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Global quantum quench with a finite quench rate which crosses critical points is known to lead to 
universal scaling of correlation functions as functions of the quench rate. In this work, we explore 
scaling properties of the entanglement entropy of a subsystem in a harmonic chain during a mass 
quench which asymptotes to finite constant values at early and late times and for which the dynamics is 
exactly solvable. When the initial state is the ground state, we find that for large enough subsystem sizes 
the entanglement entropy becomes independent of size. This is consistent with Kibble–Zurek scaling for 
slow quenches, and with recently discussed “fast quench scaling” for quenches fast compared to physical 
scales, but slow compared to UV cutoff scales.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The behavior of entanglement of a many-body system that un-
dergoes a quantum quench has been a subject of great interest 
in recent times. When the quench is instantaneous (i.e. a sudden 
change of the hamiltonian), several results are known. Perhaps the 
best known result pertains to the entanglement entropy (EE) of 
a region of size l in a 1 + 1 dimensional conformal field theory 
following a global instantaneous quench, S E E (l). As shown in [1], 
S E E(l) grows linearly in time till t ≈ l/2 and then saturates to a 
constant value typical of a thermal state – a feature which has 
been studied extensively in both field theory and in holography. 
Generalizations of this result to conserved charges and higher di-
mensions have been discussed more recently [2–4]. The emphasis 
of these studies is to probe the time evolution of the entanglement 
entropy.

In physical situations, quantum quench has a finite rate, char-
acterized by a time scale δt , that can vary from very small to very 
large. When the quench involves a critical point, universal scaling 
behavior has been found for correlation functions at early times. 
The most famous scaling appears for a global quench which starts 
from a massive phase with an initial gap mg , crosses a critical 
point (chosen to be e.g. at time t = 0) and ends in another mas-
sive phase. For slow quenches (large δt), it has been conjectured 
that quantities obey Kibble–Zurek scaling [5]: evidence for this has 

* Corresponding author.
E-mail address: caputa@nbi.dk (P. Caputa).

been found in several solvable models and in numerical simula-
tions [6,7]. Such scaling follows from two assumptions. First, it 
is assumed that as soon as the initial adiabatic evolution breaks 
down at some time −tK Z (the Kibble–Zurek time) the system be-
comes roughly diabatic. Secondly, one assumes that the only length 
scale in the critical region is the instantaneous correlation length 
ξK Z at the time t = −tK Z . This implies that, for example, one point 
functions scale as 〈O(t)〉 ∼ ξ−�

K Z , where � denotes the conformal 
dimension of the operator O at the critical point. An improved 
conjecture involves scaling functions. For example, one and two 
point correlation functions are expected to be of the form [8–14]

〈O(t)〉 ∼ ξ−�
K Z F (t/tK Z )

〈O(�x, t)O(�x′, t′)〉 ∼ ξ−2�
K Z F

[ |�x − �x′|
ξK Z

,
(t − t′)

tK Z

]
(1)

Some time ago, studies of slow quenches in AdS/CFT models have 
led to some insight into the origin of such scaling without making 
these assumptions [15].

For protocols in relativistic theories which asymptote to con-
stant values at early times, one finds a different scaling behavior 
in the regime �−1

U V 	 δt 	 m−1
phys , where �U V is the UV cutoff 

scale, and mphys denotes any physical mass scale in the problem. 
For example,

〈O(t)〉 ∼ δtd−2� (2)

where d is the space–time dimension. This “fast quench scaling” 
behavior was first found in holographic studies [16] and subse-
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quently shown to be a completely general result in any relativistic 
quantum field theory [17]. The result follows from causality, and 
the fact that in this regime linear response becomes a good ap-
proximation. Finally, in the limit of an instantaneous quench, suit-
able quantities saturate as a function of the rate: for quench to a 
critical theory a rich variety of universal results are known in 1 +1
dimensions [18].

