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ABSTRACT OF DISSERTATION 
 
 
 
PREVENTION OF HORMONAL MAMMARY-CARCINOGENESIS IN RATS BY 
DIETARY BERRIES AND ELLAGIC ACID. 
 
  

 
Breast cancer is the most frequently diagnosed cancer among women 

around the world. The hormone 17ß-estradiol (E2) is strongly implicated as a 

causative agent in this cancer. Since estrogen acts as a complete carcinogen, 

agents that interfere with the carcinogenic actions of E2 are required. Most 

agents effective against experimental mammary carcinogenesis have been 

employed as pure compounds disregarding the synergy that exists between 

several phytonutrients in a whole food. In these studies we have taken a unified 

approach, by employing a pure phytonutrient – ellagic acid and whole foods that 

contain the phytonutrient at various levels – berries, in the prevention of E2-

induced mammary cancer in ACI rats. We have also used a tiered approach by 

screening several phytochemicals in vitro and implementing these results in both 

short- and long-term studies. Initially, several phytochemicals were tested as 

pure compounds against oxidative DNA damage induced by 4-hydroxy estradiol 

and CuCl2. Ellagic acid, was the most effective agent (>98% reduction). In a 

short-term in vivo study, both dietary blueberry and strawberry (5% w/w), were 

ineffective in reducing the baseline oxidative DNA damage in the livers of CD-1 

mice. However, red raspberry (5% w/w) was highly effective (50% reduction) and 

ellagic acid (400 ppm) was moderately effective (25% reduction).  Further both 

diets up-regulated hepatic DNA repair genes in a similar fashion. In a long-term 

estradiol-induced mammary carcinogenicity study in ACI rats, dietary berries 

(2.5% w/w) and ellagic acid (400 ppm) reduced both tumor volume and tumors 



per animal to different extents (50-75%). One mechanism by which these dietary 

interventions inhibit mammary tumorigenesis may be via modulation of E2 

metabolism, especially at the early stages of carcinogenesis. At 6 weeks after E2 

treatment both berries and ellagic acid or berries alone significantly offset E2-

induced changes in CYP1B1 and CYP1A1 expressions respectively. In addition, 

no toxicity or adverse effects are observed when rodents were fed either berries 

(1 - 5%) or ellagic acid (400 ppm). These data taken collectively support the 

possibility of using natural foods such as berries as an adjuvant to current 

pharmacological therapies in the prevention and treatment of breast cancer.  

 
Key words: Chemoprevention, Breast cancer, Berries, Ellagic acid, ACI rats.  
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Chapter One: General introduction 

 
Breast Cancer - Statistics 

Breast cancer is the most prevalent cancer among women worldwide 

(Parkin et al., 2005; Parkin & Fernandez, 2006). The global estimates of cancer 

are provided by the International Agency for Research on Cancer (http://www-

dep.iarc.fr/globocan/database.htm). According to this, the global incidence of 

cancer is estimated to be almost 11 million and the mortality and prevalence 

figures are close to 7 and 25 million respectively (Parkin et al., 2005). Breast 

cancer is the most frequent cancer contributing to 23% of all diagnosed cancers 

in women. Among the 1.15 million cases diagnosed globally, 31.3% (230,000) 

are in North America, which has the highest age-standardized incidence (99.4 

per 100,000) (Table 1.1). Generally, it is seen that the incidence of breast cancer 

is higher in developed countries compared to the developing nations (Figure 1.1), 

which is attributed to combined influence of differences in lifestyle, hereditary 

factors and screening practices, etc,.  (Althuis et al., 2005). The mortality rate for 

breast cancer is the fifth highest ranking behind lung, stomach, liver and colon 

cancers. Breast cancer ranks as the most prevalent cancer among all cancers 

(17.9%) due to its good prognosis. The average survival rates for women with 

breast cancer are 73% and 57% for developed and developing nations 

respectively (Parkin et al., 2005). The incidence and mortality of breast cancer in 

the United States are 213,000 and 41,000 respectively (ACS, 2007a).  The 5-

year survival rate after diagnosis of a localized breast cancer is 98%. Currently, 

there are over 2 million breast cancer survivors in the United States (ACS, 

2007b; ACS, 2007a). However, this survival rate varies with age, stage of tumor 

at diagnosis, race/ethnicity and socioeconomic status of the patients (ACS, 

2007b; ACS, 2007a). In Kentucky, over 3000 cases of breast cancer are 

expected to be diagnosed, with a 20% mortality rate (ACS, 2007b; ACS, 2007a). 

These global, national and regional statistics make breast cancer a primary 

public health concern for women.  
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Epidemiology  
 Epidemiology is the study of patterns, causes and control of a disease in a 

given population. Epidemiological studies are of 3 types – (1) Retrospective or 

case-control studies that look at the differences in risks between 2 populations 

that are with (cases) and without (controls) a particular disease; (2) prospective 

or cohort studies that involve study of outcomes of a particular disease in a given 

set of population observed over a period of time; and (3) cross-sectional studies 

that measure the prevalence of a disease in a particular population (Woodward, 

2005). 

 

Epidemiological studies of breast cancer indicate at least two 

distinguishable types of breast cancer. About 10% of all breast cancers 

diagnosed can be attributed to a familial or hereditary cause. Several genes have 

been linked firmly to the disease and are discussed in some detail below. 

However, about 90% of breast cancers diagnosed is termed as sporadic (Figure 

1.2), which means that although there are several risk factors that elevate the 

risk of developing the disease, one major cause cannot be singled out. Sporadic 

cancer is thought to occur due to interactions between various risk factors.  

 

The hereditary or familial breast cancer presents with germline mutations in 

certain genes that are passed on from one generation to another. Certain 

families or populations such as the Ashkenazi Jews, are at very high risk of 

breast cancer due to the high prevalence of these genetic mutations (Brinton et 

al., 2002; Thompson & Easton, 2004). Among these mutations, the most 

common are the BRCA 1 and BRCA 2 mutations. These high-penetrance genes 

are mutated in about 65% of all familial breast cancers diagnosed (Studzinski & 

Harrison, 2002). The mutated gene produces an inactive protein that raises the 

risk of ever having breast cancer from about 3% at age 30 to 85% at age 70 

(Studzinski & Harrison, 2002). Specific mutations that are prevalent in up to 2.5% 

of the Askenazi Jewish population have been identified (Studzinski & Harrison, 

2002). The gene p53 is involved in cell-cycle arrest. Somatic mutations in this 

gene are present in 50% of all cancers and about 15-30% of breast cancers. 
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However, germline mutations in this gene are rare and associated with the Li-

Fraumeni syndrome, which presents with early onset tumors in multiple organs 

including the breast. p53 mutations contributes to about 1% of all familial breast 

cancer cases (Figure 1.2). Another such syndrome is Cowden’s syndrome with 

germline mutations in the PTEN gene. More recently, mutations in the cell-cycle 

check point gene-CHEK2 have been associated to familial breast cancer, not 

linked to BRCA 1 or BRCA 2 mutations (Vahteristo et al., 2002; Oldenburg et al., 

2003; Thompson & Easton, 2004). 

 

 A great majority (90%) of breast cancer is considered sporadic since no 

single risk factor can be clearly attributed to causation and is thought to be 

caused by the interactions between multiple risk factors. Epidemiological studies 

have linked several risk factors in the etiology of breast cancer. These risk 

factors can be broadly classified into 3 categories (Table 1.2): 

1. Non-modifiable risk factors such as age, gender, race/ethnicity, genetic 

polymorphisms, familial history, and previous breast history. 

2. Modifiable or lifestyle risk factors that include diet, exercise, body weight, 

alcohol, and smoking.  

3. Hormonal risk factors, including age at menarche and menopause, 

parity, breast feeding, and hormone-replacement therapy (HRT).  

 

Non-modifiable risk factors. 

 Age is considered the foremost non-modifiable risk factor for any cancer. 

For women, the lifetime risk of developing cancer is slightly more than 1 in 3 

(ACS, 2007b). Both the incidence and mortality due to breast cancer increase 

with age, with the median age of diagnosis being 61 years (ACS, 2007a). 

Women between the ages of 75 -79 have the highest incidence, while those from 

20 to 24 have the lowest (ACS, 2007b).  Women 50 and older have the highest 

rate of both invasive cancers and carcinomas in-situ. Age also affects survival 

and mortality trends after diagnosis. The rate of decline in mortality attributed to 

better treatment was only 2% for women older than 50 compared to 3.3% for 
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those under (ACS, 2007b). Conversely, the 5 year survival rate is 89% for 

women 40-74 compared to only 82% in those under 40. Female gender is a risk 

factor by default. However, up to 1% of breast cancer occurs in males which are 

usually linked to inherited traits (Studzinski & Harrison, 2002; ACS, 2007a).  

 

 It is known that African-American women have a lower incidence of breast 

cancer than white women, but they are more likely to die of the disease at every 

age (Bowen et al., 2006; Smigal et al., 2006). Other races and ethnicities have 

recorded a much lower incidence rates. African-American women also have a 

lower 5-year survival compared to Caucasians (76% versus 90%); this difference 

is attributed to biological differences in cancer types, later stage at diagnosis, 

poorer stage-specific survival, lack of disease awareness and socio-economic 

reasons (Eley et al., 1994; Elledge et al., 1994; Klauber-DeMore et al., 2006). 

 

 Family history has been strongly linked to the incidence of breast cancer 

in women. It is known that a woman’s risk increases linearly with the number of 

first-degree relatives diagnosed (McPherson et al., 2000; ACS, 2007a). The 

reason for this linkage is manifold, including genetic mutations that occur at a 

very high rate in certain families, common environment, etc., (McPherson et al., 

2000; Mucci et al., 2001). Mutations in the Ataxia Telangiectasia gene has been 

implicated in increased risk for breast cancer, although mutations in this gene by 

itself do not seem to significantly increase breast cancer risk (Ellisen & Haber, 

1998). Other genes that are inherited as germline mutations and may confer a 

familial risk have been discussed earlier.  

 

  Other than the high-penetrance genes, genetic polymorphisms in several 

low penetrance genes confer a small to moderate risk to carriers. Although their 

risk-effect is low compared to high-penetrance genes, these variants are more 

common in the general population and hence they confer a much higher 

Population Attributable Risk (Nathanson & Weber, 2001). They include proto-

oncogenes, tumor-suppressor genes and genes involved in cell-signaling, DNA 

repair, carcinogen metabolism, etc., (de Jong et al., 2002). Such low penetrance 
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genes may play an important role in synergistically increasing the risk with an 

environmental risk factor such as smoking (Dunning et al., 1999).  

 

 A woman’s breast history plays an important role in the etiology of breast 

cancer. A benign proliferative change in the breast such as atypical hyperplasia 

is associated with a four-fold increase in cancer risk later in life (Colditz et al., 

1993)). Other changes in the mammary epithelium are associated with a slight 

non-significant increase in risk (McPherson et al., 2000).  

 

Modifiable risk factors. 

 Diet is a very important modifiable risk factor. Diet is a complex mixture of 

both carcinogens that enhance and protective factors that reduce risk. The role of 

diet in both cancer causation and prevention is discussed in detail later. 

Epidemiological studies have linked a high meat intake with increased breast 

cancer risk (Cho et al., 2006). Indeed, chemicals present in meat such as 

heterocyclic aromatic amines (HAA) and polycyclic aromatic hydrocarbons 

(PAH), have been found to be carcinogenic in rodent models (Table 1.5) 

(Huggins et al., 1961; Snyderwine et al., 1998). In addition, DNA adducts 

presumably derived from these chemicals have been found in breast biopsies of 

women diagnosed with breast cancer (Li et al., 1999), suggesting a causative link 

between these dietary carcinogens and breast cancer. In addition to chemical 

carcinogens, the role of dietary fat has been studied extensively in causation of 

breast cancer. Although, several epidemiological studies showed a positive 

correlation between high fat intake and breast cancer incidence (Hursting et al., 

1990; Cho et al., 2006), larger analyses of data suggest that there may be no 

significant correlations (Smith-Warner et al., 2001; Wakai et al., 2005). However, 

recent concerns regarding recall-bias of actual dietary intakes have been 

reported (Prentice, 1996; Gonzalez, 2006a). If this is validated then re-analysis of 

previously reported data may yet again yield different results. Nevertheless, key 

risk factors, such as age at menarche, body weight and body fat content, are 
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influenced by diet and hence diet plays a key role in determining breast cancer 

risk (Marchant, 1982).  

 

 Obesity is associated with a two-fold increase in the risk for breast cancer 

in postmenopausal women (McPherson et al., 2000). Both adult weight gain and 

increased waist to hip ratio are associated with increase in incidence risk 

(Brekelmans, 2003; ACS, 2007a). For women with a Body Mass Index (BMI) >25 

(Normal- 18-25) the mortality risk from breast cancer are 1.3 to 2.1- times higher 

(ACS, 2007a). After menopause visceral fat stores are a major site for production 

of estrogens, which reflects in the increased risk (Simpson et al., 1999; Lorincz & 

Sukumar, 2006).  

 

 Regular physical activity has been shown to reduce the risk of breast 

cancer among post-menopausal women (ACS, 2007a). This protective effect is 

additive when present along with parity and a normal BMI (Thune et al., 1997). 

Although the mechanisms are not well defined the effects are thought to be 

induced by the effect of exercise on energy balance and hormones (Doll, 1996; 

Bentz et al., 2005; McTiernan et al., 2006).  

 

 Alcohol consumption increases breast cancer risk. The consumption of 

more than 24 g alcohol (two drinks a day) increases risk by 21% and there is a 

dose-dependant correlation between alcohol intake and breast cancer risk 

thereafter (Hamajima et al., 2002). Since alcohol consumption and smoking often 

co-exist, it is seen that alcohol consumption can substantially confound the effect 

of smoking on breast cancer (Hamajima et al., 2002). Alcohol is known to affect 

the metabolism of steroid hormones and thus increase breast cancer risk 

(Purohit, 2000; Singletary & Gapstur, 2001; Pierucci-Lagha et al., 2006). 

 

The correlation between both active and passive smoking and breast 

cancer remains inconclusive and highly debated. The report published by the 

Collaborative Group on Hormonal factors in Breast Cancer, which looked at 

60,000 cases and 100,000 controls, suggests that there is no association 
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between smoking behaviors and breast cancer (Hamajima et al., 2002), although 

there have been many smaller reports that contrast this (Chaturvedi, 2003). 

However, recently a study published by Reynolds and coworkers suggest that 

there are significant correlations between smoking and other lifestyle factors 

(Reynolds et al., 2004). It was found that current-smokers tended to have a less 

healthy lifestyle than non-smokers and hence may be more susceptible to the 

effects of other risk factors. Associations between passive smoking and breast 

cancer risk are inconclusive (Lee & Hamling, 2006).  

 

Ionizing radiation is also known to increase the risk of breast cancer. 

Studies among women exposed to nuclear radiation and also those exposed to 

excessive x-ray radiation especially at a young age (Sigdestad et al., 2002), 

suggests that there is a correlation between radiation and breast cancer.  

 

Hormonal risk factors  

The mammary glands are under the constant influence of several 

hormones throughout the lifetime. Hence, hormonal factors play a major role in 

the causation of breast cancer. The mammary gland is highly responsive to 

hormonal influences. The developing mammary gland is under the endocrine 

influence of organs such as the pituitary, the ovary and the adrenals 

(Vonderhaar, 1988). In addition, the paracrine regulation by stromal cells is also 

involved (Cunha & Hom, 1996; Wiseman & Werb, 2002). The mammary gland 

development is, mostly but not exclusively, affected by 3 major hormones: 

estrogen, progesterone and prolactin. Estrogen and progesterone play an 

important role in the development of the mammary glands in non-parous women 

(Anderson, 2002). Prolactin, secreted by the anterior pituitary, plays a significant 

role in the development of the mammary gland during pregnancy and prior to 

lactation (Kelly et al., 2002). 

 

 Estrogen is produced primarily by the ovaries in response to endocrine 

stimulus from the pituitary (Jones & DeCherney, 2003). The mammary gland is 
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constantly under the effect of estrogen. During each estrus cycle, the mammary 

ducts undergo proliferative changes during the follicular phase when the 

circulating levels of estrogen are higher (Schedin et al., 2000). Estrogen 

exposure over lifetime is considered a significant risk factor for the development 

of breast cancer (Lippman et al., 2001). This is supported by the increased 

incidence of breast cancer in women with early menarche and/or late 

menopause, resulting in a higher cumulative exposure to the ovarian hormone 

(Hsieh et al., 1990). Also, women with serum estradiol levels in the highest tertile 

(≥12 pmol/L) had a 2-fold higher risk of developing breast cancer than those in 

the lower tertile (<12 pmol/L) (Lippman et al., 2001).  Menarche and menopause 

are determined both genetically and by environmental factors (Graber et al., 

1995; Petridou et al., 1996).  The role of ovarian hormones in breast cancer risk 

is further substantiated by the fact that women who have either uni- or bi-lateral 

oophorectomy have a reduced risk of breast cancer, which directly implicates 

ovarian hormones in the development of breast cancer (Parazzini et al., 1997).  

 

  Progesterone is another ovarian hormone that affects breast development. 

Progesterone is mainly secreted during the luteal phase of the estrus cycle. The 

link between exposure to endogenous progesterone and breast cancer has not 

been clearly defined, however, the exposure to endogenous progesterone would 

be proportional to the total number of menstrual cycles that a woman has in her 

lifetime. There is some indication that the average serum progesterone levels 

increases with age, but a correlation to breast cancer has not been established 

(Garcia-Closas et al., 2002). Nevertheless, the link between exogenous 

progesterone and breast cancer risk has been explored with regard to HRT. 

Recent results from the Million Women Study, a study with the largest cohort as 

yet, done in the UK, shows a clear association between HRT use and increased 

breast cancer risk. They report that HRT increases the risk of both incident and 

fatal breast cancer risk and that this risk is higher for a combination therapy of 

estrogen and progesterone than for estrogen alone (Beral, 2003). This 

corroborates an earlier finding by the Collaborative Group on Hormonal Factors 
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in Breast Cancer (Lancet, 1997). Thus, progesterones may also be involved in 

the development of breast cancer.  

 

Prolactin, secreted by the anterior pituitary has a significant role in the 

development of the mammary gland both before and during lactation (Topper & 

Freeman, 1980). The undifferentiated lobules in the non-parous mammary gland 

undergo both development and differentiation under the influence of prolactin 

(Horseman, 1999). The reduced risk of breast cancer caused by parity can be 

attributed to this differentiation. Breasts of parous women contain more 

differentiated lobules (Lob 2 and 3) compared to non-parous women which 

contain mostly undifferentiated structures (Russo et al., 2001). Indeed, an early 

first full-term pregnancy is associated with a reduced risk of breast cancer as are 

multiple pregnancies (Rosner et al., 1994). However, the protection decreases 

with increasing age of first pregnancy. It is also seen that lactation is associated 

with moderately reduced risk of breast cancer (Velie et al., 2005) .  

 

 It is clear that sporadic breast cancer arises due to interplay between 

various risk factors. The hormonal milieu during a woman’s lifetime affects both 

initiating as well as protective factors of breast carcinogenesis. To this end it is 

required to explore in detail the effect of hormones on breast cancer 

development and their interactions with other risk factors such as alcohol, body 

weight and diet.  

 
 Hormonal control of mammary gland development. 

In order to understand the role of hormones in cancer causation, it is 

necessary to comprehend their role in the normal development of the mammary 

gland. The mammary gland is highly complex tissue composed of different cell 

types such as epithelial cells, stromal cells and adipocytes, that are both 

dependant on and responsive to endocrine control throughout development 

(Topper & Freeman, 1980). The role of cell-to-cell interactions, autocrine and 

paracrine controls of growth are of paramount importance in this tissue. Most 

studies on mammary gland development are based on rodent studies (Shyamala 
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et al., 2002). The development of mammary gland occurs discontinuously 

throughout lifetime, with major developmental stages being puberty, pregnancy 

and lactation (Vonderhaar, 1988; Shyamala et al., 2002).   At birth, the mammary 

gland largely consists of rudimentary ducts consisting of a layer each of luminal 

epithelial cells and myoepithelial cells surrounded primarily by connective tissue 

(Vonderhaar, 1988). Initial development of the mammary gland takes place 

during and after puberty (Vonderhaar, 1988). Puberty is marked by both a 

dichotomous and sympodial growth and branching of the rudimentary ducts 

(Russo et al., 2001). There is also a corresponding change in the stromal cells, 

fat pads and other anatomical structures which contribute towards breast 

development. With the initiation of menstrual cycles, the cyclic release of the 

ovarian hormones imparts a gradual and constant growth in the mammary gland 

(Vonderhaar, 1988; Shyamala et al., 2002). This proliferative process continues 

until the age of 35 when it reaches a plateau (Russo et al., 2001).   The two 

important ovarian hormones that affect breast development are estrogens and 

progestins. The active forms of estrogens are estrone, estradiol and estriol and of 

progestins are progesterone and 17-α hydroxy progesterone.  The key effects of 

various hormones on mammary gland development are summarized in table 1.3.  

 

Estrogens are known to cause proliferation of the mammary epithelial cells 

during each estrus cycle. After puberty, there is a gradual and extensive growth 

of the mammary ducts under the monthly influence of estrogen (Shyamala et al., 

2000). At the end of puberty, around the age of 15, a woman’s breast consists 

primarily of undifferentiated lobules type 1 (Lob 1) (reviewed in Russo et al., 

2001).  It is understood that many of these lobules do not undergo any 

differentiation in non-parous women, making these a prone target for 

transformation by carcinogens.  

 

Much knowledge about the role of estrogen-receptors (ERs) in mammary 

gland development has come from rodent studies involving estrogen-receptor α 

null phenotype mice (αERKO) and others. Although a greater proportion of 

actively dividing cells in the terminal end buds (TEB) have been found to be ER-
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negative (Zeps et al., 1998; Russo et al., 2001), there is a small proportion of ER-

positive luminal cells that seem to control growth and proliferation of others in a 

paracrine fashion (Mueller et al., 2002; Shyamala et al., 2002). ERα is necessary 

for normal ductal development (Bocchinfuso et al., 2000), its expression varies in 

the different cell types and is down regulated by estrogen in normal cells 

(Anderson, 2002; Shyamala et al., 2002). Also, the presence of ERα in both 

stromal cells and epithelial cells are required for normal development, indicating 

the importance of cell-to-cell communication and paracrine controls involved in 

the development of mammary ductal structures (Mueller et al., 2002).  

 

Progesterone predominates the luteal phase of the menstrual cycle and 

plays an important role in mammary gland development. It primarily acts via 2 

isoforms of its receptor PRA and PRB (Shyamala et al., 2000). These isoforms 

are induced by estrogen (Shyamala et al., 2002), suggesting that actions of both 

steroid hormones may be tightly coupled. It acts on cells already primed by 

estrogen exposure to cause some maturational growth during each cycle. While 

estrogen is considered important in the development of the ductal structure, 

progesterone seems to play a role in the development of the lobulo-alveolar 

structures, suggesting that it may play an important role in the differentiation of 

the mammary epithelial cells (Shyamala, 1999). The ratio of the two isoforms 

plays a major role in both normal mammary development as well as 

carcinogenesis (Osborne et al., 2005).  

 

Prolactin (PRL) is a peptide hormone secreted by the lactotrophs of the 

anterior pituitary (Barrett, 2003). It is a 23 kdA protein that acts via its 

transmembrane-receptor (PRLR) (Hennighausen et al., 1997). Prolactin affects 

ductal side branching and TEB regression during normal mammary 

morphogenesis (Brisken et al., 1999) and  during pregnancy causes 

development of lobulo-alveolar structures involved in and for the post-partum 

milk production (Hennighausen et al., 1997; Brisken et al., 1999). Apart from its 

influence on the mammary gland, PRL also affects the ovary and the immune 

system (Hennighausen et al., 1997).  
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Testosterone is the precursor hormone to estradiol and is converted to the 

product by the enzyme aromatase. Although, the direct effect of testosterone on 

mammary gland development is not clear, aromatase is a ubiquitous enzyme 

found in many tissues, especially tissues most responsive to estradiol indicating 

that testosterone plays an indirect role in mammary gland development 

(Hinshelwood & Mendelson, 2001).  It has been suggested that growth hormone 

may indirectly affect ductal development during puberty via the stromal 

compartment (Kelly et al., 2002; Wiseman & Werb, 2002). 

 

In addition to the endocrine control, paracrine control by the stromal 

compartment plays a prominent role in mammary gland development (Cunha et 

al., 2004) and is mediated through the action of growth factors such as EGF, 

TGF, IGF, CSF and MDGF etc., (Vonderhaar, 1988; Wiseman & Werb, 2002). It 

is considered that these paracrine and intracrine effects of the stromal 

compartment may play a critical role in breast carcinogenesis (Shekhar et al., 

2001; Wiseman & Werb, 2002). 

 

Metabolomics of steroid hormones 
 To understand clearly the extent to which the human organism is 

dependant on steroid hormones, one has to only look at the expression of steroid 

receptors in the different organs. At least one type of ER can be found in every 

organ in the body (Balfe et al., 2004). Also, several tissues in the body are 

capable of synthesizing steroids, especially estrogen through de-novo synthesis 

(Simpson, 2003). Hence, it is very important to know the metabolic pathways, 

which include synthesis, activation and detoxification pathways of steroid 

hormones to elucidate their role in a dysregulated state such as cancer. The 

following section will discuss the metabolomics of primarily estradiol and to 

smaller extent progesterone, the two steroids implicated in breast 

carcinogenesis.   
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 The synthesis of 17ß-estradiol, the primary estrogen in the human body, 

begins with the enzyme aromatase, which converts androgen precursors to 

estrogens (Figure 1.3). In pre-menopausal women, this conversion occurs 

primarily in the ovary, but to varying extents in other organs (Simpson et al., 

1994). However, in men and post-menopausal women, this conversion is the 

primary source of estrogen for the various target tissues (Simpson, 2004). This is 

supported by the presence of aromatase expression in several tissues in humans 

and the highest aromatase expression among various mammalian species 

(Bulun et al., 2005). The second pertinent enzyme, also expressed in all tissues 

is 17ß-hydroxysteroid dehydrogenase (17ßHSD) that interconverts estrone and 

estradiol. So far, 8 isozymes have been discovered and have specificities for 

conversion between estrone and estradiol. Types 1, 3, 5  and 7 catalyze the 

reduction of estrone to estradiol in the presence of nicotinamide adenine 

dinucleotide phosphate (NADPH) as a cofactor and types 2, 4 , 8 in humans and 

6 in rats catalyse the oxidative reaction using nicotinamide adenine dinucleotide 

(NADH) as cofactor (Reviewed by Luu-The, 2001). In many ways this is also a 

key enzyme as the presence of a particular isozyme decides the balance 

between the levels of a weak and a strong estrogen. Estrogen-sulpho 

transferases (EST) and estrogen sulphatases (STS) also take part in maintaining 

a mobile pool of estradiol by catalyzing either the forward or the reverse 

sulphonation reaction respectively (Sasano et al., 2006).  

