STRANDED CORE TRANSFORMER LOSS ANALYSIS

Xingxing Zhang
University of Kentucky, xingzhang@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation
https://uknowledge.uky.edu/gradschool_theses/533

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
ABSTRACT OF THESIS

STRANDED CORE TRANSFORMER LOSS ANALYSIS

We will present the approaches used to investigating the power loss for the stranded core transformers. One advantage of using stranded core is to reduce power loss or enhance transformer efficiency. One difficulty in the modeling of this type of transformer is that the core is not solid (there are small gaps between core wires due to circular cross section). A two dimensional finite element method with nodal basis function for magnetostatic field was developed to study the effects of the small gaps between core wires. The magnetic flux densities are compared for the uniform (solid) cores and the stranded cores for various permeability values. The effects of different air gap dimensions in stranded core to the magnitude of magnetic flux density were also discussed. The results of the two dimensional study were applied to modify the B-H curves in a 3D simulation with an equivalent simplified uniformed core transformer model via Ansoft Maxwell 3D. This is achieved by output the magnitude of magnetic flux density at fixed points of mesh center. The total core loss of a transformer was predicted by integration of the losses of all elements.

KEYWORDS: Stranded Core Transformer, FEM, B-H Curve, Iron Loss, Air Gap

Xingxing Zhang

Apr. 10th, 2008
STRANDED CORE TRANSFORMER LOSS ANALYSIS

By

Xingxing Zhang

Cai-Cheng Lu
Director of Thesis

Yu Ming Zhang
Director of Graduate Studies

Apr. 10th, 2008
RULES FOR THE USE OF THESES

Unpublished theses submitted for the Master’s degree and deposited in the University of Kentucky Library are as a rule open for inspection, but are to be used only with due regard to the rights of the authors. Bibliographical references may be noted, but quotations or summaries of parts may be published only with the permission of the author, and with the usual scholarly acknowledgments.

Extensive copying or publication of the thesis in whole or in part also requires the consent of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this thesis for use by its patrons is expected to secure the signature of each user.

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
THESIS

Xingxing Zhang

The Graduate School
University of Kentucky
2008
STRANDED CORE TRANSFORMER LOSS ANALYSIS

THESIS

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering in the College of Engineering at the University of Kentucky

By

Xingxing Zhang

Lexington, Kentucky

Director: Dr. Cai-Cheng Lu, Professor of Electrical Engineering

Lexington, Kentucky

2008

Copyright © Xingxing Zhang 2008
ACKNOWLEDGMENTS

The following thesis, while an individual work, benefited from the insights and direction of several people. First, my Thesis Chair, Dr. Cai-Cheng Lu, exemplifies the high quality scholarship to which I aspire. In addition, I wish to thank the complete Thesis Committee: Dr. Yuan Liao and Dr. Stephen Gedney. Each individual provided insights that guided and challenged my thinking, substantially improving the finished product.

In addition to the technical and instrumental assistance above, I received equally important assistance from family and friends. My boyfriend, Junwen Wang, provided on-going support throughout the thesis process, as well as technical assistance critical for completing the project in a timely manner. My parents, Qingyan Zhang and Mei Wu, instilled in me, from an early age, the desire and skills to obtain the Master’s. Finally, I wish to thank the respondents of my study (who remain anonymous for confidentiality purposes). Their comments and insights created an informative and interesting project with opportunities for future work.
Table of Contents

Acknowledgments.. iii

List of Tables.. vi

List of Figures... vii

List of Files .. ix

Chapter 1. Introduction .. 1
 1.1 Background... 1
 1.2 Thesis structure .. 3

Chapter 2. B-H curve Modification via Finite Element Method .. 4
 2.1 Theory and formulations... 4
 2.1.1 Governing equation and weak form .. 4
 2.1.2 Triangular elements .. 5
 2.1.3 Linear interpolation function of magnetic potential... 8
 2.1.4 Local element calculation .. 9
 2.1.5 Boundary Condition .. 14
 2.2 Validation of finite element method .. 15
 2.2.1 Ampere’s circuital law ... 15
 2.2.2 Test case 1 ... 15
 2.2.3 Test case 2 ... 19
 2.2.4 Test case 3 ... 22
 2.3 B-H curve Modification .. 25
 2.3.1 B field distribution in both stranded core and uniform core models.................................. 25
 2.3.2 B-H curve modification .. 29

Chapter 3. Ansoft Maxwell 3D Modeling ... 40
 3.1 Introduction to Ansoft Maxwell 3D ... 41
List of Tables

Table 2.1. Original B-H data for stranded core .. 36
Table 2.2. B error between stranded core with $\mu_r = 150$ and uniform core 37
Table 2.3. B error between stranded core with $\mu_r = 300$ and uniform core 37
Table 2.4. B error between stranded core with $\mu_r = 1000$ and uniform core 37
Table 2.5. Tested B-μ_r data for stranded core ... 38
Table 2.6. Tested B-μ_r data for uniform core ... 39
Table 3.1. Core loss per pound provided by manufacturer ... 52
List of Figures

Figure 2.1. Parameters of a typical triangle ... 7
Figure 2.2. Example to illustrate the integration on the interior boundary............. 13
Figure 2.3. Case 1 geometric model .. 17
Figure 2.4. Comparison between H value calculated via FEM and exact result for
 Case 1 .. 17
Figure 2.5. Mesh plot for Case 1.. 18
Figure 2.6. Detailed mesh plot of Case 1 ... 18
Figure 2.7. Geometric model of Case 2 ... 20
Figure 2.8. Comparison between H value calculated via FEM and exact H value in
 Case 2 .. 20
Figure 2.9. Mesh plot for Case 2.. 21
Figure 2.10. Detailed mesh plot for Case 2 ... 21
Figure 2.11. Geometric model of Case 3 ... 23
Figure 2.12. Comparison between H value calculated via FEM and exact H value
 in Case 3 .. 23
Figure 2.13. Mesh plot for Case 3.. 24
Figure 2.14. Detailed mesh plot for Case 3 ... 24
Figure 2.15. Mesh plot and detailed mesh plot for the stranded core model........... 26
Figure 2.16. Mesh plot and detailed mesh plot for the uniform core model............ 27
Figure 2.17. B field distribution for stranded core model... 28
Figure 2.18. B field distribution for uniform core model ... 28
Figure 2.19. B error between stranded core with $\mu_r = 150$ and uniform core......... 32
Figure 2.20. B error between stranded core with $\mu_r = 300$ and uniform core........ 32
Figure 2.21. B error between stranded core with $\mu_r = 1000$ and uniform core 33

