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Evolution equations for connected and disconnected sea parton distributions

Keh-Fei Liu
Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA

(Received 14 April 2017; published 10 August 2017)

It has been revealed from the path-integral formulation of the hadronic tensor that there are connected sea
and disconnected sea partons. The former is responsible for the Gottfried sum rule violation primarily and
evolves the same way as the valence. Therefore, the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution
equations can be extended to accommodate them separately. We discuss its consequences and implications
vis-á-vis lattice calculations.

DOI: 10.1103/PhysRevD.96.033001

I. INTRODUCTION

Partonic structure of the nucleon has been discovered
and extensively studied in deep inelastic scattering (DIS)
of leptons. Further experiments in Drell-Yan process, semi-
inclusive DIS (SIDIS) help to identify and clarify the flavor
dependence, particularly the sea partons [1]. The first
experimental evidence that the sea patrons have nontrivial
flavor dependence is revealed in the experimental demon-
stration of the violation of Gottfried sum rule. The original
Gottfried sum rule, IG ≡ R

1
0 dx½Fp

2 ðxÞ − Fn
2ðxÞ�=x ¼ 1=3,

was obtained under the assumption that ū and d̄ sea partons
are the same [2]. However, the NMC measurement [3] ofR
1
0 dx½Fp

2 ðxÞ − Fn
2ðxÞ�=x turns out to be 0.235� 0.026, a 4σ

difference from the Gottfried sum rule, which implies that
the ū ¼ d̄ assumption was invalid. The correct expression
for the Gottfried sum in the quark partonmodel should be [3]

Ip−n ≡
Z

1

0

½Fp
2 ðxÞ − Fn

2ðxÞ�
x

dx

¼ 1

3
þ 2

3

Z
dxðūðxÞ − d̄ðxÞÞ þOðα2sÞ; ð1Þ

so that the x-integrated difference of the ū and d̄ sea isR
1
0 ½d̄ðxÞ − ūðxÞ�dx ¼ 0.148� 0.039. This striking result
from the NMC was subsequently checked using an indepen-
dent experimental technique. From measurements of the
Drell-Yan (DY) cross-section ratios of ðpþ dÞ=ðpþ pÞ,
the NA51 [4] and the Fermilab E866 [5] experiments clearly
observed the ū and d̄ difference in the proton sea over the
kinematic range of 0.015 < x < 0.35.
This came as a surprise at the time, because it was

previously assumed that the sea partons originate from the
gluon splitting (i.e., g → uū, dd̄, ss̄) in a flavor-blind
manner. Since the perturbative calculation leading to ū − d̄
difference is at the two-loop level which is too small to
explain the size of the difference [6,7], it must have come
from the intrinsic higher Fock-space wave function of the
nucleon, e.g., q4q̄ component. Several meson cloud models
[8–10] have been used to explain this difference via the
Sullivan process [11]. The nonperturbative origin for such a

difference is explained in QCD itself via the Euclidean
path-integral formulation of the hadronic tensor [12–14]. It
is shown that there are two kinds of sea partons—the
connected sea (CS) and disconnected sea (DS) partons and
the Gottfried sum rule violation comes exclusively from the
CS at the isospin symmetry limit [12]. In view of this ū − d̄
difference discovered in DIS and the similar finding in DY
process of nonunity ratio of ūðxÞ=d̄ðxÞ, the global fitting
have since accommodated this. However, the CS origin of
ū − d̄ has not been incorporated in the fitting of ūþ d̄ and it
is not recognized that ū and d̄ have two origins, i.e., the CS
and DS, and only the DS part has the same small x behavior
as that of s̄. An attempt to separate the CS and DS parts of
ūþ d̄ has been carried out [15] by combining the CT10
global fitting with the HERMES data on sþ s̄ and a lattice
calculation of hxis=hxiu=d (DI) where hxiu=d (DI) is the
momentum fraction of u=d in the disconnected insertion
(DI) calculation on the lattice [16].
To separate CS and DS u and d parton distributions and

fitted to different experiments at different kinematics, they
need to be evolved from oneQ2 to another. In this article, we
present the extended evolution equations which accommo-
date differently evolved CS and DS. We start by reviewing
the status-quo Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution equations in Sec. II. The formulation
of the hadronic tensor in the path-integral formalism is given
in Sec. III. The classification of the parton degrees of
freedom is given in Sec. IV with an example of separating
the CS from the DS by combining results from SIDIS results
of the strange parton distribution, the global fitting of the
parton distribution function (PDF) and the lattice calculation.
The extended NNLO evolution equations accommodating
CS and DS separately are given in Sec. V. Also included in
Sec. V are comments of their implications and their relation
to lattice calculations. Finally, a summary is given in Sec. VI.