 

 Estradiol is further activated via hydroxylation at various positions by the 

phase I cytochrome P450 enzymes (Zhu & Conney, 1998). Of the different extra-

hepatic P450s important in estrogen metabolism, CYP1A1 and 1B1 are present 

in the mammary and produce 2- and 4- hydroxy metabolites, known as 

catechols, respectively (Zhu & Conney, 1998; Liehr, 2000). These hydroxylated 

metabolites are further either glucuronidated (by UDP-glucuronosyl transferase), 

methylated (by catechol-O-methyl transferase) or glutathione conjutated (by 

glutathione-S-transferase), by the phase II enzymes (Zhu & Conney, 1998). 

Several of the enzymes involved in the synthesis and metabolism of estradiol are 

under its transcriptional control, via the ER pathway, indicating that estradiol can 
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affect its production and removal (Beischlag & Perdew, 2005; Sissung et al., 

2006). The recent identification of differences in progesterone receptors as well 

as metabolites, between the normal and tumor breast suggest that estradiol 

metabolism may not be singularly responsible for mammary tumorigenesis 

(Aupperlee et al., 2005; Wiebe et al., 2005). 

 

 Although the metabolism of steroids in the mammary is an important 

aspect of the development of mammary carcinogenesis, the involvement of other 

organ systems such as the liver, lung, kidney, adrenals, ovary and the pituitary, 

all of which as involved in either steroid production, removal or signaling must be 

taken in to consideration. It has to be stressed that changes in any of other organ 

systems can set forth a domino-effect that can ultimately affect the breast.  

 

Role of oxidative DNA damage in breast cancer  
    Oxygen plays a key role in the metabolism of a cell; it is the final 

acceptor in the electron transport chain. Thus, cellular metabolism gives rise to a 

set of highly reactive molecules known as the reactive oxygen species (ROS), 

which include superoxide (O2
-), singlet oxygen (.O), hydrogen peroxide (H2O2) 

and hydroxyl radical (.OH) (Waris & Ahsan, 2006). ROS can cause damage to 

cellular macromolecules such as DNA, RNA, proteins and lipids, altering their 

structure and hence function. The cell has particular defense mechanisms to 

protect itself against oxidative damage and the ultimate oxidative state of the cell 

is dependant on the production and removal of ROS. Oxidative stress is caused 

when there is a disruption in this balance. Both experimental and epidemiological 

evidence suggests that oxidative stress plays an important role in the 

development of many cancers including breast cancer. Several carcinogens are 

known to be pro-oxidant (Morris & Seifter, 1992). Also, depletion of antioxidant 

defense systems and induction of oxidative stress contributes to carcinogenesis 

in experimental animal models (Van Remmen et al., 2003). Epidemiological risk 

factors such as smoking, alcohol consumption, hormonal exposure, high fat 

intake, etc., are known to indirectly increase oxidative stress (Ambrosone et al., 

2003).  
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The key effects of oxidative stress on a cell can be summarized as 

follows; damage to cellular macromolecules, alteration of cell signaling pathways, 

and causation and maintenance of neoplastic changes. Oxidative DNA damage 

includes oxidation of purine and pyrimidine bases, formation of abasic sites, 

strand breaks and microsatellite instability (Cavalieri et al., 2000; Rizzati et al., 

2005). In case of proteins it results in altered function, and in case of lipids it may 

cause a chain of lipid-peroxidative events. Lipid peroxidation end products such 

and malondialdehyde (MDA) and 4-hydroxy-nonenol (4-HNE) can cause further 

DNA damage (Bartsch & Nair, 2005). 

 

The NF-ĸB pathway plays a central role in oxidative stress-mediated 

changes in cellular signaling. It links several pathways that influence growth, 

stress response, and apoptosis, hence is key to the survival of both normal and 

cancer cells. ROS is an activator of NF-ĸB, which is found to be activated in 

several transformed cell lines, primary and invasive tumors (Wu & Kral, 2005; 

Biswas & Iglehart, 2006). Also, this pathway is associated with inflammation and 

this can be activated by several cytokines (Bubici et al., 2006; Liu & Malik, 2006). 

The downstream effects include increased transcriptional activation, increased 

cell proliferation and evasion of apoptosis (Karin et al., 2002).  

The oxidative stress induced by catechol-estrogen metabolites have been 

implicated in estrogen-induced carcinogenesis (Yager, 2000). Either 17β-

estradiol alone or a combination of a strong oxidant (menadione) and weak 

estrogen (ethinyl estradiol) induce renal cell carcinomas and increase the levels 

of 8-iso-prostaglandin F2α, an oxidative-stress biomarker (Bhat et al., 2003). 

Further reports that catechol-estrogens can cause oxidative DNA damage in vitro 

in the presence of transition metal ions (Li et al., 1994; Hiraku et al., 2001; Aiyer 

et al., 2002) designates a role for catechol-estrogens in inducing oxidative stress. 

 

The oxidative status of the cell also dictates the progression stage of cancer. 

Although, hypoxia is known to play a major role in angiogenesis and neo-

vascularisation of the tumor, ROS signaling may play a role in the differentiation 

of embryonic stem cells into a cardiovascular lineage which upon confrontation 
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with tumor tissue may participate in tumor-related angiogenesis (Sauer & 

Wartenberg, 2005). On the other hand, ROS has also been shown inhibitory to 

tumor-related angiogenesis, probably via antagonism of hypoxia-inducibe factor 

(HIF) pathway which is pro-angiogenic (Maxwell, 2005).  

 

 

Multi-stage model of carcinogenesis 
Carcinogenesis is a highly dynamic process by which normal cells are 

transformed in to neoplastic cells. This involves an inducting event by a physical, 

chemical or biological agent, subsequent transformation and clonal expansion 

into a tumor, followed by angiogenesis and metastasis of the tumor (Pitot & 

Dragan, 1991). The multi-stage model, which is a composite of many theories, 

explains the process of carcinogenesis in the most comprehensive manner. 

Although the development of cancer typically involves multiple steps, it can be 

broadly classified in to 3 systematic stages and the study of the mechanism of 

and interaction between these stages provides us with an opportunity to interrupt, 

control and reverse the carcinogenic process (Figure 1.4). An initiating event 

causes heritable genetic changes in the genome of a cell. This damage could be 

caused by endogenous agents such as free radicals or exogenous carcinogens. 

These genetic changes, which are irreversible, include gene mutations, 

chromosome rearrangement, gene amplification and aneuploidy (Barrett, 1993). 

Gene mutations can affect 2 key types of genes that control cell division and 

death, the proto-oncogenes and the tumor-suppressor genes. Proto-oncogenes 

are genes whose products allow for uncontrolled multiplication of a cell, while 

tumor suppressor gene products check growth and are involved in apoptosis. In 

a normal cell, the oncogenes are usually suppressed; a gain-of-function mutation 

or hypomethylation activates these genes (Ehrlich, 2002). On the other hand a 

loss-of-function mutation or hypermethylation is responsible for the suppression 

of the normally active tumor suppressor gene (Jones & Laird, 1999).  It is 

believed that both of these events must occur simultaneously for a cell to gain a 

growth advantage (Knudson’s two-hit hypothesis) (Knudson, 2001). Although the 
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two-hit hypothesis holds true for most cancers, it is often seen that multiple 

genes (3-10) are mutated in most adult malignancies (Barrett, 1993).  

 

Studies in chemical carcinogenesis delineate the role for metabolic 

activation in the carcinogenicity of a given substance (Lijinsky, 1979).This further 

lead to the classification of carcinogens as being either genotoxic or epigenetic 

depending upon their action. Genotoxic carcinogens are those which either by 

themselves or through their metabolites can induce karyotic changes 

(Weisburger & Williams, 2000). Epigenetic carcinogens on the other hand cannot 

induce genomic damage; however act in a growth enhancing manner on the 

transformed cells (Pitot & Dragan, 1991). 

 

In a comprehensive review, Hanahan and Weinberg (2000) discuss the 

alterations and molecular mechanisms that initiated cells must undergo in order 

to become malignant. To summarize, the promotional stage, usually defined as a 

reversible stage in classic chemical carcinogenesis may involve evasion of 

apoptosis and uninhibited cell growth in the presence of endogenous or 

exogenous growth factors. As the neoplasm proceeds, the cells acquire self 

sufficiency in growth and overcome inhibitory signals and immune surveillance, 

followed by angiogenesis and invasion of host tissue. To paraphrase the authors, 

tumor growth may be evolution gone awry.  

 

   It is necessary to apply the multi-stage model to breast carcinogenesis, as 

this malignancy can be caused by an endogenous carcinogen (estrogen); may 

involve activation of the carcinogen and other cellular and molecular changes 

best explained by the current model. Also, this model provides us with the 

opportunity to intervene at different stages to prevent, reverse or modify aberrant 

changes with preventive agents. 

 

Estrogen as a complete carcinogen 
 Of the risk factors associated with breast cancer, estrogen exposure has 

the highest positive correlation to incidence. This is corroborated by 1) women 
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with high serum levels of estradiol have a higher risk, 2) age at menarche and 

menopause, which are correlates of cumulative estrogen exposure determine 

risk , 3) removal of the ovary before or after breast cancer incidence results in a 

more positive outcome, 4) high levels of tissue estradiol are found in breast 

tumor biopsies, pointing to either accumulation or in-situ synthesis, 5) treatment 

with anti-estrogens such as tamoxifen significantly reduces tumor recurrence .   

 

 Estrogen acts via 2 distinct pathways, both of which are equally important 

for its carcinogenic activity. First, estrogen causes genotoxicity via its metabolic 

pathway. Data for the support of this comes from numerous findings, extensively 

reviewed by Liehr (Liehr, 2000; Liehr, 2001) and can be summarized as follows. 

Pharmacological doses of estrogen induce renal-cell carcinomas in hamsters and 

mammary adenocarcinomas in ACI rats in the absence of other carcinogens (Li 

et al., 1983; Shull et al., 1997). Estradiol by itself can induce chromosomal 

aberrations in cell culture similar to those seen in estrogen induced tumors 

(Liehr, 2000; Li et al., 2002a).  Catechol estrogens, which are active metabolites 

of estrogen, can induce DNA damage causing both stable and unstable adducts 

(Cavalieri et al., 2000; Liehr, 2000). Further, enzymes that convert estrogen to its 

catechol metabolites, such as CYP1B1, are found in high levels in breast tumors 

and microsomes from breast tumor tissues are known to metabolise estrogen to 

potentially harmful catechols (Liehr & Ricci, 1996; Oyama et al., 2005). In 

addition, polymorphisms that increase the metabolic activity of phase I enzymes 

that activate and lower the activity of phase II enzymes that detoxify estrogen, 

are known to increase breast cancer risk (Thompson & Ambrosone, 2000). 

These facts evidence the importance of estrogen metabolism in the causation of 

cancer.  

 

 The other important pathway crucial for estrogen carcinogenicity is its role 

as a growth factor via steroid receptor signaling. The 2 types of estrogen 

receptors- ERα and ERß have been extensively studied. Of these, ERα is 

considered a diagnostic marker and an indicator of response to anti-estrogen 

therapy, in breast cancer (Balfe et al., 2004). The mechanisms by which these 
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receptors regulate cellular pathways in normal and malignant cells are numerous. 

However, these can be broadly classified into direct transcriptional activation 

after ligand binding and protein-protien interaction with other transcription 

modulators, with or without ligand binding (Platet et al., 2004). Estrogen is 

proliferative primarily through its action on ERα, which is also required for normal 

development and differentiation of the mammary gland (Dickson & Stancel, 

2000). The role of ERß as an inhibitor of this proliferative stimulus has been 

explored leading to the conclusion the ERß may play a protective role in breast 

cancer (Balfe et al., 2004; Paruthiyil et al., 2004). On the other hand, Russo and 

colleagues have generated invasive characteristics in an ERα-/ERß+ cell line by 

estrogen treatment (Russo et al., 2002). Further, it has been shown in vitro that 

estrogen may inhibit invasiveness and the correlation that ERα+ tumors are less 

invasive suggest that estrogen may play a protective role in breast cancer (Platet 

et al., 2004). Also, the protein interactions of ERs have broad specificities and 

are further controlled by intarcrine and paracrine signaling molecules (Cunha et 

al., 2000; Simard & Gingras, 2001; Wiseman, 2005; Clarke, 2006). These facts 

lead us to the conclusion that although the regulation of mammary tumorigenesis 

by the estrogen is a highly complex process and estrogen has a high potential to 

act as a complete carcinogen. 

 

Role of diet in the causation and prevention of breast cancer 
 Diet is a complex mixture of both harmful and protective agents. The 

balance between these agents can modify a woman’s risk for developing breast 

cancer.  A typical Western diet is predominantly high is animal products and low 

in plant products (Cordain et al., 2005). Particularly, the post-industrial revolution 

changes in both agricultural practices as well as food-processing methods have 

given rise to a diet that leads to several chronic diseases, including cancer 

(Cordain et al., 2005). 

 

 Several epidemiological studies have explored the association between 

breast cancer risk and intake of foods such as red meat and high fat (Barrett-

Connor & Friedlander, 1993; Cho et al., 2003; Cho et al., 2006). Rodent studies 
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have significantly implicated fats, a high percentage of calories from fat and 

several red-meat carcinogens in the development of mammary cancer (Welsch, 

1992; Snyderwine et al., 2002). Although for red-meat, epidemiological studies 

corroborate experimental studies; for dietary fat, such associations are not clear 

(Gonzalez, 2006b; Kim et al., 2006).  However, there is concern about biases 

and errors in methods used for recall such as the food frequency questionnaire 

etc., which modify the outcome of such studies (Prentice, 1996; Gonzalez, 

2006b). Thus, re-analysis of the same data after adjusting for these may as yet 

yield different results. Also, increased red-meat intake is often associated with 

higher intake of saturated fats (from animal sources) resulting in a synergistic 

effect between the 2 risk factors.  The method by which the food is cooked has a 

profound effect on its nutritional value. High-temperature cooking of meats leads 

to the pyrolysis and protein degradation products such as HAAs and polycyclic 

aromatic hydrocarbons (PAHs), that are carcinogenic (Ferguson, 2002; Sinha, 

2002; Snyderwine et al., 2002; Cross & Sinha, 2004).  

 

The role of dietary factors in the prevention of various cancers has been 

studied for several decades (Doll, 1996). Studies clearly indicate the protective 

effects of fruits and vegetables in several cancers (Block et al., 1992; Helzlsouer 

et al., 1994; Freudenheim et al., 1996). Furthermore, programs to promote 

consumption of atleast 5 servings of fruits and vegetables a day both in the 

United States and Europe strongly indicate the perceived protective effects of 

fruits and vegetables against cancer and other chronic diseases (USDA, Web 

resource; (Stanner, 2001).  

 

 The discovery of micronutrients and the effects of their deficiencies on 

health in the early part of the 20th century lead to the hypothesis that the addition 

of these micronutrients could potentially restore health (Underwood, 1998). 

Subsequently, research on micronutrients such as vitamins E, C, and A (ß-

carotene and retinoic acid), and selenium played a very important role in shaping 

the next 2 decades in cancer prevention research (Shamberger, 1970; Cameron 

et al., 1979; Niles, 2000; Hercberg, 2005). Historically, nutritional intervention in 
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prevention of disease started with inhibition of vitamin deficiency diseases via 

supplementation (Jukes, 1989). The concept of nutritional intervention in cancer 

was conceived primarily by Peto and colleagues in 1980s. The observational 

epidemiological studies until that time showed significant correlations between 

lifestyle factors such as smoking, dietary fat, dietary fiber and fruit and vegetable 

intake and disease risk. The idea that cancer could be prevented was introduced 

by Sporn in 1976 with chemoprevention being defined as “the stabilization, arrest 

and reversal of the progression of preneoplastic lesions” by either natural or 

synthetic agents (Sporn, 1976).  Thus the concept of preventing cancer using 

dietary agents was ripe for application. The seminal paper by Peto et al., about 

the applicability of beta-carotene in human trials set forth prospective randomized 

intervention trials of various durations (Peto et al., 1981). 

 

 The two major clinical trials α-Tocopherol ß-Carotene prevention trial 

(ATBC) in Finland and the ß-Carotene and Retinol efficacy trial (CARET) in the 

US were started in the mid 1980s (Table 1.4).  These were done in smokers with 

an intervention dose of upto 30 mg ß-carotene and 25,000 IU of vitamin E 

compared to a recommended intake of 1.8 mg and 22 IU, respectively for non-

smokers (RDI charts, USDA).  Unexpectedly, the incidence of lung cancer in the 

high–dose intervention groups was higher than placebo (Blumberg & Block, 

1994; Forman et al., 2004).  In a critical review, Block addresses several issues 

that may have lead to the discrepancy between the observational and clinical 

studies (Block, 1995). Certain important points worth noting are: first, most 

clinical “prevention” trials are actually intervention trials and studied the effect of 

mega-supplementation on already high-risk individuals; second, these trials 

mostly concentrated on the effect of a single agent, whereas most 

epidemiological study correlations are the result of interactions between several 

food constituents; third, these trials abandoned the effect of life-style factors 

before supplementation began, thereby discounting their effect on predisposition 

to a chronic illness such as cancer. Although, clinical trials are important tools to 

assess the efficacy of any intervention on a disease process, care needs to be 
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taken while building a hypothesis around a multi-factorial, chronic (involving 

several decades) disease such as cancer (Block, 1995). 

 

 There are about 25,000 known phytochemicals that have been identified 

in the various foods that are consumed (Forman et al., 2004). In recent years due 

to the concerted efforts of several analytical, molecular and synthetic chemists, 

these are available in pure chemical forms to be tested in various experimental 

systems. However, most of these agents will never be tested in pre-clinical or 

clinical studies due to various complexities involved (Hercberg, 2005). Currently, 

experimental evidence suggests that different chemicals may potentiate each 

other in their anti-carcinogenic effects (Seeram et al., 2005). Epidemiological 

evidence does not single out an agent that reduces the risk of cancer, although 

the protective nature of fruits and vegetables in cancer is irrefutable (Block et al., 

1992; Block, 1995). Thus, a piece-meal approach to cancer prevention that has 

lead to the failure of the 2 large intervention studies needs to be re-evaluated. As 

discussed by Block, cancer is neither an infectious disease caused by a single 

agent nor is it curable by a single pharmacological dose of one medication 

(Block, 1995). Any research on cancer prevention must take this into account in 

order to synthesize the right hypothesis as well as acquire effective results. 

 

Estrogen-induced mammary tumors in ACI rats 
 Several in vitro experimental systems that simulate the mechanisms of 

cancer development are often used to study the effectiveness of an agent or 

drug. Since cancer is a whole-body process involving interactions between 

several organ systems, the study of the effects on isolated tissues in culture will 

not replicate the true effects of the drug (Clarke, 1996). Also, the study of 

therapeutic affects of different agents in human subjects raises both economic 

and ethical considerations (Clarke, 1996; Corpet & Pierre, 2005). Thus, the use 

of animal models for study of carcinogenesis is imperative and unavoidable.  

There are several advantages and disadvantages of using an animal model for 

studying a process as complex as cancer. The advantages include control of 

factors such as dose and duration of exposure, reduced interference from other 
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environmental exposures, lower biological variability due to a higher homogeneity 

in rodent populations as compared to humans, shorter lifespan of rodents, etc. 

The limitations of various rodent models of breast cancer have been extensively 

discussed by Kim et al., (2004). Although several rodent models of breast cancer 

are available, none of them typically simulate the human conditions (Clarke, 

1996; Gusterson et al., 1999; Kim et al., 2004).  Nevertheless, these models are 

very valuable for the purposes of testing intervention strategies and to 

understand the molecular mechanisms that lead to breast cancer.  

 

 Breast tumors undergo progression from the in-situ stage through invasive 

cancer to metastatic tumors (Clarke, 1996). Most animal models developed have 

tried to replicate this development from one stage to the other as closely as 

possible. The validity of most rodent tumor models has been derived based on 

the similarities, both histopathological and molecular, between tumors of rodent 

and human origin (Russo et al., 1990; Thompson & Singh, 2000). Although, 

genetically engineered mouse models (transgenic and syngeneic) have 

illuminated to a large extent molecular mechanisms involved in breast 

tumorigenesis (Blackshear, 2001), their application in the treatment and 

prevention of sporadic human breast cancer is limited (Clarke, 1996; Kim et al., 

2004). Also, explant models are less predictive of validity for translational 

research (Gutmann et al., 2006).  

 

 The use of carcinogen-induced mammary tumors in rats as a preclinical 

model has been popular for the past 4 decades. Table 1.5 highlights several 

carcinogen- induced mammary tumor models currently available. There is 

considerable heterogeneity in the incidence of mammary tumors in rats 

depending on the rat strain used, type of carcinogen, time and mode of 

carcinogen administration etc., (Huggins et al., 1959; Thompson et al., 1992; 

Shepel & Gould, 1999). Strikingly, the most common feature among all these 

models is that the disruption of the ovarian-endocrine axis by means of 

ovariectomy affects the ability of carcinogens to induce mammary tumors 

(Welsch, 1985; Shull et al., 1997; Thompson et al., 1998; Thordarson et al., 
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2001). This suggests that the development of mammary tumors shares at least 

one common mechanism – ovarian hormone dependence.  

 

The most commonly used carcinogen-induced mammary tumor models 

are listed in Table 1.5. Synthetic chemical-carcinogens such as 7,12, 

dimethylbenze[a]anthtacene (DMBA) or 1-nitroso-1-methyl urea (NMU) cause 

high incidence of mammary tumors in treated rats compared to less than 50% 

incidence with other carcinogens (Table 1.5).  This makes the use of the DMBA- 

and NMU- induced model most popular for study of mammary tumors. A single 

intra-gastric dose of DMBA induces mammary tumors (Huggins et al., 1961). 

However, not all induced tumors are adenocarcinomas and some tumors are 

known to spontaneously regress (Haslam & Bern, 1977; Thompson & Sporn, 

2002). Both in-situ and invasive carcinomas are induced by a single intra-

peritoneal or intra-venous dose of NMU (Gullino et al., 1975; Thompson et al., 

1992). These tumors appear to have an ovarian-independent phenotype in that 

they can redevelop after initial regression following ovariaectomy (Thompson et 

al., 1998; Thordarson et al., 2001). H-ras mutations commonly seen in 

carcinogen-induced tumors are not present in humans (Sukumar et al., 1983; 

Stanley, 1995; Gusterson et al., 1999). Also, genomic instability such as 

anueploidy, which is a hallmark for human cancers, is rarely seen in chemical-

carcinogen induced tumors (Li et al., 2002a). Although such differences exist, 

chemical-carcinogen induced mammary tumors have been extensively studied 

and documented (Welsch, 1985; Russo et al., 1990).  

 

In contrast to this, the interest in estrogen-induced mammary tumors in A 

strain-Copenhagen-Irish hooded (ACI) rats, has waxed and waned since it was 

first studied. The rat strain is unique in that they develop mammary 

adenocarcinomas on exposure to estrogens. Initial interest in estrogen-induced 

mammary tumors was seen in the 1930s and 40s with description of strain 

differences in susceptibility to mammary tumors induced by different estrogens 

(Noble et al., 1940; Dunning et al., 1947; Dunning et al., 1953; Noble & Cutts, 

1959). Later, it was briefly revived by Shellabarger and coworkers in the late 70s 
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and early 80s (Stone et al., 1979; Holtzman, 1988). Regardless of the type of 

estrogen used (diethylstilbesterol (DES), estrone (E1), ethinyl estradiol (EE), 

etc.,) ACI rats consistently develop mammary tumors, however they are resistant 

to chemical-carcinogen induced tumors (Dunning et al., 1953; Cutts & Noble, 

1964; Holtzman et al., 1979).  The model used in this thesis was first described 

by Shull and colleagues in 1997 and uses 27 mg of 17ß-estradiol (E2) in a 

silastic implant delivered subcutaneously for the induction of mammary tumors 

(Shull et al., 1997). Another variation developed by Li and colleagues uses 2-3 

mg of E2 in 20 mg cholesterol pellets to induce mammary tumors (Li et al., 

2002a; Li & Li, 2003). In both models, the incidence of mammary tumors in 

female ACI rats is 100% with a latency period of approximately 6 months. 

Although, the exact molecular pathways involved are currently being discovered, 

this model has a relative dearth of information compared with its DMBA-induced 

counterpart. These shortcomings aside, the model affords an apt system for 

testing preventive intervention.  

 

Several key points support the use of this model to study breast cancer 

prevention. First, estrogen is clearly and undisputedly associated with the 

etiology of the disease in humans. Second, estrogen-induced tumors exhibit 

chromosomal instabilities, which are also often seen in human breast cancer (Li 

et al., 2002a; Li et al., 2004; Adamovic et al., 2007). Further, E2- and DMBA-

induced carcinogenesis involves genetically distinct mechanisms (Schaffer et al., 

2006). Although these rats are susceptible to estrogen-induced prolactinomas, 

the loci that control the pituitary and mammary tumor susceptibilities are 

genetically distinct (Gould et al., 2004; Strecker et al., 2005; Schaffer et al., 

2006). In addition, the chromosomes that are affected in estrogen-induced 

carcinogenesis are homologous to those that are affected in humans (Adamovic 

et al., 2007). Finally, tumors display molecular markers such as an over-

expression of cyclin D1 and c-myc, similar to breast cancer pathology in humans 

(Weroha et al., 2006). 
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Although some intervention studies were done in DES-induced mammary 

tumor model, so far very few studies have looked at the effect of preventive 

intervention in the estradiol-induced model (Petrek et al., 1985; Holtzman, 1988). 

Of the few, a study by Shull and colleagues looked at hypo-caloric feeding and 

prevention of mammary tumors (Harvell et al., 2002). Other studies include 

prevention using Tamoxifen (Li et al., 2002b), phenobarbital (Mesia-Vela et al., 

2006) and a short term in vivo assay using diallyl sulphide (Green et al., 2005). 