Figure 2.22. Tested $B - \mu_r$ data for stranded core and uniform core 34

Figure 2.23. Tested $B - \mu_r$ data for stranded core and uniform core with a smaller

 gap ... 34

Figure 2.24. Original B-H Curve for stranded core transformer and Modified B-H

 Curve for uniform core transformer ... 35

Figure 3.1. Geometry and dimensions of eight-piece core transformer 45

Figure 3.2. Simplified transformer model ... 46

Figure 3.3. External circuit of transformer ... 49

Figure 3.4. Mesh generated by Maxwell 3D ... 49

Figure 3.5. B magnitude distribution via Maxwell 3D .. 50

Figure 3.6. Outputted B magnitude data at fixed points 50

Figure 3.7. Power loss data .. 51
List of Files

File Name: MS_Thesis_by_XingxingZhang
Type: pdf
Size: 1.25Mbytes
Chapter 1. Introduction

1.1 Background

The calculation of core loss has been considered as an important step in the designing of transformer. Power transformer core is generally made of material which has a very low iron loss. However, as the numbers of unites applied as so large, even a small loss can add up to significant amount. The iron loss is mainly caused by distortion, unequal distribution and rotating of magnetic fluxes in a core [1]. Many approaches have been studied to reduce iron loss. One of the widely used techniques is to build the core using sheet iron. Using thin sheets can significantly reduce the eddy current loss. Another new approach, which has been proposed by Busswell Energy LLC, is to use strand iron to build the cores. The fundamental benefit of using a magnetic iron core made of stranded iron in a utility transformer is the reduction in the transformer’s iron loss [2].

The application of the finite element method (FEM) has brought a great advance in analytical techniques for power transformer for power loss analysis. The 3D finite element analysis has been well developed in the recent three decades to compute unknowns such as magnetic field, magnetostatic field and magnetic vector potential [2-6]. Lately, finite element method has been improved for both accuracy and efficiency. In the application of solving three-dimensional magnetostatics, the nodal scalar potential function is mixed with a face-edge formulation to obtain a more accurate result [7]. A transient edge-based vector formulation is utilized to compute the induced eddy-current losses in the rotor of a claw-pole alternator and the use of adaptive mesh optimization leads to a correct result [8]. Mesh quality can directly affect the accuracy of finite element analysis. A new mesh improvement system related to potential benefits and costs are investigated using a suite of electromagnetic benchmarks and mesh quality measures
Theoretically linked to FEM accuracy [9]. The hybrid finite element method and boundary integral method is widely used for scattering and radiation problems while this method has a very slow convergence rate since the finite element matrix is ill-conditioned. The improvement of this method including the adoption of multi-frontal method makes the hybrid method converge very fast and still keeps accuracy [10].

In this thesis, our goal is to predict the iron loss of a three winding stranded core transformer with complex geometry. A commercial software Ansoft Maxwell 3D is used to compute magnetostatic field in three dimension models. However, the 3D modeling through Maxwell 3D can only model cores of transformer with uniformed materials. In this case, the B-H curve of stranded core material, which is provided by the manufacturer, need to be modified for the uniform core via two-dimensional finite element method.

In this two-dimensional finite element approach, the first order triangle elements were used with a nodal basis function. The basic field equation is vector Poisson’s equation [11, 12]. We need to solve the magnetic vector potential in Poisson’s equation by dividing the field region into small elements and approximate the unknown by linear equation in every element. The Dirichlet boundary condition is imposed on the mesh terminal. By the definition of magnetic vector potential, the magnetic flux density can be solved to modify the B-H curve for uniform core.

Maxwell 3D is an electromagnetic field simulation software used for the design and analysis of 3D structures. In this thesis, we used Maxwell 3D to analysis and display field distribution of 3D transformer model and output result data at selected points. The pre-processing work included core volume discretization and center points of each elements output. The post processing work is to integrate the core loss per unit volume which determined by the magnitude of B field.
1.2 Thesis structure

In this thesis, we presented a method to calculate the core loss of a three phase transformer. The main procedure of this method is as following:

1) A finite element method using nodal basis function is derived and validated for 2D magnetostatic field.

2) B-H curve for stranded core transformer modified for uniform core.

3) Using Ansoft Maxwell3D to simulate the 3D simplified transformer model. Find the magnetic flux density distribution in order to calculate the core loss.
Chapter 2. B-H curve Modification via Finite Element Method

In the process of 3D modeling using Maxwell 3D, uniform core is used to substitute stranded core. Therefore, the B-H curve which represents the material characteristics needs to be modified. In this chapter, a two-dimensional finite element approach is used to modify the B-H curve for uniform core.

2.1 Theory and formulations

2.1.1 Governing equation and weak form

The 2D magnetostatic problem has been formed in terms of the magnetic vector potential A, which defined as:

$$\nabla \times \vec{A} = \vec{B}$$ \hspace{1cm} (2.1)

$$\nabla \cdot \vec{A} = 0$$ \hspace{1cm} (2.2)

It is assumed that the excitation $J = J_z \hat{z}$ which is independent of the variable z. For this excitation, the vector potential \vec{A} has \hat{z} component only. The govern vector Poisson equation for \vec{A} can be written as:

$$\nabla \times \left(\frac{1}{\mu_r} \nabla \times \vec{A}_z \right) = \mu_0 J_z$$ \hspace{1cm} (2.3)

Therefore, the magnetic flux density can be calculated from $\vec{B} = \nabla \times \vec{A}$ \cite{11, 12}. In the above, μ_r is the relative permeability which is a function of position.

Introducing a test function \vec{A}^α_z, we can derive the weak form of vector Poisson equation as,
Using vector identity $\mathbf{A} \cdot \nabla \times \mathbf{B} = -\nabla \cdot (\mathbf{A} \times \mathbf{B}) + \mathbf{B} \cdot \nabla \times \mathbf{A}$, Equation (2.4) can be simplified in a 2D case [11],

$$F\left(\overline{A}_z, \overline{A}'_z\right) = \frac{1}{\mu_r} \int \mathbf{A}'_z \cdot \nabla \times \overline{A}_z dV - \mu_r \int \mathbf{A}'_z \cdot \mathbf{J}_z dV - \frac{1}{\mu_r} \oint_{\Gamma} \mathbf{A}'_z \times \left(\nabla \times \overline{A}_z\right) \cdot \hat{n} dl \quad (2.5)$$

where \hat{n} denotes the unit vector normal to Γ.

