xðUx;rÞ with

finite characteristics R0ðp; aÞ and ρ0ðκ; E; p; aÞ for all
0 < a < a0, κ > 1, E > 0. If it is possible to find Or

x
and κ, E for which

lim
a→0

R0ðp; aÞ≡ Rc
0ðpÞ < ∞ and

lim
a→0

ρ0ðκ; E; p; aÞ≡ ρc0ðκ; E; pÞ < ∞ ð22Þ

we say that the continuum operator Oc
x defined by Ox is

exponentially insensitive at probability p in the continuum
theory Sc defined by S. □

There are two points regarding this definition we wish to
highlight.

(i) The existence of indicated a → 0 limits is a some-
what stronger requirement than what is sufficient to
capture the concept of exponential insensitivity.
Indeed, the latter only requires that the character-
istics in question are bounded for a sufficiently close
to zero. For example, dependencies bounded on
ð0; a0Þ where increasingly rapid oscillations near
a ¼ 0 destroy a → 0 limits still allow for exponen-
tial bound of δðr; p; aÞ simultaneously valid for all
0 < a < a0. While such behavior is not expected to
occur in intended applications, Appendix C de-
scribes the adaptation of the formalism to the most
general context. Note that this subtlety does not arise
when removing statistical cutoff at fixed a because p
dependence is always monotonic, making bounded-
ness and existence of finite limit interchangeable.

(ii) Similarly to the situation with statistical cutoff [see
discussion point (i) following Definition 2], one can
infer finiteness of generic ρc0ðκ0; E0; pÞ from finite-
ness of single ρc0ðκ; E; pÞ. In particular, ρc0ðκ0; E0; pÞ
is guaranteed to be finite for all E0 > 0 and κ0 ≥ κ.6

Using Definition 3, continuum operators can be classi-
fied via the same scheme we used at fixed ultraviolet cutoff.
In particular, if there is no 0 < p < 1 such that Oc

x is
exponentially insensitive, then it is considered sensitive to
distant fields. In the opposite case, Oc

x is said to contain
an insensitive component. If Oc

x is insensitive for all 0 <
p < 1 and regularly approximated (Appendix A), it is
referred to as weakly insensitive. The definition of insen-
sitive operator then straightforwardly proceeds as follows.
Definition 4.—(exponential insensitivity—continuum)
Let Oc

x be weakly insensitive continuum operator in
theory Sc. Thus, there are approximants Or

xðUx;rÞ of its
defining lattice operator OxðUÞ, with finite length scales
Rc
0ðpÞ and ρc0ðκ; E; pÞ for all 0 < p < 1, E > 0 and

sufficiently large κ > 1. If there is Or
x, κ, E such that

lim
p→1

Rc
0ðpÞ≡ Rc

0 < ∞ lim
p→1

ρc0ðκ; E; pÞ≡ ρc0ðκ; EÞ < ∞

ð23Þ

we say that Oc
x is exponentially insensitive with respect

to Sc. □

The above leaves us with the option offering the highest
degree of control over the contribution of distant fields to a
nonultralocally defined continuum operator. This can arise
when lattice definition is strictly exponentially insensitive
(Definition 2), thus guaranteeing p-independent bound (up
to events of probabilistic measure zero) at successive
ultraviolet cutoffs defining the continuum limit. If the

6It is worth emphasizing that, in generic situations of interest,
the parametric dependence of ρc0 is in fact entirely universal, i.e.
finiteness occurs for any E0 > 0 and κ0 > 1.
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associated length scales tend to finite values in this process,
then both p- and a-independent bounds (at least sufficiently
close to the continuum limit) can be found. We then speak
of strong insensitivity as formulated below.
Definition 5.—(strong exponential insensitivity)
Let OxðUÞ be the lattice operator exponentially insensi-

tive with respect to SðUÞ for lattice spacings 0 < a < a0.
Thus, there are approximants Or

xðUx;rÞ characterized by
finite R0ðaÞ and ρ0ðκ; E; aÞ for 0 < a < a0, E > 0 and
sufficiently large κ > 1. If there is Or

x and κ, E such that

lim
a→0

R0ðaÞ≡ Rc
0 < ∞ lim

a→0
ρ0ðκ; E; aÞ≡ ρc0ðκ; EÞ < ∞

ð24Þ

we say that the continuum operatorOc
x defined byOxðUÞ is

strongly exponentially insensitive in theory Sc defined
by SðUÞ. □

We emphasize that, although defined statistically, the
bounds constructed via the process of statistical regulariza-
tion are as consequential as conventional upper bounds. The
convenience of strongly insensitive operators (Definition 5)
is that these bounds exist, and can be taken full advantage of,
even within the context of ultraviolet-regularized dynamics.
Note that the difference relative to insensitive operators
(Definition 4) is in the order of limits, namely

lim
p→1

lim
a→0

lim
L→∞

ðinsensitiveÞ

vs lim
a→0

lim
p→1

lim
L→∞

ðstrongly insensitiveÞ: ð25Þ

Finally, it is important that the proposed formalism of
exponential insensitivity is not only relevant for the issues
of locality, but also for characterizing nonlocal operators.
Indeed, such operators are useful in field theory if they have
well-defined scale(s) associated with them (e.g. a spatial
Wilson loop of fixed physical size). Exponentially insen-
sitive operators with finite effective range are natural
objects of interest in this regard.

F. Locality

The broadest naive notion of local composite field
(operator) Oc

x in the continuum refers to an object that
does not depend on fundamental fields residing nonzero
distance away from x. However, when the theory and Oc

x
are rigorously defined via lattice regularization, more
detailed considerations come into play. In particular, since
the naive approach is essentially classical with continuum
limit involving smooth fields only, two questions arise
regarding the full quantum treatment. (a) How to formulate
the requirement that “Oc

x does not depend on fields nonzero
distance away from x” for quantum definition involving
general nonultralocal lattice operators. (b) Given the variety
of possible behaviors, do all options consistent with (a),

when properly formulated, lead to acceptable definition of a
local quantum Oc

x?
The formalism of statistical regularization and exponen-

tial insensitivity, just introduced, provides an umbrella for
both of these issues. Indeed, the resolution of (a) is the
requirement that the relative error function ϵðr; p; aÞ
defined by

δðr; p; aÞ ¼ h∥Ox∥ia ϵðr; p; aÞ ð26Þ

vanishes in a → 0 limit for all r > 0 and 0 < p < 1. Here
h…ia is the expectation at lattice spacing a, and Ox is the
lattice operator defining Oc

x.
With regard to (b), the chief worry is that nonultralocal

operator may couple distant fields in a way that can mimic
massless behavior in correlation functions. In other words,
power law decays could be introduced by virtue of
operator’s explicit couplings, rather than dynamics of
fundamental fields, which can be very dangerous to the
universality of quantum definition. Thus, the basic “quan-
tum” requirement beyond the properly formulated naive
one is that the influence of distant fields decays (at least)
exponentially with distance in the regularized operator. In
other words, locality is expected to be safely realized within
the realm of exponentially insensitive operators, where
vanishing contribution from fields at nonzero distances
translates into vanishing of the corresponding characteristic
length scales in the continuum limit. Our formalism then
leads to the following hierarchy.
Definition 6.—(statistical degrees of locality)
Let Oc

x be a continuum operator in continuum theory Sc,
both defined via the process of lattice regularization. We
say that
(a) Oc

x has local component with respect to Sc if it has an
exponentially insensitive component and there is
p < 1, κ > 1, E > 0 for which the associated charac-
teristics vanish

Rc
0ðpÞ ¼ 0 ρc0ðκ; E; pÞ ¼ 0 ð27Þ

(b) Oc
x is weakly local with respect to Sc if it is

exponentially insensitive and

Rc
0 ¼ 0 ρc0ðκ; EÞ ¼ 0 ð28Þ

(c) Oc
x is local with respect to Sc if it is strongly

exponentially insensitive and

Rc
0 ¼ 0 ρc0ðκ; EÞ ¼ 0 ð29Þ

□

It should be emphasized that locality is a fairly subtle
and complicated notion. Indeed, while it would be ideal
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to list all necessary locality-related conditions, and thus
identify the maximal set of lattice operators defining
single continuum dynamics, one is typically only able to
formulate generic constraints expected to be sufficient. In
this regard, Definition 6 is quite minimalistic in its
requirements. Additional conditions can certainly be
put in place, but they tend to be motivated by conven-
ience in working with such operators rather than the
notion of locality itself. For example, a well-motivated
additional restriction is to demand that the relative
contribution to Ox from fields beyond distance r
approaches zero faster than any power of lattice spacing,
i.e. faster than expected dynamical scaling violations in
ultralocal operators. One can easily inspect that this is
guaranteed when R0ðaÞ is boundable by a positive power
of a sufficiently close to a ¼ 0.
Finally, barring certain nongeneric singular cases, the

property of weak locality in Definition 6 is already
expected to be sufficient for universality. Nevertheless,
given the qualitatively different levels of exponential
control over dynamical degrees of freedom for listed cases,
we find it useful to keep the corresponding statistical
distinctions in place.