Collectively, these facts make the ACI rat model an ideal preclinical model for 

exploring preventive intervention strategies which have a high applicability in the 

translational setting.  

 
 
Berries in cancer prevention 
 Berries are ideal agents for the chemoprevention of cancer. Figure 1.5 

shows the pictures of and table 1.6 shows the nutritive value and total 

anthocyanin content of some berries commonly consumed in the United States.  

It is evident that berries are a good source of several chemopreventive nutrients, 

including ß-carotene, selenium, vitamins A, C and E as well as phytonutrients 

such as lutien, ellagic acid and anthocyanins (Table 1.6).   

 

Ellagic acid, a polyphenol present abundantly in many berries is a known 

chemopreventive agent. It has been shown to successfully reduce the incidence 

and progression of carcinogen-induced tumors in the skin, lung, esophagus, liver 

and colon, in rodents, when given orally (Reviewed by Stoner and Mukhtar, 

1995). Several mechanisms such as antioxidant effect, modulation of 

detoxification enzymes, regulation of cell cycle pathways, DNA binding and  DNA 

repair pathways have been attributed to this (Teel, 1986; Barch & Rundhaugen, 

1994; Barch et al., 1994; Ahn et al., 1996; Chakraborty et al., 2004; Han et al., 

2006). Among the different berries, black raspberries have the highest ellagic 

acid content and blueberries have the lowest (Table 1.6).  
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Anthocyanins are flavanoids present in many fruits and is the source of 

blue, red or purple color in plants (de Freitas & Mateus, 2006). Pro-

anthocyanidins are polymers of anthocyanin molecules (Dixon et al., 2005). Both 

are abundantly present in berries (Wu et al., 2004). Structures of anthocyanins 

commonly found in berries are shown in Figure 1.6.  Dark berries such as 

blueberries, blackberries and black raspberries have greater anthocyanin content 

than their lighter counterparts (Wu & Prior, 2005; Wu et al., 2006).  

 

Among the different berries, black raspberries have already been used in 

a pilot clinical trial for the prevention of Barrett’s esophagus, a pre-disposing 

condition for esophageal malignancy (Kresty et al., 2006). Bioavailability studies 

on black raspberries prove that both ellagic acid and cyanidins are bio-available, 

but excreted rapidly from the system (Stoner et al., 2005; Tian et al., 2006).  

Several other bioavailability studies performed show that anthocyanins are highly 

bioavailable, absorbed as such in the stomach or intestine and excreted with or 

without methylation in the urine of both rodents and humans (McGhie et al., 

2003; Talavera et al., 2004; Tian et al., 2006).   

 

Since, 17β-estradiol is highly implicated in breast cancer etiology, 

targeting hormonal mechanisms is the best approach to prevention. Currently, 

Tamoxifen is the leading preventive therapy for breast cancer. However, 

treatment with Tamoxifen involves numerous adverse effects including increased 

incidence of endometrial cancer, cataracts, and thromboembolism (Cano & 

Hermenegildo, 2000; Morrow & Jordan, 2000). Although, Raloxifene was 

equivalent to Tamoxifen in prevention of invasive breast cancer with fewer 

adverse effects, thromboembolism, hot flashes and leg cramps are still possible 

side effects (Cranney & Adachi, 2005; Jordan, 2006). In addition, Raloxifene is 

poorly bioavailable and rapidly excreted, causing significantly reduced benefits in 

women with poor compliance (Jordan, 2006). Nevertheless, the search for better 

selective estrogen receptor modulators (SERMs) with fewer side effects is 

ongoing (Jordan, 2006). The chemical structure of both anthocyanins and ellagic 

acid is similar to estradiol (Figure 1.6). This similarity makes them ideal 
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candidates for being SERMs. In fact, both ellagic acid and berry anthocyanins 

show potent anti-estrogenic activities (Schmitt & Stopper, 2001; Papoutsi et al., 

2005; Larrosa et al., 2006). Further, the neuroprotective effects of blueberries are 

thought to be mediated via antioxidant, anti-apoptotic and cell signaling 

mechanisms involving extracellular signal-related kinase (ERK) and protein 

kinase C (PKC) (Ramassamy, 2006). Incidentally, a pathway of estrogen-induced 

ERK activation involves PKC in neural cells (Setalo et al., 2005). This implies that 

blueberries may act via estrogenic mechanisms to provide neuroprotective 

effects. These reports taken collectively vouch for the SERM effects of berries.  

Thus, berries could be used by themselves or as an augmentative therapy 

alongside other potent SERMs, in the prevention of breast cancer.  

 

The failure of preventive trials with individual micronutrients has steered 

the scientific community towards appreciating the interaction between bio-active 

food components present in whole foods (Hampton, 2005; Meyskens & Szabo, 

2005). Berries contain several such components (Table 1.6). Berries, such as 

blueberries and black raspberries show high anti-oxidant activity (Wang & Lin, 

2000; Wada & Ou, 2002). Black raspberries are known to affect inflammatory 

cellular pathways such as COX-2, NF-қB involved in tumor progression (Chen et 

al., 2006; Hecht et al., 2006). Both ellagic acid and berry extracts inhibit in vitro 

proliferation of malignant cells through pro-apoptotic mechanisms (Seeram et al., 

2005; Han et al., 2006; Seeram et al., 2006). They also show anti-angiogenic 

effects by regulating vascular endothelial growth factor (VEGF) pathway, thus 

potentially affecting tumor metastasis (Losso et al., 2004; Labrecque et al., 2005; 

Huang et al., 2006).  

 

Since cancer is a multi-pathway disease, we need a multi-pronged 

approach for the prevention of this disease. The case for the use of berries in 

breast cancer prevention is strong because berries have been used for centuries 

without adverse side effects (other than allergic reactions), their tolerability 

studies are positive, their protective nutrients are highly bioavailable (Stoner et 

al., 2005) and show anti-estrogenic, antioxidant, anti-inflammatory, anti-
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angiogenic and pro-apoptotic activities that will be beneficial in cancer 

prevention.  As discussed earlier, estrogen acts as a complete carcinogen via 

several molecular pathways, leading to breast tumor development. Berries are 

the perfect multi-pronged tool to prevent breast cancer as they mediate 

protection through multiple molecular pathways, several of which are also 

affected by estradiol.  

 

 

 

 

Hypothesis 
 I hypothesize that anthocyanins and ellagic acid, either individually or in 

combination, will have a protective effect against estrogen-induced breast 

cancer. To test this two different berries, one with a high-ellagic acid/high-

anthocyanin content, and other with low-ellagic acid/high-anthocyanin content, 

and ellagic acid by itself will be provided via the diet to determine their potential 

for inhibit 17ß-estradiol induced mammary tumors in ACI rats. The results of 

these studies will have high translational value either to prevent or to augment 

existing preventive therapy for breast cancer. The following specific aims will be 

pursued to achieve my objectives 

 
Specific Aims 

1. To determine the in vitro antioxidant capacity of different polyphenols to 

protect against catechol estrogen-induced oxidative DNA damage. 

2. To employ dietary berries in a short-term in vivo study to determine the 

protective biochemical effects. 

3. To employ dietary berries of varying ellagic acid contents and ellagic acid, 

in an estrogen-induced mammary tumor model to study their 

chemopreventive potential. 

4. To study the mechanisms by which dietary berries and ellagic acid cause 

prevention of cancer in vivo. 
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Figure 1.1. Age-standardized incidence and mortality rates for breast cancer per 

100,000.  

Source - Parkin, Bray , et al., 2005.  
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Figure 1.2. Epidemiology of Breast Cancer. 

 Adapted from Charpentier and Aldaz, Humana Press Inc., 2000.  

Sporadic Breast cancer - 90%

Familial Breast cancer-10%

BRCA1/2-7%

Others-1%
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Figure 1.3. Metabolomics of Steroid hormones- schematic showing the synthetic 

and metabolic pathways of estradiol.  

Adapted from Bulun et al., 2005. 

Abbreviations: 3ß-HSD II- 3ß-hydroxysteroid dehydrogenase, type II; P450C17- 

17α-hydroxylase; 17ßHSD I- 17ß-hydroxysteroid dehydrogenase, type I; 

CYP1A1/1B1- Cytochrome P450 1A1/1B1; COMT- Catechol-O-methyl 

transferase; GST-Glutathione-S-transferase; QR-NADP(H)-quinone reductase.
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Figure 1.4. Multistage model of Carcinogenesis and intervention strategies at 

each stage.  

Source- Forman et al., 2004.  
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Figure 1.5. Pictures of berries commonly available in the United States. 

Strawberries Blueberries Cranberries Blackberries 
Red

Raspberries 
Black 

Raspberries  
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Figure 1.6. Chemical structures of 17ß-estradiol, its metabolites and berry-

phytochemicals. The structural similarities that may be responsible for possible 

estrogen-receptor binding of the various chemicals are highlighted. Table of 

different functional groups in the anthocyanin molecule adapted from Wu and 

Prior, 2005.  

17ß-estradiol 4-hydroxy-estradiol
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Ellagic acid
OMeOMeMalvidin (Mv)
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HOHCyanidin (Cy)
HHPelargonidin (Pg)

R2R1Anthocyanin

R3- Sugars
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Table 1.1. Crude and age-standardized (World) rates of Breast Cancer in 

Northern America, per 100,000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Abbreviations: ASR (W) – Age-standardized rate (World) 
 
Source- GLOBOCAN 2002, International Agency for Research on Cancer.  
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Table 1.2. List of risk factors for development of sporadic breast cancer. 
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Table 1.3. Endocrine and paracrine control of mammary gland development 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Abbreviations: ERα-Estrogen receptor alpha; TEB- Terminal end bud; JAK-Janus 

kinase; STAT-Signal tranducers and activators of transcription; PGE2-

Prostaglandin E2; TGF- Transforming growth factor; CSF- Colony stimulating 

factor; IGF- Insulin like growth factor; MDGF-Macrophage-derived growth factor; 

EGF- Epidermal growth factor.
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Table 1.4. Lung cancer prevention trials evaluating ß-carotene supplementation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: ATBC- Alpha-Tocopherol β-Carotene Trial; CARET- Carotenoid 

and Retinol Efficacy Trial; PHS- Physicians' Health Study; RR- relative risk; 

WHS- Women's Health Study; F/U-years of follow-up during the trial; N- number 

randomized; µ- mean; Retinyl P- Retinyl Palmitate. All trials were designed as 

randomized controlled trials. 

Source- Forman et al., 2004 
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Table 1.5. Rat models of carcinogen-induced mammary tumors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Abbreviations: 2-AAF- 2-acetylaminofluorine; 3-MC- 3-methylcholantherene;  

DMBA- 7,12-dimethylbenz(a)antharcene; DB[a,l]P-dibenzo[a,l]pyrene;  

B[a]P-Benzo[a]pyrene; NMU- 1-methyl-1-nitrosourea; PhIP-2-amino-1-methyl-6-

phenylimidazo[4,5-b]pyridine; SD- Sprague Dawley; ACI- August-Copenhagen-

Irish-hooded; NR-Not reported. 
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Table 1.6. Nutrient composition of commonly available berries 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: USDA National Nutrient Database except where mentioned.  

a- Information from Wu et al., 2006. 

b- Information from Daniel et al., 1989.  

c- Information from Oregon Berry Commission. 

d- Information from Kalt et a.l, 1999. 

e- Information from Wu et al., 2004 

f- Information from Wada and Ou, 2002.  

Abbreviations: ORAC- Oxygen Radical Absorbance Capacity; NA- Information 

not available; TE-Tocopherol Equivalents.  
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Chapter Two: Effect of phytonutrients (pure compounds) and whole food 
(berries) on DNA damage and gene expression. 

 
Introduction 

Female hormone - 17β-estradiol (E2) is associated with the etiology of 

breast cancer, which is the second leading cause of cancer-related death in 

American women (Russo et al., 2000; ACS, 2007). It has been shown that E2 and 

its metabolites can lead to mutations by increasing the rate of DNA damage as 

well as decreasing DNA repair (Russo et al., 2000; Mailander et al., 2006). 

Metabolites of E2 such as 2- and 4-hydroxy estradiol (4E2), can cause oxidative 

DNA damage in the presence of Cu2+ (Li et al., 1994; Yager, 2000). Since 

oxidative DNA damage can ultimately lead to further downstream detrimental 

effects, effective inhibition of this damage may be a useful prevention strategy.  

 

There are several methods available to assess DNA damage. Among 

these, ones that combine a chromatographic method with mass spectrometry 

have been used to measure numerous products at the same time (Dizdaroglu et 

al., 2002). Also, 32P-postlabeling in conjunction with thin layer chromatography 

(TLC), can be used to measure oxidative DNA damage of various DNA bases, 

including the benchmark oxidative lesion 8-oxo-2’-deoxyguonosine (8-oxodG) 

(Gupta & Arif, 2001; Gupta et al., 2003; Ravoori et al., 2006). Recently, we have 

discovered several polar DNA adducts by 32P-postlabeling and low salt 

chromatography. Chromatographic comparison with oxidative DNA adducts 

formed by Fenton-type reaction (Cu2+-H2O2) suggest that some of the polar 

tissue adducts may be oxidative adducts (Aiyer et al., 2003; Gupta et al., 2003). 

These adducts can be used as a biomarker for selection of antioxidant agents 

that can modulate DNA damage. Earlier studies from our laboratory have 

successfully used detection of DNA damage in conjunction with a cell-free 

system to rapidly screen for chemopreventive/antioxidant agents, thus expediting 

the process of agent selection (Smith & Gupta, 1999; Srinivasan et al., 2002). In 

cancer prevention, a tiered preclinical approach involves screening of several 

potential preventive agents in cell-culture and rodents prior to their use in clinical 
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trials. We have been successful in using this tiered approach in reducing benzo-

[a]-pyrene-induced DNA damage. Agents such as oltipraz and ellagic acid that 

were effective in an enzymatic cell-free system were effective in both cell-culture 

and in vivo (Smith & Gupta, 1999; Smith et al., 2001a; Smith et al., 2001b). This 

tiered approach can be used successfully in the selection of agents that would be 

effective in long-term studies without having the need for employing several 

compounds in expensive long-term in vivo studies.  

 

There are several surrogate biomarkers available to assess the efficacy of 

dietary agents on a biological system. Among these, the liver due to its proximity 

and role in the first-pass mechanism represents a suitable surrogate tissue. In 

addition, due to its high metabolic activity, liver is constantly exposed to the 

oxidative by-products of cell metabolism, thus making it an ideal tissue to assess 

the modulation of baseline oxidative DNA damage by dietary agents.  

A significant epidemiological association between fruit and vegetable 

intake and low cancer incidence has been reported (Block et al., 1992). 

Flavonoids are low molecular weight compounds present ubiquitously in plants. 

They have a common 3-ring structure with various substituents which make them 

structurally diverse. Many of them have significant biological effects which 

include favorable metabolism of xenobiotics, antioxidant properties, and effects 

on cell-signaling that make them desirable candidates for cancer prevention 

(Reviewed by Middleton, Kandaswami and Theoharides, 2000).  

 

In this study, we have used a 2-tiered strategy to initially test more than 10 

flavonoids in an in vitro test system and employ the most effective agent in a 

short-term in vivo study. The test agents selected were either well known 

flavonoids (ellagic acid, epigallocatechin gallate (EGCG), quercetin) or other less 

known compounds (naringenin, ferulic acid etc.,). Ascorbic acid and vitamin E 

were included as known antioxidants. The most efficacious agent in this tier was 

ellagic acid, which was tested in a short-term in vivo study as a dietary 

chemopreventive agent. Whole foods (berries) containing significant levels of 

ellagic acid were also provided via diet to compare the bioavailability and efficacy 
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of ellagic acid given as a pure compound and in whole food. The modulation of 

oxidative DNA damage in both systems was assessed by 32P-postlabeling/TLC.  

In addition, the possible mechanisms by which these agents modulate DNA 

damage in vivo were explored by gene-expression analyses using microarray 

technology.  

 

Materials and Methods 
 

Chemicals. Ascorbic acid, biochanin and ferulic acid were purchased 

from Aldrich Chemical Company (Milwaukee, MI)., Ellagic acid,  naringenin, 

resveratrol, silymarin, quercetin, α-tocopherol, acetone, dimethyl sulfoxide 

(DMSO) and salmon testes DNA (st-DNA) were purchased from Sigma Chemical 

Company (St. Louis, MO). Epigallocatechin gallate was purchased from LKT labs 

(St. Paul, MN). 4-hydroxy estradiol (4E2) was purchased from Steraloids Inc. 

(Newport, RI). Chemicals involved in 32P-postlabeling were purchased from 

sources described earlier (Gupta, 1996). All chemicals used were > 95% pure 

and were used without further purification. Salmon testes (st)-DNA was further 

purified before use, as described previously (Gupta, 1996). 

 

Induction of DNA damage by 4E2/CuCl2. Salmon testes-DNA (300 

µg/ml) in 10 mM Tris Hcl, pH 7.4, was pre-incubated with vehicle alone and the 

test agents dissolved in either DMSO or acetone (≤ 5% each) and CuCl2 (100 

µM) for 15 min at 37ºC. Redox-cycling was initiated by the addition of 4E2 (100 

µM) in ethanol. After incubation at 37°C for 1h, DNA was purified by solvent-

extraction and ethanol precipitation as described (Gupta, 1996; Ravoori et al., 

2006).  

 

Animals and diet. Eight week-old female CD-1 mice were purchased 

from Harlan-Sprague Dawley (Indianapolis, IN). CD-1 mice were chosen as an 

exploratory model for estrogen-induced carcinogenesis as these animas are 

highly susceptible to estrogen-induced uterine cancer (Newbold and Liehr, 2000). 

Five groups (n=6) were fed ad libitum, either a control diet or diet supplemented 
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5% (w/w) with strawberries, blueberries, red raspberries or 400 ppm ellagic acid, 

according to the protocol (Figure 2.1). Three berries with low (blueberries; < 100 

ppm), moderate (Strawberries; 500 ppm) and high (raspberries; 1500 ppm) 

ellagic acid content were chosen (Daniel et al., 1989). The ellagic acid dose was 

selected based on a similar short-term study in rats (Ahn et al., 1996). Organic 

blueberries, strawberries and non-organic raspberries were purchased as fresh 

produce locally (Lexington, KY). All berries were dehydrated in a food 

dehydrator, powdered, vacuum dried to remove remaining moisture, sealed 

airtight in zip-top bags and stored at -80°C until use. Ingredients for the diet were 

purchased individually from Dyets, Inc. (Bethlehem, PA). The control diet was 

slightly modified from the original composition for the AIN-93M diet (Reeves et 

al., 1993) such that the carbohydrate calories were provided by corn starch and 

dextrose without the inclusion of sucrose (Table 2.1). The dried berries were 

added along with various ingredients at 5% (w/w) of the modified control diet and 

mixed in a Hobart mixer until homogenous. The corn starch component of the 

diet was adjusted in these diets such that all diets were isocaloric after 

supplementation with berries. Ellagic acid was added at 400 ppm without any 

adjustment to the diet and mixed as described. These diets were stored at 4°C 

until use. Animals and the diets were weighed weekly to assess differences in 

diet intake and weight gain. They were euthanized by CO2-asphyxiation at the 

end of 3 weeks and liver was snap-frozen using liquid nitrogen in 2 aliquots, 

which were used for 32P-labeling and microarray analysis respectively.  
 

Analysis of polar oxidative DNA adducts by 32P-postlabeling/TLC. 
DNA from liver was isolated as described (Gupta, 1996). Briefly, the tissue was 

homogenized in TE buffer (50 mM Tris-HCl/10 mM EDTA, pH 8.0) and the 

nuclear pellet was sequentially treated with RNases (RNase A-150 µg/ml, RNase 

T1-1 U/µl) and proteinase K (150 µg/ml), followed by solvent extraction  and 

ethanol precipitation. The resultant DNA pellet was washed with 70% ethanol 

and dissolved in HPLC water. After shearing, the DNA concentration was 

measured spectrometrically considering 1A260= 40 µg. Fourteen µg was digested 

to 3’-monophosphates using micrococcal nuclease/spleen phospodiesterase 
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(Enzyme: DNA – 1:5, 5h, 37ºC). After removing 2 µg of digest for normal 

nucleotide analysis, 10 µg digest was enriched for novel oxidative adducts by 

treatment with nuclease P1 (E: S-1:2.5, 1h, 37ºC). Remaining 2 µg of the digest 

was enriched for 8-oxodG by polyethyleneimine (PEI)-cellulose TLC and 0.5-1µg 

was labeled as described (Gupta & Arif, 2001). The 5’-32P-labeling of both 

enriched DNA adducts and normal nucleotides were done in parallel, using T4-

polynucleotide kinase in a molar excess of [γ-32P] ATP as described earlier 

(Gupta, 1996; Ravoori et al., 2006). Labeled adducts were separated using 2 

directional PEI-cellulose TLC using 50 mM sodium phosphate, pH 6.0 and 1 M 

formic acid in the D1 direction. D2 was perpendicular to D1 using a solvent 

containing 2 M urea, 2.8 M Ammonium hydroxide and 50% isopropanol. Adducts 

with decreasing polarities in tissue DNA were eluted by increasing the sodium 

phosphate concentrations (50 mM – 1,000 mM) in the presence of 1M formic 

acid (D1) but maintaining the same D2 solvent. Adducts and normal nucleotides 

were visualized using Packard Instant Imager and were counted individually. The 

enriched 8-oxodGp was labeled in parallel and chromatographed as described 

(Gupta & Arif, 2001). Adduct levels were calculated as relative adduct labeling 

(RAL) = (CPM adducted nucleotides/CPM normal nucleotides) X  1/dilution factor 

and are expressed as adducts/106 nucleotides (in vitro adducts) and adducts/109
 

nucleotides ( in vivo adducts). 

 

 Gene expression analysis. RNA was isolated using the phenol: 

chloroform extraction followed by DNase treatment. cDNA probes were 

synthesized from poly A+ RNA, using [α-32P]- ATP (3000 Ci/mmol). These probes 

were then hybridized to AtlasTM nylon mouse stress array overnight. Following 

hybridization the membrane was exposed to x-ray film. The obtained 

autoradiographic images were then scanned with a MicroTek ScanMakerIII flat-

bed scanner and then subjected to densitometric analysis using ArrayExplorer© 

to extract the gene intensities (Patriotis et al., 2001). The data was normalized, 

using linear regression analysis. The gene expression profiles were estimated as 

log2 of the ratio of the gene intensities of the control diet vs. supplemented diet. 

The genes with significant down- or up-regulation were identified. These 
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analyses was performed in Dr.Margie Clapper’s laboratory at the Fox Chase 

Cancer Center (Philadelphia, PA) and the data was presented under joint 

authorship at the 95th annual meeting of the American Association for Cancer 

Research (Aiyer et al., 2003). Further this chapter was reviewed by Dr. Clapper 

and approved to be submitted (personal communication dated 3-31-07). 
 

Statistics. The adduct levels for each test agent was compared to the 

level of its respective vehicle control using Dunnet’s two-sided t-test. A Scheffe’s 

t-test was used for comparing dose response studies. A p-value <0.05 was 

considered to be statistically significant. The results are expressed as mean ± 

SE. 
 
Results 

Modulation of 4E2/CuCl2-induced oxidative DNA adducts by 
phytonutrients. Analysis of DNA damage, induced by redox cycling of 4E2 in the 

presence of Cu2+, revealed several unidentified polar adducts and 8-oxodG 

(Figure 2.2 A1-B4). These were chromatographically similar to adducts 

generated by treatment of DNA with H2O2 /CuCl2 (Srinivasan et al., 2001). 

Neither 4E2 nor Cu2+ by themselves increased the levels of these adducts from 

baseline (data not shown). The level of unidentified polar adducts and 8-oxodG in 

the untreated st-DNA were 9.73 ± 0.03 /106N and 11.5 ± 0.85 /106N, respectively, 

and this increased to 985 ± 54/106N and 1349 ± 189/106N after treatment with 

100 µM each of 4E2 and CuCl2.  

 

All agents were tested initially at a final concentration of 300 µM, based on 

earlier studies (Smith & Gupta, 1999; Srinivasan et al., 2002). In the initial 

screening, ellagic acid was the most effective showing >95% reduction of both 

unidentified oxidative adducts and 8-oxodG compared to the vehicle control (Fig 

2.2 A3, B3; Figure 2.3, p<0.05). This agent also showed a dose-dependant 

modulation of DNA damage starting at a concentration of 30 µM (Figure 2.4, 

p<0.005). Other flavonoids such as resveratrol, quercetin and naringenin showed 

only moderate reduction (Figure 2.3), while some other agents such as silymarin, 
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and EGCG showed an increase in DNA damage. (Figure 2.3; p<0.05). Known 

antioxidants, namely vitamin E and ascorbic acid showed moderate reduction 

and pro-oxidant effects respectively (Figure 2.3). Based on these results, ellagic 

acid was selected for a short-term in vivo study.  

 

Modulation of baseline oxidative-DNA damage by ellagic acid and 

berries. There was no significant difference in the diet intake or weight gain 

between the groups (Figure 2.5 A and B). No toxicity or weight loss was 

observed at doses tested.  All groups represented qualitatively similar adduct 

pattern (Figure 2.6-Inset). The baseline levels of different subgroups of adducts 

in the liver of mice fed control diet were:  P-1 – 3800 ± 1870; P-2- 2600 ± 1320; 

PL-1 – 180 ± 72 and L-1 – 2600 ± 1340 per 109
 nucleotides. PL-2 adducts were 

too low to be quantified and 8-oxodG, PL-3 and L-2 adducts were not analyzed. 

In this study, red raspberry diet reduced all subgroups of adducts analyzed 

effectively, with a 50% reduction of P-1 adducts, 60% reduction of P-2 adducts, 

50% reduction of PL-1 adducts and a 30% reduction of L-1 adducts (Figure 2.6). 

Ellagic acid showed similar effects albeit at a lower level with 30% reduction in P-

1 adducts, 45% reduction in P-2 adducts, 50% reduction in PL-1 adducts and no 

effect on L-1 adducts. Blueberry diet only reduced the L-1 adducts (30%) and 

had no effect on other adduct subgroups. Strawberry diet was ineffective in 

altering any subgroup of adducts (Figure 2.6).  

