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ABSTRACT OF DISSERTATION 
 

 

 

STRAIN CONTROL OF PIEZOELECTRIC MATERIALS  
USING AN APPLIED ELECTRON FLUX 

 

This dissertation examines the response of piezoelectric material strain to 

electron flux influence. A plate of PZT5h is prepared as the specimen. The positive 

electrode is removed, and the negative electrode is connected to a power amplifier. 

Sixteen strain gages are attached as the strain sensor. The specimen is placed in a 

vacuum chamber, then the positive side is illuminated by electron beam. 

The characteristic of the static strain response is predicted by deriving the 

equation strain/deflection of the plate. Two methods are used, the Electro-Mechanical 

Equations and numerical analysis using Finite Element Method.  

The settings of the electron gun system (energy and emission current), along 

with the electric potential of the negative electrode (back-pressure), are varied to 

examine piezoelectric material responses under various conditions. Several material 

characteristics are examined: current flow to and from the material, time response of 

material strain, charge and strain distribution, and blooming. 

Results from these experiments suggest several conditions control the strain 

development in piezoelectric material. The current flow and strain on the material is 

stable if the backpressure voltage is positive. As a comparison, the current flow is small 

and the strain drifts down if the backpressure voltage is significantly negative.  

 

 



 

 

The material needs only 1 second to follow a positive step in backpressure 

voltage, but needs almost 1 minute to respond to a negative step backpressure change. 

This phenomenon is a result of secondary electron emission change and the energy 

transfer from the primary electrons to the local electrons on the material. The time 

needed to achieve steady state condition is also a dependent of emission current.  

After a period of time the primary electron incidence induces strain throughout 

the 7.5-cm-by-5-cm plate despite the fact that the beam diameter is only 1 cm2. One 

possibility is blooming due to electron movement under intense electric fields in the 

dielectric material.  

 

KEYWORDS: piezoelectric, electron flux, quasi-static, strain, control 
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CHAPTER ONE 
INTRODUCTION 

 
 

Piezoelectric Phenomenon 
 

Piezoelectric materials are used extensively as actuators in many aerospace 

structures. The word �piezoelectric� comes from greek term �piezo� meaning 

�pressure�[1]. This material can convert mechanical energy that distorts the material into 

electrical energy, and vice versa. One simple argument about this mutual aspect is the 

lack of a center of symmetry in the crystal structure. If a structure with center of 

symmetry is exposed to mechanical stress, the dimension changes but no net electric 

dipole moment is created. If a structure without center of symmetry is exposed to the 

same stress, the center of positive and negative charge no longer coincide, and a dipole 

moment is produced. 
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Figure 1.1. Material with center of symmetry 
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Figure 1.2. Material without center of symmetry 
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Other properties common to these materials are a high dielectric resistance, i.e., 

it is an excellent insulator, and some polymeric piezoelectric materials posses a long 

molecular chain structure having an unbalanced electric charge at the ends of the 

chains. The positive charge at one end of the chain will attract a free electron while the 

negative charge at the other end will repel free electrons.  

Because the material is an excellent insulator, electrons are free to move only at 

the boundaries of the material. The unbalanced charge from the bipolar molecules will 

create a net deficiency of free electrons at one surface of the structure and a surplus of 

free electrons at the other surface. Generally the surfaces are coated with a conductive 

material or the material is mounted between conductors to form what is essentially a 

capacitor having a bipolar center.  

 

 

 

 

 

 

 

 

           

 
Figure 1.3. Space structures: Hubble Telescope and International Space Station 
 

The goal of this research is to explore an alternative method for applying 

electrical control signals to piezoelectric materials. The classical �capacitor� approach 

relies upon two plates maintained a different electric potential levels. The electric field 

created between the plates strains the material by changing the dipole moment. In this 

research control charges are applied to piezoelectric materials by applying an electron 

flux to the bare surface of the piezoelectric material. 

The main advantage of using electron flux to stimulate strain in piezoelectric 

materials is the potential for high spatial resolution and flexible actuation area. High 

spatial resolution means that the actuation area can be made as small as possible by 
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focusing the electron beam. Flexible actuation area means that the actuation area can 

be of any shape (round, rectangular, etc.) through beam scanning.  

 

Secondary Electron Emission Mechanism 

 

When an electron hits the surface of a piece of piezoelectric material there are a 

number of interactions that can take place. Ganachaud and Mokrani [3], Attard and 

Ganachaud [5] described the interactions as electron-electron collision, electron-phonon 

(light particle) collision (though it is more likely that a phonon is generated as a product 

of this interaction), electron-solid elastic collision, polarization and polaronic effects. A 

polaron is a conducting electron in an ionic crystal together with the induced polarization 

of the surrounding lattice. All of these interactions allow energy transfer, with the 

incoming electron as an energy donor and the electrons on the material as the recipient. 

The latter then are excited to the next energy band, and can eventually become a free 

electron known as �secondary electron�.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Plot of secondary electron yield against incoming energy 
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The following explanation of the secondary electron yield can be found in Hajo 

Bruining�s book [2]. The chart of secondary electron yield versus energy at primary 

electrons can be seen in Figure 1.4. When an incoming electron with energy < EI (as 

shown in Figure 1.4.) hits the dielectric surface, it will stick on the plate (since the 

secondary yield <1), making the plate more negative. So the next incoming electron will 

come with reduced speed, and also with reduced energy. So the electron beam energy 

moves to the left, and at some point it will die out. If the electrons have energy between 

EI and EII, the secondary electron yield >1, so they will kick out more and more 

electrons out of the plate, making the plate more positive if there is a collector present to 

attract the freed secondary electrons. So the next incoming electrons will hit the plate 

with higher speed, thus higher energy. So the electron energy moves to the right, 

passing through EII point. As soon as it exceed EII, the same phenomenon takes place 

when the energy < EI. So as long as the electron energy is greater than EI, it will reach 

EII. EII is the stable point. 

Ganachaud and Mokrani [3] presented a thorough, detailed analysis of electron-

material interactions. Also, some influences of internal electric field and surface 

potential barrier are discussed. These effects were also taken into account in Monte 

Carlo simulations, which are discussed in detail by Ganachaud, Attard and Renoud [4]. 