III. BOUNDARY INSENSITIVITY AND
BOUNDARY LOCALITY

Determination of exponential insensitivity for given
nonultralocal lattice operator OxðUÞ and action SðUÞ is
a computable problem if both OxðUÞ and SðUÞ are
computable. In fact, the task does not require a search
through possible approximants: there exists an algorithm,
albeit computationally demanding, that directly evaluates
δopðr; pÞ of the optimal approximant to arbitrary preci-
sion.7 However, as advertised in the Introduction, our chief
goal here is to describe a version of exponential insensi-
tivity which, albeit somewhat stronger, produces a scheme
that is computationally efficient and generic in an essential
way. The merit of such concept will clearly depend on
whether it captures the meaning of insensitivity to distant
fields in sufficiently robust physical terms.
The premise underlying our approach is that exponential

insensitivity of OxðUÞ, as defined in Sec. II, should
translate into exponential insensitivity to presence of a
distant boundary: a concrete physical requirement. While
this is expected to hold generically, it is not strictly
guaranteed. At the same time, to single it out as a stronger
defining feature is fruitful in that, as explained below,
“boundary effects” are associated with simple approxim-
ants whose error functions just need to be computed and
examined.

To explain the meaning of “boundary” in this context,
recall that our infrared-regularized setup involves the
sequence of triples ðLx

L; SL;Ox;LÞ specifying the L4 lattice
with x at its center, the theory, and the operator respectively.
This means that, working at fixed L, the definition of the
operator provides not only OxðUÞ≡Ox;LðULÞ for gauge
field U≡UL on Lx

L, but also a finite sequence of values

OxðUÞ → Ol
xðUÞ≡Ox;lðUlÞ; l < L: ð30Þ

HereUl ⊂ U is the restriction ofU to a valid gauge field on
Lx
l ⊂ Lx

L, namely on a congruent system of smaller size l.
The operation Lx

L → Lx
l, U → Ul, Ox → Ox;l eliminates

distant degrees of freedom by introducing an artificial
boundary (that of Lx

l) just to probe the operator OxðUÞ.8
This motivates referring toOl

xðUÞ as boundary approximant
of OxðUÞ, although “finite-size” or “smaller-size” approx-
imant would be equally fitting.
We propose that boundary approximants are central

objects for addressing the efficiency of computations with
nonultralocal lattice operators. As such, they are interesting
in their own right, and Appendix D describes them in
general lattice setting. They also provide means for con-
structing relevant hypercubic approximants Or

xðUÞ. The
needed connection is straightforward in the symmetric
lattice setup employed here. Indeed, first note that

Hx;r ¼ Lx
lðrÞ Ux;r ⊆ UlðrÞ lðrÞ≡ 2rþ a ð31Þ

with the second relation arising since, depending on the
boundary conditions on Lx

lðrÞ, field UlðrÞ may contain

dangling links (relative to Lx
lðrÞ ¼ Hx;r), while Ux;r does

not.9 This means that hypercubic approximant can be
constructed from boundary approximant on Lx

lðrÞ by

freezing dangling links of UlðrÞ to values independent of
U. In particular,

UlðrÞ ¼ Ux;r ∪ fUbg → Uh
lðrÞ ≡Ux;r ∪ fUbg ð32Þ

where fUbg abbreviates the subset of dangling links and
fUbg the choice of their fixed values. The hypercubic
boundary approximant associated with this fUbg is then

OxðUÞ → Or
xðUÞ≡Ox;lðrÞðUh

lðrÞÞ ¼ Or
xðUx;rÞ: ð33Þ

7To make this statement precise, several additional ingredients
need to be defined. These details and the associated construction
are outside the main line of this paper, and will be addressed
elsewhere [13].

8Even when finite setup is boundary-free, such as with
periodic boundary conditions, U → Ul still creates a boundary
effect by bringing together gauge variables in Ul that were
initially far apart in U.

9In general, when representing finite system ðLx
l; SlÞ by its

embedding in H∞, as done here, there can be links that do not
connect pair of points from Lx

l that are neighbors in H∞, but
rather connect non-neighbors via a boundary condition: these are
dangling links relative to Lx

l.
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If there is a systematic choice of fUbg, i.e. prescription
specifying it as r changes and L scales to infinity, such that
the error function δðr; pÞ of the approximant (33) shows the
types of exponential behavior discussed in Sec. II, then
corresponding forms of boundary insensitivity to distant
fields arise. The notion of boundary locality is defined
accordingly.
For practical purposes, it is useful to define standard

choices of boundary approximant so that different tests of
boundary insensitivity for various operators can be directly
compared. To that end, we single out two simple systematic
options wherein all dangling links are set to identical
values.

(i) Universal form: Ub ¼ 1 (3 × 3 identity matrix)
Here Or

xðUÞ is guaranteed to be well defined and
computable if OxðUÞ is. Indeed, since 1 ∈ SUð3Þ,
configuration Uh

lðrÞ represents a valid SU(3) field,
and the above follows from the very definition and
computability of OxðUÞ.

(ii) Covariant form: Ub ¼ 0 (3 × 3 zero matrix)
Here Or

xðUÞ may be ill defined for certain
artificially constructed operators OxðUÞ, since
0 ∉ SUð3Þ. For example, Ox;lðrÞ could become
singular as UlðrÞ is deformed to Uh

lðrÞ. When
Or

xðUÞ is well defined (a generic situation), it is
also computable. Indeed, one option is to use the
computer program evaluating Ox;lðrÞðUlðrÞÞ, and
add a parallel branch that applies every operation
performed on input UlðrÞ also on input Uh

lðrÞ. The
output from the parallel branch is read off whenever
the original branch, driving the execution of the
code, halts.10

If OxðUÞ admits hypercubic boundary approximant in
covariant form, it is by definition its default hypercubic
approximant, while the universal form is assigned other-
wise. To motivate this choice, note that for operators of
physical relevance, it is desirable that Or

xðUÞ can be treated
as another valid regularized operator on Lx

L, i.e. on equal
footing with OxðUÞ. Its transformation properties should
thus match those of OxðUÞ to the largest extent possible.
However, ifUlðrÞ contains dangling links (fUbg ≠ ∅), such
as with periodic boundary conditions, the universal Or

xðUÞ
may not inherit gauge covariance ofOxðUÞ (if any). Indeed,
when Ox;lðrÞðUlðrÞÞ is covariant in theory ðLx

lðrÞ; SlðrÞÞ, it
only involves a combination of closed loops on Lx

lðrÞ with
its periodic definition. But closed loops containing dan-
gling links generically translate into open line segments on
Lx
L, thus spoiling gauge covariance of universal Or

xðUÞ in
theory ðLx

L; SLÞ. The use of covariant form, however,

eliminates this issue: when a dangling link is set to zero,
any closed loop that contains it becomes zero as well, and
such noncovariant terms simply do not occur.
To further exemplify the boundary approach, Fig. 3

illustrates two common situations. First, let the defining
sequence of triples ðLx

L; SL;Ox;LÞ be such that the pre-
scription for action SL ¼ SLðULÞ does not involve any
dangling links (left plot). This is the case of open boundary
conditions and, since fUbg ¼ 0, there is a single hyper-
cubic boundary approximant Or

xðUÞ which is directly in
covariant form. Secondly, assume that boundary conditions
in SL ¼ SLðULÞ are fully periodic in all directions (right
plot). The subset of dangling links is now maximal as
are the options for possible hypercubic boundary approx-
imants. We emphasize that the sequence of triples
ðLx

L; SL;Ox;LÞ represents entire information a priori known
aboutOx. Given that, constructing covariant formOr

xðUÞ in
periodic case can be viewed as extending the definition of
OxðUÞ to the case with open boundary conditions.