 

Modulation of gene expression by red raspberry and ellagic acid 
diets. Following the similar modulation of adduct patterns by both  red raspberry 

and ellagic acid diets, limited gene expression analysis was done to determine 

effect of the intervention on genes involved in DNA repair and xenobiotic 

metabolism. Microarray analysis revealed that several genes were modulated in 

a similar fashion by both diets. In particular, genes involved with DNA repair such 

as – xeroderma pigmentosum group A complementing protein (XPA), DNA ligase 

III (DNL3), DNA excision repair protein ERCC1- were found to be over-expressed 

by 3 to 8 fold (Figure 2.7A and B). There was a significant similarity in the 

number of genes over- or under-expressed by both diets (Figure 2.7). Red 
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raspberry diet down-regulated genes such as Mitogen activated protein kinase 

14 (MAPK14) and MAP kinase kinase (MAPKK), involved in key cell-signaling 

pathways, by >15 fold.  

 

Discussion 
 The induction of oxidative DNA damage by 4E2 in the presence of 

Cu2+ is postulated to involve hydroxyl radicals (Hiraku et al., 2001). The 

qualitative presentation of polar adducts generated using either 4E2/CuCl2 or 

H2O2/CuCl2 is similar (Srinivasan et al., 2001; Aiyer et al., 2002). Also, co-

chromatography studies with oxidative DNA adducts from H2O2/CuCl2 show that 

polar adducts generated from 4E2/CuCl2 may be generated in part via oxidative 

mechanisms (Gupta et al., 2003). Several studies indicate that H2O2/Cu2+
 as well 

as  Cu+/Cu2+ redox cycling is involved in the generation of reactive oxygen 

species (ROS) by 4E2 (Oikawa et al., 2001; Frelon et al., 2003). The results of 

this study correlates well with earlier studies on reduction of 8-oxodG induced by 

H2O2/CuCl2 by ellagic acid (Srinivasan et al., 2002). The trend in induction of 

both unidentified oxidative adducts and 8-oxodG were similar, but the absolute 

levels of 8-oxodG was higher after 4E2/CuCl2 treatment. Copper ions are known 

to be associated with purine bases in the DNA, thus imparting site specificity for 

oxidation of Guanine bases (Oikawa et al., 2001). However, we are currently 

unable to speculate on the mechanism of induction of novel polar adducts as 

they are as yet unidentified. Nevertheless, we have used the non-enzymatic cell-

free system effectively, to screen agents that reduce total oxidative DNA damage 

induced by 4E2/CuCl2. This, in turn, has further application in selecting agents 

that may be effective in mammary cancer reduction since oxidative DNA damage 

induced by estradiol metabolites is linked to mammary cancer incidence (Bolton 

et al., 2000; Cavalieri et al., 2000; Anderson et al., 2003).  

 

Ellagic acid, a polyphenol present in berries and a touted antimutagenic 

agent, is very effective in reduction 8-oxodG, a known mutagenic lesion 

(Srinivasan et al., 2002). In this study, ellagic acid showed a dose-dependant 

modulation of many oxidative DNA adducts and reduced the levels of unidentified 
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adducts even at 10 µM, whereas a much higher concentration of ellagic acid (100 

µM) is required to inhibit 8-oxodG (Figure 2.4-Inset), suggesting that these 2 

lesions may develop via separate mechanisms. Singlet oxygen is known to play 

a predominant role in the generation of 8-oxodG, whereas the hydroxyl radical 

causes a more promiscuous damage to all DNA bases (Hiraku et al., 2001; 

Frelon et al., 2003). Thus, ellagic acid may be more effective in protecting 

against hydroxyl radical induced DNA damage at lower concentrations. Further, it 

is reported that ellagic acid covalently binds with DNA, but with a higher affinity to 

poly (dAp X dTp) than poly (dGp X dCp) (Dixit & Gold, 1986; Teel, 1986). Such 

selective interactions with the DNA bases may also explain the differential effects 

at lower doses. All other flavanoids tested have shown antioxidant effects in 

several studies, however it appears that the prooxidant effects of some agents 

(silymarin, ascorbic acid, epigallocatechin gallate etc., ) is due to the presence of 

metal ions such as Cu+ (Anderson et al., 1994; Toyokuni & Sagripanti, 1996; 

Duthie & Dobson, 1999; Srinivasan et al., 2002; Furukawa et al., 2003; Yen et 

al., 2003). Although it is possible to provide a mechanistic explanation for the 

pro-oxidant effect of these agents, the selection of an agent to be employed in 

the next tier depended on its efficacy in the first tier. Also, though in vitro tests 

provide an easy and fast analytical system to assess the efficacy of 

chemopreventive agents with respect to a particular mechanistic aspect of 

cancer, no in vitro system can completely predict the effect in vivo. However, it is 

impossible to test every agent in an in vivo study. Based on these criteria, only 

ellagic acid was selected to be employed in a short-term in vivo study since it 

was the most efficacious in reducing in vitro oxidative damage caused by a 

catechol-estrogen metabolite. 

 

Liver is a primary organ involved in the first-pass mechanism that is 

affected by both harmful and protective components of the diet. It is also a highly 

metabolic organ that is exposed to high levels of oxidative DNA damage resulting 

from normal metabolism. The ability of any dietary component to reduce the 

levels of this oxidative DNA damage at baseline would make it an ideal 

preventive agent in the presence of additional oxidative stress. To determine if 
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berries and ellagic acid would protect against oxidative stress, we tested their 

efficacy in reducing oxidative DNA damage in the liver of CD1 mice fed diet 

containing 5% (w/w) of different berries, or 400 ppm ellagic acid. The berries 

investigated have both different ellagic acid  and total anthocyanin content – 

raspberries (1500 ppm ellagic acid; 10,000 ppm total anthocyanin), strawberries 

(500 ppm ellagic acid; 2,000 ppm total anthocyanins) and blueberries (<100 ppm 

ellagic acid; 38,000 ppm total anthocyanins) (Daniel et al., 1989; Wu et al., 

2006). The dose of ellagic acid was selected based on earlier work by Stoner 

and colleagues who showed the 400 ppm of dietary ellagic acid, when fed to rats 

for 23 days, showed significant reduction in hepatic P450 content (Ahn et al., 

1996). Further, the same dose was also effective in reducing N-

nitrosomethylbenzylamine (NMBA)-induced esophageal tumors (Mandal & 

Stoner, 1990). Both red raspberries and ellagic acid elicited similar effects in 

reducing the baseline oxidative DNA damage. Since raspberries have the highest 

ellagic acid content among the berries tested and showed similar effects as pure 

ellagic acid, we explored the possibility of a shared mechanism in reducing DNA 

damage. Gene-expression analyses suggested that this effect may posssibly be 

due to up-regulation of DNA repair genes (Figure 6). Also, both raspberries and 

ellagic acid modulate several genes in a similar fashion suggesting that the 

ellagic acid content of raspberries may play a role in their effectiveness. 

However, the concentration of ellagic acid available in the diet through 

raspberries is 5 fold lower (75 ppm Vs 400 ppm), which shows that ellagic acid 

which is present as ellagitannins in berries, may be more bioavailable from 

berries. Indeed 5% strawberries were more effective than 400 ppm ellagic acid 

reducing NMBA-induced esophageal tumors (Mandal & Stoner, 1990; Carlton et 

al., 2001). Further, raspberries contain moderately high levels of anthocyanins, 

which are known antioxidants (Wang & Lin, 2000; Wu et al., 2006). This may also 

account for their effectiveness. The results also show that P450s may be 

differentially modulated with certain enzymes such as CYP 2A4 and 2E1 being 

up-regulated and others such as 3A11 down-regulated. Several studies have 

shown hepato-protective effects of ellagic acid such as protection against metal-

toxicity and carbon-tetrachloride induced liver fibrosis (Thresiamma & Kuttan, 
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1996; Ahmed et al., 1999; Singh et al., 1999). It is clear from our results that 

ellagic acid and raspberries are hepato-protective via similar mechanisms and 

are highly effective in reducing baseline oxidative DNA damage. Also, these 

agents show up-regulation of DNA repair genes. Since breast cancer involves 

both increase in DNA damage as well as decrease of DNA repair induced by 

estradiol and its metabolites (Malins et al., 2006), ellagic acid and berries may 

provide protection in estrogen-induced mammary cancer.  

 

 This study shows that ellagic acid is highly effective in preventing oxidative 

DNA damage both in vitro and in vivo. Further, the prevention of oxidative 

damage induced by 4E2, which is a postulated carcinogenic metabolite in breast 

cancer, suggests that ellagic acid may be a good candidate for the prevention of 

mammary tumorigenesis. In addition, raspberry a natural source of ellagic acid 

has similar effects via similar mechanisms also making it a suitable candidate for 

nutritional intervention.   This warrants the application of both ellagic acid as a 

pure compound and in whole food (berries) in further long-term studies to test 

their effectiveness against mammary carcinogenesis.  
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Figure 2.1. Experimental protocol- effect of berries and ellagic acid on DNA 

damage and gene expression in a short term in vivo study.  

Five groups of 8 wk-old female CD-1 mice (n=6) were fed ad libitum, either a 

control diet (AIN-93M) or diet supplemented with 5% (w/w) strawberries, 

blueberries, raspberries or ellagic acid. Liver was analyzed for adduct levels 

and gene expression as described in Materials and Methods.   
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Figure 2.2. Representative 32P-labeled DNA adduct maps of both 

uncharacterized polar oxidative adducts (A1-A3) and 8-oxodG (B1-B3) generated 

by redox cycling of 4E2 and CuCl2.  

The unidentified polar adducts (5 µg DNA) and 8-oxodG (0.5 µg) were 32P-

labeled and separated using two directional TLC. D1 (bottom to top) and D2 (left 

to right) solvents as described in materials and methods.  
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Figure 2.3. Modulation of oxidative DNA adducts by various phytochemicals. 

 

The modulation of unidentified polar oxidative adducts is shown as a percentage 

of the vehicle control. The mean of 4 analytical replicates were compared by one-

way ANOVA followed by Dunnett’s post hoc test. A P-value <0.05 was 

considered significant and is denoted by an asterisk.
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Figure 2.4. Effect of different concentrations of ellagic acid on oxidative DNA 

damage.  

Both unidentified polar adducts (   ) and 8-xodG (   ) were measured using32P-

postlabeling/TLC and are represented as mean ± SE of 4 replicates. The inset 

shows the effects at lower concentrations. The test for linear trend was 

statistically significant with a p-value <0.0001.  
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Figure 2.5. Comparison of diet consumption (A) and weight gain (B) between 

CD-1 mice fed different diets in a shot-term in vivo study.  

The diet consumption and weight gains were recorded over a period of 5 weeks 

between CD-1 mice (n=6) fed control diet (   ) or diet supplemented with either 

5% w/w berries (blueberry-   ; strawberry-    ; red raspberry -    ) or 400 ppm 

ellagic acid (   ). Diet was weighed everyday and the consumption was calculated 

as described in Materials and Methods. 
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Figure 2.6. “Stackograms” exhibiting changes in the levels of various subgroups 

of liver DNA adducts in CD-1 mice fed either control or supplemented diet as 

indicated.  

Adduct levels are mean of 6 individual values (SD 30%-50% of mean). Adducts 

whose levels are not marked were not measured. Inset - Representative 32P-

labeled TLC maps of subgroups of adduct. Each subgroup of adducts was 

visualized in the D1 using different salt concentration depending on their polarity 

as described in Materials and Methods.  
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Figure 2.7. Genes with significantly altered expression in the liver of mice fed 

either 5% (w/w) raspberry- (A) or 400 ppm ellagic acid - supplemented diet (B). 

TST-Thiosulphate sulphur transferase; XPA- Xeroderma Pigmentosum group A 

complementing protein; ERCC5 - excision repair cross complementation group 5; 

DNL3 - DNA Ligase III; SOD –Superoxide Dismutase, extracellular; MAPK- 

Mitogen activated protein kinase; MAPKK-MAP Kinase kinase. Gene expression 

analyses were done in Dr. Margie Clapper’s laboratory at the Fox Chase Cancer 

Center, Philadelphia, PA.  
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Table 2.1. Comparison of modified diet composition to AIN-93M diet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A modified version of the AIN-93M diet was fed to the mice. Diet ingredients were 

purchased individually from Dyets Inc., (Bethlehem, NJ) and mixed according to 

the given composition in a Hobart mixer until homogenous. The corn starch 

component was substituted for 5% berry diets such that the percentage of corn 

starch in these diets was 31.03%. No substitutions were done for the ellagic acid 

diet since this agent was added in insignificant quantities (0.04%). The diets were 

stored either at -80°C (>1 week) or 4°C (<1 week) until use. CHO- Carbohydrate. 

The composition of AIN-93M diet as described in Reeves et al., 1993.  
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Chapter Three: Effect of dietary berries and ellagic acid on estrogen–
induced mammary tumors in ACI rats. 

 
Introduction 

Breast cancer is the most commonly diagnosed cancer among women in the 

United States. Among the women diagnosed, over 53,000 women are expected 

to have ductal carcinoma in-situ (DCIS) (ACS, 2007a). DCIS remains one of the 

most commonly diagnosed breast cancers, with up to 25% recurrence as 

invasive carcinomas (Silverstein et al., 1995). Prolonged exposure to 

physiological levels of 17ß-estradiol (E2) is considered as a key risk factor for the 

development of sporadic breast cancer (Verheul et al., 2000; Lippman et al., 

2001). Furthermore, associations between the use of hormone-replacement 

therapy and development of breast cancer in post-menopausal women (Verheul 

et al., 2000; ACS, 2007b; ACS, 2007a) delineates a role for estrogens in human 

breast cancer. 

 

Typically, in animal models, mammary tumors have been induced using 

carcinogenic doses of chemicals such as dimethylbenz[a]anthrazene, N-methyl-

N-nitrosomethylurea, etc., (Cohen et al., 1999; Kim et al., 2004). Etiologically, 

exposure to any carcinogen in humans is usually chronic with DNA damage 

accumulating over a period of time, making exposure to bolus doses of 

carcinogens less relevant to the human scenario. Thus, there is a need for a 

relevant animal model to study breast cancer. August-Copenhagen Irish (ACI) rat 

strain is highly susceptible to estrogen-induced mammary tumors (Shull et al., 

1997; Li et al., 2002b). These rats develop mammary tumors that bear close 

resemblance to human breast tumors in both histopathological and molecular 

aspects (Li et al., 2002a; Weroha et al., 2006). In addition, the etiology of disease 

development is also similar to the human scenario, with tumorigenesis occurring 

after chronic exposure to E2 (Shull et al., 1997; Li et al., 2002b).  Thus, the ACI 

rat model is highly relevant for chemopreventive intervention and translational 

research.  
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Translational research of cancer chemoprevention involves three major steps. 

First, epidemiological studies find an association between certain foods/diet and 

reduction in cancer incidence. Second, observational studies identify and employ 

the most potent components in these foods in various in-vitro and in-vivo assays 

to discover pathways, identify biomarkers and establish safety information. The 

last step is to employ these agents in clinical trials, and use established 

biomarkers to determine if the agent actually prevents or ameliorates cancer. 

Unfortunately, some of the agents identified and employed using this 3-step 

approach failed to show expected results in clinical trials (Hampton, 2005). 

Potential reasons for this failure are as follows: since most chemoprevention 

studies in animal models were performed using large doses of chemical 

carcinogens, mega-doses of chemopreventive agents were required for efficacy 

(Yuri et al., 2003). Thus, the pharmacologic dose derived from such studies may 

result in adverse effects in humans. The concept of lower, more realistic doses of 

chemopreventive agents has been proposed after the high-dose adverse 

phenomenon observed in the CARET trials (Goodman et al., 2004). Also, most 

observational studies fail to recognize the presence of and interactions between 

the different components  found in whole foods (Meyskens & Szabo, 2005). The 

fractionation of a preventive food, green tea for example, usually yields one 

major component (epigallocatechin gallate) that is most effective and several 

other minor components that are somewhat less effective (Yang et al., 2000). 

Nevertheless, the fact that there are several minor components that may play a 

role in the protective effect of the food is not commonly acknowledged 

(Meyskens & Szabo, 2005). These oversights may precipitate in the failure of an 

agent to elicit any positive response or even adverse effects in humans 

(Hampton, 2005).   

 

Ellagic acid is a polyphenol formed by the dimerization of gallic acid in various 

plants (Maas et al., 1991). It has been shown that ellagic acid may elicit cancer 

prevention by several mechanisms which include direct binding to DNA, 

attenuation of carcinogen metabolism via the P450 pathway, and down-

regulation of cell-cycle activators and up-regulation of pro-apoptotic mechanisms 
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(Reviewed by Stoner & Mukhtar, 1995 and by Aggarwal & Shishodia, 2006). 

However, the bioavailability of ellagic acid as a pure compound after oral 

administration has been in question (Smart et al., 1986; Teel & Martin, 1988). 

The effects of ellagic acid intervention on tumors other than those of the gastro-

intestinal tract have largely been unexplored due to its suspected low 

bioavailability. 

 

Ellagic acid in plants is present as ellagitannins (Larrosa et al., 2005). It is 

released in the gut by the microflora and then absorbed as ellagic acid. Analysis 

of ellagic acid contents of various berries shows that while some commonly 

available berries such as black berries and raspberries are rich sources (1,500 

ppm) others like blueberries (<100 ppm) are not  (Daniel et al., 1989b). Several 

studies by Stoner and colleagues have shown the protective effects of black 

raspberries on gastro-intestinal tumors induced by chemical carcinogens (Harris 

et al., 2001; Kresty et al., 2001; Stoner et al., 2006). Although black raspberries 

and blueberries are good sources of anthocyanins, they differ significantly in their 

anthocyanin profile (Wu et al., 2006). Black raspberry is a rich source of cyanidin-

polymers whereas blueberry has a much wider range and is especially rich in 

delphinidin-polymers (Wu et al., 2006). Blueberry has been much touted for its 

antioxidant properties, both historically and experimentally due to its anthocyanin 

content (Lau et al., 2005; Yi et al., 2005).  

 

These facts formed the basis for the three-fold rationale of this study. First, 

we examined the efficacy of relatively low doses of natural chemopreventive 

agents, such as ellagic acid and berries, in reducing estrogen-mediated 

mammary tumors in ACI rats, so that maximum clinical relevance can be 

established from the results. Second, we provided both berries, a natural source 

of ellagic acid and pure ellagic acid in the diet to distinguish the effects of “whole 

food” versus “active ingredient” in its biological response. Finally, we chose 

berries which differed widely in their ellagic acid contents but had similar total 

anthocyanin levels to evaluate the role of each of the antioxidant components in 

yielding benefits.  
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In this chapter, the results from 3 independent studies involving 

supplementation with various berries and also involving 2 related animal models 

of estrogen-induced mammary carcinogenesis are presented.  

 

Materials and Methods 
Diets. Diets for Study 1 were ordered from Bio-Serv (Frenchtown, NJ) and 

diets for Studies 2 and 3 were ordered from Harlan-Teklad, Inc. (Madison, WI). 

The AIN-93M diet was supplemented with powdered berries (2.5% w/w) or 

ellagic acid (400 ppm). For Study 1, equal mixture of 5 different berries- red 

raspberry, black raspberry, blackberry, blueberry and strawberry- were used 

such that each berry constituted 0.5% (w/w) of the diet.  

 

The black raspberries were procured as a freeze-dried powder from Van 

Drunen farms, (Momence, IL), through Dr. Gary Stoner of The Ohio State 

University (Columbus, OH). The processing of black raspberries was done as 

described (Harris et al., 2001). All other berries were obtained as organic, fresh 

produce and processed in the laboratory. Blueberries were purchased from a 

local farm (Liberty, KY). Three different high bush cultivars of blueberry (V. 

corymbosum L) - Bluecrop, Berkeley and Bluejay - were harvested in the 

morning, stored overnight below 10ºC and transported the next morning to the 

laboratory for processing. Blackberries were purchased from Reed Valley 

orchards (Paris, KY). Red raspberries and strawberries were purchased from a 

local food co-op (Lexington, KY). All berries except black raspberries were 

processed similarly. Berries were rinsed with water and dehydrated using 

commercial food dehydrators (at 40° - 60°C). The dried berries were finely 

powdered using a kitchen blender (Sumeet Asia Kitchen Machine, Sumeet 

Research and Holdings Ltd., Chennai, India), sieved and lyophilized to remove 

residual moisture. All berries were then vacuum packed and stored at -20°C until 

use. The three different cultivars of blueberries were mixed in equal ratios prior to 

mixing in diet. Ellagic acid (>96% purity) was purchased from LKT labs (St. Paul, 

MN). The cornstarch and fiber components of the AIN-93M diet were replaced for 

the berry diets, based on the nutritional information available for each berry 
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(http://www.nal.usda.gov/fnic/foodcomp, Table 3.4).  A proximate analysis was 

performed at Harlan-Teklad (Madison, WI) to ascertain that the diets were 

isocaloric. This included the measurement of protein (Kjeldahl method; factor 

NX6.38 for milk protien), fat (ether extraction), crude fiber, moisture (at 70°C) and 

ash (at 600°C). The carbohydrate levels were arrived at by subtraction of protein 

and fat values from the total calories. The daily feed intake by animals was 

assessed by subtracting the unused diet from the initial amount provided per 

cage divided by the number of rats in the cage.  

 

Animal studies. Study 1 and Study 2: Female ACI rats were 7-8 weeks 

old when purchased and 10-11 weeks old when implanted with 3 cm silastic 

implants containing 27 mg 17ß-estradiol. Study 1 was conducted as a pilot study 

with number of animals as specified (Tale 3.1) and Study 2 was designed with 

enough number of animals in each group to achieve statistical significance 

(Table 3.2).  

 

Study 3:  Female ACI rats were 5-6 weeks old when purchased and 8-9 

weeks old when implanted with 1.2 cm silastic implants containing 9 mg 17ß-

estradiol (Table 3.3). This study was perfomed to avoid the mortality associated 

with the larger implant used in Studies 1 and 2. 

 

Animal treatment and assessment of tumor indices. Female ACI rats 

were purchased from Harlan-Sprague-Dawley, Inc. (Indianapolis, IN), housed 

under ambient conditions and had access to food and water ad libitum. Animals 

were acclimated for 1 week on AIN-93M diet prior to randomizing them into 

different groups (Tables 3.1 -3.3). After feeding experimental diets for 2 weeks, 

animals then received one of the three E2 implants - a 3 cm silastic implant 

containing 27 mg 17ß-estradiol  or a 1.2-cm implant containing 9 mg 17ß-

estradiol as described (Shull et al., 1997; Ravoori et al., 2007) or sham implants, 

depending on study design (Table 3.1-3.3).  Briefly, silastic tubing (Allied 

Biomedical Inc., Ventura, CA) was cut in respective lengths and sealed at one 

end using a silicone adhesive (Factor II Inc., Lakeside, AZ). They were then filled 
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with 17ß-estradiol and the other end was sealed. These were then 

subcutaneously implanted in to rats under isofluorane anaesthesia (Ravoori et 

al., 2007). Animals were weighed biweekly after estrogen implantation to track 

weight changes and disease progression. Starting at 12 weeks after estrogen 

implantation, animals were palpated weekly for tumor appearance. The 

frequency of palpation was increased to twice a week, upon appearance of the 

first tumor, to record tumor latency and incidence. The experiment was 

terminated after 24 weeks of estrogen treatment for Studies 1 and 2, and after 32 

weeks for Study 3. At termination, animals were euthanized by CO2 asphyxiation 

and examined grossly for the presence of mammary tumors. Each tumor was 

excised and measured in all 3 dimensions using calipers and the tumor volume 

was calculated using the standard formula for the volume of a spheroid - 2/3π 

r1*r2*r3, where r1, r2 and r3 represent the radii of the tumor. The tumor volume 

per animal is the sum of the volumes of all individual tumors. Representative 

tumors were analyzed for histopathology to confirm that they were mammary 

adenocarcinomas. The fixing, sectioning and H and E staining of the tissues 

were done at the Pathology Core Lab at the University of Louisviile (Louisville, 

KY), and the stained sections were examined by two trained pathologists – Dr. 

Srivani Ravoori and Dr. Sunati Sahoo to determine that they were mammary 

adenocarcinomas. 

 

Analysis of 17β-estradiol levels. Trunk blood was collected from animals 

after euthanasia and the serum estradiol levels were measured by Roche E170 

immunoassay analyzer using electrochemiluminescent detection. These 

analyses were done in the Pathology department at the University of Louisville 

Hospital under the supervision of Dr. James Miller and were paid for from grant 

support. 

 

Statistical analysis. Experimental data were analyzed using the Statistical 

Analysis Software, SAS version 8. The longitudinal analysis of the data on body 

weights was carried out using the PROC MIXED procedure. A linear trend for 

weight change was established at p-value <0.0005. The differences in weight 
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gains or losses between different groups were assessed using the same 

procedure and, for this analysis, a p-value < 0.0001 was considered significant 

due to large number of weight comparisons at 13 biweekly time points. The 

tumor volume and multiplicity were compared using the General Linear Models 

(SAS procedure PROC GLM ) and the Poisson Regression Model (SAS 

procedure PROC GENMOD)  procedures, respectively, and a p-value <0.05 was 

considered significant. The difference in the mortality index was assessed using 

the non-parametric survival analysis techniques and the log-rank test. All 

statistical analyses except the non-parametric survival analysis and the log-rank 

test, were done by our collaborator Dr. Cidambi Srinivasan, Department of 

Statistics, University of Kentucky (Lexington, KY). 

 

Results 

Serum estrogen levels. Serum 17β-estradiol was analyzed only for Study 

2. The levels were measured at 6 weeks and 25 weeks. At 6 weeks, the mean 

serum estrogen levels were significantly (p<0.0001) elevated (194 ± 20 pg/ml) in 

the treated versus control group (35 ± 9 pg/ml). The levels further increased 

somewhat after 24 weeks of treatment (236 ± 24 pg/ml) but the increase was 

insignificant. No significant change was seen in age-matched controls (44 ± 7 

pg/ml). There was no effect of dietary supplementation on serum estradiol levels 

at both 6 and 25 weeks. The serum E2 analysis for Study 3 were not performed 

but were assumed to be similar to values from a similar model established in our 

laboratory (65 ± 5 pg/ml at 12 weeks and 200 ± 44 pg/ml at 32 weeks ) (Ravoori 

et al., 2007).  
 