II. NNLO EVOLUTION EQUATIONS

To begin with, we shall review the present implementa-
tion of the NNLO evolution equations which starts with the
following DGLAP equations [17–19] with t≡ ln μ
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dqi
dt

¼
X
k

ðPik ⊗ qk þ Pik̄ ⊗ q̄kÞ þ Pig ⊗ g; ð2Þ

dq̄i
dt

¼
X
k

ðPīk ⊗ qk þ Pī k̄ ⊗ q̄kÞ þ Pīg ⊗ g; ð3Þ

dg
dt

¼
X
k

ðPgk ⊗ qk þ Pgk̄ ⊗ q̄kÞ þ Pgg ⊗ g: ð4Þ

where the splitting function (kernel in the integral) P are
[17,18]

Pik ¼ Pī k̄ ¼ δikPv
qq þPs

qq; Pīk ¼ Pik̄ ¼ δikPv
qq̄ þPs

qq̄;

ð5Þ
Pig ¼ Pīg ≡ Pqg; Pgi ¼ Pgī ≡ Pgq: ð6Þ

The practical approach takes the following combinations
of quark PDF’s so that some of the combined PDF’s evolve
independently.

Σ≡X
i

ðqi þ q̄iÞ; Σv ≡
X
i

ðqi − q̄iÞ; ð7Þ

qþi ≡ qi þ q̄i −
1

Nf
Σ; q−i ≡ qi − q̄i: ð8Þ

The evolution equations are written in terms of these
combined distributions

dΣv

dt
¼ Pvv ⊗ Σv; ð9Þ

dqþi
dt

¼ Pþ
qq ⊗ qþi ; ð10Þ

dq−i
dt

¼ P−
qq ⊗ q−i þ ðPs

qq − Ps
qq̄Þ ⊗ Σv; ð11Þ

dΣ
dt

¼ PΣΣ ⊗ Σþ PΣg ⊗ g; ð12Þ

dg
dt

¼ PgΣ ⊗ Σþ Pgg ⊗ g; ð13Þ

with

Pvv ¼ Pv
qq − Pv

qq̄ þ NfðPs
qq − Ps

qq̄Þ; ð14Þ

Pþ
qq ¼ Pv

qq þ Pv
qq̄; P−

qq ¼ Pv
qq − Pv

qq̄; ð15Þ

PΣΣ ¼ Pv
qq þ Pv

qq̄ þ NfðPs
qq þ Ps

qq̄Þ; ð16Þ

PΣg ¼ 2NfPqg; PgΣ ¼ Pgq: ð17Þ

Notice that there is an inhomogeneous term Σv in
Eq. (11) which is the sum of all flavors. Since q−i has

usually been defined as the valence quark by conventional
wisdom, it seems to imply, on the surface, that a valence u
quark can evolve into a valence d quark and vice versa. This
is not possible in QCD, of course, since it does not have
flavor-changing couplings. To trace its origin, one can see
that it comes from the Ps

qq and Ps
qq̄ terms in Eqs. (5) which

are different. This is due to the exchange of three gluons
between the quark loop with current insertions and the
quark line from the nucleon (valence or sea) as shown in
Fig. 1(b) in Ref. [20]. This gives rise to a difference in the
parton and antiparton distributions in the disconnected
sea (i.e., in the quark loop) which is not valence. For
example, s−ðxÞ ¼ sðxÞ − s̄ðxÞ is not valence in the nucleon
even though the net valence strangeness is zero, i.e.,R
dxs−ðxÞ ¼ 0. Therefore, the definition q−i is not valence

in NNLO, since the parton-antiparton difference can be
generated in the disconnected sea. As we shall see later in
Sec. V, when we expand the evolution equations to separate
out the valence, the connected sea and the disconnected sea,
Eq. (11) is actually a linear combination of two equations,
one involves the valence and the connected sea and the
other, the disconnected sea. This will help clarify the
meaning and definition of q−ðxÞ.