Ganachaud and Mokrani [3], Ganachaud, Attard and Renoud [4] built a model of 

space charge build-up in an insulating target under electron bombardment. Electron-

insulator interaction was evaluated by considering electron-electron, electron-phonon, 

and elastic collisions. The charging of the plate was modeled using Monte Carlo 

simulation. Figure 1.5 shows the results of one simulation. Note the expansion of 

charge across the surface (0-axis) and into the material as a function of primary electron 

number. 
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Figure 1.5. Charge blooming from Monte Carlo Simulation by Attard and Ganachaud [5] 
 a. 1000, b. 5000, c. 10000, d. 15000 electrons 

  

The results, taking into account some parameters such as primary electron 

energy, electron traps, surface potential, and external electrostatic fields, were 

discussed extensively by Attard and Ganachaud [5], and Renoud et al [6]. Attard and 

Ganachaud [5] found out that as the target charge builds up, the potential at the surface 

and the secondary yield vary. The amplitude of the electrostatic field depends on the 

density of traps. For the energies considered, the target charged positively and the 

secondary electrons emitted at low energies could be attracted back to the surface. 

Renoud et al. [6] specifically examined in this effect and pointed out that the total 

secondary electron yield tends to unity and the surface potential stabilized at a low 

positive value, correlated with the explanation of Figure 1.4 presented by Hajo 

Bruining[2]. 

Charge build-up and distribution in the material is the main topic for Bibi, Lazurik 

and Rogov [7]-[9]. A probability method called the Trajectory Translation method, based 

on the new Monte Carlo method was developed to calculate charge and electric field 
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distribution on the materials. Bibi, Lazurik and Rogov [7] computed data examining 

charge profiles in thin materials. The charge distribution depended on energy of the 

primary electrons, atomic number and thickness of the materials investigated.  

Bibi, Lazurik and Rogov [8] used the Trajectory Translation method to simulate the 

charge deposition density of several materials with different thicknesses subjected to 

electron flux. An analytic expression for the charge deposition profiles based on what 

they got from the simulation results was developed. Using the same data, once again 

Bibi, Lazurik and Rogov [9] used the Trajectory Translation method to simulate the 

electric field distribution in the same materials. 

Nazarov [10] was interested in electron energy loss when electrons collide with the 

material. A semi-infinite solid model was used and the surface energy loss function was 

built. The analysis was based on the theory of inelastic electron scattering by surfaces 

of materials and took into account both the spatial dispersion of the dielectric response 

and the structure of the near-surface region. The energy loss function was expressed in 

terms of the dielectric function of the material. 

Gross et al. [11] explained the charge storage and transport in materials under 

electron flux and corona charge influence. The relationship between the current density 

of the beam and the electric field in the material was derived from Maxwell�s current 

equation.  

Schou [12] presented a thorough explanation on his paper about transport theory 

of electrons under electron flux influence. The energy and angular distribution and the 

yield of secondary electron for a random target utilizing Boltzmann transport equations 

were calculated. The liberated electrons of low energy were pointed out to be moving 

isotropically inside the target in the limit of high primary energy, as compared to the 

instantaneous energy of the liberated electrons. The connection between the spatial 

distribution of kinetic energy of the liberated electrons and the secondary electron 

current from solid was also derived. Boltzmann transport equations can be examined in 

further details in a paper by Rösler et al. [13], along with explanations of other electron-

solid interactions. 
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Electron Transport Through a Dielectric Solid 
 

When the primary electron hits plate, there are a number of interactions between 

the electron and the local particles (electron, phonon, atom) as is described by 

Ganachaud and Mokrani [3] and Ganachaud, Attard and Renoud [4]. This interaction 

induces energy transfer from the primary electrons to the local electrons.  

 

Figure 1.6. Electric field in piezoelectric material under electron flux influence 

 

 The primary electrons also shroud the positive surface of the plate with negative 

ions (electrons). This polarizes the material so that the negative charges (i.e. electrons) 

are stacked up on the positive surface, and the positive charges (i.e. holes) are 

gathered at the negative surface (electrode). An electric field is induced from the 

positive charges to the negatives, as is depicted on Figure 1.6. The constitutive 

relationship between the mechanical and electrical aspects of piezoelectric material is 

given by: 

  T = cS � eĒ               (1.1) 

  D = ∈ Ē + eS                   (1.2) 

 

The homogeneous electric field strength between positive and negative surface is given 

by [14]: 

Ē = ∈ 4πq = ∈  Ē v                            (1.3) 

+
+
+
+
+
+
+
+
+
+

-
-
-
-
-
-
-
-
-
-

e-beam

VpVb

E
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 where q  = surface charge density 

Ēv = electric field in vacuum 

  ∈  = ∈ r∈ o               (1.4) 

 ∈ r = relative dielectric constant 

 ∈ o = permitivity of vacuum = 8.85 x 10-12 F/m 

 

As discussed in detail in the previous subchapter, an electron can only move 

through the lattice in the material if its energy exceeds the potential energy barrier. This 

potential energy can be considered to be constant throughout the material.[15] In the 

absence of an external electric field, the probability that the electron flux will cause an 

ion (electron) to jump across a barrier is: 

 t

b
E
E

Ae*p
−

=                          (1.5) 

where Eb = energy barrier 

           Et = the total energy received from the interaction with primary electron 

           A = frequency factor, obtained from the probability of a jump caused by an 

average energy hPωo with respect to all probable energy 

          hP  = Planck constant (6.63 x 10-34 J.s) 

 

The electron flux causes a different polarity on both surfaces, thus induces an 

electric field. The total probability that an electron will travel in a direction to the field is 

given by: 

 







=

t

e*
t E

aqE*pp                         (1.6) 

where Ē = the electric field 

 qe = electron charge (1.6 x 10-19 C) 

 a = distance between lattice 
 
The electric polarity for one jump is ea. The current density is: 

  







==

t

e
e

*
t E

aqE*npaqnpj                        (1.7) 

 where n = density of electron 
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The conductivity of the material is determined by utilizing Ohm�s Law and Equation (1.7) 

above:  

  









=

Ε
=σ

t

22
e

E
aq*npj                     (1.8) 

 

The ionic mobility is given by: 

  σ = nqeµ                       (1.9) 

which leads to the mobility of the electron in the material as: 

  







=χ

t

2
e

E
aq*p                        (1.10) 

 

Figure 1.7. Electron movement in the opposite direction of the electric field. 