Effect of estrogen treatment and experimental diets on body weight. 
For all studies conducted, measurement of diet intake showed no significant 

difference between various groups, suggesting that berry supplementation had 

no effect on the diet intake. Furthermore, animals gained weight progressively 

irrespective of the implants; however, estrogen-treated animals gained more 

weight than their sham counterparts starting at 4 weeks after the treatment, 

irrespective of the diet, indicating that this weight gain was a direct result of the 
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estrogen treatment (Figures 3.1- 3.3). Sham-treated animals on control diet 

continued to gain weight until the end of the experiment in all studies (Figures 

3.1-3.3). In Study 2, sham-treated animals receiving experimental diets also 

showed similar trends in weight gain, except that diet supplemented with black 

raspberries showed higher weight gain, starting as early as 2 weeks after the 

experimental diet, but the difference was significant only after 20 weeks of the 

dietary regimen (p <0.05) (Figure 3.2A). However, both proximate analyses of the 

diets as well measurements of diet intake did not show a difference in caloric 

intake between the groups. 

 

Effect of berry- and ellagic acid-supplemented diets on the disease-
associated weight loss. In Study 2, at 22 and 24 weeks, the difference in 

weight between estradiol- versus sham-treated animals on same diet was 

significantly lower (p<0.0001) for all groups (compare figures 3.2 A and B). In 

contrast, none of the sham-treated groups lost weight until the end of the study 

suggesting that the weight loss was a disease-associated phenomenon in the 

estradiol-treated animals. Comparison of estradiol-treated groups on various 

diets revealed that animals fed control diet lost the most weight, followed by 

animals fed blueberry-, black raspberry- and ellagic acid-supplemented diets 

(Figure 3.2B). Ellagic acid-fed animals showed significant resistance to weight 

loss even towards the end of the study, i.e., from the 20th (p< 0.05) to the 24th 

week (p<0.005). Thus, there was an intervention-associated prevention of 

weight-loss in all estradiol-treated animals, with ellagic acid-supplemented diet 

showing the most-pronounced effect.  Although similar trends were seen in Study 

1, the effect did not achieve statistical significance due to small sample size.  

 

Effect of estrogen treatment and experimental diets on the rate of 

mortality. In Study 2, the morbidity in estradiol-treated groups was defined by 

the loss of >7g a week. This was based on the weight gain comparison in sham-

treated animals, whose weight gain was ≥ 3g per week. In addition, other 

parameters such as loss of mobility, balance, grooming, the presence of eye 

deposits and a dull hair coat were taken into account and scored subjectively on 
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a scale of 1 to 5 (1 being the best and 5 being the worst).  Animals that did worse 

(score > 3) on 3 or more of these criteria and also had rapid weight loss were 

euthanized. This was taken as indicator of the mortality (Figure 3.4). Additionally, 

animals whose tumor size had reached >1.3 cm in diameter were also 

euthanized. These animals, however, were excluded from the mortality index 

because they did not meet the morbidity criteria. Estrogen-treated animals on 

control diet showed the highest morbidity and mortality rate starting at 18 weeks 

after the treatment. The survival rate in this group progressively declined, 

reaching <50% after 24 weeks, thus only 11 of 25 animals survived at the 

termination of the study. In contrast, all intervention groups were significantly 

different from the control diet (log rank test, p-value <0.005): Both ellagic acid- 

and blueberry-fed animals showed no morbidity and had >85% survival at 24 

weeks. The group on black raspberry-supplemented diet initially showed a higher 

survival rate, but it declined rapidly and had 60% mortality at 24 weeks. Although 

the ellagic acid group showed no sign of morbidity, 3 out of 22 animals had to be 

euthanized before 24 weeks because of the large tumors. These data suggest 

that the disease progression, as measured by the incidence of morbidity, was 

significantly delayed by the intervention - by about 3 to 6 weeks compared with 

the control group.  

 

In Study 3, there was no treatment associated mortality. This study 

employed the improved model of estrogen-induced mammary carcinogenesis 

first described by others in our laboratory (Ravoori et al., 2007, in press). This 

model significantly eliminates disease associated mortality at the cost of a slightly 

extended tumor latency period (32 versus 24 weeks). However, animals were 

euthanized before the final termination if the tumor size reached >1.3 cm in 

diameter. These animals are not included in the final comparison of tumor 

indices. It is notable to mention that, the control diet showed the highest animal 

loss before 32 weeks (5 out of 21) compared to diets supplemented with 2.5% 

blueberry (2/16), 1% black raspberry (1/16), 2.5% black raspberry (0/16) and 400 

ppm ellagic acid (3/16), suggesting the preventive effects of supplementation on 



 
70

tumor progression. The loss for animals supplemented with 1% blueberry was 

not different from the control (4/17).  

 
Effect of experimental diets on tumor indices. Tumor incidence was 100% 

in all 17ß-estradiol-treated animals in all studies. The results for individual studies 

are described below. 

 

Study 1.  Tumors were first noticed at 150 days after estrogen treatment; 

however, this was not the first incidence as systematic palpation after 12 weeks 

was not done for this study. Also, though there was no mortality in this study, the 

tumor data for 4 animals from the ellagic acid group could not be obtained and 

are not included in the calculations. There was no difference in tumor latency or 

tumor incidence between the groups. On termination, the tumor multiplicity in the 

control diet group was 9.0 ± 1.6 and tumor volume was 4,231 ± 1,675 mm3. Only 

tumors that were larger that 0.5 cm were analyzed for histology. In this particular 

study, a number of smaller tumors (1-2mm in diameter) were seen. Due to the 

peculiarity of this animal model, where gross examination of mammary tumors 

presents as a cluster of smaller tumors joining to form a bigger tumor, all nodules 

that appeared in the mammary regardless of their size or appearance were 

counted as mammary tumors. This may have lead to the over-estimation of the 

number of tumors in all groups, especially since lymph nodes often look like 

tumors on gross examination. Therefore, only tumor volume and to some extent 

tumor burden are reliable measurements of tumor indices in this pilot study. 

Blueberry diet reduced both tumor volume and volume/tumor by 70% (p< 0.001) 

and 84% (P< 0.0001) respectively. Mixed berries reduced tumor volume by 75% 

(p <0.01) and volume/tumor by 60% (p< 0.02). Although, ellagic acid reduced 

tumor volume by > 40% and volume/tumor by >65%, it was statistically 

insignificant (Table 3.5, Figure 3.7).  

 

Study 2. The first palpable tumor was detected at 90 days after estradiol 

treatment without any intervention, with a mean tumor latency of 134 ± 6 days. 

The tumor development was marginally delayed in the intervention groups by 18, 
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20 and 21 days for animals fed blueberry-, black raspberry- and ellagic acid-

supplemented diets, respectively (Figure 3.5). However, there was no significant 

difference in the mean tumor latency between the intervention groups and was 

143 ± 5; 140 ± 6; 141 ± 6 for blueberry, black raspberry and ellagic acid 

supplemented diets respectively. On termination after 24 weeks the tumor 

multiplicity in the control diet group was 7.9 ± 2.4 and the tumor volume was 685 

± 206 mm3 (Table 3.6). All tumors were confirmed to be mammary 

adenocarcinomas through histopathology (Figure 3.9).  Blueberry diet resulted in 

a 40% reduction in tumor volume without any change in tumor multiplicity. Black 

raspberry diet resulted in a 70% reduction (p<0.05) in tumor volume and nearly 

40% reduction in tumor multiplicity. Ellagic acid showed the highest reduction in 

tumor volume (>70%; p<0.05) and tumor multiplicity (>43%; p<0.05) (Table 3.6, 

Figure 3.8). 

 

Study 3.  In this study, two different doses of each berry were tested- the 

same dose (2.5% w/w) as used in Study 2 and a lower dose (1% w/w). The 

results are summarized in Table 3.7 and presented in figure 3.10. The first 

palpable tumor appeared 127 days after estrogen treatment in the control diet 

group, with a mean tumor latency of 154 ± 4 days. There was no difference in the 

appearance of the first palpable tumor between the groups (Figure 3.6). 

However, the mean tumor latency for each group was: 1% blueberry-152 ± 6; 

2.5% blueberry-162 ± 6; 1% black raspberry-168 ± 6; 2.5% black raspberry-149 ± 

6; 400 ppm ellagic acid 170 ±  5.  At termination of the study, the mean tumor 

volume was 2804 ± 547 mm3 in the control diet group and tumor multiplicity was 

11.7 ± 1.4. None of the tumor indices measured was reduced by the 1% 

blueberry diet suggesting that blueberries may be ineffective at this dose (Table 

3.7). At the 2.5% dose, blueberries reduced tumor volume by 45%, tumor 

multiplicity by >30% (p < 0.05) and volume/tumor by 43%. Black raspberry at 

both doses tested (1% and 2.5%) had similar effects on reducing tumor 

multiplicity (30% reduction; p< 0.05), however they varied in their effects on 

tumor volume, hence volume per tumor. The higher dose had a greater effect in 

reducing tumor volume (56% versus 33%). Ellagic acid reduced tumor volume, 
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multiplicity and volume per tumor by 45%, 37% (p< 0.05) and 47% respectively. 

The reductions in tumor volume and volume per tumor were not statistically 

significant due to high intra-group variability (Table 3.7). 
 
Discussion 

The application of preventive agents in randomized clinical trials involves 

three distinct steps: First, epidemiological studies reveal a correlation between 

the high intake of a particular food/diet and low prevalence of a certain disease. 

Second, data from both in vitro and in vivo studies usually in rodent models 

provide validation of these correlations. The initial step in this process is to 

analyze and fractionate the different components of the whole food, and find 

which of the component(s) are most effective. Although rodent studies are highly 

dependent upon pharmacological response, the studies generally use high doses 

of carcinogens, which in turn require high doses of chemopreventive agents to 

elicit biological response (Yuri et al., 2003). The ACI rat model is highly 

amenable to translational prevention research due to its steady exposure to 

estrogen. However, only few intervention studies have been reported in ACI rats 

where mammary tumors are induced by E2. Among these, Shull and co-workers 

examined the effect of hypo-caloric feeding on reduction of mammary gland 

tumors (Harvell et al., 2002) and Li and his team examined the chemopreventive 

effect of tamoxifen (Li et al., 2002b) and both studies reported effective 

inhibitions of mammary tumorigenesis. In our studies we have investigated the 

efficacy of both the whole food (berries) and one of its principal components 

(ellagic acid) in reducing estrogen-mammary carcinogenicity in the ACI rat 

model.  

 

The third and final step in translational research is employing effective 

agents in clinical trials to ameliorate disease incidence in humans. The concept 

of “pharmacological intervention” versus “dietary supplementation” must be 

clearly differentiated.   The translation of an epidemiological observation through 

experimental design cannot be effective unless the synergism between the 

different components in the food is acknowledged (Block, 1995; Meyskens and 
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Szabo, 2005). In this study we have addressed these issues by adopting a 

unified approach to chemoprevention.  

 

Ellagic acid administered orally was initially shown to reduce tumors in both 

mouse-skin and mouse-lung tumor models (Lesca, 1983; Mukhtar et al., 1984a; 

Mukhtar et al., 1986).  The various mechanisms attributed to these effects 

included direct binding of ellagic acid to the DNA and modulation of both phase I 

and phase II enzymes involved in the metabolism of carcinogens (Reviewed by 

Stoner and Mukhtar, 1995). Subsequent studies suggested that ellagic acid may 

not be highly bioavailable, since >50% of the material administered orally was 

excreted as such in feces and a large percentage of the material absorbed was 

removed by the kidney (Smart et al., 1986; Teel & Martin, 1988). Thus, bio-

concentration of ellagic acid may not be high enough to elicit a response in any 

organ site peripheral to the gut, where it has been shown to persist for at least 24 

h after gavage (Teel & Martin, 1988). Also, there is evidence that ellagic acid 

strongly binds to all macromolecules in intestinal epithelial cells in tissue culture 

(Whitley et al., 2003). The evidence taken collectively suggests that the gut may 

be the prime organ where ellagic acid is effective in eliciting anti-tumor effects. 

However, recently Stoner and colleagues have shown the presence of ellagic 

acid in the plasma of human subjects fed black raspberries orally (Stoner et al., 

2005). Also, it is reported that about 0.2 to 2% of the orally administered dose 

was found in peripheral organs after gavage (Smart et al., 1986; Teel & Martin, 

1988), implicating that if provided via diet over time, steady-state levels could be 

achieved.                                      

 

Indeed, administered via diet at 400 ppm, ellagic acid was effective in 

reducing 2-acetylaminiofluorene-induced hepatocellular carcinomas in ACI/N rats 

(Tanaka et al., 1988). However, when given at 8,000 ppm 4 weeks prior to 7,12-

dimethylbenz[a]anthracene administration to Sprague-Dawley rats, ellagic acid 

achieved only a modest (20%) reduction in mammary tumor incidence 

(Singletary & Liao, 1989). Also, doses of 4,000 and 8,000 ppm ellagic acid failed 

to elicit significant response in azoxymethane-induced colon tumors (Rao et al., 
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1991). Subsequently, Mandal and Stoner (Mandal & Stoner, 1990) demonstrated 

interplay between carcinogen and ellagic acid dose ratios, in a rat-esophageal 

tumor model. So far, ellagic acid has only been tested in animal models where 

tumors are induced by bolus doses of carcinogens. As discussed earlier, ACI rat 

model differs vastly from other chemical carcinogen-induced rodent tumor 

models in that it delivers a steady dose of the carcinogen over the entire duration 

of the tumorigenesis. Thus, the effects of bioavailability and bioconcentration in 

meeting the carcinogen challenge are altered. Further, it has been shown that 

both ellagic acid and several anthocyanins may act as a selective estrogen 

receptor mediators, which may partially account for their effect in our study 

(Schmitt & Stopper, 2001; Larrosa et al., 2006).   

 

Berries vary in their contents of ellagic acid from < 100 ppm (blueberry) to > 

1500 ppm (black raspberry) (Daniel et al., 1989a; Harris et al., 2001). In Study 1, 

various berries were tested as a mixture to assess whether berries have some 

efficacy against estrogen-induced mammary tumors or not. Nevertheless, both 

the mixed berries as well as black raspberries provided a high-ellagic acid group 

to contrast with the effects of a low-ellagic acid group (blueberries only). Berries, 

apart from being good sources of ellagic acid are also rich sources of other 

phytochemicals such as anthocyanins, flavonoids such as quercetin, kaempferol, 

and vitamins and minerals (Harris et al., 2001; Wada & Ou, 2002). Interesting to 

note is that each berry has a significantly different anthocyanin and total 

phenolics profile (Wada & Ou, 2002; Wu & Prior, 2005; Wu et al., 2006). While, 

black raspberries are high in total anthocyanins, their anthocyanin source is 

primarily cyanidin-polymers, whereas blueberries are known to contain several 

different types of anthocyanins, including high levels of delphinidin-polymers (Wu 

& Prior, 2005; Wu et al., 2006). Evidence suggests that several of these 

molecules may have partial estrogenic activities (Schmitt & Stopper, 2001; 

Larrosa et al., 2006). It is not known yet how these will affect an estrogen-

induced mammary carcinogenesis model. The possible interactions and 

outcomes are discussed in chapter 5 in some detail.   
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Ellagic acid is released from the ellagitannins by the action of the gut 

microflora (Larrosa et al., 2005). It is not known whether a natural source of 

ellagic acid would result in a higher bio-availability due to synergistic effects of 

other natural components. The level of ellagic acid in the black raspberry diet or 

mixed berry diet is about 30 – 45 ppm (based on a 2.5% dietary dose), but it is 

highly effective in reducing tumor indices (Table 3.1-3.3). Pure ellagic acid, at 

about 10 times this dose elicits the same response. Thus, either ellagic acid is 

more bioavailable from ellagitannins in berries, or other components of berries 

such as anthocyanins as well as other flavanoids, work synergistically to offer 

better protection. There is support for the latter, since blueberry, a poor source of 

ellagic acid but rich in anthocyanins also elicits a moderate reduction in the 

estrogen mammary carcinogenicity as well a significant reduction in morbidity.  

 
Disease progression can be understood as the decline in health of the 

animals as indicated by weight loss and increased morbidity score. It was 

theorized that the estradiol doses given to these animals may have been too high 

and the subsequent toxicity induced by the estradiol levels may have a 

confounding effect on the actual effectiveness of these diets. Li and co-workers 

in their initial work reported that animals implanted with 3 mg cholesterol pellet 

had a serum estradiol levels <145 pg/ml at 6 months. These animals did not 

show high mortality albeit a marginal weight loss (Li et al., 2002b). In a recent 

report using the cholesterol pellet model, other investigators (Mesia-Vela et al., 

2006) reported that animals suffered significant weight loss even at 20 weeks. 

The serum estradiol levels in these animals were >300 pg/ml at 6 and 12 weeks. 

This suggests that a high serum estradiol level plays a significant role in inducing 

morbidity in the animals.  It is clear from our results that although dietary 

interventions were highly effective in reducing weight loss and morbidity (Figure 

3.4), the relatively low doses of dietary intervention may have been insufficient to 

completely protect from adverse effects of high circulating estradiol levels. Also, 

the varying effects of the two berries in preventing the morbidity may be related 

to the differences in their anthocyanin content as well as their anthocyanin 

profiles (Figure 3.4), (Wu et al., 2006).  
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Using an improvised model our laboratory has found that reduced serum 

levels of estradiol delivered by shorter estradiol silastic implants can produce 

100% tumor incidence at the expense of somewhat longer duration (7-8 months) 

(Ravoori et al., 2007).This model was used in Study 3 and it was hypothesized 

that lower doses of the berries would be effective in reducing mammary tumor 

indices due to the presence of lower levels of circulating E2 . However, the results 

from Study 3 fail to support this hypothesis (Study 3 versus Study 2) (Tables 3.2, 

3.3). Although speculations about the estrogenic activities of berry components 

and their interactions with the cellular signaling pathways may partially explain 

the results, more investigation is necessary to ascertain the exact mechanisms. 

In conclusion, these studies consistently show significant reduction of 

estrogen-mammary carcinogenicity by dietary berries and ellagic acid. They also 

reveal the in-vivo efficacy of berries and ellagic acid in reducing tumorigenesis in 

an organ site other than the gut.  
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Figure 3.1. Comparison of weight gain in animals supplemented with dietary 

berries and ellagic acid and treated with either sham-implants or implants 

containing 27 mg E2 in a pilot study.  

Animals were weighed every fortnight until termination of study. Sham treated 

(closed symbol); estradiol treated (open symbols). Control diet     ,            ; 

Blueberry diet        ; Mixed berry diet       ; Ellagic acid diet       . The differences 

between the groups were not statistically significant due to low number of 

animals per group.  
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Figure 3.2.  Comparison of weight gain in animals supplemented with berries 

and ellagic acid and treated with either sham-implants or implants containing 27 

mg E2. Animals were weighed every fortnight until termination of study.  

3.2A -SH treated (closed symbols); 3.2B - Estradiol treated (open symbols).  

Control diet         ,         ; Blueberry diet         ,       ; Black raspberry diet        ,    ; 

Ellagic acid diet       ,     .  Statistically significant weight differences are indicated. 

* - Statistically different from animals fed control diet (p < 0.05). 

‡ - Statistically different from animals fed control diet (p < 0.005). 
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Figure 3.3.  Comparison of weight gain in animals supplemented with dietary 

berries and ellagic acid and treated with either sham-implants or implants 

containing 9 mg E2.  

Animals were weighed every fortnight until termination of study.  

Sham treated (closed symbols);  E2 treated (open symbols).  

Control diet      ,       ; Blueberry diet (1% w/w)       ; Blueberry diet (2.5% w/w)      ;          

Black raspberry diet (1% w/w)        ; Black raspberry diet (2.5% w/w)       ; Ellagic 

acid diet    .  The differences were not statistically significant between the 

estradiol treated groups at any time point. All estradiol treated groups were 

significantly different from the sham treated group starting at 8 weeks after 

treatment until the end of the study                  
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Figure 3.4. Kaplan-Meier survival curves for ACI rats with estradiol implants fed 

different diets and treated with silastic implants containing 27 mg E2. 

Control diet       ; Blueberry diet     ; Black raspberry diet      ; Ellagic acid diet       . 

All remaining animals were euthanized at 25 weeks. 
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Figure 3.5. Effect of diets supplemented with dietary berries and ellagic acid on 

tumor latency in ACI rats treated with silastic implants containing 27 mg E2. 

Control diet      ; Blueberry diet       ; Black raspberry diet      ; Ellagic acid diet      .  

90 13
5

18
0

0

20

40

60

80

100

%
 T

um
or

 In
ci

de
nc

e

Days after E2 implant

Tumor Latency –Study 2



 
82

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 3.6.  Effect of diets supplemented with berries and ellagic acid on tumor 

latency in ACI rats treated with silastic implants containing 9 mg E2.  

Control diet      ; Blueberry diet (1% w/w)        ; Blueberry diet (2.5% w/w)       ; 

Black raspberry diet (1% w/w)      ; Black raspberry diet (2.5% w/w)       ; Ellagic 

acid diet (400 ppm)       .  
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Figure 3.7. Effect of diets supplemented with dietary berries and ellagic acid on 

tumor indices of ACI rat mammary tumors induced by 27 mg E2 (pilot study).  

The tumor multiplicity was compared with the GLM procedure and tumor volume 

was compared using the GENMOD procedure as described in methods.  A p-

value ≤ 0.05 was considered significant and is denoted by an asterisk.  
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Figure 3.8. Effect of diets supplemented with dietary berries and ellagic acid on 

tumor indices of ACI rat mammary tumors induced by 27 mg E2.  

The tumor multiplicity was compared with the GLM procedure and tumor volume 

was compared using the GENMOD procedure as described in methods.  A p-

value ≤ 0.05 was considered significant and is denoted by an asterisk.  
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Figure 3.9. Representative H&E sections of sham-treated rat mammary glands 

(A) and mammary gland tumors (B-E) from Estradiol-treated rats. 

Rats were fed Control Diet (A and B); Blueberry Diet (C); Black Raspberry Diet 

(D); or Ellagic Acid Diet (E) respectively. Shown at 400X magnification. The 

mammary tissues were processed in the Pathology Core Lab (University of 

Louisville, Louisville, KY) and confirmation of mammary adenocarcinomas by 

histopathologic exam was done by Drs. Srivani Ravoori and Sunati Sahoo.  
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Figure 3.10. Effect of diets supplemented with dietary berries and ellagic acid on 

tumor indices of ACI rat mammary tumors induced by 9 mg E2.  

The tumor multiplicity was compared with the GLM procedure and tumor volume 

was compared using the GENMOD procedure as described in methods.  A p-

value ≤ 0.05 was considered significant and is denoted by an asterisk.  
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Table 3.1. Experimental protocol- Study 1 –A pilot study to 

asses the efficacy of berries and ellagic acid to inhibit 

mammary tumorigenesis in ACI rats induced by 27 mg E2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Seven to eight week old animals were received and maintained initially on AIN-

93M control diet for a week, followed by experimental diets for another 2 weeks 

before 17ß-estradiol implantation. Animals were maintained on experimental 

diets until the end of the study. 

7+2.5% Mixed Berry

+

+
+
-

17ß-
Estradiol
(27 mg)

4400 ppm Ellagic acid

82.5% Blueberry

8

2
Control Diet - AIN 93M

Number 
of 

animals 
Diet

7+2.5% Mixed Berry

+

+
+
-

17ß-
Estradiol
(27 mg)

4400 ppm Ellagic acid

82.5% Blueberry

8

2
Control Diet - AIN 93M

Number 
of 

animals 
Diet
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Table 3.2. Experimental protocol- Study 2 –A study to 

asses the efficacy of berries and ellagic acid to inhibit 

mammary tumorigenesis in ACI rats induced by 27 mg E2. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Seven to eight week old animals were received and maintained initially on AIN-

93M control diet for a week, followed by experimental diets for another 2 weeks 

before 17ß-estradiol implantation. Animals were maintained on experimental 

diets until the end of the study. 

+
-
+
-
+
-
+
-

17ß-
Estradiol
(27 mg)

22

6
400 ppm Ellagic acid

19

6
2.5% Black Raspberry

20

6
2.5% Blueberry

25

6
Control Diet - AIN 93M

Number 
of 

animals 
Diet

+
-
+
-
+
-
+
-

17ß-
Estradiol
(27 mg)

22

6
400 ppm Ellagic acid

19

6
2.5% Black Raspberry

20

6
2.5% Blueberry

25

6
Control Diet - AIN 93M

Number 
of 

animals 
Diet
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Table 3.3. Experimental protocol- Study 3 –A study to asses 

the efficacy of berries and ellagic acid to inhibit mammary 

tumorigenesis in ACI rats induced by 9 mg E2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Five to six week old animals were received and maintained initially on AIN-93M 

control diet for a week, followed by experimental diets for another 2 weeks before 

17ß-estradiol implantation. Animals were maintained on experimental diets until 

the end of the study. 

15+1% Black Raspberry

12+1% Blueberry

+
+

+

+
-

17ß-
Estradiol

(9 mg)

12400 ppm Ellagic acid

122.5% Black Raspberry

142.5% Blueberry

15

6
Control Diet - AIN 93M

Number 
of 

animals 
Diet

15+1% Black Raspberry

12+1% Blueberry

+
+

+

+
-

17ß-
Estradiol

(9 mg)

12400 ppm Ellagic acid

122.5% Black Raspberry

142.5% Blueberry

15

6
Control Diet - AIN 93M

Number 
of 

animals 
Diet
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Table 3.4. Composition of AIN-93M diet and diets supplemented with various 

levels of berries or ellagic acid.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The diets were ordered from Harlan-Teklad (Madison, WI). The cornstarch and 

fiber components of the AIN-93M diet were replaced for the berry diets, based on 

the nutritional information available for each berry 

(http://www.nal.usda.gov/fnic/foodcomp).  A proximate analysis was performed at 

Harlan-Teklad (Madison, WI) to ascertain that the diets were isocaloric. BB- 

Blueberry; BRB- Black raspberry; EA- Ellagic acid.