A. Computational efficiency

Important feature of the boundary approach is that it
connects insensitivity to distant fields of an operator (and
thus ultimately locality), to efficiency of its evaluation.
More precisely, our main message in this regard is that
insensitive operators generically have an efficient computer
implementation provided by the boundary construction
itself.
To formulate this, recall again that the operator OxðUÞ is

defined via a sequence of triples ðLx
L; SL;Ox;LÞ, and is

assumed to be computable in this section. This guarantees
the existence of a program P that, given fL=a;Ug, outputs
Ox;L to arbitrary accuracy. For simplicity, it is understood
that the corresponding error is arranged to be much smaller
than any other accuracy measure in the problem. In that
sense

PfL=a;Ug ¼ Ox;LðUÞ: ð34Þ

Note that we deal with a lattice situation and a is not
essential: with eventual continuum considerations in mind,
we just choose to denote the parameter encoding the size
of input field U as L=a. Let CðP; L=a;UÞ be the cost of
running PfL=a;Ug measured in required number of
arithmetic operations.11 The average cost function for Ox
in realization P is then

CPðL=aÞ≡ hCðP; L=a;UÞiSL : ð35Þ

10This, in fact, is one of the universal ways to define the
approximant in covariant form.

11Measuring cost in arithmetic operations rather than elemen-
tary bit operations avoids dealing with cost issues stemming from
bit size of reals. Thus, the cost of a × b is one in the former, but
diverges at least as log 1=δ, due to increasing bit size of
representing real a, b so that precision δ in a × b is achieved.
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At the same time, the cost function of boundary approx-
imant Ol

x of Eq. (30) is

C0Pðl=aÞ≡ hCðP;l=a;UlÞiS0l : ð36Þ

Here S0lðUlÞ specifies the probability of fields Ul on Lx
l,

arising when distribution of U on Lx
L [given by SLðUÞ] is

marginalized via the U → Ul restriction.12 Thus, when
replacing the operator with its boundary approximant, the
cost of evaluating it via P changes as

Ox → Ol
x∶ CPðL=aÞ → C0Pðl=aÞ: ð37Þ

The situation is obviously analogous in case of hyper-
cubic boundary approximants, except that l → lðrÞ, and
the action S0lðrÞ ¼ S0lðrÞðUx;rÞ generally involves further

marginalization due to the fixing of “boundary” fUbg. If
Ox is boundary insensitive, there exists hypercubic approx-
imantOr

x and κ > 1, E > 0 for which the bound (20) holds,
and has p → 1 limit with finite R0 and ρ0ðκ; EÞ. The bound
makes it possible to use the above default program P for
computing OxðUÞ to arbitrary preset relative precision ϵ ¼
δ=h∥Ox∥i without invoking the full volume. Indeed, it
provides the minimal r ¼ Rϵ for which Or

xðUÞ is guaran-
teed to produce error smaller than ϵ, and we just feed P the
input parameters lðRϵÞ and Uh

lðRϵÞ. This running comes at
the average computational cost

CP

�
L
a

�
→ CϵP ≡ C0P

�
lðRϵÞ
a

�
;

Rϵ ¼ ρ0 þmax

�
0; κR0 log

E
ϵ

�
: ð38Þ

Note that Rϵ ¼ ρ0ðκ; EÞ for all ϵ > E. In other words, Oρ0
x

is the “leading approximation,” with logarithmic depend-
ence setting in for ϵ ≤ E. There are several points to
highlight.
(1) Formula (38) is universal in that it applies to

arbitrary setup as described in Appendix D. Indeed,
various situations only differ by the precise form of
function lðrÞ.

(2) Using the boundary approximant in the above
manner turns computation whose cost normally
strongly depends on volume [lhs of (38)] into one
that involves a fixed-size input for given desired
precision ϵ, and is in that sense volume indepen-
dent.13 Importantly, this constant cost only depends
logarithmically on ϵ.

(3) Note that the formula (38) does not assume
anything about the nature of program P. Indeed,
starting from any valid P, however inefficient,
results in a volume-independent computation at
fixed precision.

(4) It is clear that the cost functions CPðsÞ and C0PðsÞ are
not identical.14 However, their asymptotic behaviors
(s → ∞) are expected to be of the same type, with
cost driven mainly by the number of field variables
(input size) that have to be handled by the program
as their abundance grows unbounded. Thus, if CPðsÞ
grows exponentially or as a power, C0PðsÞ generically
grows in the same qualitative manner. Nevertheless,
the introduction of boundary may affect the evalu-
ation to the extent that the two cost functions are
not simply asymptotically proportional. Taking the

FIG. 3. The lattice arrangement of gauge links for fixed “large” lattice Lx
L (L ¼ 6) and its “small” sublattice Lx

l (l ¼ 3, r ¼ 1) in case
of open boundary conditions (left) and periodic boundary conditions in all directions (right).

12Thus, S0l and C0P also weakly depend on L which can be
thought of as already taken to infinity in (36).

13Note that it is implicitly understood here, as is in (38), that
L is sufficiently large (L ≫ Rϵ) so that finite-L correction to C0P
is negligible for ϵ in question.

14They are identical if CðP; L=a;UÞ is U independent, which
is usually the case for ultralocal operators.
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relevant case of power growth as an example, we can
have15

CPðsÞ ∼ sdþα C0PðsÞ ∼ sdþα0 s → ∞ ð39Þ

with possibly unequal α, α0. For all standard ways of
taking the infinite volume in zero-temperature calcu-
lations, function lðrÞ is linear in r. For example,
lðrÞ ¼ 2rþ a for maximally symmetric case (see
Eq. (31). With that, we have the asymptotic reduction

�
L
a

�
dþα

→
ϵ→0

�
lðRϵÞ
a

�
dþα0

∼
�
R0

a
log

E
ϵ

�
dþα0

;

α; α0 ≥ −d

which is a generalized version of (3) in the relative
error form. Note that α ¼ α0 ¼ −d for ultralocal
operator since the cost is constant, and one generically
expects α ≥ 0 for nonultralocal operator coupled to all
field variables, such as Dx;xðUÞ of overlap Dirac
matrix.

(6) If the choice of input for program P was based on
parameters at given statistical cutoff p, i.e. R0ðpÞ,
ρ0ðκ; E; pÞ, the result of any particular run would be
good to relative precision ϵ with probability at least
p. This in itself is a powerful advantage of even
weakly insensitive nonultralocal operators, where p
can be set arbitrarily close to unity.