Much less is known about the behavior of entanglement and 
Renyi entropies as functions of the quench rate – a key ingredient 
of universality. This has been studied for the 1d Ising model (and 
generalizations) with a transverse field which depends linearly on 
time, g(t) = 1 − t

τQ
[19,9,20]. The system is prepared in the in-

stantaneous ground state at some initial time, crossing criticality at 
t = 0. The emphasis of [19] and [9,20] is on the slow regime, which 
means τQ 
 a where a is the lattice spacing, while [21] also stud-
ies smaller values of τQ . In particular, [19] and [21] studied the 
EE for half of a finite chain and found that the answer approaches 
S E E ∼ 1

12 log ξK Z after sufficiently slow quenches. This is consistent 
with the standard assumptions which lead to Kibble–Zurek scal-
ing mentioned above. According to these assumptions, the system 
evolves adiabatically till t = −tK Z and enters a phase of diabatic 
evolution soon afterwards. Thus the state of the system at t = 0 is 
not far from the ground state of the instantaneous hamiltonian at 
t = −tK Z . Furthermore when τQ 
 1 in lattice units, ξK Z is large, 
and the instantaneous state is close to criticality. In such a state, 
the entanglement entropy of a subregion of a large chain with N A

boundary points should obey an “area law” c
6 N A log(ξK Z ), where 

c is the central charge. When the subsystem is half space N A = 1
and for the Ising model the central charge is c = 1/2. Similarly, 
[9,20] studied the EE of a subsystem of finite size l in an infinite 
1d Ising model, with a transverse field linear in time, starting with 
the ground state at t = −∞. The EE close to the critical point for 
l 
 ξK Z was found to saturate to S E E = (constant) + 1

6 log(κ(t)ξK Z ). 
The factor κ(t) depends mildly on the time of measurement and 
κ(−tK Z ) ≈ 1. Once again, this result is roughly that of a stationary 
system with correlation length ξK Z , as would be expected from 
Kibble–Zurek considerations. The factor κ(t) is a correction to the 
extreme adiabatic–diabatic assumption. The paper [21] investigates 
an intermediate regime of fast quench (as described above). While 
this paper investigates scaling of S E E as a function of quench rate 
in the slow regime, there is no similar analysis in the fast regime.

In this letter, we study entanglement entropy for a simple sys-
tem: an infinite harmonic chain (i.e. a 1 + 1 dimensional bosonic 
theory on a lattice) with a time dependent mass term which 
asymptotes to constant finite values at early and late times. We 
choose a mass function for which the quantum dynamics can be 
solved exactly. The use of such a protocol allows us to explore the 
whole range of quench rates, where the speed of quench is mea-
sured in units of the initial gap rather than the lattice scale. We 
compute the entanglement entropy for a subsystem of size l (in 
lattice units) in the middle of the quench and find that it scales 
in interesting ways as we change the quench rate. The dimension-
less quantity which measures the quench timescale is �Q = m0δt
where m0 is the initial gap.

2. Our setup and quench protocols

The hamiltonian of the harmonic chain is given by

H = 1

2

∞∑
n=−∞

[
P 2

n + (Xn+1 − Xn)
2 + m2(t)X2

n

]
(3)

where (Xn, Pn) are the usual canonically conjugate scalar field 
variables on an one dimensional lattice whose sites are labelled 

by the integer n. The mass term m(t) is time dependent. All quan-
tities are in lattice units. In terms of momentum variables Xk, Pk

Xn(t) =
π∫

−π

dk

2π
Xk(t) eikn Pn(t) =

π∫
−π

dk

2π
Pk(t) eikn (4)

the equation of motion is given by

d2 Xk

dt2
+ [4 sin2(k/2) + m2(t)]Xk = 0 (5)

We are interested in functions m(t) which asymptote to constant 
values m0 at t → ±∞, and pass through zero at t = 0. Let fk(t) be 
a solution of (5) which asymptotes to a purely positive frequency 
solution ∼ e−iω0t/

√
2ω0 at t → −∞, where

ω2
0 = 4 sin2(k/2) + m2

0. (6)

A mode decomposition

Xk(t) = fk(t)ak + f �
k (t)a†

−k (7)

with [ak, a
†
−k′ ] = 2πδ(k − k′) can be then used to define the “in” 

vacuum by ak|0〉 = 0 for all k. The solutions fk(t) are chosen to 
satisfy the Wronskian condition fk( ḟk)