Equation (2.5) is the weak form of 2D vector Poisson equation.

2.1.2 Triangular elements

Before the derivation of finite element analysis for a 2D magnetostatic problem, a useful area coordinates (L_1, L_2, L_3) is presented below.

A convenient set of coordinates (L_1, L_2, L_3) for a triangle $(1, 2, 3)$ in Figure 2.1 is defined by the following linear equations in Cartesian system:

$$\begin{align*}
x &= L_1 x_1 + L_2 x_2 + L_3 x_3 \\
y &= L_1 y_1 + L_2 y_2 + L_3 y_3 \\
1 &= L_1 + L_2 + L_3
\end{align*} \quad (2.6)$$

Every set of (L_1, L_2, L_3) corresponds to a unique set of Cartesian coordinates [13].

Solving Equation (2.6) for x and y, we have

$$\begin{align*}
L_1 &= \frac{a_1 + b_1 x + c_1 y}{2\Delta} \\
L_2 &= \frac{a_2 + b_2 x + c_2 y}{2\Delta} \\
L_3 &= \frac{a_3 + b_3 x + c_3 y}{2\Delta}
\end{align*} \quad (2.7)$$

where,
\[\Delta = \frac{1}{2} \det \begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix} \] = area of triangle 123

and

\[
\begin{align*}
 a_1 &= x_2y_3 - x_3y_2 \\
 b_1 &= y_2 - y_3 \\
 c_1 &= x_3 - x_2 \\
 a_2 &= x_3y_1 - y_3x_1 \\
 b_2 &= y_3 - y_1 \\
 c_2 &= x_1 - x_3 \\
 a_3 &= x_1y_2 - y_1x_2 \\
 b_3 &= y_1 - y_2 \\
 c_3 &= x_2 - x_1
\end{align*}
\] (2.8)

(2.9)

(2.10)

Based on the above definition, we observe that when point P on edge 23, \(L_1 = 0 \); if it
is on vertex 1, then \(L_1 = 1 \).

When point P on edge 13, \(L_2 = 0 \); if it is on vertex 2, then \(L_2 = 1 \).

When point P on edge 12, \(L_3 = 0 \); if it is on vertex 3, then \(L_3 = 1 \).

The major advantage of triangular elements is that they can be used in problems
with irregular geometries. In finite element procedure, triangular mesh is widely adopted
and area coordinates are used to represent both linear and nonlinear local functions.
Figure 2.1. Parameters of a typical triangle
2.1.3 Linear interpolation function of magnetic potential

In a triangular element, the magnetic potential component \(A_z(x, y) \) at any point can be approximated by the linear interpolation function defined at every vertex.

In the triangle of Figure 2.1, the magnetic potential \(A_z(x, y) \) can be approximated as:

\[
A(x, y) = a + bx + cy \tag{2.11}
\]

If the potential has values of \(A_1 \), \(A_2 \) and \(A_3 \) at the vertices 1, 2 and 3 respectively, then we apply Equation (2.11) to the three vertices to obtain,

\[
\begin{align*}
A_1 &= a + bx_1 + cy_1 \\
A_2 &= a + bx_2 + cy_2 \\
A_3 &= a + bx_3 + cy_3
\end{align*}
\tag{2.12}
\]

This will allow us to solve for the expansion coefficients \((a, b, c)\). The results are listed as follows,

\[
\begin{align*}
a &= \frac{1}{2\Delta}(a_1A_1 + a_2A_2 + a_3A_3) \\
b &= \frac{1}{2\Delta}(b_1A_1 + b_2A_2 + b_3A_3) \\
c &= \frac{1}{2\Delta}(c_1A_1 + c_2A_2 + c_3A_3)
\end{align*}
\tag{2.13}
\]

Plugging Equation (2.13) in Equation (2.11), we get,

\[
A(x, y) = \frac{1}{2\Delta} \sum_{i=1}^{3} (a_i + bx + cy) A_i
\tag{2.14}
\]

In terms of area coordinates, Equation (2.14) becomes

\[
A(x, y) = \sum_{i=1}^{3} L_i A_i
\tag{2.15}
\]
Thus, we obtained the linear representation of the unknown potential using its values at the vertices of triangles.

2.1.4 Local element calculation

From Equation (2.15), nodal basis expansion in each element can be expected in such a form:

\[\bar{A}^e_z = \sum_{i=1}^{3} C_i L_i(x, y) \hat{z} \quad \text{and} \quad \bar{A}^{ae}_z = \sum_{j=1}^{3} L_j(x, y) \hat{z} \]

(2.16)

where \(C_i \) is the unknown coefficient which needs to be determined.

Now, we discretize Equation (2.5) on each triangle. The triangle index “e” is ignored for some quantities for simplicity.

Define

\[S_{ij} = \int_{V} \frac{1}{\mu_r} \left(\nabla \times L_j(x, y) \hat{z} \right) \cdot \left(\nabla \times L_i(x, y) \hat{z} \right) dV \]

(2.17)

\[B_j = \int_{V} L_j(x, y) \hat{z} \cdot \mathbf{J}_z dV \]

(2.18)

\[\Gamma_y = \int_{\Gamma} \frac{1}{\mu_r} L_j(x, y) \hat{z} \times \left(\nabla \times L_i(x, y) \hat{z} \right) \cdot \hat{n} dl \]

(2.19)

where \(\hat{n} \) denotes the unit vector normal to \(\Gamma \).

Then, function \(F\left(\bar{A}^e_z, \bar{A}^{ae}_z\right) \) can be expanded in local element as

\[F\left(\bar{A}^e_z, \bar{A}^{ae}_z\right) = \sum_{i=1}^{3} \sum_{j=1}^{3} \left(C_i S_{ij} - \mu_0 B_j - C_i \Gamma_y \right) \]

(2.20)

In the following part, we will discuss each matrix respectively.

