Development of Barley Cultivars for Animal Forage in Korea

Ouk-kyu Han
National Institute of Crop Science, Korea

Tae-il Park
National Institute of Crop Science, Korea

Tae-hwa Song
National Institute of Crop Science, Korea

Dea-wook Kim
National Institute of Crop Science, Korea

Yu-yong Lee
National Institute of Crop Science, Korea

See next page for additional authors

Follow this and additional works at: https://uknowledge.uky.edu/igc

Part of the Plant Sciences Commons, and the Soil Science Commons

This document is available at https://uknowledge.uky.edu/igc/22/1-15/10

The 22nd International Grassland Congress (Revitalising Grasslands to Sustain Our Communities) took place in Sydney, Australia from September 15 through September 19, 2013. Proceedings Editors: David L. Michalk, Geoffrey D. Millar, Warwick B. Badgery, and Kim M. Broadfoot

Publisher: New South Wales Department of Primary Industry, Kite St., Orange New South Wales, Australia

This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Presenter Information
Ouk-kyu Han, Tae-il Park, Tae-hwa Song, Dea-wook Kim, Yu-yong Lee, Ja-hwan Ku, Jong-jin Hwang, Chung-guk Kim, and Young-up Kwon

This event is available at UKnowledge: https://uknowledge.uky.edu/igc/22/1-15/10
Development of barley cultivars for animal forage in Korea

Han Ouk-kyu, Park Tae-il, Song Tae-hwa, Kim Dea-wook, Lee Yu-yong, Ku Ja-hwan, Hwang Jong-jin, Kim Chung-guk, and Kwon Young-up

Contact email: okhan98@korea.kr

Keywords: Winter season, forage barley, production, Korea.

Introduction
In Korea, the domestic consumption of barley as a cereal crop has been decreasing since the 1980s. It has been considered that crop production in the winter-season rice fields could enhance the global competitiveness of domestic livestock industry by providing better quality fodder to livestock and enhancing field use rate. Therefore, the purpose of barley cultivation for cereal food production has been recently replaced by the production of the barley for forage use. Consequently, the area of barley cultivation for forage is markedly increasing in Korea. While any type of barley can be used as forage for feeding cattle, whole crop barley delivers a higher dry matter yield than conventional feed barley. This paper described the present state of forage barley cultivars developed in Korea.

Methods
All of the cultivars were developed by the breeding team at National Institute of Crop Science (NICS), Rural Development Administration (RDA) in 2002 to 2012. The cross combinations for F1 production were as follows: Youngyang, between cultivar Bunong and an elite pedigree Miryang55; Sunwoo, a germplasm line P71523 and a pedigree Suweon234; Sangwon, a germplasm line 72sel and a breeding line SB86659-B-YB-22; Soman, a breeding line SB79124 and SB77189; Wooho, F1 [Olbori // F6 (SB77011) / F5 (Bengei // Hagane / Bunong)] / F1 [(Y7213 / SD607 / CM67 / Miryang12)] and F1 (1012.2 / IB65 // Olbori) / (Samheung // Suwon18 / Kangbori); Yuyeon, a pedigree Suwon311 and SB86648; Dami, a germplasm line BGS60 and cultivar Kangbori; Younghan, F1(YB3433-3B-5 / YB3135-3B-2-3) and an elite breeding line YB3135-3B-2-3, Youho, a pedigree Suwon339 and Suwon355; Youhan, a pedigree Milyang100 and an elite an breeding line SB951050-B-B-B-77-0-P-3; and Nokyang, cultivar Nakyoungbori and an elite breeding line SB77368-B-145. After preliminary and advance yield testing for 2 years, the promising lines were subsequently evaluated for earliness (heading date) and forage yield during 3 years in several parts of the country, and each of the cultivars finally named were released to farmers of Korea.