 

 Equation (1.10) suggests that despite the fact that piezoelectric material is a 

perfect insulator, there is a possibility that the electrons travel through the material. The 

electric field induces force on an electron with magnitude eΕ and in the opposite 

direction with the electric field [35], as is described in Figure 1.6. The elemental work 

done by the electric field through a displacement dL is eΕ.dL. To find the total work from 

A to B, integrate all the work contributions for all the infinitesimal segments. This leads 

to the following equation 

eB . . A

E
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  ∫−=
B

A
eAB dLEqW                   (1.11) 

The electric potential difference is derived from 

  
e

AB
AB q

WVV =−           (1.12) 

Substituting Equation (1.12) to Equation (1.11) leads to 

  ∫−=−
B

A
AB dLEVV                     (1.13) 

 

 The trajectory of the electron on the electric field is represented by Boltzmann 

Transport Equation. [16] The electrons in a material can be considered as a form of 

�cloud� with density ρ(k,r,t), where k is the wave vector, r is the position vector and t is 

time. The continuity equation has to be derived to find the actual motion of the electron 

in this cloud: 

  
coll

rk t
)r()k(

t








∂
ρ∂=ρ•∇+ρ•∇+

∂
ρ∂ &&               (1.14) 

Because of the independence of the variables, Equation (1.14) can be rewritten: 

  
coll

rk t
vk

t








∂
ρ∂=ρ∇•+ρ∇•+

∂
ρ∂ &              (1.15) 

  where v = r&  

 

 In the electron cloud argument, the mass density ρ can actually be replaced by 

the average occupancy f(k,r,t) of an electronic state. Equation (1.15) can be rewritten: 

  
coll

rk t
ffvfk

t
f









∂
∂=∇•+∇•+

∂
∂ &               (1.16) 

 

This is Boltzmann Transport Equation. This equation is based on classical motion, and 

is not expected to be valid when the external fields are too large. The right hand 

expression is an integral over the unknown function f(k,r,t), while the left-hand side 

contains the derivative of f(k,r,t).  
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Background on Piezoelectric Materials 
 

Studies concerning piezoelectric materials, especially studies about the material 

properties, are still conducted in order to have good understanding on its behavior.  

Studies have been conducted in control aspects, i.e. preliminary studies to use 

the material as actuators of smart structures. Batra et al. [17] investigated the optimum 

location of a given rectangular piezoceramic actuator that will require the minimum 

voltage to null the deflections of a simply supported rectangular linear elastic plate 

vibrating near one of its fundamental frequencies. The relationship between the voltage 

required and the length of its diagonal was investigated and derived. 

Ghosh and Batra [18] conducted research on shape control of plates using 

piezoceramic elements. A fiber-reinforced laminated composite plate with 4 small 

piezoceramic actuator attached on top surface are used for experimental sample, and 

the Galerkin formulation was used to calculate the parameters for the computer code. 

The piezoelectric actuators could be used to nullify the deflection of the plate. Two 

common quasistatic problems were taken into account: simply-simply supported and 

cantilever plate.  

Main, Nelson and Martin [19-20] demonstrated that strains in piezoelectric materials 

could be controlled through a combination of applied electron fluxes and potentials.  It 

was also shown the changes in structure remained after the input signals were 

removed, indicating that there is some potential for energy efficient static strain control 

in adaptive structures using this method. This explanation is strengthened by a paper by 

Nelson and Main [21]. 

Crawley and deLuis [22] constructed a model of static and dynamic behavior of 

segmented piezoelectric actuator under load influences, either bonded to an elastic 

structure, or embedded in a laminated composite. These models enable prediction of 

the response of the structure to a control signal, and permit the determination of optimal 

locations for actuator placement. The independence of the effectiveness of piezoelectric 

actuators from the size of the structure was demonstrated and various piezoelectric 
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materials (based on their effectiveness in transmitting strain to the substructure) were 

evaluated. 

Crawley and Lazarus [23] dealt with induced strain on isotropic and anisotropic 

plates subject to different loads. The equations relating the strains and the energy are 

derived, and some solutions are presented using Rayleigh-Ritz method.  

Lee and Moon [24] derived and examined experimentally the modal sensor or 

actuator relationship, and derived the one-dimensional modal equations experimentally. 

These equations showed that distributed piezoelectric sensors/actuators could be 

adopted to measure specific modes of one-dimensional plate or beam. A mode 1 and 2 

sensor for one-dimensional cantilever plate were constructed and tested to examine the 

applicability of the modal sensors/actuators. Tzou and Ye [25] examined its behavior 

under different steady-state temperature fields by means of finite element method. 

Gopinathan, Varadan and Varadan [26] developed a 3-dimensional complete field 

solution for active laminates based on a modal, Fourier series solution approach that 

was used to compute all the through-thickness electromechanical fields near the 

dominant resonance frequency of a sandwiched-beam plate. This solution was then 

used to verify the result from the most accepted finite element model for piezoelectric 

(classical laminate of first-order shear deformation theory). 

 

 
Purpose of the Research 
 

 A complete understanding of piezoelectric behavior under various electron flux 

conditions needs to be developed. This understanding can be achieved through several 

steps: 

- Obtaining the static and quasi-static characteristic of piezoelectric material under 

vacuum environment, exposed to electron flux, from experimental data. 

- Developing a theoretical understanding the electron-material interaction and process 

of mass-charge transfer on the contact area. 
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Outline 

 

Chapter I is comprised of introductory explanations of piezoelectric material 

characteristics, electron gun strain control, secondary electron emission, and several 

related previous developments. Chapter II consists of theoretical explanation of 

piezoelectric shape control. A brief explanation using Finite Element Method is 

presented. Chapter III shows the specimen, vacuum chamber and data acquisition 

system in detail. A preliminary experiment to determine the sensitivity of electron flux 

induced strain to location within the vacuum chamber is also conducted. Chapter IV is a 

presentation of the effect of electron flux on the current flowing through a piezoelectric 

plate. Chapter V is a presentation of piezoelectric strain results due to various excitation 

and backpressure conditions. Chapter VI is a discussion of the experiments.  
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CHAPTER TWO 
THEORY OF PIEZOELECTRIC RESPONSE UNDER ELECTRON FLUX INFLUENCE 

 

 

 In this chapter the strain and displacement distribution on piezoelectric material 

under electron flux influence is studied using two methods: Electro-mechanical 

equations developed by Tzou [27] and Finite Element Method. Both methods will be 

discussed to gain a clearer understanding of the state of strain in a rectangular 

piezoelectric plate due to externally applied electric fields.  

 

 

Piezoelectric Electro-mechanical Equations 
 

This method starts with a thin, isotropic and homogeneous shells of constant 

thickness with curvilinear surface coordinates α1, α2, α3, as is shown in Figure 2.1.  

 

 
 

Figure 2.1. Generic piezoelectric shell [27] 
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The electro-mechanical equations for piezoelectric shell force, as developed by 

Tzou [27] based on Love�s equations:  
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where A1, A2 = Lamé parameters 

 α1, α2, α3 = coordinate in 1st, 2nd, and 3rd direction as in Figure 2.1. 

