Ground-State Tuning of Metal-Insulator Transition by Compositional Variations in BaIr\(_{1-x}\)Ru\(_x\)O\(_3\) (0 ≤ \(x\) ≤ 1)

Shujuan Yuan
University of Kentucky, shujuan.yuan@uky.edu

Kamal H. Butrouna
University of Kentucky, kamal.but@uky.edu

Jsaminka Terzic
University of Kentucky, jasminka.terzic@uky.edu

Hao Zheng
University of Kentucky, hao.zheng@uky.edu

Saicharan Aswartham
University of Kentucky, s.aswartham@uky.edu

See next page for additional authors

Click here to let us know how access to this document benefits you.
Follow this and additional works at: https://uknowledge.uky.edu/physastron_facpub

Part of the Condensed Matter Physics Commons

Repository Citation
Yuan, Shujuan; Butrouna, Kamal H.; Terzic, Jasminka; Zheng, Hao; Aswartham, Saicharan; DeLong, Lance E.; Ye, Feng; Schlottmann, P.; and Cao, Gang, "Ground-State Tuning of Metal-Insulator Transition by Compositional Variations in BaIr\(_{1-x}\)Ru\(_x\)O\(_3\) (0 ≤ \(x\) ≤ 1)" (2016). Physics and Astronomy Faculty Publications. 445.
https://uknowledge.uky.edu/physastron_facpub/445

This Article is brought to you for free and open access by the Physics and Astronomy at UKnowledge. It has been accepted for inclusion in Physics and Astronomy Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Ground-State Tuning of Metal-Insulator Transition by Compositional Variations in BaIr$_{1-x}$Ru$_x$O$_3$ ($0 \leq x \leq 1$)

Notes/Citation Information

©2016 American Physical Society

The copyright holder has granted permission for posting the article here.

Digital Object Identifier (DOI)
https://doi.org/10.1103/PhysRevB.93.165136

This article is available at UKnowledge: https://uknowledge.uky.edu/physastron_facpub/445
Ground-state tuning of metal-insulator transition by compositional variations in BaIr\(_{1-x}\)Ru\(_x\)O\(_3\) (0 ≤ x ≤ 1)

S. J. Yuan,\(^1\)* K. Butrouna,\(^1\) J. Terzic,\(^1\) H. Zheng,\(^1\) S. Aswartham,\(^1\) L. E. DeLong,\(^1\) Feng Ye,\(^2\) P. Schlottmann,\(^3\) and G. Cao\(^1,\)^\(^1\)

\(^1\)Department of Physics and Astronomy, Center for Advanced Materials, University of Kentucky, Lexington, Kentucky 40506, USA
\(^2\)Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
\(^3\)Department of Physics, Florida State University, Tallahassee, Florida 32306, USA

(Received 9 October 2015; revised manuscript received 23 March 2016; published 25 April 2016)

Hexagonal BaIrO\(_3\) is a magnetic insulator driven by the spin-orbit interaction (SOI), whereas BaRuO\(_3\) is an enhanced paramagnetic metal. Our investigation of structural, magnetic, transport, and thermal properties reveals that substitution of Ru\(^{4+}\) (4\(d^4\)) ions for Ir\(^{4+}\) (5\(d^5\)) ions in BaIrO\(_3\) reduces the magnitudes of the SOI and a monoclinic structural distortion and rebalances the competition between the SOI and the lattice degrees of freedom to render an evolution from a magnetic insulating state to a robust metallic state. The central findings of this paper are as follows: (1) light Ru doping (0 < x ≤ 0.15) prompts simultaneous, precipitous drops in both the magnetic ordering temperature \(T_N\) and the electrical resistivity, and (2) heavier Ru doping (0.41 ≤ x ≤ 0.9) induces a robust metallic state without any long-range magnetic order. All results suggest a critical role of the lattice degrees of freedom in determining the ground state in the heavy transition-metal oxides.