III. HADRONIC TENSOR
IN PATH-INTEGRAL FORMALISM

The deep inelastic scattering of a muon on a nucleon
involves the hadronic tensor which, being an inclusive
reaction, includes all intermediate states

Wμνðq2; νÞ

¼ 1

2

X
n

Z Yn
i¼1

�
d3pi

ð2πÞ32Epi

�

× hNjJμð0ÞjnihnjJνð0ÞjNispin aveð2πÞ3δ4ðpn − p − qÞ:
ð18Þ

Since deep inelastic scattering measures the absorptive
part of the Compton scattering, it is the imaginary part of
the forward amplitude and can be expressed as the current-
current correlation function in the nucleon, i.e.,

Wμνðq2; νÞ ¼
1

π
ImTμνðq2; νÞ

¼ hNj
Z

d4x
4π

eiq·xJμðxÞJνð0ÞjNispin ave: ð19Þ

It has been shown [12–14,21–23] that the hadronic tensor
Wμνðq2; νÞ can be obtained from the Euclidean path-
integral formalism. In this case, one considers the ratio
of the four-point function hχNðp⃗; tfÞ

R
d3x
4π e

−iq⃗·x⃗Jνðx⃗; t2Þ×
Jμð0; t1ÞχNðp⃗; t0Þi and the two-point function hχNðp⃗;
tfÞχNðp⃗; t0Þi, where χNðp⃗; tÞ is an interpolation field for
the nucleon with momentum p at Euclidean time t.
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As both tf − t2 ≫ 1=ΔEp and t1 − t0 ≫ 1=ΔEp, where
ΔEp is the energy gap between the nucleon energy Ep

and the next excitation (i.e., the threshold of a nucleon
and a pion in the p wave), the intermediate state

contributions from the interpolation fields will be domi-
nated by the nucleon with the Euclidean propagator
e−Epðtf−t0Þ. From the four-point and two-point functions
on the lattice,

Gαβ
pWp ¼

X
x⃗f

e−ip⃗·x⃗f
�
χαNðx⃗f; tfÞ

X
x⃗

e−iq⃗·x⃗

4π
Jμðx⃗; t2ÞJνð0; t1Þ

X
x⃗0

eip⃗·x⃗0 χ̄βNðx⃗0; t0Þ
�
; ð20Þ

Gαβ
pp ¼

X
x⃗f

e−ip⃗·x⃗fhχαNðx⃗f; tfÞχ̄βNðx⃗0 ¼ 0; t0Þi; ð21Þ

we define

~Wμνðq⃗; p⃗; τÞ ¼
Ep

mN

TrðΓeGpWpÞ
TrðΓeGppÞ

����
tf−t2≫1=ΔEp;t1−t0≫1=ΔEp

¼ Ep

mN

jZj2mNðEpþmNÞ
E2
p

e−Epðt−t0ÞhNjPx⃗
e−iq⃗·x⃗
4π Jμðx⃗; t2ÞJνð0; t1ÞjNi

jZj2ðEpþmNÞ
Ep

e−Epðt−t0Þ

¼ hNj
X
x⃗

eiq⃗·x⃗

4π
e−iq⃗·x⃗Jμðx⃗; τÞJνð0; 0ÞjNi; ð22Þ

where τ ¼ t2 − t1, Z is the transition matrix element h0jχN jNi, and Γe ¼ 1þγ4
2

is the unpolarized projection to the positive
parity nucleon state. Inserting intermediate states, ~Wμνðq⃗2; τÞ becomes

~Wμνðq⃗2; τÞ ¼ 1

4π

X
n

�
2mN

2En

�
δp⃗þq⃗;p⃗n

hNðpÞjJμð0ÞjnihnjJνð0ÞjNðpÞispin avee−ðEn−EpÞτ: ð23Þ

Formally, to recover the delta function δðEn − Ep þ νÞ in
Eq. (18) in the continuum formalism, one can carry out the
inverse Laplace transform with τ being treated as a
dimensionful continuous variable,

Wμνðq2; νÞ ¼
1

2mNi

Z
cþi∞

c−i∞
dτeντ ~Wμνðq⃗ 2; τÞ; ð24Þ

with c > 0. This is basically doing the anti-Wick rotation
back to the Minkowski space. We will discuss the numeri-
cal lattice approach to this conversion from Euclidean space
to Minkowski space later.

IV. PARTON DEGREES OF FREEDOM

In addressing the origin of the Gottfried sum rule
violation, it is shown [12–14,23] that the contributions
to the four-point function of the Euclidean path-integral
formulation of the hadronic tensor ~Wμνðq⃗2; τÞ in Eq. (23)
can be classified according to different topologies of the
quark paths between the source and the sink of the proton.
Figures 1(a) and 1(b) represent connected insertions (C.I.)
of the currents. Here the quark fields from the interpolators

χN contract with that in the currents such that the quark
lines flow continuously from t ¼ 0 to t ¼ tf and the current
insertions are at t1 and t2. Figure 1(c), on the other hand,
represents a disconnected insertion (D.I.) where the quark
fields from Jμ and Jν self-contract and, as a consequence,
the quark loop is disconnected from the quark paths
between the proton source and sink. Here, “disconnected”
refers only to the quark lines. Of course, quarks propagate