 R1, R2 = radii of curvature 

 Nm
ij = mechanical membrane forces = ∫

α
ασ

3

3dij  

 Ne
ij = electrical membrane forces = ∫

α

α
3

33j3 dEe  

 Mm
ij = mechanical bending moments = ∫

α
αασ

3

33dij  
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 Me
ij = electric bending moments = ∫

α

αα
3

333j3 dEe  

 Qm
ij = mechanical transverse shear forces = ∫

α
ασ

3

3dij  

 Qe
ij = electrical transverse shear forces = ∫

α

α
3

33j3 dEe  

 eij = conventional mechanical stress 

 ρ = mass density of piezoelectric 

 h = piezoelectric thickness 

 Ēj = electric field in ith direction 

 

 
 

Figure 2.2. Generic piezoelectric shell with all its forces and moments [27] 

 

For a thin piezoelectric shell, Ē1 = Ē2 = 0, leaving only Ē3. For thin piezoelectric plate, A1 

= A2 = 1, R1 = R2 = ∞. This greatly reduces Equations (2.1) through (2.3). 
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The thin piezoelectric plate assumption also means that the displacements in the α1 and 

α2 directions vary linearly through the shell thickness, while displacement in the α3 

direction is independent of α3.  

The transverse displacement (and strain) is taken into consideration, i.e. 

Equation (2.6). The last factor on the left-hand side of Equation (2.6) can be neglected, 

resulting in 
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where )()( •∇∇=•∇ 224  = Laplacian operator                      (2.10) 
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  A1, A2 = Lamé parameters in 1st and 2nd direction 

  α1, α2 = coordinate in 1st and 2nd direction 

  YI = bending stiffness 
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  Y = Young modulus 

  I = inertia 

µ = Poisson ratio 

p(x,y,t) = force acting on x-y plane 

h = thickness of plate 

 

For a plate in a cartesian coordinate system, 

  A1, A2 = 1, 

  α1, α2 = x, y,  

  2

2

2

2
2

y
)(

x
)()(

∂
•∂+

∂
•∂=•∇                                   (2.12) 

Substitution into equation (2.9) results  
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Assume that u3(x,y,t) and p(x,y,t) are divided into two parts, the time-dependant part 

and spatially-dependant part, each is independent from the other. 

  u3(x,y,t) = U3(x,y) U3(t)              (2.14) 

  p(x,y,t) = P(x,y) P(t)                (2.15) 

 

Substituting into equation (2.13) results in 
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There are numerous ways to find the solution for Equation (2.16). One method is 

presented here, as is presented in more detail by Tzou [27]. The time-dependent part of 

u3(x,y,t) can be represented as 

  U3(t) = ejωt                 (2.17.a) 

P(t) = ejωt                          (2.17.b) 
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Thus Equation (2.16) becomes 
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Assume that there is no displacement at y-axis (i.e. the plate is reduced to a beam in x-

axis). This will make all the derivations with respect to y direction zero. First, the general 

solution is found  
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dx
dYI 3
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x34
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Then 
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where 
YI
h 2

4 ωρ=λ                                    (2.21) 

 

The natural frequency is given as 

  2
x h

YIλ
ρ

=ω                         (2.22) 

 

Taking Laplace transform of Equation (2.12) results in 

  s4U3(s)-s3U3(0)-s2U3�(0)-sU3�(0)-U3��(0)-λ4U3(s) = 0               (2.23) 

 

Solving for U3 generates 

  U3(s) =  44

1
λ−s

[s3U3(0)+s2U3�(0)+sU3�(0)+U3��(0)]                           (2.24) 

 

Applying the inverse Laplace transform results in 

U3(x) = A(λx)U3(0) + 
λ
λ )x(B U3�(0) + 2λ

λ )x(C U3�(0) + 3λ
λ )x(D D(λx)U3��(0)       (2.25) 

where A(λx) = )xcosx(cosh λ+λ
2
1                    (2.26.a) 
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  B(λx) = )xsinx(sinh λ+λ
2
1                     (2.26.b) 

  C(λx) = )xcosx(cosh λ−λ
2
1                     (2.26.c) 

  D(λx) = )xsinx(sinh λ−λ
2
1                     (2.26.d) 

 

 U3(x) is the natural mode, U3�(x) corresponds to slope, U3�(x) corresponds to 

moment, and U3��(x) corresponds to the shear force. Deriving the above equation gives 

the following equations 
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32λ
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  U3��(x)=λ3B(λx)U3(0) + λ2C(λx)U3�(0) + λD(λx)U3�(0) + A(λx)U3��(0) (2.27.c) 

 

A matrix of equations can be set up based on the above equations 
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To solve this set of equations, the boundary conditions are needed. By assuming that 

the plate is simply-simply supported, the boundary conditions are 

  

U3(0) = 0,  

 U3(L) = 0,   

  U3�(0) ≠ 0,   

  U3�(L) ≠ 0, 

U3�(0) = 0,  

 U3�(L) = 0,   

  U3��(0) ≠ 0,   

  U3��(L) ≠ 0, 
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where L is the length of the plate. 

 
Substitute these set of equations into Equation (2.28) 
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Simplifying the equations 
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This is a non-trivial equation, so the determinant of the first matrix has to be zero. This 

will lead to characteristic equation of the matrix 

  B2(λL)-D2(λL) = 0                         (2.31) 

 

Using Equation (2.26.b) and (2.26.d), Equation (2.31) can be simplified to 

  sinh(λL)sin(λL) = 0                         (2.32) 

The solution for Equation (2.32) is 

  U3m(x) = ∑
∞

=

π
1m xL

xmsin                        (2.33) 

 

The same result can be generated for displacement in the y-direction (by considering no 

displacement in x-axis) 

  U3n(y) = ∑
∞

=

π
1n yL

ynsin                        (2.34) 

The total general solution is gained by multiplying x- and y-axis solutions. 
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U3(x,y) = ∑ ∑∞

=

∞

=

ππ
1m 1n

yx L
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L
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Now the response to electron flux can be found. The modal response to the external 

forces (i.e. electron flux) can be represented by 

uk(x,y) = ∑
∞

=
η

1k
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where ηk(t)  = modal participation factor 
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Again, only the static part of the equation is considered, so qj is not time dependent. 