IV. OVERLAP-BASED GAUGE OPERATORS

In what follows, we apply the framework developed in
Secs. II and III to study boundary insensitivity and locality
properties of the operator

OxðUÞ≡Dx;xðUÞ −DF
x;x ð40Þ

whereDðUÞ is the overlap color-spin matrix andDF its free
subtraction (Uy;μ → 1). Its relevance is that useful operators
of practical interest such as topological density qðxÞ, scalar
gauge density sðxÞ and field-strength tensor FμνðxÞ are
based on it, namely

qðxÞ ∝ Trγ5Ox sðxÞ ∝ TrOx FμνðxÞ ∝ TrsσμνOx

ð41Þ

where Trs denotes the trace over spin indices only. Note
that the free subtraction in Ox is consequential for scalar
density but not for the other two operators.
It should be remarked here that the obvious role of the

above OxðUÞ as a master construct in definitions (41) is
further underlined by the fact that its potential insensitivity

at fixed p and a descends onto these derived operators of
interest. This can be seen from the fact that the Frobenius
matrix norm ∥M∥2 ≡ TrðMþMÞ, which we will use to
quantify the differences of matrix-valued operators and
define the error functions δðr; pÞ, is submultiplicative, i.e.
∥M1M2∥ ≤ ∥M1∥∥M2∥. Thus, the requisite exponential
bounds for OxðUÞ can be used to produce the associated
(albeit nonoptimal) bounds for derived operators.
Nevertheless, the concrete behavior of optimal bounds
for individual operators is of practical interest since their
precise form guides the efficient evaluation of these
operators. In particular, the threshold distances ρ0 could
vary appreciably among them.

A. The setup

For our numerical work, we use the symmetric L4 lattice
geometry adopted as a template for the general discussion
of Secs. II and III. The insensitivity and locality of the
above overlap-based gauge operators will be studied with
respect to pure-glue SU(3) theory with Wilson gauge
action, and periodic boundary conditions for gauge fields
in all directions.
The overlap Dirac operator in (40) is based on theWilson-

Dirac kernel and the parameter ρ ∈ ð0; 2Þ, specifying its
negative mass, set to ρ ¼ 1.368 (κ ¼ 0.19). Definition of the
operator is given in Appendix E. Standard boundary con-
ditions for quarks, i.e. periodic in “space” and antiperiodic in
“time,” are used although there is no fundamental preference
in that regard. In fact, when the sole purpose of utilizing the
overlap is to define gauge operators, onemay opt for periodic
boundaries in all directions to maximize hypercubic sym-
metries. The resulting Dx;xðUÞ is gauge covariant and
periodic in all directions.
With regard to the computational realization of the

overlap, we follow the MinMax polynomial approach of
Ref. [14] in a specific implementation discussed in
Ref. [15]. Using deflation as needed, we explicitly ensured
that the accuracy in evaluation of the overlap is always
significantly better than any quoted error of a boundary
approximant.16 In other words, in what follows, Eq. (34)
can be assumed to be valid without further qualifications.17

To study the insensitivity and locality properties of the
above operators, we generated three ensembles ofL=a ¼ 24
configurations at β ¼ 6.0, 6.2, 6.4. This corresponds to
nominal lattice spacings of a ¼ 0.093, 0.068, 0.051 fm
respectively, based on r0 ¼ 0.5 fm. While the finest
(β ¼ 6.4) lattice system is clearly quite squeezed in physical

15Here “∼” stands for “asymptotically proportional.”

16Note that the overlap evaluations on original lattice of size
L=a and on hypercubic subsystems of size r=a are independent
computations using their own polynomial approximations and
deflations as appropriate.

17Rigorous treatment would require specifying the behavior of
the program for backgrounds with exact zero modes of
HW ¼ γ5DW . Given that this occurs on a fixed subset of measure
zero, it is not consequential.
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terms, this is of little consequence for the current study.
Indeed, as the discussion later in this paper reveals, the finite-
volume effects on observables of our interest are negligible.
As expected on general grounds, the default hypercubic

boundary approximant Or
x (covariant one) is well defined,

and can be computed straightforwardly by running the
program designed to evaluate Ox on input that corresponds
to the boundary subsystem. For 20 configurations from
each of the above ensembles, we computedOx as well as its
approximants Or

x for all possible distances r, at 16 points
evenly distributed on the lattice. Note that this calculation
produces estimates for all derived operators (41).
To obtain a preliminary assessment of boundary approx-

imants, we plot in Fig. 4 the dependence of error δ on
hypercubic radius r at three randomly chosen points x in a
given β ¼ 6.0 configuration. As can be seen quite clearly, a
straightforward exponential-like decay takes place even on
an individual point basis. The behavior is least orderly in
case of pseudoscalar density (bottom right), but the overall
trend is quite unmistakable in that case as well. A
systematic investigation using statistical regularization is
thus warranted.

B. Finite volume

As emphasized in Sec. II (see Definition 1), exponential
insensitivity is an infinite-volume concept. In particular, the
property depends on the behavior of statistically regular-
ized error function in asymptotically large volumes, i.e.
δðr; pÞ ¼ limL→∞δðr; p; LÞ. However, in practice, we are
bound to infer the exponential behavior from a sequence of
finite, and usually limited volumes. To ensure that such
estimates are reliable, it needs to be checked that δðr; p; LÞ
is insensitive to L over the range of distances r used in such
calculations.
To examine this issue, we supplemented the β ¼ 6.0

ensemble at L=a ¼ 24 with one at L=a ¼ 16. Notice that,
since lðrÞ ¼ 2rþ a, the maximal hypercubic radius for
given L=a is rm=a ¼ floorðL=2aÞ, i.e. rm ¼ 11a and rm ¼
7a correspondingly. In Fig. 5 we compare the results on the
two volumes for Ox and the pseudoscalar density at
p ¼ 0.95. The behavior for other operators is completely
analogous. It is quite obvious that we have an excellent
agreement over the range of common radii. Close to r ¼ rm
one expects some edge effects in principle and, to avoid the
possibility of such contamination, we only extract the

FIG. 4. The behavior of δðrÞ for covariant boundary approximant at three randomly chosen individual points at β ¼ 6.0.

FIG. 5. The volume comparison at p ¼ 0.95 for Ox (left) and Trγ5Ox (right).
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parameters of exponential behavior from distances up to
r ¼ rm − a in what follows.

C. Insensitivity and weak locality

The results of the volume study show that error
functions of hypercubic boundary approximants at p ¼
0.95 are exponentially boundable. Recalling the more
complete results of Fig. 2, including other operators and
the range of cutoffs p, it is quite obvious that overlap-
based gauge operators are insensitive at any fixed p < 1.
Thus, within the classification of Sec. II, they are weakly
insensitive lattice operators at the ultraviolet cutoff in
question (β ¼ 6.0). Results completely analogous to those
of Fig. 2 were found also for the other two ensembles
representing finer lattices. The question then arises
whether continuum operators Oc

x defined by their over-
lap-based constructions are themselves weakly insensitive
or insensitive. This requires demonstrating the insensitivity
of Oc

x at any fixed p (see Definition 3).
To undertake this, the relative error data has to be

characterized in terms of the corresponding bound param-
eters, as described in Sec. II E. In particular, we need to
monitor the scales R0ðp; aÞ and ρ0ðκ; E; p; aÞ associated
with ϵðr; p; aÞ [see Eq. (26)] at arbitrary but fixed κ > 1
and E > 0. As seen from the representative data shown
already, R0ðp; aÞ can be estimated by simply fitting the
measured error functions to exponentials at large distances.
In what follows, we extract these effective ranges using the
three largest radii smaller than rm. Our analysis of the
available data does not support the presence of unbounded
modulation in asymptotically exponential decays of ϵðrÞ.
Consequently we can, and always do, determine ρ0 at

κ ¼ 1. While the threshold error E can be set to arbitrary
positive value, we use E ¼ 10−3 here, i.e. the absolute
error at ρ0 is one part in a thousand of the average
operator magnitude. The associated bound then describes
the errors for r > ρ0 quite faithfully and can be used to
predict the needed hypercubic radii in practical calcula-
tions. The situation for all operators of interest at statistical
cutoff p ¼ 0.95 is shown in Fig. 6.
We are now equipped to examine the removal of

ultraviolet cutoff at fixed p. Figure 7 conveys the relevant
data for Ox and topological density. In particular, the top
row shows ϵðr; p ¼ 0.95Þ as a function of physical
distance at all three ultraviolet cutoffs. The effect of
gauge fields beyond fixed distance r clearly decays very
rapidly and there is thus no doubt that the parameters of
the corresponding exponential bounds R0ðp ¼ 0.95; aÞ
and ρ0ðp ¼ 0.95; aÞ are decreasing functions of a, and
can only have finite continuum limits Rc