FIG. 1. Three gauge invariant and topologically distinct dia-
grams in the Euclidean-path integral formulation of the nucleon
hadronic tensor. In between the currents at t1 and t2, the parton
degrees of freedom are (a) the valence and connected sea (CS)
partons qvþcs, (b) the CS antipartons q̄cs. Only u and d are present
in (a) and (b) for the nucleon hadronic tensor. (c) the disconnected
sea (DS) partons qds and antipartons q̄ds with q ¼ u, d, s, and c.
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in the background gauge fields and all quark paths are
ultimately connected through the gluon field fluctuations.
We first note that Fig. 1(b), where the quarks propagate

backward in time between t1 and t2 corresponds to the
connected sea (CS) antipartons ūcs and d̄cs, since the quark
lines are connected to the nucleon interpolation fields at
t ¼ 0 and t ¼ tf. This is referred to as ‘intrinsic bound-
valence’ partons [24]. By the same token, Fig. 1(a) gives
the valence and CS partons uvþcs and dvþcs. Here the
valence is defined as

uvðdvÞðxÞ≡ uvþcsðdvþcsÞðxÞ − ūcsðd̄csÞðxÞ; ð25Þ
with

ucsðxÞ≡ ūcsðxÞ; dcsðxÞ≡ d̄csðxÞ: ð26Þ
On the other hand, Fig. 1(c) gives the disconnected sea
(DS) qds and q̄ds with fq ¼ u; d; s; cg. We see that while u
and d have both CS and DS, strange and charm have
only DS.
The flavor and valence-sea classification of PDG is

summarized in the following Table I.
It is clear from the path-integral diagrams that there are

two sources of the sea partons, one is CS and the other is
DS. In the isospin limit where ūdsðxÞ ¼ d̄dsðxÞ, the DS do
not contribute to the Gottfried sum rule (GSR) violation
which reveals that

R
1
0 dx½ūðxÞ− d̄ðxÞ�< 0 from DIS experi-

ments. The isospin symmetry breaking due to the u and d
mass difference should be of the order of ðmd −muÞ=mN
and cannot explain the large violation of GSR. Rather, the
majority of the violation should come from the CS [12].

A. Small x behavior

Since the CS parton is in the connected insertion which is
flavor nonsinglet like the valence, its small x behavior
reflects the leading Reggeon exchanges of ρ;ω; a2… and
thus should be like x−1=2. On the other hand, the DS is
flavor singlet and can have Pomeron exchanges, its small x
behavior goes like x−1. Therefore, we have

uvþcsðxÞ; dvþcsðxÞ; ūcsðxÞ; d̄csðxÞ ∼
x→0

x−1=2;

ð27Þ
uds=ūdsðxÞ; dds=d̄dsðxÞ; sds=s̄dsðxÞ ∼

x→0
x−1: ð28Þ

Since the Gottfried sum rule violation is primarily due to
the CS, one expects ūðxÞ − d̄ðxÞ ¼ ūcsðxÞ − d̄csðxÞ up to

small isospin violation in the DS. Thus, it is not surprising
to find that xðūðxÞ − d̄ðxÞÞ→x→0 0 in the globally analysis of
PDF [25], the E866 Drell-Yan experiment [26], and the
HERMES SIDIS experiment [27].

B. OPE and lattice calculation of moments

Since the fermions are represented by anticommuting
Grassmann numbers, the operator product expansion
(OPE) entails a short-distance Taylor expansion in the
Euclidean path-integral [14]. Under this short-distance
expansion of the hadronic tensor between the current
insertions in the path-integral formalism, Fig. 1(a) and
Fig. 1(b) become the connected insertions (CI) in Fig. 2(a)
for a series of local operators

P
nO

n
q in the three-point

functions from which the nucleon matrix elements for the
moments of the CI are obtained. Here the flavor q ¼ u, d
are the valence flavors from the interpolation field. By
the same token, the disconnected four-point functions in
Fig. 1(c) become the disconnected insertions (DI) in
Fig. 2(b) for the three-point functions to obtain the DI
moments. Here q ¼ u, d, s, c are the DS flavors in the DI.
The main advantage of the path-integral formalism over the
canonical formalism in Minkowski space is that the parton
degrees of freedom are tied to the topology of the quark
skeleton diagrams in Figs. 1(a), 1(b), and 1(c) so that the
CS and the DS can be separated.
LatticeQCDcan access these three-point functions for the

CI and DI which separately contain the CS and DS and
calculations of the moments of the unpolarized and polar-
ized PDFs for the quarks [28–31] and glue [32–34] have
been carried out. At the present stage, lattice calculations
have reached the physical pion mass point and the system-
atic errors due to finite volume and finite lattice spacings

TABLE I. Classification of PDF in the nucleon for different flavors.