The trace of electron beam on the plate surface can be considered as a constant point 

load, so 

  qk = Π.δ(x-x*) δ(y-y*)                      (2.40) 

 Π = charge build-up when the electrons hit the plate, determined from the 

experiments. 

x*,y* = the point/points where p applies 

 

Substituting Equation (2.40) to (2.38) results in 
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        2
k

*
kF

ω
=  since ω = 0                      (2.43) 

and the total solution for the static part is obtained 

 ∑
∞

=

η=
1k

kkk )y,x(U)t,y,x(u                                 (2.44) 

 

The largest strain response should be located directly under the electron flux. To 

visualize this more thoroughly, a simulation of a piezoelectric plate with dimensions 7.5 

cm x 5 cm x 0.1975 cm is presented. The beam effect is represented a round area of 

electric field Ē = 76x103 V/m with area of 10 mm2 applied through the plate thickness. 

The plate is considered to be simply-simply supported. The material is a PZT5h, whose 

properties are extracted from Morgan Matroc Piezoelectric Manual [28] 

ρ = 7500 kg/m3; 

  Y = 48 GPa 

  µ = 0.31 

  d31 = -274 x 1012 m/v 
 
 Substituting the constants for PZT5h to Equations (2.36) to (2.42), the strain 

response from the plate of piezoelectric material exposed to an electric field can be 

simulated. It can be seen from the result on Figure 2.3 that the highest displacement is 

in the area where the electric field is applied, i.e. 1 cm2 in the middle of the plate. The 

Matlab code for this simulation can be found in Appendix C1. 
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(a)      (b) 

Figure 2.3. Spatial response from piezoelectric plate exposed to an applied electric field: 

(a) in 3-D, (b) in 2-D 

 

 

Finite Element Approach 
 

The relationships between the mechanical and electrical aspects of piezoelectric 

material are 

T = [c]S � [e]Ē                       (2.45) 

and 

  D = [∈ ]Ē + [e]S                       (2.46) 

 where T = stress tensor 

  S = strain 

  D = electric flux density 

  Ē = electric field 

  [c] = elastic constant matrix 

  [e] = piezoelectric constant matrix 

  [∈ ] = dielectric constant matrix 
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 In the Finite Element approach [27,29], piezoelectricity can be divided into 

mechanical and electrical components. From the mechanical standpoint, strain tensor is 

determined by the spatial gradient of mechanical displacement, i.e. 

  ( )i,jj,iij uuS +=
2
1                          (2.45) 

 where ui,j = 
j

i

x
u

∂
∂                         (2.46) 

Traction tensor Ti is defined by the mechanical interaction between 2 portions of the 

continuum separated by a surface 

  
S
FT i

i =                         (2.47) 

The stress tensor is defined by 

  
i

j
ij n

T
T =                         (2.48) 

where ni is the component of the outwardly directed unit normal to the surface across 

which the traction vector acts.  

 From electrical standpoint, the electric field intensity and electric displacement 

are related by 

  Di = ∈ 0ēi + Pi                                   (2.49) 

where Di = electric displacement 

∈ 0 = permitivity of free space = 8.854 x 10-12 F/m 

ēi = electric field intensity 

  Pi = components of polarization vector 

 

Using the law of thermodynamics, the conservation energy between the mechanical and 

electrical components can be represented as 

  iiijij DESTU &&& +=                        (2.50) 

where U is the total energy density for the piezoelectric continuum. The electric enthalpy 

density H is defined by 

  H = U �ĒiDi                        (2.51) 
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Substituting Equation (2.52) into (2.53) results in 

  iiijij EDSTH &&& −=                          (2.52) 

 

In linear piezoelectric theory H can be written as 

  H = ji
S
ijijkkijklij

E
ijkl EE

2
1SeSSc

2
1 ∈−Ε−                     (2.53) 

where E
ijklc  = elastic constant 

  kije  = piezoelectric constant 

  S
ij∈  = dielectric constant 

 

The piezoelectric constitutive equations can then be represented by 

  kkijkl
E
ijklij eScT Ε−=                        (2.54) 
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Rearranging Equations (2.54) and (2.55) to get strain expression results in the following 

equations 

  kkijkl
E
ijklij dTsS Ε+=                (2.56) 

  k
T
ikklikli TdD Ε∈+=                (2.57) 

 

For specific structures these equations can be solved with Finite Element Method using 

Ansys56. The coefficients ijkij
E
ijkl ,e,c ∈  are found in the Morgan Matroc Piezoelectric 

Manual [28]. Substituting these constants to Equations (2.56) and (2.57), and running an 

ANSYS® program for the same conditions as the analytical solution presented 

previously, the results shown in Figure 2.4 are obtained for the 1-direction strain due to 

the spot excitation. Again, the highest strain can be found in the area directly under the 

applied electric field, while the rest of the area remains low in strain. The Ansys code file 

can be found in Appendix B. 

 

 
 

Figure 2.4. ANSYS® solution for static strain of piezoelectric material 
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CHAPTER THREE 
EXPERIMENTAL SETUP AND SENSITIVITY ANALYSIS 

 

 

The first part of this chapter contains a detailed view of the experiment setup. A 

complete description of specimen preparation is presented. Brief information of each of 

the component of the setup is also presented. The second part explains a sensitivity 

experiment, purposed to see the sensitivity of the material to the distance between the 

material and the source of excitation (i.e. electron gun).  

 

 

Experimental Setup 
 

The test specimen is a rectangular PZT-5H plate (length 7.5 cm, width 5 cm, and 

thickness 1.975 mm) purchased from Morgan Matroc Inc.  The plate was procured from 

the manufacturer with silver electrodes distributed on both sides, as can be seen in 

Figure 3.1.a. The manufacturer denoted the positive side by a small dot on one of the 

edge. The positive electrode was removed with a combination of swabbing with nitric 

acid and light sanding to reveal the dielectric piezoelectric material as a target for the 

electron beam, Figure 3.1.b.  

The negative surface is cleansed with isopropyl alcohol to remove grease and 

dirt. Sixteen Measurement Group strain gages are attached atop the negative electrode 

using M-Bond 200 catalyst and adhesive, Figure 3.1.c. These strain gages have 350 Ω 

resistance with 0.3% tolerance, 2.095 gage factor with 0.5% tolerance, and are 

arranged in 4x4 matrix, Figure 3.1.d. The gages� numbering is presented in Figure 

3.1.e. 
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a.                                 b.  

 

 
c.                                    d  

e. 

 
Figure 3.1. Test specimen: a. PZT5h with electrode on both surface 
                                            b. PZT5h with electrode on positive surface removed 
                                            c. Strain gages are attached to the negative surface 
                                            d. PZT5h with all strain gages 
                                            e. Strain gage numbering and axis  
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 The positive (stripped) side of piezoelectric plate is oriented toward a Kimball 

Physics EFG-7 electron gun, which is designed as a flood gun. This means that it is 

designed to distribute the electron flux over a wide angle. The negative (electroded) 

side of the piezoelectric plate is connected to a power amplifier to allow the potential of 

the electrode to be controlled, which subsequently will be called backpressure voltage 

(Vb). The experimental protocol required the apparatus to be enclosed in a vacuum 

chamber and exposed to a vacuum condition, 2x10-7 torr (mm Hg). A sketch of the 

standard experimental setup is included as Figure 3.2. The schematic of the vacuum 

chamber can be found in Appendix A.  