� − ( ḟk) f �
k = i. The state |0〉

then denotes the Heisenberg picture ground state of the initial 
Hamiltonian. The normalized wavefunctional for the “in” vacuum 
state is given by

�0(Xk, t) =
∏

k

1

[√2π f �
k (t)]1/2

exp

[
1

2

(
ḟk(t)

fk(t)

)�

Xk X−k

]
(8)

We will choose a quench protocol for a mass function for which 
the mode functions fk(t) can be solved exactly. The particular 
mass function we use is

m2(t) = m2
0 tanh2(t/δt) (9)

The corresponding mode functions are given by

fk = 1√
2ω0

(2)iω0δt cosh2α(t/δt)

E ′
1/2 Ẽ3/2 − E1/2 Ẽ ′

3/2

×

[Ẽ ′
3/22 F1(ã, b̃,

1

2
;− sinh2(t/δt))

+E ′
1/2 sinh(t/δt)2 F1(ã + 1

2
, b̃ + 1

2
,

3

2
;− sinh2(t/δt))]

where we have defined

ω2
0(k) = 4 sin2(k/2) + m2

0

α = 1

4
[1 +

√
1 − 4m2

0δt2]

ã = 1

4
[1 +

√
1 − 4m2

0δt2] + i

2
δtω0

b̃ = 1

4
[1 +

√
1 − 4m2

0δt2] − i

2
δtω0

E1/2 = �(1/2)�(b̃ − ã)

�(b̃)�(1/2 − ã)

Ẽ3/2 = �(3/2)�(b̃ − ã)

�(b̃ + 1/2)�(1 − ã)

E ′
c = Ec(ã ↔ b̃). (10)
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3. Entanglement entropy

Our aim is to calculate the entanglement entropy for a subre-
gion of the infinite chain consisting of l lattice points. This is most 
conveniently calculated by considering the 2l × 2l matrix of corre-
lators, and the symplectic matrix [4,22]

C =
[

Xmn(t) Dmn(t)
Dmn(t) Pmn(t)

]
J =

[
0 Il×l

−Il×l 0

]

where (m, n) denote lattice sites inside the subsystem and

Xmn(t) = 〈0|Xm(t)Xn(t)|0〉, Pmn(t) = 〈0|Pm(t)Pn(t)|0〉,
Dmn(t) = 1

2
〈0|{Xm(t), Pn(t)}|0〉 (11)

The eigenvalues of the matrix i J C then occur in pairs ±γn(t) n =
1, · · · l where γn(t) > 0. The entanglement entropy S is given by

S =
l∑

n=1

{[γn(t) + 1

2
] log[γn(t) + 1

2
] − [γn(t) − 1

2
] log[γn(t) − 1

2
]}

(12)

In terms of the mode functions (10), the correlators (11) are 
given by the expressions

Xmn(t) =
π∫

−π

dk

2π
| fk(t)|2 cos(k|m − n|)

Pmn(t) =
π∫

−π

dk

2π
| ḟk(t)|2 cos(k|m − n|)

Dmn(t) =
π∫

−π

dk

2π
Re

(
f ∗
k (t) ḟk(t)

)
cos(k|m − n|) (13)

The correlator Dmn(t) is particularly important in the calcula-
tions which follow. This is because this quantity is exactly zero 
when the mass is time independent. For the same reason, this 
quantity vanishes in the leading order of the adiabatic expansion 
(i.e. when observables are replaced by their static answers with the 
instantaneous value of the mass), i.e. f adia

k = 1√
2ωk(t)

e−iωk(t)t with 

ωk(t)2 = 4 sin2(k/2) + m2(t).
The computation of correlation functions and the entanglement 

entropy then involves integrals over momenta k, which are com-
puted numerically. As is well known, numerical integrals with os-
cillating functions in the integrand are tricky. Numerical methods 
reduce this to a summation of an alternating series, leading to slow 
convergence. To confirm our numerical integration, we check the 
convergence of the integration with varying precision. We perform 
all calculations with interval sizes dk = 0.00001, 0.000001.