1) \(S \) matrix calculation

Using some vector identities, \(S_{ij} \) can be simplified as
\[S_y = \int \frac{1}{\mu_r} \left(\nabla \times L_j(x,y) \hat{z} \right) \cdot \left(\nabla \times L_i(x,y) \hat{z} \right) dV \]
\[= \int \frac{1}{\mu_r} \left(\frac{\partial}{\partial y} L_j \hat{x} - \frac{\partial}{\partial x} L_j \hat{y} \right) \cdot \left(\frac{\partial}{\partial y} L_i \hat{x} - \frac{\partial}{\partial x} L_i \hat{y} \right) dV \]
\[= \int \frac{1}{\mu_r} \left(\frac{\partial}{\partial y} L_j \frac{\partial}{\partial y} L_i + \frac{\partial}{\partial x} L_i \frac{\partial}{\partial x} L_j \right) dV \tag{2.21} \]

By the definition of area coordinates, the differential operation can be calculated as
\[\frac{\partial}{\partial y} L_i = \frac{\partial}{\partial y} \left(\frac{a_i + b_i x + c_i y}{2\Delta} \right) = \frac{1}{2\Delta} c_i \quad \text{and} \quad \frac{\partial}{\partial x} L_i = \frac{\partial}{\partial x} \left(\frac{a_i + b_i x + c_i y}{2\Delta} \right) = \frac{1}{2\Delta} b_i \]

In the same way, we have,
\[\frac{\partial}{\partial y} L_j = \frac{1}{2\Delta} c_j \quad \text{and} \quad \frac{\partial}{\partial x} L_j = \frac{1}{2\Delta} b_j \]

Imposing the results in equation (2.21),
\[S_y = \int \left(\frac{1}{2\Delta} c_i \frac{1}{2\Delta} c_j + \frac{1}{2\Delta} b_i \frac{1}{2\Delta} b_j \right) \frac{1}{\mu_r} dV \]
\[= \int_{l_2=0}^{l_1} \int_{l_1=0}^{l_1-l_2} \left(\frac{1}{2\Delta} c_i \frac{1}{2\Delta} c_j + \frac{1}{2\Delta} b_i \frac{1}{2\Delta} b_j \right) \frac{1}{\mu_r} \sqrt{g} dL_1 dL_2 \]

where \(\sqrt{g} = 2\Delta \), and \(\Delta \) is the area of the triangle

Then,
\[S_y = \frac{1}{\mu_r} \left(\frac{1}{4\Delta} c_i c_j + \frac{1}{4\Delta} b_i b_j \right) \tag{2.22} \]

2) \(B \) matrix calculation

Similarly, the result of \(B \) matrix calculation can be written as
\[B_j = \int L_j(x,y) \hat{z} \cdot \vec{J} dV = J \int L_j dV \]
\[= J \int_{l_1=0}^{l_1} \int_{l_1=0}^{l_1-l_2} L_j \sqrt{g} dL_1 dL_2 \]
\[= J \frac{1}{6} \sqrt{g} = J \frac{\Delta}{3} \tag{2.23} \]

In the above, \(J \) is the excitation current at the center of the triangles.
3) Γ matrix calculation

By definition,

$$C_i \Gamma_{ij} = \frac{1}{\mu_r} \int L_j (x, y) \hat{z} \times (\nabla \times C_i L_i (x, y) \hat{z}) \cdot \hat{n} dl$$

Using vector identities, $\nabla \times (ab) = a \nabla \times b - b \nabla \times a$ and $a \times (b \times c) = (a \cdot c)b - (a \cdot b)c$ we have,

$$\nabla \times (C_i L_i \hat{z}) = C_i L_i \left(\nabla \times \hat{z} \right) - \hat{z} \times \nabla C_i L_i$$

$$= C_i \nabla L_i \times \hat{z}$$

Thus,

$$C_i \Gamma_{ij} = \frac{1}{\mu_r} \int L_j \hat{z} \times (C_i \nabla L_i \times \hat{z}) \cdot \hat{n} dl$$

$$= \int \frac{1}{\mu_r} \left[\left(L_j \hat{z} \cdot \hat{z} \right) C_i \nabla L_i - \left(L_j \hat{z} \cdot C_i \nabla L_i \right) \right] \cdot \hat{n} dl$$

$$= \int \frac{1}{\mu_r} L_j \nabla C_i L_i \cdot \hat{n} dl$$

(2.25)

In the above, we have applied the fact that ∇L is in x-y plane where $\hat{z} \cdot \nabla L = 0$.

For every triangular mesh,

$$\sum_{i=1}^{3} C_i \Gamma_{ij} = \frac{1}{\mu_r} \int L_j \frac{\partial A^e_z}{\partial n} dl$$

(2.26)

An example is given in Figure 2.2. Two adjacent triangular elements were used for illustration.

In triangle 1,

$$\sum_{i=1}^{3} C_i \Gamma_{ij} = \frac{1}{\mu_r} \frac{\partial A^e_z}{\partial n} \left(\int_{node1} L_j dl + \int_{node2} L_j dl + \int_{node3} L_j dl \right)$$

(2.27)

In triangle 2,

$$\sum_{i=1}^{3} C_i \Gamma_{ij} = \frac{1}{\mu_r} \frac{\partial A^e_z}{\partial n} \left(\int_{node1} L_j dl + \int_{node2} L_j dl + \int_{node3} L_j dl \right)$$

(2.28)
For two adjacent triangle mesh which share a same edge, at the interface, the magnetic potential satisfies [12]

\[A_z^{e1} = A_z^{e2} \quad \text{and} \quad 1 \frac{\partial A_z^{e1}}{\partial n} = 1 \frac{\partial A_z^{e2}}{\partial n}. \]

Thus, the middle terms of the right-hand side in Equation (2.27) and Equation (2.28) cancelled. Therefore, \(\Gamma \) matrix can be cancelled at all interior edges. We will discuss the outer boundary condition later.

4) Magnetic flux density calculation

From Equation (2.1), \(B \) can be expanded in local element as,

\[B^e = \sum_{i=1}^{3} \nabla \times (C_i L_i) \hat{z} \]

\[= \sum_{i=1}^{3} C_i \left(\frac{\partial}{\partial y} L_i \hat{x} - \frac{\partial}{\partial x} L_i \hat{y} \right) \]

\[= \sum_{i=1}^{3} C_i \frac{1}{2\Delta} (c_i \hat{x} - b_i \hat{y}) \quad (2.29) \]

The weak form for local element Equation (2.20) can be simplified as:

\[F \left(\vec{A}_z^e, \vec{A}_z^{ae} \right) = \sum_{i=1}^{3} \sum_{j=1}^{3} \left(C_i S_{ij} - \mu_0 B_j \right) = C_{lem} S_{lem} - \mu_0 B_{lem} \]

To minimize the equation, we set \(F = 0 \). This leads to \(C_{lem} = \mu_0 B_{lem} S_{lem}^{-1} \).
Figure 2.2. Example to illustrate the integration on the interior boundary
2.1.5 Boundary Condition