 

 

 

Figure 3.2. Standard experiment setup. 

 

 

 

 

 

 

e-

e-

electron gun

PZT - positive side
exposed to electron flux

PZT - negative electrode
connected to power

amplifier
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Figure 3.3. Specimen and electron gun position in vacuum chamber 

 

 
Sensitivity Analysis 

 

This experiment is designed to investigate the effect of specimen location in the 

vacuum chamber on the strain response to the electron flux. The plate is removed from 

initial charge and strain by shaking and rubbing both surfaces. Then the plate is placed 

in a vacuum chamber and exposed to vacuum condition. This condition is considered to 

be zero strain absolute. The plate is first placed 5 cm from the electron gun. The 

negative surface electrode is connected to ground while the positive surface is hit by a 

flood electron beam (all areas received the same intensity of beam) with 400 eV energy, 

60 µA emission current. The resulting strain is considered to be the zero strain relative. 

All subsequent strains are measured from this condition. Then the backpressure voltage 

is varied sinusoidally at 20 mHz, 200 V peak-to-peak amplitude. The procedure was 

repeated for various distance from the electron gun: 7.5 cm, 10 cm, and 17.78 cm, as is 

seen in Figure 3.4. 

 

Electron gun 

Specimen Electron gun

Specimen
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e-gun

5 cm

7.5 cm

10 cm

17.78 cm

chamber
wall

29.21 cm (11.5 in)
 

Figure 3.4. Various plate positions in vacuum chamber 
 

The zero absolute state ascends to zero relative when the electron gun is fired at 

the charge-and-strain free plate as shown in Figure 3.5. The magnitudes of 7.5 and 17.8 

cm appear to stabilize at approximately 6 microstrain. The magnitude of 5 cm tends to 

drift back to 0 microstrain. The magnitude of 10 cm tends to stabilize at approximately 

9.5 microstrain. There does appear to be a dependence of position on the initial strain, 

but it does not seem to be simple. 

The strain is plotted against the sinusoidal backpressure voltage to build a 

hysteresis plots, Figure 3.6. The calculated slope for each distance is obtained through 

linear regression method and is plotted in black. It shows that the slope becomes 

steeper as the distance increases, i.e. the strain becomes more sensitive to potential 

change. The calculated slopes are plotted together in Figure 3.7.  
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Figure 3.5. Initial strain increase from zero absolute to zero relative 

Blue: 5 cm from the plate 
Magenta: 7.5 cm from the plate 
Red: 10 cm from the plate 
Green: 17.78 from the plate 

 

 
Figure 3.6. Hysteresis plots of various distance from the gun 
 



 

 34

 

 
Figure 3.7. Calculated slope using linear regression method 

Blue: 5 cm from the plate 
Magenta: 7.5 cm from the plate 
Red: 10 cm from the plate 
Green: 17.78 from the plate 

 

Table 3.1. Calculated Slope and Coefficient of Correlation for each Distance 

 

  Distance from the Gun 

 5 cm 7.5 cm 10 cm 17.78 cm 
Slope 1.4673 1.8124 2.6287 2.7707 

Correlation (R) 0.9832 0.9832 0.9858 0.991 
 

When the plate is 5 cm away from the gun, the secondary electrons are far from the 

chamber walls which act as the electron collector. This makes the strain development in 

the plate relatively difficult, as noted by the moderate slope and big phase lag on Figure 

3.6, blue plot. As the plate is placed farther away from the gun, it becomes easier for the 

secondary electrons to reach the chamber wall. There is a better electron flow, so the 

plate becomes more sensitive (the slope becomes steeper and the phase lag 

decreases). 
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Figure 3.8. Plot of slope of hysteresis against distance of the plate from the gun 

 

 

a. b.

 
Figure 3.9. Electron flows in various distances: 

a. Far from the walls (poor collector) 
b. Close to the walls (better collector) 
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CHAPTER FOUR 
INVESTIGATION OF ELECTRON CURRENT THROUGH PIEZOELECTRIC 

MATERIAL UNDER ELECTRON FLUX EXCITATION 
 

 

 This chapter describes an experiment developed to investigate the electron 

transport through piezoelectric materials subjected to an electron flux. Electron current 

on the positive side is provided by the electron gun, and electron current on the 

negative side is measured by the pico-ampere meter, as shown on the picture below.  

 

A pico ampere meter

amplifier

signal generator

ia

is

is

ip

material electrode

electron gun

vacuum chamber  
Figure 4.1.  Experimental setup.  

 

In Figure 4.1 ip is the primary electron current, is is the secondary electron 

current, ia is the electron current through the electrode lead. Charge conservation 

demands that the three currents are related by 

  psa iii −=                          (4.1) 

when the system is at equilibrium. 
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The electron gun is used to control the potential at a given point on the bare 

ceramic surface, or positive surface (Vs).  The power amplifier controls the potential on 

the negative surface (Vb).  The electric field applied on the plate is given by the 

relationship 

h
VV

E pb −
=                          (4.2) 

where Ē = electric field across the plate,  

Vp = potential on positive surface,  

Vb = the potential on negative surface (backpressure voltage),  

h  = piezoelectric thickness.   

 

In piezoelectric materials electric field is coupled to stress and strain (∈ ).  The 

simple relationships  

T = cS � eĒ                         (2.45) 

and 

  D = ∈ Ē + eS                         (2.46) 

result when the material is free to change dimensions under the influence of the electric 

field.  In this relationship d31 is the piezoelectric constant, which is equal to -274 x 10-12 

m/volt for PZT5h.  Strains are controlled in piezoelectric materials using a power 

amplifier to control the potential of the single electrode on one side of the plate and the 

electron gun to control the potential at selected spots on the other side of the plate.   

In this experiment the strain and current responses of a piezoelectric plate 

subjected to an electron flux are examined under a range of conditions.  As before, 

strains were recorded at 16 locations using strain gages bonded to the single electrode. 

A 24-channel strain gage data acquisition system was used to record all of the strain 

signals simultaneously when the various inputs were applied to the plate.    