DOI: 10.1103/PhysRevB.93.165136

I. INTRODUCTION

A unique feature of the 5\(d\) iridates is that a strong spin-orbit interaction (SOI) competes vigorously with Coulomb interactions, noncubic crystalline electric fields, and Hund’s rule coupling [1–5]. The relative strengths of these interactions stabilize new exotic ground states that provide a fertile ground for studying new physics. In particular, it is now recognized that strong SOI can drive novel narrow-gap Mott insulating states in iridates. The SOI is a relativistic effect that is proportional to \(Z^2\) (Z is the atomic number), is approximately 0.4 eV in the iridates (compared to ~20 meV in 3\(d\) materials), and splits the \(t_{2g}\) bands into states with \(J_{\text{eff}} = 1/2\) and \(J_{\text{eff}} = 3/2\), the latter having lower energy. Since the Ir\(^{4+}\) (5\(d^5\)) ions provide five \(5d\) valence electrons, four of them fill the lower \(J_{\text{eff}} = 3/2\) bands, and one electron partially occupies the \(J_{\text{eff}} = 1/2\) band in which the Fermi level \(E_F\) resides. The \(J_{\text{eff}} = 1/2\) band is so narrow that even a reduced \(U\) (~0.50 eV due to the extended nature of 5\(d\)-electron orbitals) is sufficient to open a gap (~0.62 eV) that induces a novel insulating state, which is contrary to expectations based upon the relatively large unsplit 5\(d\) bandwidth [1–3,6].

Adopting a distorted hexagonal structure with both face-sharing and corner-sharing IrO\(_6\) octahedra, BaIrO\(_3\) is particularly unique in that it exhibits a simultaneous onset of weak ferromagnetic transition due to a canted antiferromagnetic structure and charge-density wave (CDW) orders with Néel temperature \(T_N = 183\) K, comparable to that of other iridates, such as 240 K for Sr\(_2\)IrO\(_3\) [7] and 285 K for Sr\(_2\)Ir\(_2\)O\(_7\) [8], and a temperature-driven transition from a bad metal to an insulating ground state [9–11]. The ground state of BaIrO\(_3\) is extremely sensitive to lattice contractions that can be tuned by light doping or the application of hydrostatic pressures [4,12,13]. The extraordinary delicacy of the ground state in BaIrO\(_3\) implies a critical balance among orbital, electronic, and lattice degrees of freedom [4,14]. The hexagonal structure of BaIrO\(_3\) is similar to that of nine-layered rhombohedral BaRuO\(_3\), which exhibits a crossover from metallic to insulating behavior and enhanced paramagnetism with decreasing temperature [15,16]. However, a monoclinic distortion extant in BaIrO\(_3\) at room temperature and 90 K generates twisting and buckling of the cluster trimers (see Fig. 1) that give rise to two one-dimensional (1D) zigzag chains along the \(c\) axis and a two-dimensional layer of corner-sharing IrO\(_6\) octahedra on the \(ab\) plane [9,12,17–19].

Although BaIrO\(_3\) and BaRuO\(_3\) have similar structures, they exhibit sharply contrasting physical properties, which underscore the critical role SOI (~0.4 eV for iridates and ~0.15 eV for ruthenates) [3], and the lattice degrees of freedom can play in determining the ground state in iridates. In this paper, substituting Ru\(^{4+}\) (4\(d^4\)) for Ir\(^{4+}\) (5\(d^5\)) in single-crystal BaIr\(_{1-x}\)Ru\(_x\)O\(_3\) (0 ≤ x ≤ 1) reduces the magnitude of the SOI, the structural distortions, and adds holes to the \(t_{2g}\) bands. The overall effect of Ru doping is to lower \(E_F\) and move the system away from the Mott instability toward a more robust metallic state. The emerging metallic state with delocalized electrons also accompanies a decrease in \(T_N\).