There are several absorbing boundary conditions to be applied for mesh truncation. When the boundary is far enough to the transformer model, the Dirichlet Boundary Condition,

\[A(x,y) = 0 \] \hspace{1cm} (2.30)

on the outer boundary can yield an accurate solution.
2.2 Validation of finite element method

2.2.1 Ampere’s circuital law

Ampere’s circuital law states that the line integral of H about any closed path is exactly equal to the direct current enclosed by that path [14],

$$\oint H \cdot dL = I$$

(2.31)

The magnetic flux density is related to H by

$$B = \mu_0 \mu_r H$$

(2.32)

In the govern vector Poisson Equation

$$\nabla \times \left(\frac{1}{\mu_r} \nabla \times A_z \right) = \mu_0 J_z$$

J_z denotes the electric current density with the unit A/m2. If J_z is uniformly distributed, the total current I can be calculated from $\overrightarrow{J}_z \cdot \Delta$, where Δ is the area containing \overrightarrow{J}_z.

We will test the FEM program with three test cases and compare the result with the exact H value computed by Ampere’s circuital law.

2.2.2 Test case 1

The first case is a conductor of circular cross section with a radius $a = 0.1$m which has a relative permeability $\mu_r = 1$. A current density $J = 1$A/m2 is imposed on it. The background mesh is terminated at a circle of radius $g = 1.2$m. The geometry is shown in Figure 2.3.

The exact H can be calculated as

$$H = \frac{J \pi^2 r}{2 \pi r} = \frac{J \pi}{2}, \quad r < a$$

(2.33)
\[H = \frac{J\pi^2 a}{2\pi r} = \frac{J\pi a}{2r}, \quad r \geq a, \quad (2.34) \]

Using the finite element program, H is calculated at fixed angles of 0°, 45° and 90°, respectively. Figure 2.4 is the comparison of results of FEM and the exact H value. Figure 2.5 and Figure 2.6 show the mesh plot [15]. The figures show that the results calculated by FEM agree well with the exact results.
Figure 2.3. Case 1 geometric model

Figure 2.4. Comparison between H value calculated via FEM and exact result for Case 1
Figure 2.5. Mesh plot for Case 1

Figure 2.6. Detail mesh plot of Case 1
2.2.3 Test case 2

The second case is a circle cross section of a conductor with a radius \(a = 0.1 \text{m} \) which has a relative permeability \(\mu_r = 1 \). A current density \(J = 1 \text{A/m}^2 \) is imposed on it. A material which has a relative permeability \(\mu_r = 900 \) surrounds the source with a radius \(b = 0.2 \text{m} \). The background is filled of air with a radius \(g = 1 \text{m} \) which has a relative permeability \(\mu_r = 1 \). The geometry is shown in Figure 2.7.

The exact \(H \) can be calculated in the same way as in case 1.

The finite element program calculated \(H \) at fixed angles of 0°, 45° and 90° respectively. Figure 2.8 is the comparison of results of FEM and the exact \(H \) value. Figure 2.9 and Figure 2.10 show the mesh plot.

The figures show that the results calculated by FEM agree well with the exact results.
Figure 2.7. Geometric model of Case 2

Figure 2.8. Comparison between H value calculated via FEM and exact H value in Case 2
Figure 2.9. Mesh plot for Case 2

Figure 2.10. Detailed mesh plot for Case 2
2.2.4 Test case 3

The third case is a ring cross section of a conductor with an inner radius \(a = 0.1\text{m}\) and outer radius \(b = 0.2\text{m}\) which has a relative permeability \(\mu_r = 1\). A current density \(J = 1\text{A/m}^2\) is imposed on it. A material which has a relative permeability \(\mu_r = 900\) surrounds the source with a radius \(c = 0.24\text{m}\). The background is filled of air with a radius \(g = 1.2\text{m}\) which has a relative permeability \(\mu_r = 1\). The geometry is shown in Figure 2.11.

The exact \(H\) can be calculated from

\[
H = 0, \quad r < a, \quad (2.35)
\]

\[
H = \frac{\pi \left(r^2 - a^2\right) J}{2\pi r} = \frac{\left(r^2 - a^2\right) J}{2r}, \quad a \leq r < b, \quad (2.36)
\]

\[
H = \frac{\pi \left(b^2 - a^2\right) J}{2\pi r} = \frac{\left(b^2 - a^2\right) J}{2r}, \quad r \geq b, \quad (2.37)
\]

The finite element program calculated \(H\) at fixed angles of 0°, 45° and 90° respectively. Figure 2.12 is the comparison of results of FEM and the exact \(H\) value. Figure 2.13 and Figure 2.14 show the mesh plot.

From Figure 2.12, we can see that the results calculated via FEM match well with the exact results.

Through testing three cases with regular geometry which have exact results, the algorithm and program of this 2D finite element method are demonstrated accurate to solve magnetostatic field. In the next section, this method will be applied on two models with different transformer core structures.
Figure 2.11. Geometric model of Case 3

Figure 2.12. Comparison between H value calculated via FEM and exact H value in Case 3
Figure 2.13. Mesh plot for Case 3

Figure 2.14. Detailed mesh plot for Case 3
2.3 B-H curve Modification

In order to predict accurate core loss for a transformer, a simple but accurate transformer model including non-linear B-H characteristics, external exciting circuit, and core loss per pound, must be available. In our case, the stranded core model is hard to model and simulate by software such as Maxwell 3D. Then, an equivalent but simple model is necessary to build. In the following part, transformer core with uniform distributed material will replace the stranded core in the simulation of core loss analysis. For an accurate result, the B-H curve needs to be modified for a uniform core transformer.

2.3.1 B field distribution in both stranded core and uniform core models

The stranded core mesh plot is shown in Figure 2.15. The source area in the upper part of the model is imposed with a current density of $J_1 = 1 \text{A/m}^2$ while the other source area in the lower part is imposed with a current density of $J_2 = -1 \text{A/m}^2$. The material between source areas denotes the stranded core. The small gaps between core sections and whole background are filled with air.

Figure 2.16 is the mesh plot for the simplified uniform core model. The source and background are the same as the stranded core model. The material of core between source areas is uniform distributed as shown in detailed mesh plot.