0ðp ¼ 0.95Þ,
ρc0ðp ¼ 0.95Þ. This behavior is readily present at all
cutoffs p accessible by our statistics, and we conclude
that the corresponding continuum operators are weakly
insensitive.
Making more restrictive conclusions about insensitivity,

or assessing locality, requires cutof monitoring of the
bound parameters. The bottom row of Fig. 7 shows their
dependence on ultraviolet cutoff. With constant fits for
R0=a and linear fits for ρ0=a added to guide the eye, our
data conveys quite clearly that finite extrapolations in
lattice units exist in both cases. This behavior is generic
in p and we conclude that

R0ðp; aÞ ∝ a ρ0ðp; aÞ ∝ a; ∀p < 1 ð42Þ

FIG. 6. The behavior of ϵðrÞ for covariant boundary approximant at p ¼ 0.95 and β ¼ 6.0. The optimal exponential bounds are shown
at κ ¼ 1 and E ¼ 10−3, indicating the thresholds.
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for all operators in question. It follows that Rc
0ðpÞ and

ρc0ðpÞ are zero, which in turn implies that their p → 1 limits
Rc
0 and ρc0 vanish as well. In other words, the continuum

gauge operators based on the overlap are exponentially
insensitive to distant fields (Definition 4) and weakly local
(Definition 6).

D. Strong insensitivity and locality

In the formalism we adopted, weak insensitivity of
defining lattice operators (sufficiently close to the con-
tinuum limit) constitutes a necessary precursor to insensi-
tivity and weak locality in the continuum. Indeed, these
concepts feature the order limp→1lima→0 in the removal of
cutoffs. As discussed in the previous section, our analysis
indicates that both of these properties in fact materialize in
the overlap-based gauge operators.
In a similar manner, insensitivity of lattice operators

(Definition 2) is a necessary precursor to continuum
notions of strong insensitivity and locality, since the reverse
order lima→0limp→1 of taking limits applies. Note that
establishing strict lattice insensitivity can be a demanding
task. Indeed, here the question whether potential outliers of
a given bound form a set of measure zero enters most
directly, and it is thus crucial that the statistics be sufficient
to capture the nature of parameter behavior in the vicinity
of p ¼ 1.
While our statistics is rather limited in this regard, the

look at the available data is revealing. In Fig. 8 we show the
p dependence of R0 and ρ0 in lattice units at β ¼ 6.0 forOx
and topological density. First, one should realize that it
follows from definitions of both R0 and ρ0 that they are
nondecreasing functions of p. In case of R0 we only

observe an extremely mild trend in this regard, well
described by the linear behavior fitted to guide the eye.
The situation is similar for ρ0, albeit the rise in case of
topological density is visibly steeper than for Ox.
Assuming that the observed trends do not change dra-

matically closer to p ¼ 1, the above would suggest that
finite p → 1 limits of parameters exists and, consequently,
that the overlap-based gauge operators are exponentially
insensitive at the lattice level. With that, the issues of strong
insensitivity/locality in the continuum would become well
posed, and the corresponding tendencies to obtain R0 and ρ0
in lattice units shown in Fig. 9 (top) for topological density.
Finite extrapolations to continuum limit are then readily
concluded from the data, implying both of the above
continuum properties.
However, the assumption about the behavior closer to

p → 1 does need to be scrutinized. Indeed, our statistics
allows for reliable extraction of bound parameters up to
p ¼ 0.95, but the fluctuations in error do become some-
what larger for the “outliers”. Indeed, in Fig. 9 (bottom,
left) we show the p → 1 extrapolated bound at β ¼ 6.0
together with actual samples of approximation differences.
While the bound at p ¼ 0.95 would leave out 16 outliers at
each r=a, the extrapolated bound still leaves out about 4 on
average, almost certainly pushing a small residual proba-
bility outside its reach. This suggests that the behavior of
bound parameters is somewhat modified in the immediate
vicinity of p ¼ 1 at β ¼ 6.0, and significantly larger
statistics needs to be invoked to extrapolate reliably.
Nevertheless, even with the current data, one can make

the existence of p-independent bound sufficiently close to
the continuum limit quite plausible. Indeed, if R0ða0Þ,
ρ0ða0Þ are the p → 1 extrapolated bound parameters at

FIG. 7. The behavior of ϵðr; p ¼ 0.95Þ at different ultraviolet cutoffs (top) and the lattice spacing dependence of exponential bound
parameters (bottom). Discussion is in the text.
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lattice spacing a0, let RðaÞ ¼ aR0ða0Þ=a0 and ρðaÞ ¼
aρ0ða0Þ=a0 be the parameters of a (nonoptimal) bound
at lattice spacing a < a0. Thus, in lattice units, this bound is
the same for all a ≤ a0. Due to the observed decreasing
trend of ρ0ðaÞ=a for a → 0 (top right in Fig. 9) such bound
may become p independent sufficiently close to the
continuum limit. Associating a0 with β ¼ 6.0 ensemble,
in Fig. 9 (bottom, right) we show the relation of errors at
β ¼ 6.4 to this bound and, indeed, there are no violations at
our level of statistics. Needless to say though, the issue of

strong insensitivity and locality in overlap-based con-
tinuum operators needs to be resolved via a direct extensive
calculation.

V. APPLICATION: TOPOLOGICAL STRUCTURE
IN QCD VACUUM

The computational aspect of insensitivity considerations
becomes relevant in practice when the problem at hand
significantly benefits from the use of nonultralocal

FIG. 9. Top: Continuum extrapolation to determine R̄0=a and ρ̄0=a (topological density). Bottom: p → 1 bound at β ¼ 6.0 (left)
and the same bound with data at β ¼ 6.4 (right).

FIG. 8. The p dependence of exponential bound parameters for Ox (left column) and qðxÞ (right column) at β ¼ 6.0. See the
discussion in the text.
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operators. One example is the study of QCD vacuum
structure via overlap-based topological charge density qðxÞ.
This stems from the fact that qðxÞ is topological, i.e. stable
under deformations of the gauge field, directly on the
lattice. Indeed, this property was instrumental in finding
that, when fluctuations at all scales are included, topologi-
cal charge in QCD organizes into low-dimensional global
structure of space-filling type [12]. The structure takes the
form of a double sheet formed by topological densities of
opposite sign, and is inherently global [16]. In particular,
this space-spanning object cannot be broken into individual
pieces without severely affecting topological susceptibility.
Computational issue hampering extensive investigations

of the above type is that, since qðxÞ needs to be evaluated
on entire lattices, the use of standard overlap implementa-
tions leads to costs that scale at least as V2. As we argued
extensively, utilizing hypercubic boundary approximants
effectively turns this into a generic V problem with prefactor
depending only logarithmically on the desired precision.One
should realize in this regard that, while boundary insensi-
tivity guarantees eventual fast convergence in the radius of
the approximant, the sufficiency criteria for this radius are
problem specific. For example, if the goal were to reliably
determine the space-time structure in the sign of topological
charge (see Ref. [17]), then the relevant criterion would be a
sufficiently low rate of sign violations in the approximant. In
Fig. 10 (left) we show such data for ensemble at β ¼ 6.0.
Within the available statistics, no violations are observed
already at r ¼ 3a. More quantitatively, the rate of violation
can be estimated to be significantly better than 1% at r ¼ 3a,
and is likely negligible for all practical purposes at r ¼ 4a,
providing for a safe choice to fix when working at arbitrarily
large volume.
If the goal is to gain more detailed information on the

topological structure, we can use the values of bound
parameters at various statistical cutoffs p to obtain needed
estimates. Alternatively, one can again examine the criterion
in question as a function of hypercubic radius r in a
preliminary study. In the context of topological charge, a

suitable generic requirement is that its global integer value be
reproduced to a prescribed accuracy in the approximation. To
gain some quantitative feel on this and other aspects, we have
computed configurations of topological charge at various
couplings in pure-glue lattice gauge theory with Iwasaki
gauge action.While the analysis of these results will be given
elsewhere, here we point out that these computations for 244

system at a ¼ 0.055 fm yield the typical absolute error of
10−3 for global charge using r ¼ 5a boundary approximant.
The situation is quantitatively similar for 324 system at a ¼
0.041 fm (same physical volume) using r ¼ 6a approxim-
ant. The typical profile of topological structure on 2D slice of
space-time is shown in Fig. 10 (right). The properties of the
structure conform to those concluded in Ref. [12].