II. EXPERIMENT

The single crystals of BaIr\(_{1-x}\)Ru\(_x\)O\(_3\) were grown by conventional flux methods similar to earlier reports [9,15] using BaCl\(_2\) as a self-flux. Crystals were grown in platinum crucibles using IrO\(_2\) (99.98%, Alfa Aesar), RuO\(_2\) (99.98%, Alfa Aesar), BaCO\(_3\) (99.99%, Alfa Aesar), and anhydrous BaCl\(_2\) (99.5%, Alfa Aesar). Starting powders were placed in a Pt crucible with a Pt lid, and this assembly was then put in an alumina crucible with a cover. The mixtures were heated up to 1480 °C and then cooled to 1350 °C at a rate of 5 °C per hour before cooling down to room temperature. The ratio of the sample to flux remains at 1:8 throughout the entire series of BaIr\(_{1-x}\)Ru\(_x\)O\(_3\). The crystals have a hexagonal surface and a visible layered texture along the \(c\) axis as
The atomic parameters for BaIr1 data were collected after a field cooling procedure at the top and bottom octahedra of the trimers and the schematic of the parameters and interatomic distances are smaller than 0.1%. The inset in (a) shows a representative single crystal of BaIr1 with (a) 0 ≤ x ≤ 0.15 and (b) 0.42 ≤ x ≤ 1. The data were collected after a field cooling procedure at μ0H = 0.1 T. The inset in (a) shows a representative single crystal of BaIr1-xRu1-xO3 with x = 0. The inset in (b) shows an enlarged χc(T) for x = 0.15.

III. RESULTS AND DISCUSSION

The two end members BaIrO3 and BaRuO3 both have nine-layer rhombohedral phases with different space groups as shown in Figs. 1(a) and 1(b). The C2/m(12) space group of BaIrO3 features three face-sharing IrO6 octahedra forming Ir3O12 trimers that are corner and face shared via IrO6 octahedra (containing Ir1 and Ir3 sites) to form 1D chains along the c axis [12,16–19] [see Fig. 1(a)]. A monoclinic distortion generates twisting and buckling of the trimers (tilted ~12° relative to each other), which gives rise to two 1D zigzag chains along the c axis and a two-dimensional layer of corner-sharing IrO6 octahedra on the ab plane. Substituting Ru4+ for Ir4+ preserves the monoclinic structure in the entire doping range (x ≤ 0.90) except for x = 1 as shown in Table I. It results in a nearly uniform reduction in lattice parameters a-c axes and the unit-cell volume V. This behavior is expected because the ionic radius of Ru4+ (0.620 Å) is slightly smaller than that of Ir4+ (0.625 Å). In addition, the Ir/Ru-O-Ir/Ru bond angle θ increases linearly with increasing Ru concentration x and eventually reaches 180° for x = 1 (i.e., BaRuO3), indicating a significantly less distorted lattice. BaRuO3 or x = 1 exhibits a similar crystal structure with the R3̅m (166) space group as shown in Fig. 1(b). Three RuO6 octahedra share faces in a partial chain, facilitating direct Ru-Ru d-orbital interactions between the octahedra. Each of these triple units or trimers of the octahedra shares corners with its neighbors along the hexagonal axis via nearly 180° bond angles that favor superexchange coupling [Fig. 1(b)].

Ru doping induces pronounced changes in a wide range of physical properties of single-crystal BaIr1-xRu1-xO3. Representative data for the c-axis magnetic susceptibility χc(T) that shows the weak magnetic transition at Tc is depressed from 183 K for x = 0 to 145 K for x = 0.04 and vanishes for x ≥ 0.41 is presented in Fig. 2.