4. Regimes of the quench rate

Before we examine these entropies, it is necessary to under-
stand the various regimes of the dimensionless parameter �Q ≡
m0δt . This can be done by studying the scaling behavior of corre-
lation functions. Since we are interested in the slow as well as the 
fast regime, we will stay close to the continuum limit where the 
dimensionless mass m0a is small. In the following we express ev-
erything in lattice units. Then, Kibble Zurek scaling is expected to 
hold for these quantities for �Q 
 1, while we get the regime of 
fast quench when �Q 	 1, but δt > 1.

Fig. 1. (Color online.) Rescaled correlator 1
2 ξK Z Dmn(t = 0) as a function of |m − n|. 

The various values of �Q , ξK Z are in different colors: On top of each other we 
see Red: (�Q = 1, ξkz = 400) and Orange: (�Q = 1, ξkz = 500), then Purple: (�Q =
5, ξkz = 400) and Blue: (�Q = 10, ξkz = 400) and again on top of each other: Green: 
(�Q = 100, ξkz = 400), Pink: (�Q = 100, ξkz = 500) and Black: (�Q = 500, ξkz =
500).

For slow quench, the usual Landau criterion leads to a Kib-
ble Zurek time and the instantaneous correlation length at this 
time to be tK Z = ξK Z = √

δt/m0, and we expect e.g. the following 
leading answers at t = 0: Xmn(0) ∼ ξ0

K Z F X (|m − n|/ξK Z ), Pmn(0) ∼
ξ−2

K Z F P (|m − n|/ξK Z ), Dmn(0) ∼ ξ−1
K Z F D(|m − n|/ξK Z ), where F X , F P , 

F D are smooth functions. We indeed find this behavior for �Q ≥
100. For example, Fig. 1 shows ξK Z Dmn(0) as a function of |m − n|
for various values of �Q . Clearly for large enough �Q the points 
fall on top of each other, showing that the above scaling behavior 
holds. The results for Xmn(0) and ξ2

K Z Pmn(0) are also consistent 
with the above expectations.

In the fast quench regime �Q 	 1 the analysis of [17] leads to 
the following scaling relations for coincident correlators

Xnn ∼ (const) + (δt)2 Pnn ∼ (const) + (δt)0 Dnn ∼ δt (14)

We found this behavior for small �Q < 0.1. For correlation func-
tions Xmn, Pmn, Dmn , with the constant mass values subtracted, we 
expect these scalings to hold for large |m − n| < δt < m−1

0 , while 
for δt < |m −n| < m−1

0 they should become independent of δt [17]. 
We indeed see this behavior for sufficiently small �Q . This is most 
clearly seen for Dmn since the constant mass value of this quantity 
is exactly zero.

5. Scaling of entropies

Now that we have identified the slow and fast quench regimes, 
we go ahead and explore possible scaling properties of the en-
tanglement entropy S E E . This quantity is studied in detail at t =
0. (which is the middle of the quench) for both fast and slow 
quenches.

First, we consider the fast quench regime, �Q 	 1. We have 
computed the difference of the entanglement entropy at t = 0 from 
its value at t = −∞,

�S A = S(t = 0) − S(t = −∞) (15)

for various subsystem sizes l as a function of �Q . Fig. 2 shows the 
results for ξi = 600 as a function of �Q . When l is smaller than 
the initial correlation length ξi = m−1

0 this quantity depends on l
for a given �Q . However for l sufficiently large compared to ξi we 
find that the l-dependence saturates.

Namely, the data for large l/ξi fits to the following result for 
small �Q

�S = c �2
Q , (16)
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Fig. 2. (Color online.) �S A at t = 0 as a function of �Q for fast quench. All the data 
are for ξi = 600. Different colors correspond to different values of l. Red, Purple, 
Blue, Green and Orange have l = 5, 10, 100, 1000, 2000 respectively. The data for 
l = 1000, 2000 are almost on top of each other.

Fig. 3. (Color online.) �S A at t = 0 as a function of �Q for fast quench. The data 
are for l = 10 and l = 100. Different colors correspond to different values of ξi . Red, 
Purple, Blue, and Orange have ξi = 500, 600, 800, 1000 respectively.