Valence and connected sea Disconnected sea

uvþcsðxÞ ūcsðxÞ dvþcsðxÞ d̄csðxÞ udsðxÞ=ūdsðxÞ ddsðxÞ=d̄dsðxÞ sðxÞ=s̄ðxÞ cðxÞ=c̄ðxÞ

FIG. 2. The three-point functions after the short-distance
expansion of the hadronic tensor from Fig. 1(a). The connected
insertion (CI) is derived from Fig. 1(a) and Fig. 1(b). (b) The
disconnected insertion (DI) originates from Fig. 1(c).On

q are local
operators which are the same as derived from OPE.

KEH-FEI LIU PHYSICAL REVIEW D 96, 033001 (2017)

033001-4



are beginning to be controlled [33,35,36]. However, lattice
calculation of the parton moments is limited to a few low
moments (about 2 or 3). The higher moment calculation is
impeded by the complication of renormalization andmixing
with lower-dimension operators which leads to power
divergences.

C. Separation of CS and DS partons

In the global fittings of parton distribution function
(PDF), the CS is not separated from the DS and it had
been implicitly assumed that all the antipartons are from the
DS. That’s why the GSR violation came as a surprise. As a
result, the fitting has accommodated the ūðxÞ − d̄ðxÞ differ-
ence from experiment. However, it is still mostly assumed
in the PDF parametrization that the ūðxÞ þ d̄ðxÞ has the
same x dependence as that of sðxÞ þ s̄ðxÞ. As we discussed
above, ūðxÞ þ d̄ðxÞ ¼ ūcsðxÞ þ d̄csðxÞ þ ūdsðxÞ þ d̄dsðxÞ
have both the CS and DS partons and they have different
small x behaviors. This is in contrast to sðxÞ þ s̄ðxÞ where
there are only DS partons. An attempt to separate CS
from DS antipartons has been pursued [15]. Combining
HERMES data on the strangeness parton distribution [37],
the CT10 global fitting of the ūðxÞ þ d̄ðxÞ distributions
[25], and the lattice result of the moment ratio of the
strange to u=d in the disconnected insertion, i.e.,
hxisþs̄=hxiuþūðDIÞ [16] it is demonstrated [15] that the
CS and DS partons can be separated and the CS ūcsðxÞ þ
d̄csðxÞ distribution of the proton is obtained in the region
0.03 < x < 0.4 at Q2 ¼ 2.5 GeV2. This assumes that the
distribution of ūdsðxÞ þ d̄dsðxÞ is proportional to that of
sðxÞ þ s̄ðxÞ, so that the CS partons can be extracted at
Q2 ¼ 2.5 GeV2 through the relation

ūcsðxÞ þ d̄csðxÞ ¼ ūðxÞ þ d̄ðxÞ − 1

R
ðsðxÞ þ s̄ðxÞÞ; ð29Þ

where ðsðxÞ þ s̄ðxÞÞ is from the HERMES experiment [37],
ūðxÞ þ d̄ðxÞ is from the CT10 global fitting of PDF [25],
and R is defined as

R ¼ hxisþs̄

hxiuþūðDIÞ ; ð30Þ

and the lattice result R ¼ 0.857ð40Þ [16] is used for the
extraction.
The results of xðūðxÞ þ d̄ðxÞÞ − 1

R ðsðxÞ þ s̄ðxÞÞ,
xðūdsðxÞ þ d̄dsðxÞÞ ¼ 1

R xðsðxÞ þ s̄ðxÞÞ and xðūðxÞþ d̄ðxÞÞ
from CT10 at Q2 ¼ 2.5 GeV2 are plotted in the left panel
of Fig. 3. We see that ūdsðxÞ þ d̄dsðxÞ is indeed more
singular than ūcsðxÞ þ d̄csðxÞ at small x as expected from
Eqs. (27) and (28). We also plot the extracted xðūcsðxÞ þ
d̄csðxÞÞ and xðūcsðxÞ − d̄csðxÞÞ from E866 Drell-Yan
experiment [26] and HERMES SIDIS experiment [27].
We see that they are in the same x range and peak around
x ¼ 0.1. It should be pointed out that the CS partons from
Eq. (29) were based on the HERMES data in 2008 [37].
These results will be updated with the 2014 HERMES data
[38] and the lattice result of R in Eq. (30) at the physical
pion point and with the associated systematic errors on
infinite volume and continuum limits taken into account
[39,40]. Since the new HERMES data on xðs̄ðxÞ þ s̄ðxÞÞ
[38] are generally smaller than those of the 2008 data [37]
in the range of 0.03 < x < 0.4 and if the new lattice value
of R is not too far from the one [16] used to extract the CS
partons shown in Fig. 3, the to-be-updated CS partons are
expected to be more prominent in this range of x. The
results of the CS partons will change somewhat, but their
qualitative features are expected to remain.