Results
The characteristics of barley cultivars required for whole crop silage are not the same as those required for cereal food. For example high biomass of whole plant including leaves, culms, and grain is more important than grain weight compared to the cultivars grown for food (Sakai et al. 2003). We have developed forage barley cultivars with cattle’s favourite characters (Choi et al. 2007a; Karren et al. 1994) such as smooth awn, hooded spike, and auricleless types. Cultivar Yuyeon (Choi et al. 2007 a), Youho (unpublished) and Youhan (unpublished) have hood type spike. Cultivar Wooho (Kim et al. 2007) and Dami (Park et al. 2009) have smooth awn and auricleless type plant, respectively. We also developed rough awn type barley cultivars, such as Yongyang (Park et al. 2008), Sunwoo (Park et al. 2008), Sangwon (Park et al. 2008), Song (Choi et al. 2007 b), Younghan (Park et al. 2011), and Nokyang (unpublished), showing early-maturing and high-yielding. They yielded about 12 to 10 t/ha of dry matter yield (average 33 t/ha in fresh matter yield, Table 1), and were evaluated for forage quality which showed a higher silage quality (TDN, ADF, NDF, CP, etc.) for whole crop barley use. Based on these results, it is concluded that barley with smooth awn, hooded, and auricleless could be suitable sources in breeding for whole crop forage use.

Conclusion
We have developed 11 barley cultivars with ruminant-palatable plant characters, such as smooth awn, hooded spike and auricleless, and high biomass as a whole crop as compared with cereal barley. These cultivars have advantages in forage or total digestible nutrients (TDN) yield per unit area. Moreover, it is very economic in land utilization because forage barley is produced in a cropping system following rice during the winter season. The forage barley cultivation requires heavy fertilization to obtain higher yield, it is a break crop, but negatively affects rice grain quality due to increasing protein content. Therefore, improved cultivation technologies are needed to overcome the problem of degrading rice grain quality by residual fertilizer after forage barley cultivation in paddy fields. In the near future, we also plan to develop forage barley cultivars with awn-less,
Table 1. Average agronomic characteristics and forage yield of forage barley cultivars in Korea. Data collected from 4 to 7 different locations for 3 years.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Released year</th>
<th>Heading date</th>
<th>Fresh yield (t/ha)</th>
<th>DM¹ yield (t/ha)</th>
<th>TDN² (%)</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olbori</td>
<td>-</td>
<td>April 27</td>
<td>-</td>
<td>9.9</td>
<td>63.0</td>
<td>Cereal barley</td>
</tr>
<tr>
<td>Youngyang</td>
<td>2002</td>
<td>May 1</td>
<td>37.5</td>
<td>11.7</td>
<td>65.5</td>
<td>Rough awn</td>
</tr>
<tr>
<td>Sunwoo</td>
<td>2002</td>
<td>May 8</td>
<td>36.0</td>
<td>11.0</td>
<td>61.8</td>
<td>Rough awn</td>
</tr>
<tr>
<td>Sangwon</td>
<td>2004</td>
<td>April 24</td>
<td>36.0</td>
<td>11.8</td>
<td>63.7</td>
<td>Rough awn</td>
</tr>
<tr>
<td>Wooho</td>
<td>2005</td>
<td>April 29</td>
<td>36.1</td>
<td>11.0</td>
<td>65.9</td>
<td>Smooth awn</td>
</tr>
<tr>
<td>Yuyeon</td>
<td>2006</td>
<td>April 27</td>
<td>33.5</td>
<td>10.8</td>
<td>66.4</td>
<td>Hooded spike</td>
</tr>
<tr>
<td>Soman</td>
<td>2006</td>
<td>April 23</td>
<td>31.7</td>
<td>10.6</td>
<td>67.9</td>
<td>Rough awn</td>
</tr>
<tr>
<td>Dami</td>
<td>2007</td>
<td>April 30</td>
<td>32.9</td>
<td>12.0</td>
<td>66.4</td>
<td>Auricleless</td>
</tr>
<tr>
<td>Younghan</td>
<td>2008</td>
<td>April 26</td>
<td>33.4</td>
<td>12.0</td>
<td>67.4</td>
<td>Rough awn</td>
</tr>
<tr>
<td>Youho</td>
<td>2008</td>
<td>April 24</td>
<td>30.9</td>
<td>11.6</td>
<td>69.2</td>
<td>Hooded spike</td>
</tr>
<tr>
<td>Youhan</td>
<td>2012</td>
<td>June 2</td>
<td>36.9</td>
<td>12.6</td>
<td>67.3</td>
<td>Hooded spike</td>
</tr>
<tr>
<td>Nokyang</td>
<td>2012</td>
<td>June 4</td>
<td>37.3</td>
<td>11.7</td>
<td>68.5</td>
<td>Rough awn</td>
</tr>
</tbody>
</table>

¹DM = Dry matter, ²TDN = Total digestible nutrients. Sowing and harvest were mid-October and the end of May (early yellow stage), respectively.

high biomass and lysine content, good silage quality such as high sugar content, and solid and brittle stem types.

References