VI. SUMMARY AND CONCLUSIONS

Locality is an important ingredient and guiding
principle in describing natural phenomena via quantum
fields. In this paper we reexamined this notion in the
context of Euclidean field theories, such as Euclidean
QCD, with quantum continuum dynamics defined via
lattice-regularized path integral. While the approach is
entirely general with respect to the fundamental field
content, our discussion was carried out for operators
composed of gauge fields. This is partially motivated by
the fact that locality properties for useful nonultralocal
gauge operators have not been previously studied.
Locality is a strictly continuum notion: it is a property of

continuum object Oc
xðAÞ, operationally defined via certain

latticeOxðUÞ in the limiting process of driving the theory to
the continuum limit.18 However, there is a more general
concept, meaningful already on the lattice, that ushers
locality into the continuum as its special case. Indeed,
universality arguments suggest that such lattice precursor of

FIG. 10. Left: The rate of correct sign when approximating topological density by covariant boundary approximant at β ¼ 6.0. Right:
Typical 2D slice through global topological structure on 324 system, computed via boundary approximant with r ¼ 6a.

18Note that any lattice operator that is not point-like already
extends over finite physical distance at finite lattice spacing, thus
violating the physical meaning of locality.
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locality is the exponentially weak dependence ofOxðUÞ on
fields residing sufficiently far from x. One of the main
results in this paper is a novel formulation of this expo-
nential insensitivity to distant fields.
Our approach to insensitivity is information-like in that it

probes how well is it possible to knowOxðUÞwhenU itself
is only known in the neighborhood of x with radius r, i.e.
when only the patch Ux;r ⊂ U of the gauge field is
accessible. This can be quantified by the accuracy achiev-
able by the approximants OxðUÞ → Or

xðUÞ ¼ Or
xðUx;rÞ

enforcing this restriction. Exponential insensitivity to
distant fields is then the ability to construct the sequence
Or

x whose accuracy can be bounded by a decaying
exponential in r.
Making this idea precise requires us to specify the

measure for “accuracy” of a given approximant, with
subtlety being that there is, in fact, a distribution of errors
generated by the underlying path-integral distribution of
gauge fields for the theory in question. To have a tunable
control over the scope of these deviations, and to accom-
modate cases where violations of exponential bound form a
probabilistic set of measure zero, we introduce the pro-
cedure of statistical regularization. Here boundability
relates to the fraction p of the path integral population
with smallest errors, which amounts to the concept of least
upper bound with probability p. At every statistical cutoff
p, the problem of exponential boundability is well posed,
and the general framework describing degrees of exponen-
tial insensitivity in the process of statistical (p → 1) and
ultraviolet (a → 0) cutoff removals ensues. Locality, then,
is simply associated with vanishing of scales describing the
cutoff-removed bounds.
Classification of composite operators by degree of

exponential insensitivity can in principle proceed by
examining the properties of their optimal approximant
[13]. However, in the realm of computable operators, the
evaluation of this Or;op

x ðUx;rÞ is much more expensive than
that of OxðUÞ alone, except for simple ultralocal cases. At
the same time, constructing any approximant with required
properties demonstrates insensitivity. This motivates our
proposal to consider boundary approximants, wherein the
value Ox;LðUÞ on the large system of size L, is replaced by
the value Ox;2rþaðUx;rÞ on the small system spanned by the
hypercubic field patch alone. Such approximant probes
insensitivity to distant fields by inserting an artificial
boundary distance r away from x, giving rise to a somewhat
stronger, but physically well-motivated notion of boundary
insensitivity and boundary locality.
Determining boundary insensitivity is a straightforward

task for any computable OxðUÞ. Moreover, if there is a
program evaluating Ox;LðUÞ with polynomial complexity
in L=a (typical case), then the property of boundary
insensitivity makes it possible for Ox;LðUÞ to be computed
efficiently. Indeed, running the same program on input
corresponding to boundary subsystem affording the desired

accuracy ϵ, results in volume-independent computation
whose cost only grows as a power of log 1=ϵ. This
connection between efficient computation and exponential
insensitivity/locality is one of the main conceptual points
emphasized in this paper. Its full scope and ramifications
will be explored elsewhere.
(1) The boundary insensitivity analysis was applied to

gauge operators based on the overlap Dirac matrix,
such as topological charge density or field-strength
tensor. Apart from illustrating the general scheme,
our goal was to examine locality properties of these
useful nonultralocal operators on realistic equilib-
rium backgrounds. Invoking the hierarchy devel-
oped here, our results clearly indicate that these
operators are weakly insensitive at the lattice level,
and weakly local in the continuum. Quantitative
evidence has also been presented favoring insensi-
tivity on the lattice, and locality in the continuum.
However, putting these latter findings on a firm
ground requires more extensive simulations to be
performed. Overall, our analysis shows that there is
little doubt that these operators follow the universal
behavior in the continuum.

(2) Important practical outcome of our numerical ex-
periments with boundary approximants is that their
power of exponential improvement in estimating
OxðUÞ pans out already at small values of hyper-
cubic radii. Our experience with overlap-based
topological density in particular, suggests that using
this technique makes extensive vacuum structure
studies with such complicated operator no longer
computationally prohibitive.

(3) For fixed r=a, the approximant Or
x, facilitating the

insensitivity of Ox, is simply an ultralocal lattice
operator that could be interesting in its own right. In
case of gauge operators studied here, the covariant
form of boundary Or

x (default choice) inherits all
potential symmetries of Ox, making it a particularly
attractive choice for standalone use.

(4) The exponential insensitivity framework can be
viewed as a tool to classify all lattice-defined
continuum operators Oc

x in terms of their reach.
This is quantified by the characteristic length scales
introduced, such as the range Rc

0 and threshold ρc0.
We expect such description to be useful for defining
nonlocal operators at fixed scale.
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APPENDIX A: REGULARITY OF THE
APPROXIMATION

The notion of exponential insensitivity aims at capturing
the exponential (in distance) control over values of the
composite operator. Such concept would be unsatisfactory
if it admitted cases wherein the zero-measure sample set of
violations contributed finitely to the statistics of Ox. To
prevent such singular behaviors from being considered
insensitive, we formulate here the corresponding require-
ment of regularity.
Strictly speaking, regularity needs to be examined in

conjunction with any statistical inference wherein Ox is
replaced by its approximant Or

x. Relevant situations may
also involve arbitrary other operators but, as a defining
property, it relates toOx itself. Thus, in addition to the error
function δðr; p; aÞ, function Aðr; p; aÞ is defined as a
contribution to mean magnitude of Ox due to samples
whose error is larger than δðr; p; aÞ, i.e. due to “violations”
at statistical cutoff p. If Aðr; p; aÞ is the portion governed
by cutoff p, then

h∥Ox∥ia ¼ Aðr; p; aÞ þAðr; p; aÞ: ðA1Þ

In the sameway, letAapðr; p; aÞ be the part of h∥Or
x∥ia due

to violations. Approximation Or
x of lattice operator Ox at

fixed ultraviolet cutoff a is regular if there exists r0 such
that

lim
p→1

Aðr; p; aÞ ¼ 0 lim
p→1

Aapðr; p; aÞ ¼ 0; ∀r ≥ r0:

ðA2Þ

While the first condition ensures that excluding the zero-
measure set of violations does not lead to finite distortion,
the second one ascertains that replacing it with zero-
measure set of approximants does not do that either.
Regularity of the approximation is required for lattice
operator Ox to be weakly insensitive.
Additional care needs to be taken when examining

exponential insensitivity in the continuum (Definition 4).
Here a → 0 limit is taken at fixed p first, which may lead to
a finite influence in subsequent p → 1 limit even when
lattice operator is regularly approximated at any a.
Moreover, the contribution of outliers has to be considered
relative to a-dependent average magnitude. In particular,
the continuum regularity condition reads

lim
p→1

lim
a→0

Aðr; p; aÞ
h∥Ox∥ia

¼ lim
p→1

lim
a→0

Aapðr; p; aÞ
h∥Ox∥ia

¼ 0; ∀r ≥ r0:

ðA3Þ

It is worth noting that, while lattice regularity (A2) is
automatically satisfied for bounded pair Ox and Or

x, lattice
boundedness at any a does not necessarily guarantee (A3).