D. Lattice calculation of PDF

The extraction of ūcsðxÞ þ d̄csðxÞ in Eq. (29) is based on
the assumption that the distribution of sðxÞ þ s̄ðxÞ is
proportional to that of udsðxÞ þ ūdsðxÞ or ddsðxÞ þ
d̄dsðxÞ so that their ratio can be obtained via the ratio R
in Eq. (30). It would be better to calculate ~Wμν represented
in Figs. 1(a), 1(b), and 1(c) directly on the lattice. How-
ever, there is a numerical complication in that an inverse
Laplace transform is involved in converting ~Wμν to Wμν in
Minkowski space as in Eq. (24). An improved maximum

FIG. 3. (Left panel) xðūcsðxÞ þ d̄csðxÞÞ obtained from Eq. (30) is plotted together with xðd̄ðxÞ þ ūðxÞÞ from CT10 and
1
RxðsðxÞþ s̄ðxÞÞ which is taken to be xðudsðxÞþ ūdsðxÞÞ. (Right panel) xðūcsðxÞþ d̄csðxÞÞ is plotted together with xðūcsðxÞ− d̄csðxÞÞ
from the E866 and HERMES experiments.
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entropy method (MEM) [41] which can lead to more stable
fit is proposed to solve this inverse problem [23]. Recently,
there is another approach to calculating PDF on the lattice
via the quasi-PDF [42–45] in the large momentum frame.
Both approaches are at their infancy and still face many
numerical challenges. They are not as mature as the lattice
calculation of moments and matrix elements which are at
the stage of finalizing the calculations with all the system-
atic errors under consideration.

V. NNLO EVOLUTION EQUATIONS
FOR THE VALENCE, CS, AND DS

We see from Sec. IV B that, under the short-distance
expansion of the hadronic tensor, the connected four-point
functions in Fig. 1(a) and Fig. 1(b) become the connected
insertions (CI) in Fig. 2(a) for a series of local operatorsP

nO
n
q in the three-point functions from which the nucleon

matrix elements for the moments of the CI are obtained.
Here the flavor q ¼ u, d are the valence flavors from the
interpolation field. By the same token, the disconnected
four-point functions in Fig. 1(c) become the disconnected
insertions (DI) in Fig. 2(b) for the three-point functions to
obtain the DI moments. It is clear from the operator analysis
of operator scaling and mixing, only the DI can mix with
the glue operator. Since the quark lines in the CI are
connected between the current operators and the interpo-
lation fields of the nucleon source and sink, it does not have
the annihilation channel to mix with glue operators. As a
consequence, one deduces that the CS evolves the same
way as the valence; i.e., they can evolve into valence, CS,
and DS. But the DS cannot evolve into valence and CS. On
the other hand, the gluons can split into DS, but not into the
valence and CS, since their operators do not mix.
With the above operator analysis, it is straightforward

to write down the extended NNLO DGLAP evolution
equations which accommodates the separately evolved CS
and DS.