The magnetic anisotropy also decreases with Ru additions as shown in Fig. 3. Magnetic anisotropy is in general a result of SOI; Ru doping weakens the SOI, therefore, leading to a smaller magnetic anisotropy. Furthermore, Hund’s rule coupling competes with the SOI and thus weakens the relative strength of the SOI. With increasing x, the c-axis susceptibility χc(T) becomes relatively stronger and larger than the basal-plane susceptibility χab(T) [see Figs. 3(b) and 3(c)]. This change suggests a spin flop from the basal plane to the c axis due to Ru doping. For x = 1, the basal-plane χab(T) is larger than χc(T) again [see Fig. 3(d)]. Similar phenomena were also observed in Ca2Ru1−xIr1-xO4 [22] and Sr2Ir1−xRu1-xO4 [23]. This behavior could be due to the strong interaction between Ru 4d and Ir 5d electrons.

It is already established that the bond angle θ is critical to the electronic and magnetic structures of iridates [4]. As shown in Fig. 4(a), θ increases linearly with increasing x and...
TABLE I. The crystal structure and refinement details of BaIr_{1-x}Ru_{x}O_{3} at 90 K for x = 0, 0.10, 0.63, and 1 and at 240 K for x = 0.82 and 0.90. The diffractometer is a Nonius Kappa CCD, and the absorption correction is a multiscan SADABS. The Ir/Ru-O_{2}-Ir/Ru bond angle is defined in Fig. 1.

<table>
<thead>
<tr>
<th>x = 0</th>
<th>x = 0.10</th>
<th>x = 0.63</th>
<th>x = 0.82</th>
<th>x = 0.90</th>
<th>x = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(90 K)</td>
<td>(90 K)</td>
<td>(90 K)</td>
<td>(240 K)</td>
<td>(240 K)</td>
<td>(90 K)</td>
</tr>
</tbody>
</table>

Crystal data

- Crystal system, space group
 - Monoclinic, C12/m1(12)
 - Monoclinic, C12/m1(12)
 - Monoclinic, C12/m1(12)
 - Monoclinic, C12/m1(12)
 - Trigonal, R\bar{3}m (166)

- a-c (Å)

- β (deg) 103.411(1), 103.3402(9), 102.8574(9), 102.939(5), 102.882(4), NA

- V (Å³) 849.10(6), 842.25(3), 824.57(3), 838.28(8), 837.26(7), 615.40(3)

- Z 12, 12, 12, 12, 12, 9

- Bond angle (deg) 161.671(1), 163.678(0), 174.296(1), 175.1(3), 176.1(1), 180.0

Data collection

- Number of measured, independent, and observed [I > 4\sigma(I)] reflections
 - 6066,398,350, 7075,396,369, 7210,398,353, 14459,1643,1525, 14071,1769,1633, 7256,401,398

- R_{int} 0.021, 0.031, 0.035, 0.027, 0.038, 0.025

- R[F^2 > 4\sigma(F^2)] 0.016,0.035,1.05, 0.02,0.049,1.15, 0.025,0.069,1.17, 0.067,0.1847,1.085, 0.0720.205,1.024, 0.02,0.035,1.09

- wR[F^2], S 0.016,0.035,1.05, 0.02,0.049,1.15, 0.025,0.069,1.17, 0.067,0.1847,1.085, 0.0720.205,1.024, 0.02,0.035,1.09

- R_{int} 0.021, 0.031, 0.035, 0.027, 0.038, 0.025

eventually reaches an ideal 180° for x = 1. The increase in \(\theta \) directly enhances the electron hopping and favors a more metallic state with a concurrent decrease in \(T_N \) [see Fig. 4(b)]. Indeed, the evolution from the insulating to the itinerant state upon Ru doping is clearly illustrated in the electrical resistivity \(\rho(T) \). For x = 0, both the ab plane and the c axis \(\rho_{ab}(T) \) and \(\rho_{c}(T) \) exhibit a sharp kink at \(T_N = 183 \) K, consistent with previous results in which the energy gap is estimated to be 0.1 eV [9,17]. With Ru doping, both \(\rho_{ab}(T) \) and \(\rho_{c}(T) \) decrease rapidly (see Fig. 5). It is noted that the metallic behavior at higher temperatures for x = 0.04 [see Fig. 5(b)] does not seem to follow the general trend displayed by other compositions although the behavior is highly reproducible.