APPENDIX B: PARAMETRIC FREEDOM IN
STATISTICAL CUTOFF REMOVAL

This appendix elaborates on point (i) of discussion in
Sec. II D. In particular, we first aim to show that if
ρ0ðκ; EÞ < ∞, then ρ0ðκ; E0Þ < ∞ for all E0 > 0. More
explicitly

lim
p→1

ρ0ðκ; E; pÞ < ∞ ⇒ lim
p→1

ρ0ðκ; E0; pÞ < ∞; ∀E0 > 0:

ðB1Þ

Before proceeding, it is useful to summarize the monot-
onicity properties of ρ0ðκ; E; pÞ. From Eqs. (10), (12), (13),
(19) it follows that ρ0ðκ; E; pÞ is decreasing in E and
nonincreasing in κ. Moreover, since δðr; pÞ is nondecreas-
ing in p, so is Δ0ðR; ρ; pÞ, and consequently ρ0ðκ; E; pÞ.
To show (B1), first assume that E0 > E, implying that

ρ0ðκ; E0; pÞ < ρ0ðκ; E; pÞ, ∀p < 1. Given that ρ0 is non-
decreasing in p, the existence of p → 1 limit on the right
side of this inequality implies the existence of the limit on
the left side, as claimed by (B1). To include the case E0 < E,
first note that ρ0ðκ; E; pÞ is a solution of the equation

Δ0ðR; ρ0; pÞ≡ BðR; ρ0; pÞ exp
�
−
ρ0
R

�
¼ Eh∥Ox∥i

with R ¼ κR0ðpÞ: ðB2Þ

Combining this with the analogous equation for E0 and
taking into account that function BðR; ρ0; pÞ is nonincreas-
ing in ρ0 while ρ0 is itself decreasing in E, we obtain the
inequality

ρ0ðκ; E0; pÞ ≤ ρ0ðκ; E; pÞ þ κR0ðpÞ log
E
E0 ; E0 < E:

ðB3Þ

Since ρ0 is nondecreasing in p, and a finite p → 1 limit on
the right side of this inequality exists, the finite limit also
exists on the left side, demonstrating (B1).
The second claim we aim to substantiate here is that

ρ0ðκ; EÞ < ∞ implies ρ0ðκ0; EÞ < ∞ for κ0 > κ, but not for
1 < κ0 < κ. The former follows from monotonicity proper-
ties of ρ0 in a manner analogous to that discussed in case of
E. To show the latter, it suffices to construct a possible
δðr; pÞ that exemplifies the corresponding behavior. One
option is

δðr; pÞ ¼ Taylor

�
exp

�
r

2R1

�
; floor

�
1

1 − p

��
exp

�
−

r
R1

�

ðB4Þ

where R1 is a constant and TaylorðfðxÞ; nÞ the Taylor
series of fðxÞ around x ¼ 0 up to nth order. Clearly,
limp→1R0ðpÞ ¼ limp→1R1 ¼ R1 and, due to the chosen
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p deformation of the prefactor, finite ρ0ðκ; EÞ is only
obtained via κR0ðpÞ ≥ 2R1, i.e. with κ ≥ 2.

APPENDIX C: MORE ON THE ULTRAVIOLET
CUTOFF REMOVAL

Here we elaborate on the most general form of
Definition 3, specifying exponential insensitivity at fixed
p in the continuum, i.e. on the procedure of ultraviolet
cutoff removal. This generalization requires the existence
of Or

x, a0 > 0, κ > 1 and E > 0 such that

supfR0ðp; aÞj0 < a < a0g < ∞

supfρ0ðκ; E; p; aÞj0 < a < a0g < ∞: ðC1Þ

Clearly, when OxðUÞ satisfies Definition 3 at given p, it
also satisfies the above, but not vice versa. Indeed, it is
possible to construct functions satisfying bounds (C1), for
which a → 0 limits (22) do not exist. While such a
dependences are not likely to occur for operators of
practical interest, specifying a complete framework for
characterizing exponential insensitivity to distant fields is
clearly of conceptual interest at the very least.
The question that remains to be answered in this regard is

how to assign the continuum effective range and the
threshold distance to operator-approximant combinations
that behave in such nonstandard way. Indeed, in cases
covered by Definition 3, these are the scales Rc

0ðpÞ and
ρ0ðκ; E; pÞ specified by the limiting procedure which is ill
defined in this situation. For the appropriate generalization,
we denote the bounds (suprema) of (C1) as Rbðp; a0Þ and
ρbðκ; E; p; a0Þ respectively, and define

Rc
bðpÞ≡ lim

a0→0
Rbðp; a0Þ

ρcbðκ; E; pÞ≡ lim
a0→0

ρbðκ; E; p; a0Þ: ðC2Þ

Note that, since Rbðp; a0Þ and ρbðκ; E; p; a0Þ are non-
decreasing in a0, the existence of these limits is guaranteed
by (C1). Clearly, the meaning of these characteristics is that
they specify the optimal exponential bounds (20) in the
continuum.
Finally, we point out that the finiteness of ρcbðκ; E; pÞ

implies finiteness of ρcbðκ0; E0; pÞ for all E0 > 0 and κ0 ≥ κ.
The proof involves a straightforward modification of steps
followed in Appendix B to the generalized situation
described here.

APPENDIX D: THE GENERAL CASE

This appendix describes exponential insensitivity to
distant fields (and its boundary counterpart) of nonultra-
local composite fieldsOxðUÞ in general lattice setting. Here
the position variables xμ ¼ anμ label sites of an infinite
hypercubic lattice H∞ in d dimensions, Eq. (5). Since

nonultralocality involves arbitrarily large lattice distances,
the notion of “infinite volume” is implicitly present, with
x ∈ L∞ ⊂ H∞ denoting a connected subset of points
comprising this infinite system. Note that L∞ can involve
arbitrary boundaries. For example, one could be interested
in Ox defined at some point x ∈ L∞ ¼ fyjyμ ≥ 0; ∀μg.
The definition of Ox on L∞ proceeds via infrared

regularization. The procedure specifies sequence of nested
finite lattices (finite connected sets of points) Lx

k

x ∈ Lx
1 ⊂ Lx

2 ⊂ Lx
3… ⊂ L∞ ðD1Þ

such that every point in L∞ also belongs to Lx
k for

sufficiently large values of k, i.e. L∞ is the “infinite-
volume limit” of Lx

k. For every k there is an action Sk ¼
SkðUÞ defining a theory on Lx

k, and thus probability
distribution for the associated gauge fields, as well as
the prescription Ox;k ¼ Ox;kðUÞ for the operator in ques-
tion. Here “theory” is any model where Sk is guaranteed to
depend on all link variables connecting a pair of nearest
neighbors fromLx

k, and to not depend on link variables with
both endpoints outside Lx

k. Operator Ox;k depends on the
same set of variables at most. If Nk is the number of lattice
points inLx

k, the effective length scale Lk and the associated
discrete variables L and l are specified by

Lk ≡ aðNkÞ1=d L;l ∈ fLkjk ¼ 1; 2;…g: ðD2Þ

The defining sequence ðLx
k; Sk; Ox;kÞ can then be equiv-

alently written e.g. as ðLx
L; SL;Ox;LÞ.