dqvþcs
i

dt
¼ Pc

ii ⊗ qvþcs
i þ Pc

iī ⊗ q̄csi ; ð31Þ

dq̄csi
dt

¼ Pc
ī ī ⊗ q̄csi þ Pc

īi ⊗ qvþcs
i ; ð32Þ

dqdsi
dt

¼
X
k

Pcd
ik ⊗ qdsk þ

X
k

Pcd
ik̄

⊗ q̄dsk þ
X
k

Pd
ik ⊗ qvþcs

k

þ
X
k

Pd
ik̄
⊗ q̄csk þ Pig ⊗ g; ð33Þ

dq̄dsi
dt

¼
X
k

Pcd
ī k̄

⊗ q̄dsk þ
X
k

Pcd
īk ⊗ qdsk þ

X
k

Pd
īk ⊗ qvþcs

k

þ
X
k

Pd
ī k̄

⊗ q̄csk þ Pig ⊗ g; ð34Þ

dg
dt

¼
X
k

ðPgk ⊗ ðqvþcs
k þ qdsk Þ þ Pgk̄ ⊗ ðq̄csk þ q̄dsk ÞÞ

þ Pgg ⊗ g; ð35Þ

where Pc
ii ¼ Pc

ī ī, P
c
iī ¼ Pc

īi and they involve only connected
diagrams where the quark line is connected between the
initial quark and the pinched current point (e.g., Fig. 2(a)
and the leftmost one in 2(b) in Ref. [46]). Pd, on the other
hand, involves only the quark-line disconnected diagrams
where the pinched point is on the quarks/antiquarks in the
loop (e.g., two right diagrams in Fig. 2(b) in Ref. [46]).
Note that in NNLO, there is three-gluon exchange between
the quark loop with current insertions and the quark line
from the nucleon (both valence and DS) as illustrated in
Fig. 1(b) in Ref. [20]. This implies Pd

ik ¼ Pd
ī k̄

≠ Pd
ik̄
¼ Pd

īk.
Thus in NNLO, the evolution itself can induce qdsi ≠ q̄dsi by
the valence and the DS. Pcd

ik ¼ Pcd
ī k̄

and Pcd
īk ¼ Pcd

ik̄
involve

evolutions from DS to DS and they have both connected
and disconnected diagrams, i.e.,

Pcd
ik ¼ Pc

iiδik þ Pd
ik: ð36Þ

We shall compare these equations to Eqs. (9), (10), (11),
(12), (13). We first note that the quantities defined in
Eqs. (7) and (8) have the following components,

q−i ≡ qi − q̄i ¼ qvþcs
i − q̄csi þ qdsi ðxÞ − q̄dsi ðxÞ; ð37Þ

Σ≡X
i

ðqi þ q̄iÞ ¼
X
i¼u;d

ðqvþcs
i þ q̄csi Þ þ

X
i¼u;d;s

ðqdsi þ q̄dsi Þ;

ð38Þ

qþi ≡ qi þ q̄i −
1

Nf
Σ

¼
(
qvþcs
i þ q̄csi þ qdsi þ q̄dsi − 1

Nf
Σ i ¼ u; d;

sþ s̄ − 1
Nf

Σ i ¼ s
ð39Þ

Taking the combination Eq. (31) − Eq. (32) + Eq. (33) −
Eq. (34), we have

dq−i
dt

¼ P−
qq ⊗ q−i þ P−

ds ⊗
X
k

q−k ; ð40Þ

with

P−
qq ¼ Pc

qq − Pc
qq̄ ≡ Pv

qq − Pv
qq̄;

P−
ds ¼ Pd

qq − Pd
qq̄ ≡ Ps

qq − Ps
qq̄: ð41Þ

This is just Eq. (11) with the inhomogeneous term being the
sum of q−k . The first term in Eq. (40) is from the difference
of Eqs. (31) and (32) and the flavor-diagonal parts (δik) of
the first two terms in Eqs. (33) and (34); while the second
term is from the rest of Eqs. (33) and (34). Thus, we now
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understand that Eq. (11) is the sum of the evolution of
qvþcs
i − q̄csi and qdsi − q̄dsi . Note the inhomogeneous term

only enters in NNLO where Pd
ik ¼ Pd

ī k̄
≠ Pd

ik̄
¼ Pd

īk. It is
clear now that q−ðxÞ is not the valence, as discussed in
Sec. II, it includes qdsi ðxÞ − q̄dsi ðxÞ. in Eq. (37). The proper
definition of the valence is Eq. (25). Equation (9) is simply
the sum of Eq. (40) over flavor.
Utilizing Eq. (36), the equation for Σ is

dΣ
dt

¼ Pþ
qq ⊗

��X2
i¼1

qvþcs
i þ q̄csi

�
þ
X
k

ðqdsk þ q̄dsk Þ
�

þ
X
i;k

�
Pd
ik þ Pd

īk

�
⊗ ðqvþcs

k þ q̄csk þ qdsk þ q̄dsk Þ

þ 2
X
i

Pig ⊗ g: ð42Þ

This can be written in terms of Σ

dΣ
dt

¼ PΣΣ ⊗ Σþ PΣg ⊗ g; ð43Þ

with

PΣΣ ¼ Pc
qq þ Pc

qq̄ þ NfðPd
qq þ Pd

q̄qÞ; ð44Þ

PΣg ¼ 2NfPqg: ð45Þ

Given Pc
qq ≡ Pv

qq and Pd
qq ≡ Ps

qq, Eq. (43) is just Eq. (12).
Similarly, one can show that the equation for qþ has the

following form for i ¼ u, d and s,

dqþi
dt

¼ Pþ
qq ⊗ qþi ; ð46Þ

which is the same as in Eq. (10) where Pþ
qq ¼

Pc
qq þ Pc

qq̄ ≡ Pv
qq þ Pv

qq̄. Finally, Eq. (35) is just Eq. (13)
with PgΣ ¼ Pgq ¼ Pgq̄.