Fig. 4. (Color online.) �S A at t = 0 as a function of �Q for fast quench. All the data 
are for l = 2000. We plotted this for different values of ξi . Red, Purple, Blue, and 
Orange have ξi = 500, 600, 800, 1000 respectively. However the data are basically 
on top of each other.

where the constant c is independent of l and ξi and approximately 
equal to 0.67.

In fact, for small l/ξi , �S A does depend on ξi for a given �Q
and l, as shown in Figs. 3 and 4. These are plots of �S A as a 
function of �Q for a given l, and different values of ξi . Fig. 3 has 
l = 100 with l

ξi
ranging from 0.1 to 0.2: the result has a clear 

dependence on ξi . Fig. 4 has l = 2000 with l
ξi

ranging from 2.0
to 4.0 – the data for various values of ξi are right on top of each 
other.

This result (16) is in agreement with expectations based on 
[17]. In these papers it was argued that the fast quench scaling 

Fig. 5. (Color online.) �S A at t = 0 as a function of �Q for slow quench. The data 
are for ξi = 40 and ξi = 50 for different values of l. However the points for these 
two different ξi are basically on top of each other. Green, orange, pink and grey 
correspond to l = 1000, 2000, 3000, 3500. The l = 3000 and l = 3500 values are too 
close to be distingushable.

for one point functions follow from the fact that linear response 
becomes a good approximation in this regime. Even though the 
scaling behavior of the two point function is complicated (as men-
tioned above), one would expect that the δt dependence of the 
matrix elements of C would still be governed by perturbation the-
ory. To lowest order this should be therefore proportional to m2

0. 
In the regime of quench rates we are considering, the only other 
scale is δt . Since the entanglement entropy is dimensionless, we 
expect that the leading answer is proportional to m2

0δt2 which is 
�2

Q . The fact that the result becomes independent of l is also ex-
pected since the measurement is made at t = 0.

It would be interesting to gain further insight by using the per-
turbation theory for entanglement entropy (as e.g. developed in 
[23]).

Let us now consider quench rates slow enough to ensure that 
the correlation functions discussed above display standard Kibble 
Zurek scaling. Fig. 5 shows S E E as a function of �Q for a given m0
various values of subsystem size l.

For large enough l we therefore find that �S A is independent 
of l and fits the relation

�S A = (constant) + 1

6
log(�Q ) (17)

The constant in (17) is roughly 0.3. This result is consistent with 
the expectations from Kibble Zurek scenario. More precisely, the 
state of the system at t = 0 is fairly close to the instantaneous 
ground state at t = −tK Z , i.e. the ground state of the system with 
a fixed (time independent) correlation length ξK Z . For such a sys-
tem the entanglement entropy should behave as 1

3 log(ξK Z ), inde-

pendent of l for l > ξK Z . Since ξK Z = ξi
√

�Q , this is 1
3 log(ξi) +

1
6 log(�Q ). On the other hand, S E E (t = −∞) is ground state en-
tanglement entropy of the system at a fixed correlation length ξi
and therefore behaves as 1

3 log(ξi) for l 
 ξi . Thus the KZ scenario 
predicts that when �S A is expressed as a function of �Q , the de-
pendence on ξi should cancel – which is exactly as we find.

In conclusion, we have calculated the entanglement entropy of 
a subsystem in a harmonic chain in the presence of an exactly 
solvable mass quench and examined the dependence of this quan-
tity at the middle of the quench on the quench rate. Our nonlinear 
quench protocol asymptotes to constant values at initial and fi-
nal times: in this respect it differs significantly from the kind of 
protocols most commonly studied in the literature, e.g. couplings 
which behave linearly in time. For quench rates which are fast 
compared to the initial mass (but slow compared to the lattice 
scale) our results show, for the first time, that the fast quench 
scaling established for correlation functions in [17] extend to non-
local quantities like entanglement entropy. For quench rates slow 
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compared to the initial mass, our results are consistent with the 
predictions of Kibble–Zurek scenario, and with earlier results in 
the 1d Ising model.
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