 The experimental apparatus enabled control of a variety of variables for this 

series of experiments.  The electron gun emission current was kept constant at 

approximately 60 microampere and the beam electrons had energy of 400 eV. The 

relationship between emission current and beam current (ip) is illustrated in Figure 4.14. 

The electron gun used in these experiments is a Kimball Physics EFG-7. The current 
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flowing to or from the electrode was measured using Keithley 485 pico-ampere meter, 

which can measure currents from 2 nA to 2 mA.  The sample is placed approximately 

10 cm from the electron gun, referring to Chapter III. The positive output of the power 

amplifier is connected to the negative ground of pico-ampere meter. This means that a 

positive reading on the meter denotes an electron flow from the power amplifier to the 

plate, as shown in Figure 4.1. The pico-ampere meter was run on battery power and a 

high common-mode voltage rejection circuit [30] was placed between the ammeter and 

the data acquisition unit to allow the ammeter to function over the entire voltage range.   

 

R1=200k

R3=200k R4=200k

R2=200k

R5 = 10k

R6 = 10k

R7 = 10k

R8 = 10k

U2

U1

-

-

+

+

V+

V-

V-

V+

input -

input +

output

 
Figure 4.2.  High common mode voltage rejection circuit. 

 

The piezoelectric plate with all the strain gages was placed into a vacuum 

chamber, 10 cm from the tip of the electron gun. The air was then pumped out until the 

vacuum inside reached 3x10-7 torr (mm Hg). The first data taken measures the absolute 

zero. Setting the electrode potential, or backpressure voltage (Vb), as ground, the 

electron beam was applied to the entire plate. The resulting strain measurements show 

an initial ramp of strain from zero absolute to about 15 microstrain then a slow drift until 

it reaches 20 microstrain, as can be seen in Figure 4.3. The strain will not go down to 
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zero absolute until the air is allowed back into the chamber, so for the next experiments 

the zero condition is measured from this level new (zero relative). 

 

 
 

Figure 4.3. Zero absolute and zero relative strain. 

 

 During the process the electron current (ia) is also measured. As can be seen 

from Figure 4.4, the amount of current that flows during this initial illumination is about -

0.1 microampere. As the electrons hit the neutral plate, they quickly form �hole-electron� 

pairs and reside on the plate as neutral charges. Thus only a small number of electrons 

flow through the plate to the ampere meter. When the gun is turned off, the strain drops 

only a couple of microstrain, but the electrode current goes back to zero.  
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Figure 4.4. Electron current (ia) at zero abolute and zero relative. 

 

 

Quasi-Static Strain Response 
 

Three sets of data are presented in the following figures.  Only a single strain 

trace is shown in each figure since conditions are uniform at all locations on the plate: 

the electron beam floods the entire bare face of the piezoelectric and only single 

electrode covers the negative face. The strain traces were measured in-plane and the 

positive sign on the current traces indicates flow of conventional current from the 

electrode to the power amplifier. Vb was varied slowly using a sine wave with 20 mHz 

frequency and 200 volt peak-to-peak with various DC offsets to examine the strain and 

current response of the system.   
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Figure 4.5.  Time histories of strain and current output due to a 200V p-p, 0 DC volt 

offset Vb input. 

 

 
Figure 4.6.  Strain and current hysteresis plot due to a 200V p-p, 0 DC volt offset Vb 

input. 
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Figure 4.7.  Time histories of strain and current output due to a 200V p-p, 100 DC volt 

offset Vb input. 

 
Figure 4.8.  Strain and current hysteresis plot due to a 200V p-p, 100 DC volt offset Vb 

input. 
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Figure 4.9.  Time histories of strain and current output due to a 200V p-p, -100 DC volt 

offset Vb input. 

 
Figure 4.10.  Strain and current hysteresis plot due to a 200V p-p, -100 DC volt offset Vb 

input 
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Since strain control is the ultimate goal of this investigation, the impact of various 

conditions on the strain trace will be discussed first.  Note that in the strain traces where 

the backpressure potential (Vb) remains predominantly positive, the strain output is very 

stable and dependent upon Vb (Figure 4.6.b).  In the tests with predominantly negative 

Vb, the strain still responds as a function of Vb, but significant drift is evident (Figure 

4.10.b).  

The current results also show a sharp contrast between actuation with positive 

and negative Vb.  In all of the tests the current remained at extremely low levels 

(approximately 10-7 ampere or less) when Vb was below 40 volts. As Vb transitions to 

greater than 40 volts the current flow through the material suddenly decreases to 

approximately �12 microampere, as can be seen in Figure 4.5 and 4.6.  Further 

increases above 40 volts lead to a slight gradual decrease in the current until 

approximately �18 microampere as can be seen in Figure 4.7. One possible explanation 

for this phenomenon is outlined in the next section. 

 

 
Discussion Using Quantum Physics Theory 
 

DeBroglie and Einstein [31] made a suggestion that a particle (in this case electron) 

can be represented as a wave with wavelength  

p
h=λ  and 

h
Ep=ν                         (4.3) 

λ = wavelength of the wave function 

ν = frequency of the wave function 

Ep = U
m2

p2

+  = energy of particle (in this case: electron)         (4.4) 

U = potential energy  

h = Planck constant = 6.6x10-34 Js 

p = particle momentum 

m = electron mass   

      v = the speed of electron 
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Using these postulates, Schrödinger [31] derived the equation of wave function as 

  Ψ=Ψ+Ψ− p2

22

EU
dx
d

m2
h                        (4.5) 

ħ = 
π2

h                             (4.6)     

 k = wave number 

           = 
λ
π2           

      

The wave function can be used to describe the electrons travelling through vacuum 

and impacting the plate.  This can be represented by an electron stumbling upon an 

energy barrier, as can be seen in Figure 4.11. 

 

V

vacuum PZT5h

potential energy

electron

V=0 x

 
Figure 4.11. Energy representation of an electron impacting the PZT plate 

 

In vacuum the electron has no potential energy, so Equation (4.5) becomes 

 

  Ψ=Ψ− p2

22

E
dx
d

m2
h               (4.7)    
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The solution of Equation (4.7) is 

 

  Ψ1 = Y1 e iαx + Y2 e -iαx                       (4.8)      

where  α = 2
pmE2

h
              (4.9)  

 

which can be represented as a sinusoidal wave equation. An acceptable solution for 

Schrödinger equation (generally a wave equation) is required that the solution and its 

derivative are finite, single valued, and continuous. These requirements are imposed in 

order to ensure that the function be a mathematically �well-behaved� function so that 

measurable quantities will also be well behaved. 

When the electron strikes the plate it is exposed to the potential barrier U.  