A. Comments

Now that the extended evolution equations are derived,
several comments are in order.

(i) Due to the linear nature of the DGLAP equations,
the 9 equations in Eqs. (9), (10), (11), (12), (13) can
be obtained from the linear combinations of the
extended 11 evolutions equations in Eqs. (31), (32),
(33), (34), (35). The two extra equations are to
accommodate the CS partons for the u and d flavors.
These extended equations are ready to accommodate
the most general case with s≠ s̄, uds≠ ūds, dds≠ d̄ds

in addition to flavor-dependent DS.
(ii) The valence is defined as qvi ≡ qvþcs

i − q̄csi which is
not the same as q−i unless qdsi ¼ q̄dsi . This alleviates
the potential confusion that strange partons are part
of the valence when sðxÞ ≠ s̄ðxÞ.

(iii) If one does not distinguish CS from DS, the usual
DGLAP equations in Eqs. (9), (10), (11), (12), (13)
are adequate. Why does one need to extend them to
have separate CS and DS? One of the major reasons
is to be able to compare with lattice calculation and,
in some cases, they can be used to help constrain the
global PDF analysis. As we explained in Sec. IV D,
the lattice calculations of nucleon matrix elements
are mature with all the systematic errors taken into
account. They are ready to produce results which
can confront experiments. However, the lattice
calculation are organized in terms of CI in
Fig. 2(a) which are the moments for the valence
and CS partons and DI in Fig. 2(b) which are for the
DS partons. On the other hand, the current global
fittings of PDF do have the valence separated, but
the CS and DS are lumped together as the total sea.
Consequently, no direct comparison can be made
between the lattice moments and those of PDF,
except for a few quantities such as hxiu−d and hxis.

(iv) The need to separate CS from DS is particularly
acute in the polarized PDF where much interest is
focused on the quark and glue spins, and their orbital
angular momenta. To address the ‘proton spin crisis’
where the quark spin is found to contribute only
∼30% of the proton spin, the lattice calculation can
be carried out for the flavor-singlet axial-vector
current matrix elements in the CI and DI. Lattice
calculations [47–54] have shown that the matrix
element from the DI of the flavor-singlet axial-
vector current is negative. This reduces that from the
CI to make the total quark spin smaller than
expected from the valence contribution. Further
examination of the negative DI contribution can
be understood in terms of the cancellation between
the pseudoscalar density term and the anomaly term
through the anomalous Ward identity [55]. One
would like to compare these findings to experiments,
but this is not attainable unless and until the global
fitting manages to separate the CS from the DS in
polarized DIS and Drell-Yan processes.

(v) An example is given to separate CS from DS in
Sec. IV C which utilizes the combined global PDF,
experimental data and lattice calculation to do the
job. This is done for one Q2. Only through the fully
separated CS and DS degrees of freedom in the
extended evolutions can the CS and DS remain
separated at different Q2. This aspect is essential for
the global analysis of PDF with fully separated CS
and DS as a function of both x and Q2.

VI. SUMMARY

The roles of the connected-sea (CS) and disconnected-
sea (DS) partons, as revealed in the path-integral formu-
lation of the hadronic tensor in the Euclidean space, are
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clarified in terms of the Gottfried sum rule violation, their
small x behaviors, the moments of PDF, and evolution. An
example is given to show how the CS can be separated from
DS by combining the CT10 PDF, HERMES SIDIS data on
the strange parton distribution and the lattice calculation
of the ratio of the second moment of the strange vs the u=d
in the DI.
From the short-distance expansion which is equivalent to

OPE in Minkowski space, it is shown that the valence and
CS partons merge in the moments of the connected
insertion (CI), while the DS goes into the moments of
the disconnected insertion (DI). Since only the DI mixes
with the glue operators, it implies that the CS evolves the
same way as the valence. The extended DGLAP equations
are thus derived which entails separate equations for the CS
and DS. Upon linear combinations, it is shown that they

reproduce the conventional DGLAP equations where the
CS and DS are not separated.
Special emphasis is placed on the need to have separately

evolved CS and DS so that comparison with lattice calcu-
lations of unpolarized and polarized moments of PDF can be
made. Only with the extended DGLAP equations will the CS
and DS remain separated at different Q2 to facilitate global
fitting of PDF with separated CS and DS partons.
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