Total  cellulose
Total starch

Fiber equivalent from berries
Starch equivalent from berries

Ellagic acid
Black raspberry Powder
Blueberry powder

Choline Bitartrate
AIN-93M Vitamin Mix
AIN-93M Mineral Mix
Cellulose (fiber)
Soybean Oil
Sucrose
Maltodextrin
Corn Starch
L-Cystine
Casein
Ingredient

50.050.050.050.050.050.0
465.3465.3465.3465.3465.3465.3

-17.06.86.72.7-
-7.62.89.66.9-

0.4-
25.010.0-

25.010.0-

2.52.52.52.52.52.5
10.010.010.010.010.010.0
35.035.035.035.035.035.0
50.033.043.243.347.350.0
40.040.040.040.040.040.0

100.0100.0100.0100.0100.0100.0
155.0155.0155.0155.0155.0155.0
465.3457.7462.5447.4458.4465.3
1.81.81.81.81.81.8

140.0140.0140.0140.0140.0140.0

EA2.5% BRB1% BRB2.5% BB1% BBAIN-93M
Type of Diet

Total  cellulose
Total starch

Fiber equivalent from berries
Starch equivalent from berries

Ellagic acid
Black raspberry Powder
Blueberry powder

Choline Bitartrate
AIN-93M Vitamin Mix
AIN-93M Mineral Mix
Cellulose (fiber)
Soybean Oil
Sucrose
Maltodextrin
Corn Starch
L-Cystine
Casein
Ingredient

50.050.050.050.050.050.0
465.3465.3465.3465.3465.3465.3

-17.06.86.72.7-
-7.62.89.66.9-

0.4-
25.010.0-

25.010.0-

2.52.52.52.52.52.5
10.010.010.010.010.010.0
35.035.035.035.035.035.0
50.033.043.243.347.350.0
40.040.040.040.040.040.0

100.0100.0100.0100.0100.0100.0
155.0155.0155.0155.0155.0155.0
465.3457.7462.5447.4458.4465.3
1.81.81.81.81.81.8

140.0140.0140.0140.0140.0140.0

EA2.5% BRB1% BRB2.5% BB1% BBAIN-93M
Type of Diet
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Table 3.5. Study 1- Comparison of organ weights and tumor indices between 

ACI rats fed control diet or diet supplemented with blueberries, mixed berries or 

ellagic acid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Animals were euthanized after 24 weeks of estrogen treatment. Organ wet 

weights were measured after excision. Tumor volume was calculated as the 

volume of a spheroid (2/3 π r1*r2*r3). Values denote mean ± SEM. “n” 

designates only those animals that survived 24 weeks. All comparisons are 

between 17ß-estradiol treated animals on control diet and respective diets. 

 

 

 

NANANA2.9 ± 0.86.1 ± 0.5197 ± 11.5Control diet
(Sham) (n=2)

4.1 ± 0.7

4.1 ± 0.4

4.8 ± 0.2

3.8 ± 0.3

Mammary
(g)

2686 ± 1644
p < 0.5

1011 ± 262
p < 0.01

1278 ± 570
p < 0.001

4231 ± 1675

Tumor 
Volume
(mm3)

13.5 ± 3.3
p < 0.08

6 ± 1.0
p < 0.2

12.7 ± 1.3
p < 0.05

9 ± 1.6

Tumor 
Multiplicity

167 ± 66
p < 0.05

6.3 ± 0.4188 ± 3.1
Ellagic acid diet
(n= 4)

199 ± 78
p < 0.02

5.8 ± 0.3  189 ± 3.3
Mixed berry diet
(n=7)

81 ± 18.5
p < 

0.0001

6.2 ± 0.2194 ± 2.5Blueberry diet
(n =8)

505 ± 2385.9 ± 0.3195 ± 2.4Control diet
(n=8)

Volume/ 
tumor
(mm3)

Liver
(g)

Animal 
Weight

(g)
Group

NANANA2.9 ± 0.86.1 ± 0.5197 ± 11.5Control diet
(Sham) (n=2)

4.1 ± 0.7

4.1 ± 0.4

4.8 ± 0.2

3.8 ± 0.3

Mammary
(g)

2686 ± 1644
p < 0.5

1011 ± 262
p < 0.01

1278 ± 570
p < 0.001

4231 ± 1675

Tumor 
Volume
(mm3)

13.5 ± 3.3
p < 0.08

6 ± 1.0
p < 0.2

12.7 ± 1.3
p < 0.05

9 ± 1.6

Tumor 
Multiplicity

167 ± 66
p < 0.05

6.3 ± 0.4188 ± 3.1
Ellagic acid diet
(n= 4)

199 ± 78
p < 0.02

5.8 ± 0.3  189 ± 3.3
Mixed berry diet
(n=7)

81 ± 18.5
p < 

0.0001

6.2 ± 0.2194 ± 2.5Blueberry diet
(n =8)

505 ± 2385.9 ± 0.3195 ± 2.4Control diet
(n=8)

Volume/ 
tumor
(mm3)

Liver
(g)

Animal 
Weight

(g)
Group
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Table 3.6. Study 2- Comparison of organ weights and tumor indices between 

ACI rats fed control diet or diet supplemented with blueberries, black raspberries 

or ellagic acid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Animals were euthanized after 24 weeks of estrogen treatment. Organ wet 

weights were measured after excision. Tumor volume was calculated as the 

volume of a spheroid (2/3 π r1*r2*r3). Values denote mean ± SEM. “n” 

designates only those animals that survived 24 weeks. All comparisons are 

between 17ß-estradiol treated animals on control diet and respective diets. 

NANANANot 
measured

3.7 ± 0.25.2 ± 0.2189 ± 6Control diet 
(Sham) (n=6)

0.19 ± 0.01

0.25 ± 0.02

0.19 ± 0.01

0.22 ± 0.03

Pituitary
(g)

4.53 ± 0.3

4.41 ± 0.6

3.89 ± 0.3

3.84 ± 0.3

Mammary
(g)

168 ± 34
p< 0.001

211 ± 69
p< 0.003

409 ± 73
p < 0.835

685 ± 240

Tumor 
Volume
(mm3)

4.5 ± 0.5
p< 0.027

4.7 ± 0.7
p< 0.070

8.2  ± 1.0
p< 0.749

7.9 ± 1.3

Tumor 
Multiplicity

34 ± 7
p< 0.009

4.9 ± 0.2167 ± 4.3
Ellagic acid diet
(n=19)

38 ± 10 
p< 0.034

4.7 ± 0.3  162 ± 8.5Black raspberry 
diet
(n=11)

45 ± 7
p< 0.170

4.7 ± 0.2159 ± 5.6Blueberry diet
(n =16)

115 ± 395.0 ± 0.3169 ± 6.4Control diet
(n=11)

Volume/ 
tumor
(mm3)

Liver
(g)

Animal 
Weight

(g)
Group

NANANANot 
measured

3.7 ± 0.25.2 ± 0.2189 ± 6Control diet 
(Sham) (n=6)

0.19 ± 0.01

0.25 ± 0.02

0.19 ± 0.01

0.22 ± 0.03

Pituitary
(g)

4.53 ± 0.3

4.41 ± 0.6

3.89 ± 0.3

3.84 ± 0.3

Mammary
(g)

168 ± 34
p< 0.001

211 ± 69
p< 0.003

409 ± 73
p < 0.835

685 ± 240

Tumor 
Volume
(mm3)

4.5 ± 0.5
p< 0.027

4.7 ± 0.7
p< 0.070

8.2  ± 1.0
p< 0.749

7.9 ± 1.3

Tumor 
Multiplicity

34 ± 7
p< 0.009

4.9 ± 0.2167 ± 4.3
Ellagic acid diet
(n=19)

38 ± 10 
p< 0.034

4.7 ± 0.3  162 ± 8.5Black raspberry 
diet
(n=11)

45 ± 7
p< 0.170

4.7 ± 0.2159 ± 5.6Blueberry diet
(n =16)

115 ± 395.0 ± 0.3169 ± 6.4Control diet
(n=11)

Volume/ 
tumor
(mm3)

Liver
(g)

Animal 
Weight

(g)
Group
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Table 3.7. Study 3 -Comparison of organ weights and tumor indices between 

ACI rats fed control diet or diet supplemented with different doses of blueberries, 

black raspberries or ellagic acid  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Animals were euthanized after 32 weeks of estrogen treatment. Organ wet 

weights were measured after excision. Tumor volume was calculated as the 

volume of a spheroid (2/3 π r1*r2*r3). Values denote mean ± SEM. “n” 

designates only those animals that were euthanized after 32 weeks. There was 

no mortality; however animals were euthanized before 32 weeks if their tumors 

were larger than 1.3 cm in diameter. All comparisons are between 17ß-estradiol 

treated animals on control diet and respective diets. 

 

Copyright © Harini Sankaran Aiyer, 2007 
 

NANANA9.6 ± 0.83.4 ± 0.24.6 ± 0.2182 ± 4Control diet 
(sham) (n=6)

233 ± 466.9 ± 0.8
p< 0.008

1871 ± 47959 ± 106.2 ± 0.46.5 ± 0.2201 ± 41 % Black 
raspberry diet
(n=15)

208 ± 4511.2 ± 1.92280 ± 73958 ± 75.4 ± 0.26.9 ± 0.2207 ± 31 % Blueberry 
diet
(n=12)

56 ± 5

43 ± 5

68 ± 15

69 ± 4.5

Pituitary
(mg)

5.5 ± 0.3

6.8 ± 0.6

5.7 ± 0.4

4.8 ± 0.3

Mammary
(g)

1547 ± 639

1241 ± 444

1525 ± 457

2804 ± 547

Tumor 
Volume
(mm3)

7.2 ± 1.2
p< 0.05

6.9 ± 1.3
p< 0.007

7.3 ± 0.9
p< 0.05

11.7 ± 1.4

Tumor 
Multiplicity

163 ± 566.5 ± 0.2208 ± 5
Ellagic acid diet
(n=13)

182 ± 456.7 ± 0.3209 ± 62.5% Black 
raspberry diet
(n=16)

176 ± 436.6 ± 0.3203 ± 62.5% Blueberry 
diet
(n=14)

308 ± 836.8 ± 0.2204 ± 2Control diet
(n=17)

Volume/ 
tumor
(mm3)

Liver
(g)

Animal 
Weight

(g)
Group

NANANA9.6 ± 0.83.4 ± 0.24.6 ± 0.2182 ± 4Control diet 
(sham) (n=6)

233 ± 466.9 ± 0.8
p< 0.008

1871 ± 47959 ± 106.2 ± 0.46.5 ± 0.2201 ± 41 % Black 
raspberry diet
(n=15)

208 ± 4511.2 ± 1.92280 ± 73958 ± 75.4 ± 0.26.9 ± 0.2207 ± 31 % Blueberry 
diet
(n=12)

56 ± 5

43 ± 5

68 ± 15

69 ± 4.5

Pituitary
(mg)

5.5 ± 0.3

6.8 ± 0.6

5.7 ± 0.4

4.8 ± 0.3

Mammary
(g)

1547 ± 639

1241 ± 444

1525 ± 457

2804 ± 547

Tumor 
Volume
(mm3)

7.2 ± 1.2
p< 0.05

6.9 ± 1.3
p< 0.007

7.3 ± 0.9
p< 0.05

11.7 ± 1.4

Tumor 
Multiplicity

163 ± 566.5 ± 0.2208 ± 5
Ellagic acid diet
(n=13)

182 ± 456.7 ± 0.3209 ± 62.5% Black 
raspberry diet
(n=16)

176 ± 436.6 ± 0.3203 ± 62.5% Blueberry 
diet
(n=14)

308 ± 836.8 ± 0.2204 ± 2Control diet
(n=17)

Volume/ 
tumor
(mm3)

Liver
(g)

Animal 
Weight

(g)
Group
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 Chapter Four: Effect of berries and ellagic acid on estrogen metabolism 
during 17ß-estradiol- induced  mammary tumorigenesis in the ACI rat. 

 
Introduction 

Estrogen is a known, yet unavoidable risk factor for breast cancer. 

Women, exposed to even physiological levels of this hormone chronically are at 

an increased risk to develop breast cancer (Lippman et al., 2001). This risk is 

compounded by the presence or absence of several other factors. Although 

certain women are genetically predisposed to breast cancer due to heredity, they 

represent only a small fraction of women at risk (Brinton et al., 2002; Thompson 

& Easton, 2004). On the other hand, a majority of the population is at a higher 

risk due to polymorphisms in low penetrance genes, especially those involved in 

estrogen metabolism (Nathanson & Weber, 2001).  Estrogen metabolism occurs 

in several tissues of the human body to varying extents and to achieve different 

ends (Rieder et al., 1998; Simpson, 2003). The primary organ involved in 

estrogen production is the ovary, under the control of anterior pituitary. However, 

the important role of estrogen in the maintenance of homeostasis can be 

garnered from the fact that several tissues are endowed with enzymes that can 

both produce and conjugate estradiol (Simpson et al., 1994; Murray et al., 2001). 

The breast, like several other tissues, is capable of producing estradiol via de-

novo pathways and these pathways coupled with estrogen metabolism and 

signaling may play a major role in breast cancer. A simplified scheme for such 

interactions is shown in figure 4.1.  Primary enzymes involved in de-novo 

estradiol synthesis are aromatase, which converts androgen precursors to 

estrone, and 17ß-hydroxysteroid dehydrogenase (17ßHSD), which converts 

estrone (E1) to estradiol (E2) (Milczarek & Klimek, 2005; Sasano et al., 2006). 

Another, minor pathway is via estrogen sulphatase that converts sulfated 

estradiol/estrone to the original molecule (Sasano et al., 2006). Research 

suggests that this in-situ sythesis of estradiol may play a major role in the 

development of breast cancer, especially in post-menopausal women (Chen, 

1998; Simpson, 2003). 
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Aromatase is a target of current pharmacological therapy and the use of 

aromatase-inhibitors has been successful in the treatment of estrogen-receptor 

(ER) negative breast cancer (Tuxen et al., 2007). Another enzyme, also crucially 

involved in E2 biosynthesis is 17ßHSD. Eight isozymes, present in several 

tissues, have been identified so far and have both human and rodent 

homologues (Luu-The, 2001). The type 1 isozyme of 17ßHSD, which converts 

estrone to estradiol, is found in both normal and malignant breast (Miettinen et 

al., 1996). The rodent homologue of this enzyme is 17ßHSD, type 7 (17HSD7), 

also known as the prolactin receptor associated protein (PRAP) (Duan et al., 

1996; Peltoketo et al., 1999). This enzyme has high specificity for the conversion 

of E1 to E2 and is controlled by both prolactin and estrogen signaling pathways 

(Duan et al., 1997).  

 

There are several phase I and phase II enzymes involved in the 

metabolism of E2, of particular importance in the breast are Cytochrome P450 

1A1 (CYP1A1), CYP1B1,  catechol-O-methyl transeferase (COMT), UDP-

glucuronosyl transferase (UGT) and Glutathione-S-transferase (GST). The phase 

I enzyme, CYP1B1 has received wide attention due to its function in converting 

E2 to 4-hyrdroxy estradiol (4E2), a postulated potentially carcinogenic metabolite 

that causes oxidative DNA damage and induces renal-cell carcinomas in 

hamsters (Liehr, 2000; Hiraku et al., 2001; Liehr, 2001). Also, breast tumors 

show high levels of both CYP1B1 and 4E2 (McFadyen et al., 1999; Oyama et al., 

2005).  Nevertheless, metabolites of CYP1A1 action such as 2-hydroxy estrone 

can produce stable DNA adducts and inhibition of CYP1A1 metabolism reduces 

the formation of estrogen-induced kidney tumors in hamsters, suggesting that 

this pathway may  also play a definitive role in estrogen carcinogenesis (Liehr et 

al., 1991). The hydroxy-metabolites of estradiol and estrone are conjugated for 

removal by several enzymes, including COMT, GST and UGT (Lakhani et al., 

2003; Abel et al., 2004).  The 2-hydroxy metabolites are better substrates for 

COMT (Liehr, 2000), suggesting that CYP1A1 and COMT expression may be 

coupled. Polymorphisms in both phase I and II genes have been associated with 

a risk of breast cancer, indicating the importance of these enzymes in the 
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production and removal of estradiol metabolites (Gallicchio et al., 2006). The 

estrogen metabolism pathway interacts with the estrogen-signaling pathway. 

Hydroxy-metabolites of estradiol such as 4E2 and 2E2 bind to ERs with varying 

affinities (Zhu & Conney, 1998). Thus, enzymes such as CYP1A1 and CYP1B1 

are regulated by ERs (Tsuchiya et al., 2005; Sissung et al., 2006). Progesterone 

receptor (PGR) is known to be up-regulated by estrogen via ER signaling, hence 

PGR expression is a downstream effect of ER activation (Mauvais-Jarvis et al., 

1986b). Thus, studying the expression of these genes provides some idea about 

control of estrogen metabolism in the mammary tissue.  

 

Several epidemiological studies have shown that the high intake of fruits 

and vegetables may reduce the risk of breast cancer (Block et al., 1992). Other 

than being rich sources of vitamins and minerals, fruits are also sources of 

phytochemicals (Forman et al., 2004). Several phytochemicals share a similar 

chemical structure with endogenous steroids, thereby making them substrates for 

steroid receptors and as well as steroid metabolizing enzymes (Dixon et al., 

2005). Indeed, berry phytochemicals such as anthocyanins and ellagic acid show 

selective estrogen receptor modulating (SERM) activity in some studies (Schmitt 

& Stopper, 2001; Larrosa et al., 2006). These phytochemicals are highly 

bioavailable in both humans and rodents and hence may play a significant role in 

modulating estrogen metabolism (Talavera et al., 2004; Tian et al., 2006). Data 

presented in the previous chapter show that both berries and ellagic acid can 

reduce estrogen-induced mammary tumorigenesis when provided via the diet. 

However, the exact mechanisms by which they provide protection are not known.  

 

In order to determine this we examined the regulation of expression of key 

enzymes involved in estrogen metabolism and signaling, in the mammary tissue 

of ACI rats treated with E2 by silastic implant during the course of mammary 

tumorigenesis. The effect of dietary berries and ellagic acid on these enzymes 

was also tested. Three time points – early (6 weeks), intermediate (18 weeks) 

and late (24 weeks) were chosen and the expression of 9 selective genes, 3 

each involved in the phase I , phase II metabolism and estrogen signaling (Figure 
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4.1) were selected and their relative gene expression changes analyzed using 

quantitative real time PCR. The genes tested were: phase I metabolism- 

17ßHSD7, CYP1A1, CYP1B1; phase II- COMT, GSTA1, GSTM1; steroid 

signaling – ERα, ERß, PGR. The results are presented herein.  

 

Materials and methods 
Animals, diet and treatment. Female ACI rats (7-8 weeks old) were 

purchased from Harlan-Sprague Dawley (Indianapolis, IN), housed under 

ambient conditions and fed AIN-93M diet and water ad libitum. After a week of 

acclimation, 18 animals each were randomized into different groups as per table 

4.1. Two of the 5 groups received control diet and the other 3 received diets 

supplemented with 2.5% (w/w) blueberry; black raspberry or 400 ppm ellagic 

acid. After 2 weeks of pre-feeding, each group received either sham implants or 

E2 implants as described (Shull et al., 1997, Table 4.1). The animals were 

maintained on their respective diets throughout the study period and 6 animals 

from each group were euthanized at 6, 18 and 24 weeks after E2 treatment by 

carbon dioxide asphyxiation, and mammary tissue was collected and frozen for 

further analysis. Trunk blood was collected for measurement of serum estrogen 

levels and for future analysis of serum phytonutrient levels.  

 

RNA isolation. RNA from whole mammary tissue was isolated using the 

Trizol® method (Invitrogen, Carlsbad, CA), with modifications. All procedures 

were done in a RNase free environment.  Briefly, approximately 100 mg of 

mammary tissue was suspended in 2 ml of Trizol® at 4°C and homogenized with 

a hand-held polytron at maximum speed. This homogenate was then passed 

through a syringe with a 22.5 gauge needle (Beckton-Dickinson and Co., Franklin 

Lakes, NJ) to ensure complete dissociation of the mammary tissue. The 2 ml 

homogenate was then divided into 2 aliquots of 1 ml each, distributed into 1.5 ml 

tubes. After the addition of 200 µl chloroform the solution was vortexed briefly 

and centrifuged at 13,000Xg for 15 min at 4°C. The resultant aqueous 

supernatant was sequentially extracted with another 400 µl of chloroform and the 

aqueous phase was precipitated using ice-cold iso-propanol. The RNA pellet was 
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recovered by centrifuging at 13,000Xg for 15 min at 4°C, washed with 70% 

ethanol, dissolved in nuclease-free water and the aliquots were combined. The 

quality of the RNA was ascertained by gel electrophoresis and quantitated using 

NanoDrop® (NanoDrop Technologies, Wilmington, DE). The RNA was then 

diluted to 5 ng/µl concentration and stored at -80°C until use.  

 

Design and standardization of concentration for PCR primers. 
Primers for quantitative real-time PCR were designed across exon boundary to 

avoid amplification of genomic DNA, using Primer express® 3.0 software 

(Applied Biosystems, Foster City, CA) and synthesized by Integrated DNA 

Technologies, Inc., (Coralville, IA). The sequences of the forward and reverse 

primers for each gene tested are listed in Table 4.2. The primers were tested at a 

concentration of 500 nM each initially to ascertain the presence of primer-dimers. 

If this was present, a dilution array containing varying concentrations of both 

forward and reverse primers was done and the combination at which there was 

uniform amplification and no byproduct was used further. For most genes tested 

500 nM final concentration of each primer produced no primer-dimers, except for 

CYP1A1 for which 125 nM each produced a single uniform peak.  Both sense 

and antisense primers were diluted such that 0.5 µl of the stock (10 µM or 2.5 µM 

for 1A1) provided 500 nM (or 125 nM for CYP1A1) of each primer at a final 

volume of 20 µl.  

 

Real-time PCR efficiency studies. In order to ensure that all genes 

reverse-transcribed with the same efficiency, reverse-transcription efficiency 

studies were done initially. RNA of 3 animals from each group was pooled to 

generate the single test sample for each group, and cDNA was synthesized 

using the High capacity cDNA archive kit (Applied Biosystems, CA) in 10-fold 

serial dilutions such that the RNA concentrations were –1 µg/µl, 100 ng/µl, 10 

ng/µl, 1 ng/µl, 100 pg/µl, 10 pg/µl and 1 pg/µl. The conditions for the reverse 

transcription were: 25°C for 10 min; 37°C for 2 hour; and 85°C for 5 seconds.  
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The PCR amplification was done in a final reaction volume of 20 µl 

containing 10 µl of 2X Power SYBR® Green PCR master mix (Applied 

Biosystems, CA); 0.5 µl each of forward and reverse primers  specific for each 

gene (final concentration- 500 or 125 nM as mentioned) and 3µl of cDNA such 

that the equivalent RNA concentration was- 3µg, 300 ng, 30 ng, 3 ng, 300 pg, 30 

pg and 3 pg. Quantitative PCR was performed using a 7500 Fast-Real Time PCR 

system (Applied biosystems, Foster City, CA) using the absolute quantification 

protocol and standard curves generated. The PCR conditions were: 50°C for 2 

min; DNA polymerase activation at 95°C for 10 min; followed by 40 cycles at 

95°C for 15 seconds and 60°C for 1 min. The concentration range with a slope 

closest to -3.3 was selected and the highest concentration in this range was used 

for all further experiments. For all samples and genes tested, this concentration 

was found to be 1 ng/µl for reverse transcription and 3ng for the PCR reaction. 

Individual samples were analyzed henceforth using these standardized 

conditions. 

 

Analysis of gene expression.  Gene expression analysis was done 

using the relative-quantification (∆∆cT) method as described (Livak and 

Schmittgen, 2001). Each sample (refers to cDNA from individual animals) was 

analyzed in triplicate for each gene tested and the average of these values was 

taken as the cT value for that gene.  ∆cT was calculated as the difference 

between cT of gene of interest and the house-keeping gene (ß-actin) (∆cT = 

cTGOI – cTß-actin). One sample (sham treated) was chosen as the calibrator and 

∆∆cT of all other samples was calculated using the formula ∆∆cT = ∆cTsample - 

∆cTcalibrator. The fold change (2-∆∆cT) in gene expression was calculated for all 

genes and samples. At each time point, for all genes tested, the calibrator 

sample was the same (typically a sample from the sham treated group), such 

that the results are represented as relative fold change, which represents the 

biological variation within a specific group and absolute fold change, which is the 

relative fold change of E2-treated groups divided by the relative fold change of 

sham-treated group on control diet. The absolute fold change represents the 
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actual up- or down-regulation of genes by the E2 treatment both in the presence 

and absence of intervention, and is always 1 for the sham treatment.  

 

Statistical analysis. Relative fold changes in each group were compared 

using one-way analysis of variance (ANOVA), followed by a Tukey’s multiple 

comparison post test. A p-value <0.05 was considered significant. All statistical 

analyses were performed using the Graphpad Prism ® software (Graphpad 

Software, San Diego, CA). 

 

Results 
Reverse-transcription efficiency studies. The reverse-transcription (RT) 

efficiency studies were performed in order to confirm that all transcripts reverse-

transcribed at the same efficiency. The cDNA for each of the test samples was 

made in 10-fold serial dilutions of individual RNA and each dilution was used in 

PCR as described in materials and methods. In quantitative real-time PCR, every 

cycle involves the doubling of the number of transcripts and hence a cycle-

threshold (cT) value of 3.3 approximately indicates a 10-fold difference. Since, 

the reaction kinetics can differ based on a number of factors including efficiency 

of the enzyme, total number of transcripts, etc, it is important to assess the RNA 

concentration at which all transcripts tested, amplify with the same efficiency. In 

testing a series of 10-fold serial dilutions, a negative slope close to 3.3 would 

indicate equivalent amplification. For most house-keeping genes tested this 

range was 100 ng/µl to 1 pg/µl for the E2-treated group, however for the sham-

treated group this range was 1 ng/µl to 1 pg/µl. For other genes tested, there was 

no amplification in the lower pg/µl range. Thus, 1 ng/µl of RNA was reverse-

transcribed and 3ng cDNA equivalent was used for PCR amplification. The 

validity of this concentration was further confirmed when a standard curve with a 

negative slope of 3.3 was observed when using 10-fold serial dilutions of cDNA 

prepared using 1 ng/µl RNA . 

 

Changes in phase I enzymes at various time-points after estrogen 

treatment. At 6 weeks after estrogen treatment, all phase I enzymes tested were 
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significantly affected in the E2-treated groups compared with sham-treatment. 

The levels of 17ßHSD7 was elevated by 4.8 fold (p<0.001) in E2-treated animals 

maintained on control diet (E2-CD). However, this overexpression was partially 

offset, i.e., only  1.8, 2.2 and 2.5 fold  in blueberry, black raspberry and ellagic 

acid groups respectively (Figure 4.2; Table 4.3). This anti-estrogenic effect was 

not present at 18 and 24, weeks (Figure 4.5 and 4.8). The enzyme that showed 

the highest up-regulation at 6 weeks was CYP1A1 with a 48 fold increase after 

estrogen treatment (p<0.0001) and stayed elevated by 15 and 8 fold at 18 and 24 

weeks respectively (p<0.001) (Figure 4.11; Tables 4.3 and 4.5). Both blueberry 

and black raspberry diets significantly offset this elevation to 21 (p<0.01) and 12 

(p<0.001) fold, respectively after 6 weeks of E2 treatment. This protection 

continued at 18 weeks for blueberry diet but not for black raspberry (Figure 4.5). 