1. Exponential insensitivity to distant fields

The finite-volume setup for studying exponential insen-
sitivity involves fixing L, which is treated as large, and
examining possible approximations Or

xðUÞ of OxðUÞ≡
Ox;LðUÞ, that only involve gauge fields Ux;r within
increasing hypercubic distance r away from x. In this
general case, the collection of link variables Uy;μ included
in Ux;r is defined as

Ux;r ≡ fUy;μjy; yþ μ̂ ∈ Lx
L ∩ Hx;rg ðD3Þ

i.e. Ux;r does not include any links that “dangle” with
respect to Lx

L ∩ Hx;r. Note that even though L is fixed,Ux;r

is formally defined for arbitrarily large r, and Ux;r ⊆ U for
any r.
With the above specifics in place, one can now proceed

to investigate exponential insensitivity as described in
Sec. II. In other words, for any approximant Or

xðUÞ ¼
Or

xðUx;rÞ one can compute statistically regularized error
function δðr; p; LÞ and its infinite-volume limit δðr; pÞ.
Various degrees of exponential insensitivity are then
uniquely defined depending on the existence of an approx-
imant with required exponential behaviors.
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2. Boundary approximants

As an intermediate step toward boundary insensitivity to
distant fields, we first construct specific computable
approximants of OxðUÞ that are interesting in their own
right. Given a configuration U ≡UL on Lx

L, a sequence of
nested configurations

UL1
⊂ UL2

⊂ …Ul… ⊂ U ðD4Þ

is defined by restricting U to a valid field Ul on Lx
l, i.e.

l < L. Note that a precise link content of Ul depends not
only on Lx

l but also on boundary conditions used in
specifying Sl. This setup provides for a sequence of
boundary approximants

OxðUÞ → Ol
xðUÞ≡Ox;lðUlÞ; l < L ðD5Þ

depending only on variables contained in Ul. Here “boun-
dary” refers to the boundary of Lx

l in Lx
L, artificially

invoked by restricting Lx
L to Lx

l for this purpose. The
existence and computability ofOl

xðUÞ follow from the very
definition of Ox and its computability.
For physically relevant operator it is usually useful if its

transformation properties are matched by those of the
approximant. However, gauge covariance of OxðUÞ, if
any, will not automatically transfer toOl

xðUÞ ifUl contains
dangling links with respect to Lx

l. Indeed, for covariantly
defined OxðUÞ, each operator Ox;lðUlÞ is covariant in
theory ðLx

l; SlÞ. As such, it only involves a combination of
closed loops on Lx

l, and dangling links can participate
in such loops via periodicity. However, loops with
danglers generically translate into open line segments
on Lx

L, and spoil gauge covariance of Ol
xðUÞ in theory

ðLx
L; SLÞ.
Given the importance of gauge covariance, we formulate

the version of boundary approximant that automatically
retains this feature. To that end, consider the partition
of Ul into nondangling (Und

l ) and dangling (Ud
l) subsets of

links

Ul ¼ Und
l ∪ Ud

l Und
l ≡ fUy;μjy; yþ μ ∈ Lx

lg: ðD6Þ

If a given link is set to 0 (3 × 3 matrix of zero elements),
then any Wilson loop containing it becomes 0 as well. We
can thus prevent noncovariant terms from occurring in the
boundary approximant by applying the replacement

Ud
l → Ud

l ¼ fUy;μ → 0jUy;μ ∈ Ud
lg ðD7Þ

in order to construct a modified “configuration” Ul → Uc
l

on Lx
l via

U → Ul ¼ Und
l ∪ Ud

l → Uc
l ≡Und

l ∪ Ud
l ðD8Þ

and defining the covariant form of the boundary approx-
imant as

OxðUÞ → Ol
xðUÞ≡Ox;lðUc

lÞ; l < L: ðD9aÞ

Note that, while the standard form (D5) of boundary
approximant is a priori well defined, the covariant form
(D9a) may not be since 0 ∉ SUð3Þ. In particular,Ox;l could
become singular as generic Ul is deformed to Uc

l. Such
operators can be constructed but are highly contrived.

3. Hypercubic boundary approximants
and insensitivity

We now use the idea of boundary approximant to arrive
at the notion of boundary exponential insensitivity to
distant fields in this general setting. The basic step is to
introduce distance variable r so that gauge fields in Ul can
be restricted accordingly. Thus, we define function l ¼
lðrÞ as the smallest l for which Lx

l covers all points of L
x
L

belonging to Hx;r, namely

lðrÞ≡minfljLx
l ∩ Hx;r ¼ Lx

L ∩ Hx;rg: ðD10Þ

This guarantees that Ux;r defined by (D3) is a subset of
UlðrÞ, thus inducing its partition

UlðrÞ ¼ Ux;r ∪ Ub
lðrÞ Ub

lðrÞ ≡UlðrÞnUx;r: ðD11Þ

If nonempty, we treat entireUb
lðrÞ as a “boundary” in that its

links will be frozen to values independent of underlying U.
Each choice Ub

lðrÞ of this fixing entails the assignment

U→ UlðrÞ ¼Ux;r ∪Ub
lðrÞ → Uh

lðrÞ ≡Ux;r ∪Ub
lðrÞ ðD12Þ

where the fieldUh
lðrÞ on L

x
lðrÞ depends onU

x;r only, and the

hypercubic boundary approximant

OxðUÞ → Or
xðUÞ≡Ox;lðrÞðUh

lðrÞÞ ¼ Or
xðUx;rÞ: ðD13Þ

If there is a systematic choice of boundary values such
that δðp; rÞ ¼ limL→∞δðp; r; LÞ for the associated Or

xðUÞ
exhibits exponential behaviors described in Sec. II, then the
corresponding types of boundary insensitivity to distant
fields occur. Here we wish to highlight two practical
choices (constant values) to test this property.

(i) Universal form: Ub
lðrÞ → Ub

lðrÞ ¼ fUy;μ → 1jUy;μ ∈
Ub

lðrÞg
The associated hypercubic boundary approximant

Or
xðUÞ is always well defined and computable, but

gauge covariance of OxðUÞ, if any, is not automati-
cally inherited.
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(ii) Covariant form: Ub
lðrÞ → Ub

lðrÞ ¼ fUy;μ → 0jUy;μ ∈
Ub

lðrÞg
This hypercubic boundary approximant may be

ill defined for some artificial operators since
0 ∉ SUð3Þ, but gauge covariance of OxðUÞ, if
any, transfers to Or

xðUÞ. Whenever it exists, the
covariant form is computable, and is taken to be the
default approximant of OxðUÞ.

This appendix specifies the framework for studying
exponential insensitivity to distant fields in arbitrary lattice
hypercubic geometry. As such, it can be used to define the
corresponding continuum notions, as described in Sec. II E.
It should be remarked though that the position of x within
Lx
L (and L∞) has to maintain its continuum geometric

meaning throughout the process of ultraviolet cutoff
removal. This is automatic in the symmetric setup dis-
cussed in the body of the paper, but requires some care in
general case.
Finally, the notion of boundary insensitivity can be used

to define boundary locality following the formalism
described in Sec. II F

APPENDIX E: OVERLAP DIRAC OPERATOR

The overlap Dirac operator used in the study of Sec. IV is
based on massless Wilson-Dirac matrix in four space-time
dimensions, namely

ðDWÞx;y ¼ 4δx;y −
1

2

X4
μ¼1

½ð1 − γμÞUx;μδxþμ;y

þ ð1þ γμÞUþ
x−μ;μδx−μ;y�: ðE1Þ

The associated 1-parameter family of massless overlap
Dirac operators [4] is then defined as

DðρÞ ¼ ρ

�
1þ ðDW − ρÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðDW − ρÞþðDW − ρÞp

�
;

0 < ρ < 2: ðE2Þ
Note that the interval of allowed values for negative mass
parameter ρ is dictated by spectral properties of DW , and
the space-time range of DðρÞ has been shown to depend on
it [11].
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