We start with a $\mu_r = 100$ imposed on both the stranded core and uniform core elements. Figure 2.17 and Figure 2.18 show the result of B field distribution in a patch plot view in the center core area.
Figure 2.15. Mesh plot and detailed mesh plot for the stranded core model
Figure 2.16. Mesh plot and detailed mesh plot for the uniform core model
Figure 2.17. B field distribution for stranded core model

Figure 2.18. B field distribution for uniform core model
2.3.2 B-H curve modification

Table 2.1 shows the B-H curve supplied by manufacturers which obtained from measuring the stranded core transformer. Since the model has been simplified as a uniform distributed core transformer, the original B-H curve is no longer applicable to the new model. We need to modify the curve based on the results of B field calculation via finite element method.

Same mesh was applied to the model of stranded core and the model of uniform core. We calculate the error of B when relative permeability is fixed for the mesh elements in the core area of stranded core model using

\[
B_{\text{error}} = \frac{1}{N} \sum_{i=1}^{N} |B_{ui} - B_{s_i}|
\]

(2.38)

where \(N\) denotes the total number of elements in the core area of stranded core. \(B_{ui}\) and \(B_{s_i}\) represent the magnetic flux density of uniform core and the magnetic flux density of stranded core in the \(i\)-th element respectively.

Based on Equation (2.38), we calculate the error of B between stranded core and uniform core when relative permeability changes. Figure 2.19, Figure 2.20 and Figure 2.21 respectively show that when the relative permeability of stranded core is 150, 300 and 1000, the error of B between stranded core and uniform core. The test results are in Table 2.2, Table 2.3 and Table 2.4 respectively.

Then, we calculate B average for both stranded core and uniform core model using

\[
B_{\text{avg}} = \frac{\sum_{i=1}^{N} B_i \cdot \Delta_i}{\sum_{i=1}^{N} \Delta_i}
\]

(2.39)
where N denotes the total number of elements in the core area, B_i and Δ_i represent the magnetic flux density and area of the i-th element respectively.

We change the value of μ_ℓ for stranded core model and recalculate B_{avg}. Table 2.5 lists the test values of μ_ℓ and the corresponding B_{avg} for the stranded core. In the same way, Table 2.5 is the test values μ_ℓ and the corresponding B_{avg} for the uniform core.

The $B_{avg}-\mu_\ell$ curves for stranded core model and uniform core model are shown in Figure 2.22. For the purpose of transformer design, we also test μ_ℓ and the corresponding B_{avg} for stranded core with a smaller gap and uniform core in the same mesh discretization. We can see that B_{avg} is a fixed value when μ_ℓ going to infinite.

We will explain this phenomenon by introducing the generation of static magnetic fields [16, 17].

The basic laws of magnetostatics are
\begin{align}
\nabla \cdot B &= 0 \quad (2.40) \\
\nabla \times H &= J \quad (2.41)
\end{align}

Considering a surface S which enclosed by a path C, we can operate surface integral of Equation (2.41) over S.
\[\int_S \nabla \times H \, ds = \int_J ds \quad (2.42) \]

By applying Stokes’ theorem to Equation (2.42), we have
\[\oint_C H \, dl = \int_S J \, ds = I \quad (2.43) \]

Equation (2.43) often states as Ampere’s circuit law.

Apply Equation (2.43) to our 2D core model, we can get,
\[\frac{B_{o0}}{\mu_0} + \frac{B_{l1}}{\mu \mu_0} = J \ast area \quad (2.44) \]
where B_0 denotes the magnetic flux density in the air and coil. B_1 denotes the magnetic flux density in core. l_0 is the path length in the air and coil. l_1 is the path length in the core.

If the relative permeability is infinite, Equation (2.44) becomes

$$\frac{B_0l_0}{\mu_0} = J * \text{area}$$ (2.45)

Thus, B_{avg} is a fixed value.

Provided with the test data, the B-H curve can be calculated through algorithm involving Fourier series and finite element analysis iteration [18]. The initial value of the iteration is fixed on the B value when relative permeability goes infinitely. The difference of B_{μ_∞} between stranded core and uniform core is 2.7065×10^{-10}. When the gap size reduces to $\frac{5}{6}$ of the original gap size, the difference of B_{μ_∞} between stranded core and uniform core reduces to 1.8800×10^{-10} as we expected. In our modeling, based on the original B-H curve for stranded core transformer, we can adjust the original B-H curve proportional to the values of B_{avg} when μ_r is infinite. Figure 2.24 shows the original B-H curve for stranded core transformer and the modified B-H curve for uniform core model.

The next chapter shows the Maxwell 3D simulation using the modified B-H curve and the results of iron loss prediction.
Figure 2.19. B error between stranded core with $\mu_r=150$ and uniform core

Figure 2.20. B error between stranded core with $\mu_r=300$ and uniform core
Figure 2.21. B error between stranded core with $\mu_r = 1000$ and uniform core
Figure 2.22. Tested $B - \mu_r$ data for stranded core and uniform core

Figure 2.23. Tested $B - \mu_r$ data for stranded core and uniform core with a smaller gap
Figure 2.24. Original B-H Curve for stranded core transformer and Modified B-H Curve for uniform core transformer
<table>
<thead>
<tr>
<th>$B(T)$</th>
<th>$H(A/m)$</th>
<th>$\mu_r = \frac{\mu}{\mu_0} = \frac{B}{\mu_0 H}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5000</td>
<td>11.5</td>
<td>34599</td>
</tr>
<tr>
<td>0.6000</td>
<td>13.1</td>
<td>36448</td>
</tr>
<tr>
<td>0.7000</td>
<td>14.7</td>
<td>37894</td>
</tr>
<tr>
<td>0.8000</td>
<td>16</td>
<td>39789</td>
</tr>
<tr>
<td>0.9000</td>
<td>17.1</td>
<td>41883</td>
</tr>
<tr>
<td>1.0000</td>
<td>18.3</td>
<td>43485</td>
</tr>
<tr>
<td>1.1000</td>
<td>19.6</td>
<td>44661</td>
</tr>
<tr>
<td>1.2000</td>
<td>21</td>
<td>45473</td>
</tr>
<tr>
<td>1.3000</td>
<td>22</td>
<td>47023</td>
</tr>
<tr>
<td>1.4000</td>
<td>24.1</td>
<td>46228</td>
</tr>
<tr>
<td>1.5000</td>
<td>27.9</td>
<td>42784</td>
</tr>
<tr>
<td>1.6000</td>
<td>33</td>
<td>38583</td>
</tr>
<tr>
<td>1.6500</td>
<td>39</td>
<td>33667</td>
</tr>
<tr>
<td>1.7000</td>
<td>49</td>
<td>27609</td>
</tr>
<tr>
<td>1.7500</td>
<td>65</td>
<td>21425</td>
</tr>
<tr>
<td>1.8000</td>
<td>110</td>
<td>13022</td>
</tr>
<tr>
<td>1.8500</td>
<td>220</td>
<td>6692</td>
</tr>
<tr>
<td>1.9000</td>
<td>500</td>
<td>3024</td>
</tr>
<tr>
<td>1.9500</td>
<td>1100</td>
<td>1411</td>
</tr>
<tr>
<td>2.0000</td>
<td>4500</td>
<td>354</td>
</tr>
</tbody>
</table>