Ellagic acid diet showed effects similar to control diet at all time points. At 24 

weeks, the elevations in CYP1A1 were only slightly offset, with black raspberry 

showing the greatest reduction (p<0.05) (Figure 4.8; Table 4.5). CYP1B1 was 

significantly down regulated by estrogen treatment at all time points tested 

(p<0.001) (Figures 4.11). All diets at 6 weeks, suppressed CYP1B1 expression 

by up to 5 fold compared with E2-treated animals on control diet and by up to 11 

fold compared to sham-treated animals (Figure 4.2; Table 4.3). These changes 

were not seen at other time points.  

 

Changes in phase II enzymes at various time-points after estrogen 
treatment. In general, COMT and GSTA1 were up-regulated by estrogen 

treatment. At all time points, COMT increased by up to 2 fold (p<0.05) after 

estrogen treatment for the control diet and this was attenuated by dietary 

intervention significantly only at 18 weeks (Figure 4.6; Table 4.4). At 6 and 18 

weeks, GSTA1 was up-regulated by estrogen treatment and dietary intervention 

did not have any significant effect on this increase. At all time points, GSTM1 

was, however, found to be down-regulated after estrogen treatment by up to 3 

fold (p<0.05) with no effect of intervention.  
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Changes in steroid receptors various time-points after estrogen 

treatment.  The estrogen receptor α (ERα) was significantly down-regulated 

(p<0.001) by estrogen treatment throughout the study period (Figure 4.13; Tables 

4.3 to 4.5). Neither berries nor ellagic acid affected this change (Figure 4.13). On 

the other hand, ERß was unaffected by estrogen treatment (Figure 4.13). 

Progesterone receptor was significantly up-regulated at both 6 and 18 weeks 

after estrogen treatment (Figure 4.8, 4.9 and 4.13).  

 
General trends in gene-expression modulation.  In general, it was seen 

that estrogen treatment had a uniform effect on the regulation of several 

estrogen-metabolism genes tested and the greatest difference in most genes 

was seen at the earliest time point- 6 weeks after treatment (Figure 4.11 to 4.13). 

At 18 weeks, there were fewer genes that were differentially modulated and the 

effect was lower. At 24 weeks for most genes tested, all E2 treated groups, 

regardless of supplementation, appeared to have similar levels of expression.  

 

On one hand, CYP1A1 is highly over-expressed beginning at 6 weeks 

after treatment and the expression changes are maintained to a lesser extent at 

both 18 and 24 weeks. This up-regulation is countered effectively by both the 

berry diets, especially at 6 weeks, but not by ellagic acid. On the other hand, 

CYP1B1 expression is down-regulated after estrogen treatment. The trend of 

down-regulation is the highest at 6 weeks and subsequently reaching a plateau 

at 18 and 24 weeks (Figure 4.11). There is a similar response for 17ßHSD7, 

which suggests that the early gene regulation after estrogen treatment can be 

seen at 6 weeks, when the E2 levels are increasing and that this expression 

changes reach a plateau, possibly due to acclimatization of the tissues to high 

circulating E2. The effects of supplementation can also be seen at this early 

stage, with most of the differences between control diet and supplemented diet 

seen at 6 weeks. The only exception to this was COMT, for which the difference 

in modulation was seen at 18 weeks. The genes for which there are no 

considerable differences between groups are ERß and GSTM1, with the latter 

being down-regulated after estrogen treatment with no change between control 
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and supplemented diet. Although GSTA1 is over-expressed after estrogen 

treatment at 6 weeks, the change is statistically insignificant (Figure 4.5), but is 

significant at 18 weeks. PGR is over-expressed at 6 and to lesser extent, at 18 

weeks, but not at 24 weeks. However, there was no effect of the supplemented 

diets on these changes. These trends signify that these agents may act 

differentially through multiple signaling pathways. 

 

Discussion 
 The results presented show the modulation of selected genes involved in 

phase I, phase II estrogen metabolism, and receptor signaling at different time 

points after E2 treatment, and the effect of diets supplemented with blueberry, 

black raspberry, and ellagic acid. Since several variables are involved, the effect 

of estrogen treatment per se on the different genes, the modulation of these at 

different time points, the effect of supplemented diets on estrogen-induced 

modulation at specific times, and the possible reasons for the same will be 

discussed in that order.  

 

 There are very few published reports describing the expression of these 

genes after chronic administration of E2 in these animals. A recent study reported 

that diethyl stilbesterol (DES), another potent estrogen, when administered intra-

peritoneally for four days continuously at a bolus dose of 50 mg/kg body weight, 

does not modify the expression of either phase I or phase II enzymes in the ACI 

rat mammary on the fifth day (Green et al., 2007). However, this differs 

considerably from the model in this study, which involves systemic delivery of 

constant levels of estradiol (Shull et al., 1997; Ravoori et al., 2007).  Kauffman 

and coworkers have studied the activities of phase II enzymes after chronic E2 

treatment in ACI rat liver and brain (Sanchez et al., 2003; Stakhiv et al., 2006). 

They report that E2 increases the protien and activity levels of hepatic GST and 

NADPH-quinone reductase in rat treated for 6 weeks with a 2 mg of E2 delivered 

via a cholesterol pellet (Sanchez et al., 2003). E2 has a similar effect also on the 

brain enzymes (Stakhiv et al., 2006). The primary consideration in the 

interpretation of the results of this study is that, other variables such as effect of 
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E2 on other organ systems (pituitary, liver etc.,) have not been considered and 

the mammary is taken as a unitary tissue. However, these variables and their 

possible effect on estrogen-induced mammary carcinogenesis and its prevention 

are discussed in Chapter 5.  

 

 Another important detail that must be taken into account while interpreting 

results in the current study is the proliferation of mammary epithelial cells in 

response to E2 treatment. At 6 weeks after treatment, the E2-treated mammary 

largely consists of proliferating cells of epithelial origin; however, sham-treated 

tissue consists of a much higher percentage of stromal cells. As reported from 

our laboratory the proliferative index markers PCNA and Ki-67 are significantly 

increased after 90 days of E2 treatment and the representative tissue sections 

also indicate differences in the predominant cell types (Ravoori et al., 2007 in 

press; Chapter 3, Figure 3.9). Thus, the differences in the cell composition 

between untreated and treated rats may potentially confound the results as these 

analyses were done from total tissue RNA.  

 

The serum level of estradiol was 35 pg/ml in sham-treated and 194 pg/ml 

in estradiol-treated animals, 6 weeks after treatment (Chapter 3). This 5.5 fold 

increase in the estradiol level is reflected both in the increased proliferation of the 

mammary tissue as well as the significant down-regulation of ERα and 

concomitant up-regulation of PGR. The levels of ERß were not affected. E2 

down-regulates ERα and up-regulates PGR in the epithelial cells of a normal 

mammary gland (Mauvais-Jarvis et al., 1986b; Shyamala et al., 2002). Induction 

of mammary tumors in ERKO/Wnt-1 mice by E2 shows that ER is not necessary 

for E2-induced carcinogenesis (Devanesan et al., 2001). In cultured human 

epithelial cells, synthetic progesterones antagonize the proliferative action of E2 

via PGR (Mauvais-Jarvis et al., 1986a; Poulin et al., 1989). Although, the up-

regulation of PGR occurs at 6 weeks and to a lesser extent 18 weeks, but is 

absent at 24 weeks, the down-regulation of ERα continues till 24 weeks, 

suggesting  three things- i) the mammary tumors in the ACI rats may arise in an 

ER-independent fashion; ii) that epithelial cells are acclimated to high circulating 



 
105

estradiol levels and hence do not show consistent up-regulation of PGR, which is 

a downstream effect of estradiol treatment more apparent at an early time point; 

and iii) that these tumors may not be responsive to the negative-regulation, if 

there is any, by progesterone . 
 

 Although most transcriptional regulation of estradiol is attributed to its 

action via the estrogen receptor, it can also act in an ER-independent fashion 

(Coleman & Smith, 2001). The transcription of CYP1A1 and 1B1 are regulated by 

both the ER and the aryl hydrocarbon receptor (AhR) (Hollenberg, 2002; 

Tsuchiya et al., 2005; Sissung et al., 2006). However, there is a disjunction 

between these 2 pathways, depending on the clonality of the breast cancer cell 

line, with the 2 pathways acting in a mutually exclusive manner (Angus et al., 

1999). Both CYP1A1 and 1B1 can be induced by 2,3,7,8-tetrachlorodibenzo-p-

dioxin (TCDD) depending on the ER status of the cell (Angus et al., 1999). This 

suggests that ER may not directly control the expression of these enzymes. 

Moreover, the expression of these enzymes has been attributed to specific cell 

types, i.e., the epithelial cells versus the stromal fibroblasts. It is reported that 

CYP1B1 expression is constitutively higher in the rat mammary stroma; whereas 

CYP1A1 can be induced beyond basal levels only in the epithelial cells by PAHs 

and TCDD (Christou et al., 1995). Thus, in these animals where the epithelial-cell 

proliferation in response to estradiol treatment has occurred, the levels of total 

tissue CYP1B1 in the untreated animals may reflect the stromal compartment 

and are thus higher than E2 treatment. Contrarily, CYP1A1, that is predominantly 

present in the epithelial cells is up-regulated by over 40-fold, suggesting that this 

up-regulation is reflective of both the cell population and the treatment.  

 

 These phase I enzymes are predominantly responsible for the conversion 

of estradiol to genotoxic metabolites (Russo & Russo, 2004). It has been 

reported that ACI rat mammary is highly susceptible to mutations after intra-

mammillary administration of estrogen-3-4-quinone (Mailander et al., 2006). Also 

DNA damage caused by different catechol estrogens has been extensively 

reported by Cavalieri and coworkers (Cavalieri et al., 2006). However, all these 
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reports have looked at short term, bolus dose of moderately toxic doses of these 

agents (Li et al., 2004; Mailander et al., 2006). However, the status of these 

metabolites in E2- induced mammary cancer is not known and the metabolites 

themselves do not cause mammary tumors in ACI rats (Turan et al., 2004). Both 

CYP1A1 and CYP1B1 can convert E2 to 4E2, although CYP1B1 predominates 

(Liehr, 2000; Cribb et al., 2006). Nevertheless, 15-20% of the E2 metabolite 

produced by CYP1A1 is 4E2 (Liehr, 2000). Thus, there is a possibility to generate 

genotoxic metabolites in the presence of excess E2 and high expression of 

CYP1A1, since CYP1A1 partially catalyses the production of 4E2. Further, in 

comparison to CYP1A1, COMT and GST, enzymes whose substrates are 

CYP1A1 products, are only up-regulated by 2- to 4-fold indicating an imbalance.   

 

Another interesting finding is the up-regulation of 17ßHSD7 by estradiol. 

This enzyme has high specificity for the conversion of estrone to estradiol in the 

mammary, suggesting that estradiol may influence in-situ estrogen synthesis. 

However, 17HSD7 expression is affected by both E2 and prolactin in the rat 

corpus luteum (Duan et al., 1997; Risk et al., 2005), and E2 induces pituitary 

prolactinomas in this model (Shull et al., 1997). Thus, either E2 may directly 

influence the expression of 17ßHSD7 or this may be a downstream effect of 

increased prolactin secretion. This enzyme is involved in the conversion of 

estrone to estradiol, however, the expression of aromatase which forms estrone 

from androgen precursors, is almost undetectable in the mammary tissue of the 

ACI rat (data not shown), which raises questions about the role that 17ßHSD7 

plays in in-situ estrogen synthesis.  

 

 It has been shown in MCF-7 cells and rat uterine lieyomieomas that 

physiological levels of E2 down-regulates COMT expression via ER pathways 

(Xie et al., 1999; Al-Hendy & Salama, 2006). In this study, there is a slight over-

expression of COMT at all time points. The results with respect to GSTA1 are 

corroborated by published reports of increase in GST activity in ACI rat liver and 

brain after 6 weeks of E2 treatment (Sanchez et al., 2003; Stakhiv et al., 2006). 

However, these studies look at GST activities and thus do not differentiate 
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between GST isozymes. Nevertheless, the induction of P450 enzymes by their 

substrates is well documented (Hollenberg, 2002; Hayes et al., 2005). Thus, the 

over-expression of both COMT and GSTA1 may be in response to the presence 

of catechol-estrogen metabolites. It has been shown that the conjugation of E2-

metabolites can be isoform specific (Abel et al., 2004). Also, the 2 families of 

cytosolic GSTs Alpha (A) and Mu (M) heterodimerise and have similar substrate 

specificities for xenobiotic metabolism (Hayes et al., 2005). These factors may 

influence the differential regulation of GSTA1 and GSTM1 by E2.  

 

In this study, neither berries nor ellagic acid show a differential expression 

of the steroid receptors, suggesting that the berry phytochemicals act by 

alternate mechanisms to bring about their specific effects. The berries show a 

significant effect with regard to the regulation of CYP1A1. CYP1A1 expression is 

controlled by AhR/ARNT signaling and whether berries mediate their effect by 

affecting this signaling pathway is not clear. However, the significant reduction in 

the CYP1A1 expression may translate to lower levels of harmful estradiol 

metabolites, as discussed above. Further, proof that berries may affect 

metabolite formation is evident from the CYP1B1 data, berries and ellagic acid 

down-regulate CYP1B1 expression much more than estradiol, suggesting that 

there may be a net reduction in harmful estradiol metabolites in the mammary 

epithelial cells of animals fed berries and ellagic acid. This is substantiated by the 

effect of both berries and ellagic acid on COMT expression at 18 weeks. The 

significant reduction in the COMT expression may be due to the constant 

suppression in the production of catechol-estrogen metabolites by sustained 

down-regulation of CYP1A1 and to a lesser extent of CYP1B1. Ellagic acid does 

not alter CYP1A1 expression, suggesting that it differs from other berry 

phytochemicals (anthocyanins) in its mechanism of action. Several reports 

suggest that dietary ellagic acid does not alter the expression of hepatic CYP1A1 

(Barch et al., 1994; Ahn et al., 1996). However, it inhibits CYP1A1 activity both in 

vitro and in vivo (Barch et al., 1994). Further, ellagic acid also increases the 

expression of hepatic quinone reductase, which is involved in the removal of 

harmful estrogen-metabolites via an antioxidant response element (Barch & 
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Rundhaugen, 1994). This enzyme is down-regulated after E2-treatment in ACI rat 

mammary (Montano et al., 2006). It is not known whether berries or ellagic acid 

up-regulate its expression in the mammary. Berries and ellagic acid also down-

regulate 17ßHSD7, which may further reduce in-situ E2 formation.  

 

Collectively, these data suggest that CYP1A1 may play a major role in the 

generation of harmful catechol-estrogen metabolites in E2-induced mammary 

tumorigenesis and that intervention by berries significantly reduce the formation 

of these metabolites and thus lead to prevention of mammary tumors. Ellagic 

acid acts via a different mechanism to reduce the levels of these metabolites. 

These results have to be further confirmed by analyzing the levels of various E2-

metabolites in the mammary tissue. Also, the differential effects of both E2 and 

the chemopreventive agents on the various cell types must be delineated to 

understand cell-type specific actions of these agents. 
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Figure 4.1. A simplified schematic representation of in-situ estrogen metabolism 

and steroid receptor signaling in the ACI rat mammary.  

Pink arrows indicate binding and purple arrows indicate transcriptional regulation 

by nuclear factors. Up regulation is represented by   ,    and down regulation is 

represented by    ,    for ellagic acid and berries respectively. Regulations that 

need to investigated are marked with a “?”.  17ß-HSD7 – 17ß-hydroxy steroid 

dehydrogenase, type 7; CYP1A1/1B1- Cytochrome P450 1A1/1B1; COMT- 

Catecho-O-methyl transferase; GSTA1/M1- Glutathione-S-transeferase.  
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Figure 4.2. Effect of diets supplemented with indicated agents on the expression 

of genes involved in phase I estrogen metabolism, 6 weeks after estrogen 

treatment.  

The relative fold change is expressed as mean ± SEM of n=6 per group. The 

results were compared using one way-ANOVA, followed by Tukey’s test and the 

significant differences (p<0.05) are denoted as follows: a - significantly different 

from sham treated on control diet; b - significantly different from E2 treated on 

control diet. 17ßHSD- 17ß hydroxy streroid dehydrogenase, type 7.  
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Figure 4.3. Effect of diets supplemented with indicated agents on the expression 

of genes involved in phase I estrogen metabolism, 18 weeks after estrogen 

treatment.   

The relative fold change is expressed as mean ± SEM of n=6 per group. The 

results were compared using one way-ANOVA, followed by Tukey’s test and the 

significant differences (p<0.05) are denoted as follows: a - significantly different 

from sham treated on control diet; b - significantly different from E2 treated on 

control diet. 17ßHSD- 17ß hydroxy streroid dehydrogenase, type 7.  
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Figure 4.4. Effect of diets supplemented with indicated agents on the expression 

of genes involved in phase I estrogen metabolism, 6 weeks after estrogen 

treatment.   

The relative fold change is expressed as mean ± SEM of n=6 per group. The 

results were compared using one way-ANOVA, followed by Tukey’s test and the 

significant differences (p<0.05) are denoted as follows: a - significantly different 

from sham treated on control diet; b - significantly different from E2 treated on 

control diet. 17ßHSD- 17ß hydroxy streroid dehydrogenase, type 7.  
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Figure 4.5. Effect of diets supplemented with indicated agents on the expression 

of genes involved in phase II estrogen metabolism, 6 weeks after estrogen 

treatment.   

The relative fold change is expressed as mean ± SEM of n=6 per group. The 

results were compared using one way-ANOVA, followed by Tukey’s test and the 

significant differences (p<0.05) are denoted as follows: a - significantly different 

from sham treated on control diet; b - significantly different from E2 treated on 

control diet. COMT- Catechol-O-methyl transferase; GST-Glutathione-S-

transferase.  
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Figure 4.6. Effect of diets supplemented with indicated agents on the expression 

of genes involved in phase II estrogen metabolism, 18 weeks after estrogen 

treatment.   

The relative fold change is expressed as mean ± SEM of n=6 per group. The 

results were compared using one way-ANOVA, followed by Tukey’s test and the 

significant differences (p<0.05) are denoted as follows: a - significantly different 

from sham treated on control diet; b - significantly different from E2 treated on 

control diet. COMT- Catechol-O-methyl transferase; GST-Glutathione-S-

transferase.  
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Figure 4.7. Effect of diets supplemented with indicated agents on the expression 

of genes involved in phase II estrogen metabolism, 24 weeks after estrogen 

treatment.   

The relative fold change is expressed as mean ± SEM of n=6 per group. The 

results were compared using one way-ANOVA, followed by Tukey’s test and the 

significant differences (p<0.05) are denoted as follows: a - significantly different 

from sham treated on control diet; b - significantly different from E2 treated on 

control diet. COMT- Catechol-O-methyl transferase; GST-Glutathione-S-

transferase.  
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Figure 4.8. Effect of diets supplemented with indicated agents on the expression 

of steroid receptors, 6 weeks after estrogen treatment.   

The relative fold change is expressed as mean ± SEM of n=6 per group. The 

results were compared using one way-ANOVA, followed by Tukey’s test and the 

significant differences (p<0.05) are denoted as follows: a - significantly different 

from sham treated on control diet; b - significantly different from E2 treated on 

control diet. ER- Estrogen receptors; PGR- Progesterone receptor. 
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Figure 4.9. Effect of diets supplemented with indicated agents on the expression 

of steroid receptors, 18 weeks after estrogen treatment.   

The relative fold change is expressed as mean ± SEM of n=6 per group. The 

results were compared using one way-ANOVA, followed by Tukey’s test and the 

significant differences (p<0.05) are denoted as follows: a - significantly different 

from sham treated on control diet; b - significantly different from E2 treated on 

control diet. ER- Estrogen receptors; PGR- Progesterone receptor. 
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Figure 4.10. Effect of diets supplemented with indicated agents on the 

expression of steroid receptors, 24 weeks after estrogen treatment.   

The relative fold change is expressed as mean ± SEM of n=6 per group. The 

results were compared using one way-ANOVA, followed by Tukey’s test and the 

significant differences (p<0.05) are denoted as follows: a - significantly different 

from sham treated on control diet; b - significantly different from E2 treated on 

control diet. ER- Estrogen receptors; PGR- Progesterone receptor. 
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Figure 4.11. Variations in phase I enzymes of estrogen metabolism at different 

time points after estrogen treatment.  

Six animals were randomized in to each group and were euthanized 6, 18 and 24 

weeks after 17ß-estradiol implantation. RNA from the whole mammary tissue 

was analyzed for gene expression using quantitative real-time PCR. 17ßHSD- 

17ß hydroxy streroid dehydrogenase.  
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Figure 4.12. Variations in phase II enzymes of estrogen metabolism at different 

time points after estrogen treatment.   

Six animals were randomized in to each group and were euthanized 6, 18 and 24 

weeks after 17ß-estradiol implantation. RNA from the whole mammary tissue 

was analyzed for gene expression using quantitative real-time PCR. COMT- 

Catechol-O-methyl transferase; GST-Glutathione-S-transferase. 
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Figure 4.13. Variations in steroid receptor expression at different time points 

after estrogen treatment.   

Six animals were randomized in to each group and were euthanized 6, 18 and 24 

weeks after 17ß-estradiol implantation. RNA from the whole mammary tissue 

was analyzed for gene expression using quantitative real-time PCR. ER- 

Estrogen receptors; PGR- Progesterone receptor. 
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Table 4.1.  Experimental protocol – effect of berries and ellagic acid on estrogen 

metabolism during estrogen-induced mammary tumorigenesis in ACI rats. 

  

 

 

 

 

 

 

 

Eighteen animals were randomized in to each group and fed respective diets 

from 2 weeks prior to estrogen treatment until the end of the study. Six animals 

from each group were euthanized at 6, 18 and 24 weeks after estrogen 

treatment.  

5
4
3
2
1

400 ppm ellagic acid
2.5% (w/w) black raspberry
2.5% (w/w) blueberries
Control diet
Control diet

Intervention

E2-EA
E2-BRB
E2-BB

17ß-estradiol

E2-CD
ShamSH-CD

Treatment Group 
description

5
4
3
2
1

400 ppm ellagic acid
2.5% (w/w) black raspberry
2.5% (w/w) blueberries
Control diet
Control diet

Intervention

E2-EA
E2-BRB
E2-BB

17ß-estradiol

E2-CD
ShamSH-CD

Treatment Group 
description
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Table 4.2.  Primer sequences for quantitative real-time PCR. 

 

 

 

 

 

 

 

 

 

 

 

Primers were designed using Primer Express® software across exon boundary 

for the following genes: 17ßHSD7- 17ß hydroxyl steroid dehydrogenase 

7;CYP1A1-Cytochrome P450 1A1; CYP1B1-Cytochrome P450 1B1; COMT- 

Catechol-O-methyl transferase; GSTA1- Glutathione-S-transferase A1; GSTM1-

Glutathione-S-transferase M1; ERα-Estrogen receptor α; ERß-Estogen receptor 

ß; PGR- Progesterone receptor.   