![FIG. 3. The magnetic susceptibilities \(\chi(T) \) on the ab plane and along the c axis for representative compositions (a) x = 0, (b) x = 0.10, (c) x = 0.82, and (d) x = 1, respectively. The magnetization was measured after field cooling at \(\mu_0H = 0.1 \) T.](image)

![FIG. 4. The Ru concentration \(x \) dependence of (a) the Ir/Ru-O_{2}-Ir/Ru bond angle \(\theta \) and (b) \(T_N \). The inset: schematic of the Ir/Ru-O_{2}-Ir/Ru bond angle \(\theta \). Note that \(\theta \) increases linearly with increasing \(x \).](image)
FIG. 5. The temperature dependence of the resistivity $\rho(T)$ for representative compositions (a) $x = 0$, (b) $x = 0.04$, (c) $x = 0.15$, (d) $x = 0.41$, (e) $x = 0.63$, (f) $x = 0.82$, (g) $x = 0.90$, and (h) $x = 1$. The vertical arrows indicate the kink that corresponds to the weak magnetic transition at $T = T_N$. The origin of this brief occurrence of the metallic state is yet to be understood. Nevertheless, dilute Ru substitutions for Ir result in a reduced $\rho(T)$ and an emerging metallic state for $x > 0.15$. For $x = 1$ or BaRuO$_3$, a broad upturn in $\rho_{ab}(T)$ at low temperatures might be a result of a pseudogap formation and 1D-CDW fluctuations according to Ref. [16].

The temperature dependence of the specific heat $C(T)$ for various x’s is given in Fig. 6(a). Fitting the data to $C(T) = \gamma T + \beta T^3$ for $7 < T < 17$ K yields the Sommerfeld coefficient γ for the electronic contribution to $C(T)$ [see Fig. 6(b)], which serves as a measure of the electronic density of states at the Fermi level $N(E_F)$ and the effective mass of the carriers. There is a substantial increase in γ with dilute Ru concentration; in particular, γ reaches 11.75 mJ mol$^{-1}$ K$^{-2}$ for $x = 0.04$ and 15.09 mJ mol$^{-1}$ K$^{-2}$ for $x = 0.15$, compared to $\gamma = 2.34$ mJ mol$^{-1}$ K$^{-2}$ for the parent compound ($x = 0$). The γ for $0.04 \leq x \leq 0.15$ in which the metallic state is not fully developed is unexpectedly high, and this is likely due to spin fluctuations existent in the system. Nevertheless, $N(E_F)$ and γ eventually decrease with x as shown in Fig. 6(b). In the case of BaRuO$_3$, the smaller values reflect pseudogap formation due to the CDW instability [16].

IV. CONCLUSIONS

We have investigated the structural, magnetic, transport, and thermal properties of BaIr$_{1-x}$Ru$_x$O$_3$. Ru doping rebalances the competition among the SOI, electron correlations, and the lattice degrees of freedom to generate a metallic state for $x > 0.15$. The Ru doping alters the relative strength of the SOI that dictates the ground state, which, in turn, affects the band gap near E_F. Unlike the situation in Sr$_2$IrO$_4$ that features an unconventional correlation between the magnetic transition and the charge gap, the evolution of the ground state in BaIr$_{1-x}$Ru$_x$O$_3$ appears to indicate a strong coupling between the magnetic order and the metal-insulator transition. All results suggest the critical role of lattice degrees of freedom that, along with the SOI, dictate the ground state of the heavy transition-metal oxides.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation via Grant No. DMR-1265162 (G.C.) and Department of Energy (BES) through Grants No. DE-FG02-98ER45707 (P.S.) and No. DE-FG02-97ER45653 (L.E.D.).