Table 2.1. Original B-H data for stranded core
<table>
<thead>
<tr>
<th>Relative permeability of uniform core</th>
<th>25</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>B error ($\times 10^{-9}$)</td>
<td>1.1823</td>
<td>1.2672</td>
<td>1.3118</td>
<td>1.3271</td>
<td>1.3348</td>
</tr>
</tbody>
</table>

Table 2.2. B error between stranded core with $\mu_r = 150$ and uniform core

<table>
<thead>
<tr>
<th>Relative permeability of uniform core</th>
<th>25</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>B error ($\times 10^{-9}$)</td>
<td>1.1710</td>
<td>1.2559</td>
<td>1.3005</td>
<td>1.3158</td>
<td>1.3235</td>
<td>1.3281</td>
<td>1.3312</td>
</tr>
</tbody>
</table>

Table 2.3. B error between stranded core with $\mu_r = 300$ and uniform core

<table>
<thead>
<tr>
<th>μ_r</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>750</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>B error ($\times 10^{-9}$)</td>
<td>1.2479</td>
<td>1.2926</td>
<td>1.3078</td>
<td>1.3155</td>
<td>1.3232</td>
<td>1.3271</td>
<td>1.3295</td>
<td>1.3326</td>
<td>1.3341</td>
</tr>
</tbody>
</table>

Table 2.4. B error between stranded core with $\mu_r = 1000$ and uniform core
<table>
<thead>
<tr>
<th>$B_{\text{avg}}(T) \times 10^{-3}$</th>
<th>μ_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7098</td>
<td>25</td>
</tr>
<tr>
<td>2.7731</td>
<td>50</td>
</tr>
<tr>
<td>2.806</td>
<td>100</td>
</tr>
<tr>
<td>2.8172</td>
<td>150</td>
</tr>
<tr>
<td>2.8229</td>
<td>200</td>
</tr>
<tr>
<td>2.8262</td>
<td>250</td>
</tr>
<tr>
<td>2.8285</td>
<td>300</td>
</tr>
<tr>
<td>2.8313</td>
<td>400</td>
</tr>
<tr>
<td>2.8331</td>
<td>500</td>
</tr>
<tr>
<td>2.8353</td>
<td>750</td>
</tr>
<tr>
<td>2.8365</td>
<td>1000</td>
</tr>
<tr>
<td>2.8376</td>
<td>1500</td>
</tr>
<tr>
<td>2.8388</td>
<td>3000</td>
</tr>
</tbody>
</table>

Table 2.5. Tested $B-\mu_r$ data for stranded core
<table>
<thead>
<tr>
<th>(B_{\text{avg}}(T) \times 10^{-9})</th>
<th>(\mu_r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9341</td>
<td>25</td>
</tr>
<tr>
<td>3.019</td>
<td>50</td>
</tr>
<tr>
<td>3.0636</td>
<td>100</td>
</tr>
<tr>
<td>3.0789</td>
<td>150</td>
</tr>
<tr>
<td>3.0866</td>
<td>200</td>
</tr>
<tr>
<td>3.0912</td>
<td>250</td>
</tr>
<tr>
<td>3.0943</td>
<td>300</td>
</tr>
<tr>
<td>3.0982</td>
<td>400</td>
</tr>
<tr>
<td>3.1005</td>
<td>500</td>
</tr>
<tr>
<td>3.1036</td>
<td>750</td>
</tr>
<tr>
<td>3.1052</td>
<td>1000</td>
</tr>
<tr>
<td>3.1069</td>
<td>1500</td>
</tr>
<tr>
<td>3.1094</td>
<td>3000</td>
</tr>
</tbody>
</table>

Table 2.6. Tested B-\(\mu_r \) data for uniform core
Chapter 3. Ansoft Maxwell 3D Modeling

In this chapter, we will calculate the iron loss of a three winding transformer in a 3D model. The manufacturer provides measured data which include the dimensions of transformer, density of core materials, iron loss per pound in different magnetic flux density at frequency of 60 Hz, and B-H curve for core material. In the simulation of Ansoft Maxwell 3D, it is hard to model the stranded core and the software will consume lots of time to compute fields in complex geometry. Therefore, a uniform distributed core is a good choice of substitute for stranded core. We have modified B-H curve which is the main property for a core material.

The original geometry is very complex which will be described in section 3.2. For computational convenience, the model can be simplified as an equivalent model under those two conditions: the equal of core volume and the equal of mean length per turn. The next step is to simulate the simplified model in Maxwell 3D and output data of B field. Although the software can generate 3D mesh automatically, the mesh data cannot be obtained. In that way, we need to discretize the core space and compute the center of every mesh element by program. Maxwell 3D can output field value on fixed points. Then, the given B-power loss per pound data is obtained by interpolation. According to B value at every mesh center, a corresponding power loss per pound value can be found. By assembling the volume and power loss per pound at every point, the iron loss of transformer can be achieved.
3.1 Introduction to Ansoft Maxwell 3D

Maxwell 3D is a software for the simulation of electromagnetic fields which can be used to predict the performance of electromagnetic and electromechanical component designs in a virtual environment. It includes 4 solver modules: Transient, AC Magnetic, DC Magnetic and electric field. They are designed to solve problems in both time and frequency domains. Each model uses 3D Finite Elements and automatic adaptive meshing techniques to compute the electrical/electromagnetic behavior of low-frequency components. Maxwell 3D can solve for electromagnetic-field parameters such as force, torque, capacitance, inductance, resistance and impedance as well as generate state-space model, visualize 3D electromagnetic fields, and optimize design performance [19].

In this chapter, we need to use this software to solve field for the 3D simplified transformer model and output the magnetic flux density at selected points in core material.
3.2 Simplified three winding transformer model

The geometry and dimensions of original transformer model is shown in Figure 3.1. The inner winding and outer winding are both low voltage windings. The middle winding is high voltage winding. Outside the three concentric windings are eight identical pieces of core.