5' - ACCCTCATAGATGGGCACAG - 3'5' – GCCAACCGTGAAAAGATGAC - 3'ß-Actin
5' - GGCAGCAATAACTTCAGACATCA - 3'5' - TCACAACGCTTCTATCAACTTACAAA - 3' PGR
5' - CTCCCACTAAGCTTCCTCTTCAGT - 3'5' - CTCCTTTAGCGACCCATTGC - 3' ERß
5' - GGCATGAAGACGATGAGCAT - 3'5' - GGCACATGAGTAACAAAGGCA - 3' ERα
5' - TCGAAAATATAGGTGTTGAGAGGTAGTG - 3' 5' - TCTTGACCAGTACCACATTTTTGA G - 3' GSTM1
5' - TCTTCGATTTGTTTTGCATCCA - 3' 5' - CCAGCCTTCTGACCTCTTTCC - 3' GSTA1
5' - GCAGCGTAGTCAGGGTTCATCT - 3' 5' - GGATGCAGTGATTCGGGAGTA - 3' COMT
5' - CGTCGTTTGCCCACTGAAAA - 3'5' - AACCCAGAGGACTTTGATCCG - 3' CYP1B1
5' - GGGATATAGAAG CCATTCAGACTT G - 3'5' - TGGAGACCTTCCGACATTCAT - 3'CYP1A1
5' - GTCCTCAAGACTGAAGTTAGA C - 3' 5' - CTTTATCCTGATTCGGGAACTG - 3'17ß HSD
ReverseForwardGene

5' - ACCCTCATAGATGGGCACAG - 3'5' – GCCAACCGTGAAAAGATGAC - 3'ß-Actin
5' - GGCAGCAATAACTTCAGACATCA - 3'5' - TCACAACGCTTCTATCAACTTACAAA - 3' PGR
5' - CTCCCACTAAGCTTCCTCTTCAGT - 3'5' - CTCCTTTAGCGACCCATTGC - 3' ERß
5' - GGCATGAAGACGATGAGCAT - 3'5' - GGCACATGAGTAACAAAGGCA - 3' ERα
5' - TCGAAAATATAGGTGTTGAGAGGTAGTG - 3' 5' - TCTTGACCAGTACCACATTTTTGA G - 3' GSTM1
5' - TCTTCGATTTGTTTTGCATCCA - 3' 5' - CCAGCCTTCTGACCTCTTTCC - 3' GSTA1
5' - GCAGCGTAGTCAGGGTTCATCT - 3' 5' - GGATGCAGTGATTCGGGAGTA - 3' COMT
5' - CGTCGTTTGCCCACTGAAAA - 3'5' - AACCCAGAGGACTTTGATCCG - 3' CYP1B1
5' - GGGATATAGAAG CCATTCAGACTT G - 3'5' - TGGAGACCTTCCGACATTCAT - 3'CYP1A1
5' - GTCCTCAAGACTGAAGTTAGA C - 3' 5' - CTTTATCCTGATTCGGGAACTG - 3'17ß HSD
ReverseForwardGene
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Table 4.3.  Effect of diets supplemented with indicated agents with on expression 

of genes involved in estrogen metabolism and signaling in ACI rat mammary 6 

weeks after estrogen treatment  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Female ACI rats were treated with subcutaneous sham implants (SH-CD) or 

those containing 27 mg 17ß-estradiol (E2-CD) and fed control diet or diets 

supplemented with 2.5% w/w blueberries (E2-BB); black raspberries (E2-BRB) or 

400 ppm ellagic acid (E2-EA) and euthanized 6 weeks after treatment.  Relative 

and absolute gene expression changes were calculated as described in materials 

and methods. The results were compared using one way-ANOVA, followed by 

Tukey’s test and the significant differences (p<0.05) are denoted as follows: a - 

significantly different from sham treated on control diet (SH-CD); b - significantly 

different from E2 treated on control diet (E2-CD). Down–regulation of genes is 

denoted by a downward arrow (↓) 

5.3a3.73.83.61Absolute
12.3±3.18.6±0.88.8±0.68.3±0.92.3±0.8Relative

PGR

2.12.11.81.31Absolute
1.5±0.31.5±0.31.3±0.20.9±0.20.7±0.2Relative

ERß

8.3a↓10a↓10a↓10a↓1Absolute
0.06±0.010.05±0.0010.05±0.0040.05±0.010.5±0.3Relative

ERα

3a↓6a↓3a↓3a↓1Absolute
0.2±0.020.1±0.010.2±0.010.2±0.030.6±0.2Relative

GSTM1

4.43.33.77.41Absolute
3.1±1.02.3±0.62.6±0.35.2±2.00.7±0.2Relative

GSTA1

1.61.30.721Absolute
1.5±0.41.2±0.11.4±0.051.8±0.10.9±0.04Relative

COMT

3.6a↓11a,b↓11a↓1.8↓1Absolute
0.3±0.10.1±0.010.1±0.010.6±0.21.1±0.1Relative

CYP1B1

56a12b21b48a1Absolute
42.7±5.79.2±1.816.3±2.536.7±5.50.75±0.09Relative

CYP1A1

2.5a,b2.2b1.8b4.8a1Absolute
1.5±0.41.6±0.21.3±0.13.5±0.40.73±0.2Relative

17ßHSD

E2-EA
(n=5)

E2-BRB
(n=6)

E2-BB
(n=6)

E2-CD
(n=6)

SH-CD
(n=3)

Fold Change
(mean ± SEM)

Gene

5.3a3.73.83.61Absolute
12.3±3.18.6±0.88.8±0.68.3±0.92.3±0.8Relative

PGR

2.12.11.81.31Absolute
1.5±0.31.5±0.31.3±0.20.9±0.20.7±0.2Relative

ERß

8.3a↓10a↓10a↓10a↓1Absolute
0.06±0.010.05±0.0010.05±0.0040.05±0.010.5±0.3Relative

ERα

3a↓6a↓3a↓3a↓1Absolute
0.2±0.020.1±0.010.2±0.010.2±0.030.6±0.2Relative

GSTM1

4.43.33.77.41Absolute
3.1±1.02.3±0.62.6±0.35.2±2.00.7±0.2Relative

GSTA1

1.61.30.721Absolute
1.5±0.41.2±0.11.4±0.051.8±0.10.9±0.04Relative

COMT

3.6a↓11a,b↓11a↓1.8↓1Absolute
0.3±0.10.1±0.010.1±0.010.6±0.21.1±0.1Relative

CYP1B1

56a12b21b48a1Absolute
42.7±5.79.2±1.816.3±2.536.7±5.50.75±0.09Relative

CYP1A1

2.5a,b2.2b1.8b4.8a1Absolute
1.5±0.41.6±0.21.3±0.13.5±0.40.73±0.2Relative

17ßHSD

E2-EA
(n=5)

E2-BRB
(n=6)

E2-BB
(n=6)

E2-CD
(n=6)

SH-CD
(n=3)

Fold Change
(mean ± SEM)

Gene
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Table 4.4. Effect of diets supplemented with indicated agents with on expression 

of genes involved in estrogen metabolism and signaling in ACI rat mammary 18 

weeks after estrogen treatment  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Female ACI rats were treated with subcutaneous sham implants (SH-CD) or 

those containing 27 mg 17ß-estradiol (E2-CD) and fed control diet or diets 

supplemented with 2.5% w/w blueberries (E2-BB); black raspberries (E2-BRB) or 

400 ppm ellagic acid (E2-EA) and euthanized 18 weeks after treatment.  Relative 

and absolute gene expression changes were calculated as described in materials 

and methods. The results were compared using one way-ANOVA, followed by 

Tukey’s test and the significant differences (p<0.05) are denoted as follows: a - 

significantly different from sham treated on control diet (SH-CD); b - significantly 

different from E2 treated on control diet (E2-CD). Down–regulation of genes is 

denoted by a downward arrow (↓) 

1.8b3.75a3.5a3.8a1Absolute
2.2±0.14.5±0.34.2±0.44.6±0.31.2±0.4Relative

PGR

1.31.21.21.21Absolute
1.6±0.22.6±0.42.6±0.72.5±0.42.1±0.8Relative

ERß

5.2a↓4.2a↓4.2a↓4.2a↓1Absolute
0.4±0.050.5±0.050.5±0.020.5±0.052.1±0.4Relative

ERα

3.25a↓2.6a↓2.6a↓3.25a↓1Absolute
0.4±0.10.5±0.10.5±0.10.4±0.041.3±0.2Relative

GSTM1

1.753.2a,b2.6a2.25a1Absolute
2.8±0.35.1±0.44.1±0.43.6±0.41.6±0.2Relative

GSTA1

1.1b↓1.1b↓1.2b↓1.9a1Absolute
1.9±0.32.6±0.12.8±0.14.4±0.42.3±0.4Relative

COMT

8a↓4a↓8a↓8a↓1Absolute
±0.020.2±0.040.1±0.010.1±0.010.8±0.1Relative

CYP1B1

17.8a16.4a6.914.7a1Absolute
17.5±2.716.1±2.36.8±0.714.4±2.50.98±0.2Relative

CYP1A1

1.41.61.41.61Absolute
2.9±0.43.3±0.23.0±0.23.3±10.42.1±10.5Relative

17ßHSD

E2-EA
(n=6)

E2-BRB
(n=6)

E2-BB
(n=6)

E2-CD
(n=6)

SH-CD
(n=5)

Fold Change
(mean ± SEM)Gene

1.8b3.75a3.5a3.8a1Absolute
2.2±0.14.5±0.34.2±0.44.6±0.31.2±0.4Relative

PGR

1.31.21.21.21Absolute
1.6±0.22.6±0.42.6±0.72.5±0.42.1±0.8Relative

ERß

5.2a↓4.2a↓4.2a↓4.2a↓1Absolute
0.4±0.050.5±0.050.5±0.020.5±0.052.1±0.4Relative

ERα

3.25a↓2.6a↓2.6a↓3.25a↓1Absolute
0.4±0.10.5±0.10.5±0.10.4±0.041.3±0.2Relative

GSTM1

1.753.2a,b2.6a2.25a1Absolute
2.8±0.35.1±0.44.1±0.43.6±0.41.6±0.2Relative

GSTA1

1.1b↓1.1b↓1.2b↓1.9a1Absolute
1.9±0.32.6±0.12.8±0.14.4±0.42.3±0.4Relative

COMT

8a↓4a↓8a↓8a↓1Absolute
±0.020.2±0.040.1±0.010.1±0.010.8±0.1Relative

CYP1B1

17.8a16.4a6.914.7a1Absolute
17.5±2.716.1±2.36.8±0.714.4±2.50.98±0.2Relative

CYP1A1

1.41.61.41.61Absolute
2.9±0.43.3±0.23.0±0.23.3±10.42.1±10.5Relative

17ßHSD

E2-EA
(n=6)

E2-BRB
(n=6)

E2-BB
(n=6)

E2-CD
(n=6)

SH-CD
(n=5)

Fold Change
(mean ± SEM)Gene
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Table 4.5. Effect of diets supplemented with indicated agents with on expression 

of genes involved in estrogen metabolism and signaling in ACI rat mammary 24 

weeks after estrogen treatment  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Female ACI rats were treated with subcutaneous sham implants (SH-CD) or 

those containing 27 mg 17ß-estradiol (E2-CD) and fed control diet or diets 

supplemented with 2.5% w/w blueberries (E2-BB); black raspberries (E2-BRB) or 

400 ppm ellagic acid (E2-EA) and euthanized 24 weeks after treatment.  Relative 

and absolute gene expression changes were calculated as described in materials 

and methods. The results were compared using one way-ANOVA, followed by 

Tukey’s test and the significant differences (p<0.05) are denoted as follows: a - 

significantly different from sham treated on control diet (SH-CD); b - significantly 

different from E2 treated on control diet (E2-CD). Down–regulation of genes is 

denoted by a downward arrow (↓). 

Copyright © Harini Sankaran Aiyer, 2007 
 

21.751.62.11Absolute
1.6±0.21.4±0.21.3±0.21.7±0.10.8±0.2Relative

PGR

1.2↓2.3↓1.75↓1.75↓1Absolute
0.6±0.10.3±0.10.4±0.10.4±0.10.7±0.1Relative

ERß

10.5a↓11.6a↓13.1a↓10.5a↓1Absolute
0.1±0.010.09±0.010.08±0.010.1±0.011.05±0.2Relative

ERα

2.6a-↓2.6a-↓2.6a-↓2.6a-↓1Absolute
0.3±0.030.3±0.020.3±0.050.3±0.020.8±0.1Relative

GSTM1

11111Absolute
0.3±0.050.3±0.10.3±0.10.4±0.10.3±0.2Relative

GSTA1

1.71.21.61.8a1Absolute
1.6±0.11.1±0.31.5±0.21.7±0.10.9±0.1Relative

COMT

8a↓8a↓5.7a↓4a↓1Absolute
0.1±0.010.1±0.010.14±0.010.09±0.010.8±0.03Relative

CYP1B1

4.6a3.2b7.2a8.1a1Absolute
4.2±0.62.9±0.46.5±1.37.3±1.20.9±0.1Relative

CYP1A1

1.9a1.51.61.61Absolute
1.8±0.11.4±0.21.5±0.21.5±0.10.9±0.1Relative

17ßHSD

E2-EA
(n=6)

E2-BRB
(n=6)

E2-BB
(n=5)

E2-CD
(n=6)

SH-CD
(n=5)

Fold Change
(mean ± SEM)Gene

21.751.62.11Absolute
1.6±0.21.4±0.21.3±0.21.7±0.10.8±0.2Relative

PGR

1.2↓2.3↓1.75↓1.75↓1Absolute
0.6±0.10.3±0.10.4±0.10.4±0.10.7±0.1Relative

ERß

10.5a↓11.6a↓13.1a↓10.5a↓1Absolute
0.1±0.010.09±0.010.08±0.010.1±0.011.05±0.2Relative

ERα

2.6a-↓2.6a-↓2.6a-↓2.6a-↓1Absolute
0.3±0.030.3±0.020.3±0.050.3±0.020.8±0.1Relative

GSTM1

11111Absolute
0.3±0.050.3±0.10.3±0.10.4±0.10.3±0.2Relative

GSTA1

1.71.21.61.8a1Absolute
1.6±0.11.1±0.31.5±0.21.7±0.10.9±0.1Relative

COMT

8a↓8a↓5.7a↓4a↓1Absolute
0.1±0.010.1±0.010.14±0.010.09±0.010.8±0.03Relative

CYP1B1

4.6a3.2b7.2a8.1a1Absolute
4.2±0.62.9±0.46.5±1.37.3±1.20.9±0.1Relative

CYP1A1

1.9a1.51.61.61Absolute
1.8±0.11.4±0.21.5±0.21.5±0.10.9±0.1Relative

17ßHSD

E2-EA
(n=6)

E2-BRB
(n=6)

E2-BB
(n=5)

E2-CD
(n=6)

SH-CD
(n=5)

Fold Change
(mean ± SEM)Gene
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Chapter Five: General Discussion and Conclusions 

 
 Millions of women in the world are chronically exposed to 17ß-estradiol. 

This hormone is highly important for regular development but also increases the 

risk for breast cancer.  Since women cannot be completely protected from 

exposure, prevention is an effective course of action to reduce the incidence of 

breast cancer. Many of the current treatment strategies evolve around this 

concept. Currently, tamoxifen therapy is the standard care for women who are at 

a high risk for breast cancer and involves 5 years of preventive therapy (Morrow 

& Jordan, 2000). However, this therapy does not come without costs, several 

side effects of tamoxifen treatment include increased incidence of blood clots, 

depression in some cases, endometrial cancer in post-menopausal women, etc,. 

(Reviewed by Anthony, Williams and Dunn, 2001). Raloxifene, another selective 

estrogen receptor mediator (SERM) is effective in reducing certain risks 

associated with tamoxifen therapy is poorly bioavailable and rapidly excreted 

from the body (Jordan, 2007). Thus, the search for an ideal estrogen receptor 

modulator that will have the nuero- and osteo-protective effects of estrogen and 

also prevent cancer in estrogen-target tissues has become the holy grail of 

modern breast cancer prevention research. 

  

Most cells in the human body possess an estrogen receptor (ER) and the 

gene transcription function of estrogen was thought to be mediated via its 

interaction with this receptor. However, it is now documented that estradiol can 

act via non receptor-mediated pathways to cause changes in cell function 

(Reviewed in Coleman and Smith, 2001). Ideally, a SERM can interact with any 

or all of these pathways and its structural similarity to estrogen determine the 

interactions. Phytonutrients, such as polyphenols can act on several different 

pathways that overlap with estrogen/steroid signaling, such as MAPK, PKC, etc., 

suggesting that they may posses SERM effects beyond actions on the classic ER 

(Reviewed by Rushmore and Tony Kong, 2002). 
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The estradiol-induced mammary tumor in ACI rats provides an apt in vivo 

testing system to test several SERMs. Although most breast cancer drugs have 

traditionally been tested against 7,12, dimethyl benze[a]anthacene-induced 

mammary tumors, estrogen-induction causes several signal transduction 

cascades that can only occur in the presence of excess estradiol. In fact, the 

results from studies presented herein show that ERα in the mammary is down-

regulated by estradiol treatment. Thus E2-induced mammary carcinogenicity in 

the ACI rat may involve non receptor-mediated action of E2. Tamoxifen (40 mg in 

subcutaneous cholesterol pellets) completely abrogates E2-induced tumors in 

ACI rats (Li et al., 2002b). However, this study showed significant increases in 

various ERα isoforms by immunohistochemical detection and increased levels of 

both progesterone receptor (PGR) isoforms (Li et al., 2002b). The contrasting 

results with respect to ERα expression can be attributed to difference in the 

methods of detection (qRTPCR versus immunohistochemistry) and the presence 

and differential regulation of different isoforms of ER, which may be detected at 

the protein level but not at the mRNA level unless specific primers are designed 

for this purpose.  

 

 The importance of other organ systems, such as the liver must also be 

taken in to account when analyzing the mechanisms by which E2 induces 

mammary tumors. For example, both phenobarbitol (PB) and clofibrate (CF) 

when administered together with E2 have differential effects on the metabolism of 

E2 in the liver (Mesia-Vela et al., 2004; Mesia-Vela et al., 2006). PB acts 

synergistically with E2, while CF antagonizes its action. Further, PB effectively 

reduces the mammary tumor burden. This may be due to the direct effect of PB 

on E2 metabolism in the mammary or via indirect mechanisms due to changes 

caused in other organs such as liver as reported (Mesia-Vela et al., 2006). 

Studying the effects of berries and ellagic acid on hepatic metabolism may yield 

more clues about the mechanisms by which these agents prevent mammary 

tumors. Indeed, both red raspberry and ellagic acid when provided via the diet 

have significant effects on hepatic gene transcription in CD-1 mice (Chapter 2). It 
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remains to be seen whether similar and additional effects are present in the ACI 

rats also.  

 

 The mechanisms involved in E2-induced mammary tumorigenesis in ACI 

rats are complex. Some mechanisms have been elucidated, while several others 

need to be clarified. Foremost, ACI rats are the only rat strain that is completely 

susceptible to E2-induced mammary tumors (Dunning et al., 1953; Shepel & 

Gould, 1999). In all of the prevention studies, the serum E2 levels do not differ 

between the different groups, suggesting that preventive agents can act without 

altering the circulating E2 levels (Li et al., 2002b; Mesia-Vela et al., 2006); 

Chapter 3). Further, prolactin is considered to play a major role in the 

development of these tumors (Holtzman et al., 1981). Tamoxifen, which 

abrogates mammary tumors in female ACI rats, also reduces pituitary tumors 

and serum prolactin levels in male ACI rats treated continuously with E2 (Lyle et 

al., 1984). The effect of tamoxifen on the pituitary of female rats has not been 

reported, however, it significantly reduces the uterine wet-weight (Li et al., 

2002b), which could be an indicator of and effect on both direct estrogen action 

and effect via pituitary hormones. Further evidence for the role of pituitary in 

mammary tumor development can be garnered from estradiol-dose response 

studies done in our laboratory and also presented in this work. When the dose of 

E2 is reduced 3-fold (from 27 mg to 9 mg), the tumor burden as well as tumor 

number increase (Chapter 3, Tables 3.5 and 3.6; Ravoori et al., 2007). There is a 

striking correlation between the ratios of serum E2 and plasma prolactin levels 

between the two doses. When the E2 dose is reduced by 3-fold, the circulating E2 

and prolactin levels fall by 2.8- and 2.5- fold respectively at 12 weeks and by 

about 1.7 fold at termination of the study (Ravoori et al., 2007).This correlation 

exemplifies the direct effect of E2 on prolactin levels. It is unclear whether 

prolactin impedes or improves tumor development since lower levels of prolactin, 

caused by lowering the E2 dose, increases tumor burden but the absence of a 

prolactin response results in non-induction of mammary tumors (Holtzman et al., 

1981). However, the effect of complete inhibition of prolactinomas with 

bromocriptine or tamoxifen in female ACI rats and subsequent effects on 
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mammary tumor incidence has not been reported. Further investigation is 

warranted to elucidate the exact role of prolactin in mammary cancer 

development in ACI rats.  

 

There is collective evidence that black raspberry, blueberry and ellagic 

acid may prevent E2–induced tumorigenesis by interrupting the effects of 

pituitary. First, the pituitary wet weights are slightly, but insignificantly reduced by 

dietary intervention at both doses of E2 treatment (Chapter 3, Tables 3.5 and 

3.6). Second, compared to sham treatment, the combined wet weight of ovary 

and uterus increased significantly in animals treated with 27 mg E2 for 24 weeks 

(870 ± 50 mg versus 620 ± 80 mg) (p<0.01). This increase in tissue weight was 

significantly reduced after dietary intervention (p<0.05; blueberry diet – 650 ± 18; 

black raspberry diet- 600 ± 77; ellagic acid diet – 650 ± 42 mg).  These results 

are similar in trend but not in magnitude to tamoxifen treatment (Li et al., 2002; S. 

Li, personal communication).  Moreover, all dietary interventions significantly 

offset the overexpression of 17ßHSD, a gene known to be controlled by prolactin, 

at 6 weeks (Duan et al., 1997). However, the levels of prolactin must be 

measured in the serum of animals on the supplemented group to confirm this 

notion. Taken together, these facts suggest that both berries and ellagic acid 

may act as SERMs, but at a much lower capacity compared to a classic 

antiestrogen like tamoxifen. Further studies are required to confirm the SERM 

effects of these dietary agents in the various estrogen-responsive organs of the 

ACI rat including the pituitary, ovary, uterus, adrenal and the mammary. 

 

The contribution of the classic ER pathway in the mammary tissue of 

these animals is not clear since E2 treatment seems to down-regulate ERα 

expression by more than 10 fold beginning at 6 weeks until the end of the 

experiment. Furthermore, it is not known if estradiol signals through other 

pathways to cause molecular changes. Also, estradiol is known to cause 

chromosomal instability and c-myc amplification in these rats (Li et al., 2002a). It 

is not clear yet if the interventions affect any of these pathways and further 

studies are required to elucidate this.    
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Estrogen is an endobiotic. The importance of estrogen metabolism in the 

causation of breast cancer has been understood based on several data. 

Polymorphisms in one or more genes that are involved in estradiol metabolism 

increase the carrier’s risk of breast cancer (Thompson & Ambrosone, 2000; 

Gallicchio et al., 2006). Also, there is an imbalance in the metabolic profile 

between cancer-free and cancer-prone women. In addition, tumor tissue contains 

higher levels of metabolites such as 4-hydroxy estradiol (4E2) than in the 

surrounding normal tissue (Reviewed by Liehr, 2000). To support these 

observations, laboratory studies have also proven the pro-carcinogenic effects of 

4E2 (Liehr et al., 1986; Russo et al., 2002), suggesting that 4E2 and CYP1B1 

may play the major role in E2-induced carcinogenesis. However, CYP1A1 is a 

mixed function oxygenase, which can form both 2E2 and 4E2 (Cribb et al., 2006). 

It is clear from our findings that berries consistently offset E2-induced up 

regulation of CYP1A1 and of CYP1B1 at 6 weeks only. Ellagic acid, however, is 

effective against CYP1B1 only. The transcriptional regulation of these enzymes 

is controlled by various nuclear receptors via interaction with antioxidant 

response elements (AREs) and electrophile response elements (EpREs) 

(Reviewed by Honkakoshi & Negishi, 2000 and by Hollenberg, 2002). Further 

research is required to elucidate the exact mechanisms of action of berry 

phytochemicals. Studies suggest that ellagic acid decreases the activity of 

hepatic CYP1A1 without increasing its expression and also increases the 

expression and activity of quinone reductase, an enzyme involved in phase II 

metabolism of estrogen metabolites (Barch & Rundhaugen, 1994; Barch et al., 

1994; Ahn et al., 1996). The effect of both berry anthocyanins and ellagic acid on 

quinone reductase in the mammary must be investigated. Berries vary widely in 

their distribution of anthocyanins and ellagic acid. Of the berries tested, blueberry 

has a wider spectrum of anthocyanins but in lower quantities, while black 

raspberry contains predominantly one anthocyanin but in much higher amounts 

(Wu et al., 2006). Whether these differences influence their preventive efficacy is 

not known. This can be tested by using bilberries, which are high in anthocyanin 

content and also have a wide variety of polymers (Wu et al., 2006).  
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 To summarize the results presented herein, 17ß-estradiol induces 

mammary tumors in ACI rats when administered alone. Berries and ellagic acid 

prevent the growth of these tumors by up to 70%. Also, these agents favorably 

alter estrogen-metabolizing enzymes in the mammary tissue. Although, there are 

some differences in the trends between berries versus ellagic acid 2 conclusions 

seem to emerge - 1) both berries act via similar mechanisms; 2) ellagic acid acts 

via a different mechanism to produce the same protective effect. Further, both 

berries and ellagic acid effectively reduce baseline DNA damage and induce 

DNA repair enzyme expression, in the liver of CD-1 mice. In addition, ellagic acid 

is the most effective polyphenol to reduce 4E2-induced DNA damage in vitro. 

Taken together these results suggest that both berries and ellagic acid may act 

via multiple mechanisms to prevent E2–induced mammary tumorigenesis.  

  

The most important conclusion of this thesis is that regardless of the 

mechanisms involved, both berries and ellagic acid beneficially influence 

mammary tumorigenesis in ACI rats. This provides evidence that a low dose of 

whole foods can be used in the prevention of breast cancer as effectively as 

relatively higher dose of a pure constituent. Although no reduction in mammary 

tumor incidence was seen in this investigation, the better quality of life in berry- 

and ellagic acid-fed animals, as evidenced by reduced mortality, weight loss etc., 

and significant reductions in tumor burden, provide strong support for the use of 

these agents as an adjuvant alongside traditional modes of cancer therapy. The 

safety and applicability of such an intervention is being tested for esophageal 

cancer (Kresty et al., 2006). Preclinical studies looking at the interaction between 

classic prevention therapy such as tamoxifen and berries are required before 

proceeding to clinical trials. Also, studies assessing whether berries, berry 

anthocyanins and ellagic acid will antagonize the adverse actions of tamoxifen 

must be conducted. Nevertheless, the use of berries as an adjuvant in breast 

cancer prevention holds much promise.  

  

Copyright © Harini Sankaran Aiyer, 2007 
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APPENDIX 

List of abbreviations 
 
2-AAF   2-acetylaminofluorine 
2-E2   2-hydroxy estradiol 
3-MC    3-methylcholantherene 
4-E2   4-hydroxy estradiol 
8-oxodG  8-oxo-2’ deoxy Guanosine 
17ßHSD  17-ß-hydroxysteroid dehydrogenase 
ACI   August-Copenhagen-Irish-hooded 
B[a]P   Benzo[a]pyrene 
BMI   Body Mass Index 
CF   Clofibrate 
COMT   Catechol-O-methyl transferase 
COX-2  Cyclooxygenase -2  
CYP   Cytochrome P450 
DB[a,l]P  Dibenzo[a,l]pyrene 
DCIS   Ductal carcinoma in situ 
DMBA   7,12-dimethylbenz(a)antharcene 
DMSO  Dimethyl sulphoxide 
DNL3   DNA ligase 3 
E2   17ß-estradiol 
EGCG   Epigallocatechin gallate 
ERα   Estrogen receptor Alpha 
ERß   Estrogen receptor Beta  
ERCC5  Excision repair cross complementation group 5 
ERK   Extracellular signal related kinase 
ERKO/wnt-1  Estrogen receptor knock-out/wnt 
GST   Glutathione-S-transferase 
HAA   Heterocyclic aromatic amines 
HNE   Hydroxy nonenal 
HRT   Hormone replacement therapy 
Lob 1   Lobules type 1 
MAPK   Mitogen activated protein kinase 
MAPKK  MAP kinase kinase 
MDA   Malodialdehyde 
NADP   Nicaonitamide dinucleotide phosphate 
NFқB   Nuclear factor қ B 
NMU   1-methyl-1-nitrosourea 
PAH   Polycyclic aromatic hydrocarbons 
PB   Phenobarbital 
PCNA   Proliferating Cell Nuclear Antigen 
PEI   Polyethyleneinimine 
PGR   Progesterone Receptor 
PhIP   2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine 
PKC   Protein Kinase C 
PRL   Prolactin 
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ROS   Reactive Oxygen Species 
SD   Sprague Dawley  
SERM   Selective estrogen receptor modulator 
SOD   Superoxide Dismutase 
TCDD   2,3,7,8-tetrachlorodibenzo-p-dioxin 
TDLU   Terminal Ductal Lobular Unit 
TLC   Thin layer chromatography 
TST   Thiosulphate sulphur transferase 
VEGF   Vascular endothelial growth factor 
XPA   Xeroderma Pigmentosum group A complementing protein 
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