Our goal is to output the magnitude of B in the center of every mesh element and the corresponding volume of the mesh element. The geometry of original eight-piece transformer is hard to operate and will involves many additional works. Therefore, an equivalent simplified transformer model is constructed and analyzed first.

The conditions of equivalent for two transformers are stated as: the equal of core volume and the equal of mean length per turn. Based on these two conditions, we can build a simplified transformer model shown in Figure 3.2.
(a). Geometry of original eight-piece core transformer
(b). Dimensions of eight-piece core transformer (top view)
(c). Dimensions of eight-piece core transformer (side view)

Figure 3.1. Geometry and dimensions of eight-piece core transformer
Figure 3.2. Simplified transformer model
3.3 General formulation of transformer loss

The total loss of transformer is mainly made of two components: copper loss (winding) and core loss. The core loss is determined by the volume integration of the core loss per unit volume,

\[P_{\text{core}} = \int_{V} p_{c,\tau}(B) dV = \sum_{i=1}^{N} p_{c,\tau}(B_i) \Delta V_i \] \hspace{1cm} (3.1)

where \(N \) is the total number of mesh elements of the core, \(B_i \) is the flux density at the center of the \(i \)-th element, \(\Delta V_i \) is the volume of the \(i \)-th element.

For a uniform flux density distribution (the same value over the entire core region), the total core loss is the loss per unit volume multiply the volume of the core. If the core’s mass density is \(\rho \), the estimated loss per pound (for core) will be

\[P_{\text{lb}} = \left[\frac{\sigma}{\pi} \left(2H_c + K_{\text{hyst}} B_p \right) B_p + \frac{\sigma^2}{2} K_{\text{eddy}} B_p^2 \right] \frac{1}{\rho} \] \hspace{1cm} (3.2)

The coefficient \(K_{\text{eddy}} \) may be determined quite accurately for laminate iron sheet and strands. Let \(\sigma_{Fe} \) be the conductivity of the iron, then

For laminate iron sheet with sheet thickness \(a \),

\[K_{\text{eddy}} = (\sigma_{Fe} a^2)/12 \] \hspace{1cm} (3.3)

For strands of circular cross section of diameter \(d \),

\[K_{\text{eddy}} = (\sigma_{Fe} d^2)/32 \] \hspace{1cm} (3.4)

From Equation (3.3) and Equation (3.4), we can see the coefficient \(K_{\text{eddy}} \) is reduced which makes a notable reduction in the iron loss when stranded core material is used.
3.4 Maxwell 3D simulation and core loss calculation

In Maxwell 3D project interface, we draw the simplified model in the region and input data of B-H curve obtained from Chapter 2.3.2 for the material of core. The external circuit is shown in Figure 3.3. Mesh generated by Maxwell 3D is shown in Figure.3.4. The magnitude of B field distribution calculated by Maxwell 3D is posted in Figure 3.5.

Figure 3.6 shows the mesh generated by program and the magnitude of B at every mesh center in the core outputted by Maxwell 3D. Table 3.1 lists the data of core loss per pound for the transformer model when B value changed. Then, the data of core loss per pound at every point in Figure 3.6 can be calculated by interpolation. Figure 3.7 is the plot of power loss per pound function. The density of core material is 7.65kg/dm3. The volume of core is 0.0113 m3.

Steps to calculate core loss are as follows:

1. Divide the core space into more than 2000 small elements and calculate the coordinate for the center of every element.
2. Use Maxwell 3D to model the 3D simplified transformer model and analyze B field in core space.
3. Input points calculated in step 1 to Maxwell 3D and output the B field magnitude in selected points.
4. According to the B field magnitude in selected points, find the corresponding power loss per pound values at center points of elements from Figure 3.7.
5. Plug all the data into Equation (3.1) and we can obtain the final result of iron loss.

$$P_{\text{core}} = 81.3W$$
Figure 3.3. External circuit of transformer

Figure 3.4. Mesh generated by Maxwell 3D
Figure 3.5. B magnitude distribution via Maxwell 3D

Figure 3.6. Outputted B magnitude data at fixed points
Figure 3.7. Power loss data
<table>
<thead>
<tr>
<th>B (T)</th>
<th>0</th>
<th>0.5</th>
<th>0.7</th>
<th>0.9</th>
<th>1.1</th>
<th>1.3</th>
<th>1.5</th>
<th>1.7</th>
<th>1.9</th>
<th>2.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss</td>
<td>0</td>
<td>0.112</td>
<td>0.192</td>
<td>0.294</td>
<td>0.416</td>
<td>0.565</td>
<td>0.740</td>
<td>1.00</td>
<td>1.63</td>
<td>2.58</td>
</tr>
<tr>
<td>(W/Kg)</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.1. Core loss per pound provided by manufacturer
Chapter 4. Conclusion

In this thesis, a 2D finite element method for magnetostatic field and Ansoft Maxwell 3D are adopted to predict the core loss of a three winding transformer. Model simplification and data approximation are important approaches in engineering. The stranded core which has a complex geometric dimension is simplified as a uniform distributed core. In order to keep the accuracy of power loss prediction, the B-H curve of the stranded core which the manufacturer provides needs to be corrected for uniform core. The calculation of modified B-H curve is implemented by finite element method which has been validated by three magnetostatic cases. The original 3D model of the three winding transformer has an inconvenient geometry which has eight pieces of core. Therefore, an equivalent model under the rules of equal core volume and equal mean length per turn is produced in a rectangular shape for easy discretization of mesh. Maxwell 3D is used to create the equivalent model and solve for the field. The output B field data on every mesh center and the corresponding power loss per pound need to be assembled with the density of core material and volume of every mesh element to acquire the prediction of core loss in three-winding stranded core transformer.

The whole procedure still needs improvement. For the 2D nodal basis finite element method, the matrix solving is very time consuming. An improved algorithm is necessary to enhance the efficiency. The accuracy of this prediction can be improved by adopting numerical method to calculate the modified B-H curve for uniform core.
References

Vita

The author of this thesis was born in the city of Xi’an, P. R. China, June 12th, 1984. She finished her undergraduate study in Xidian University at Xi’an, China and got her Bachelor’s degree in July 2006. During her undergraduate study, she worked in the Digital Signal Processing Lab in Xidian University instructed by Professor Wanyou Guo (Dec. 2005-Jun. 2006, Xi’an, China). She was honored with the University Scholarships for 3 consecutive years in Xidian University (2003-2005).