Equation (4.5) again holds, but now the electron can give up some energy to the plate 

and increase the plate potential.  The solution inside the plate is therefore 

 

  Ψ2 = Z1 e iβx + Z2 e -iβx                   (4.10)  

 where β = 2
p )UE(m2

h

−
                    (4.11)   

 

This is, too, a sinusoidal wave equation. 

 

These currents are all electron currents and their positive directions are shown in 

Figure 4.12.  The first term in Equation (4.8) describes the incoming electron current 

(primary electron, ip), while the second term describes the secondary electron current 

(is).  The first factor of Equation (4.10) is the electron current from PZT to amplifier (ia1), 

and the second factor denotes the electron current in the opposite direction (ia2). The 

electron current ia denoted on Equation (4.1) is the combination of these two factors: 

 ia = ia1 + ia2 
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V

vacuum PZT5h

V=0 x

ip

is

ia1

ia2

 
Figure 4.12.  Electron current directions at the energy barrier. 

 

The kinetic energy of electron can be represented as a function of surface potential  [10] 

K= p
2 V emv

2
1 =                     (4.12)  

e = electron charge 

Vp = the potential at the surface of the ceramic surface (front surface, 

exposed to electron beam) 

So the kinetic energy of electron varies linearly with the potential of the bare surface of 

the plate.  The PZT can be considered as a capacitor with potential energy [32] 

  U = ( )2
bp VVC

2
1 −             (4.13) 

C = material capacitance 

  Vb = backpressure potential 

  Vp = positive-side potential 

So the potential energy of PZT varies quadratically with the potentials on the front and 

back of the plate.   
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Figure 4.13. Electron kinetic energy and PZT potential energy chart 

 

 The energy balance is shown conceptually in Figure 4.13.  If Vb is initially set to 

zero, then the potential energy of the plate as a function of the plate positive surface 

potential (Vp) is a parabola with the vertex at the origin (Curve U).  The kinetic energy of 

the incoming electron (Eq. 4.12) is represented by a line.  If an electron flux with initial 

energy in the positive yield range strikes the plate then the surface will become 

increasingly positive until a balance is achieved between the kinetic energy of the 

incoming electron and the potential energy of the plate.  This system state is therefore 

at point A and the plate surface potential is given by the location of point A on the 

horizontal axis.  The driving force behind the current is the electric field in the material, 

(Vp-Vb)/h. 

Increasing Vb moves the potential energy curve to the right, represented by UII, 

and the stable state moves from point A to A�.  A new equilibrium state is achievable 

under these circumstances. Increasing Vb will reduce the secondary electron emission 

yield. More primary electrons stick to the plate, so the excess electrons will flow towards 
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the power amplifier. The negative readings on the pico-ampere meter in the positive Vb 

region support this phenomenon, Figure 4.5, 4.6, 4.7, and 4.8.  The very stable Vb-strain 

behavior experienced at Vb values above 40 volts supports the conclusion that the 

system is in a very stable regime in this Vb range and the increase in the electric field in 

the material supports the increase in the leakage current.  

Reducing Vb means making the plate surface more negative, so the next 

incoming electron comes with slower speed.  The potential energy curve moves to the 

left, represented by UIII, and eventually no balance between the incoming kinetic energy 

and the plate potential energy is possible.  This lack of a stable equilibrium is 

demonstrated by the drift in the strain output seen in Figure 4.9 and Figure 4.10. 

 

Effect of Emission Current to Electrode Current and Strain 
 

 The next experiment was developed to see how the beam current (or emission 

current) affects the strain or electrode current. The same apparatus is illuminated with 

electron beam with Vb at ground to get zero-relative strain. Then suddenly Vb is stepped 

up to 200 V. The strain and electrode current are measured. This procedure is repeated 

with various emission currents: 10, 20, 40, 60, 80, and 100 microampere. The 

correspondence to beam current is shown in Figure 4.14, provided by Kimball Physics.  

 
Figure 4.14. Calibration chart of source, emission and beam currents 
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 Plotting both ia and Vb versus time, it can be seen that ia is linearly related to 

emission current. This can be explained directly using Equation (4.1). The secondary 

electron yield remains constant throughout the emission variation because the energy 

used remains constant (400 eV). So bigger ip yields to bigger ia.  

 

 
Figure 4.15. Plot of material time response with various emission currents 

Magenta: 10 microampere 
Cyan: 20 microampere 
Red: 40 microampere 
Green: 60 microampere 
Blue: 80 microampere 
Black: 100 microampere 

 

The interesting part is the strain. The rate of change for the strain to reach steady 

state position is also a function of the magnitude of emission current. Larger emission 

current leads to a smaller time. This happens due to the fact that the piezoelectric 

material acts like a capacitor. Considering a slight resistance in the material, the time 

constant is modeled by using an R-C series circuit 
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  tc = RC              (4.14) 

 where tc = time constant 

  R = material resistance 

  C = material capacitance 

 

 
 

Figure 4.16. R-C Circuit 

 

Changing Vb abruptly is analogous to connecting an R-C circuit to a power supply (V1 in 

Figure 4.16.), thus the charge stored in the material is given by 

Q = Qf (1 - e - t / R C)           (4.15) 

 where Q = the charge at time t 

  Qf = the charge at initial time 

 

Rearranging the equation 

  (Q-Qf) = Qf e- t / R C 

Taking derivative with respect to time 

  RC/t
fRCeQ

dt
dQ −−=            (4.16) 

The first term is current, so 

  i = -QfRCe- t / R C 

 

The bigger the current, the smaller the time needed to reach steady state, meaning the 

plate will respond faster. From Figure 4.17 it is clear that for 10 microampere emission 
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current the strain needs about 2.5 seconds to reach steady state position. The material 

needs less than half a second to level off using 100 microampere.  

 

 
Figure 4.17. Plot of material time response with various emission currents 

 

Emission Current vs. Electrode Current

0

5

10

15

20

25

30

2.62
5.14

10.48

16.93

22.41

28.86

10 20 40 60 80 100

E
le

ct
ro

de
 C

ur
re

nt
 (µ

A
)

Emission Current (µA)
 

Figure 4.18. Plot of Emission Current versus Electrode Current 
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Figure 4.19: Plot of Emission Current versus Ultimate Strain 
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CHAPTER FIVE 
STRAIN DEVELOPMENT 

 
 
 
 Development of strain is the primary interest in this chapter. There are two 

subjects: the time response of the material and the blooming of the strained area. Each 

will be investigated and discussed thoroughly in separate sub chapters. 

 

Time Response of Piezoelectric under Electron Beam Influence 
 

 The positive (stripped) side of piezoelectric plate is exposed to a Kimball Physics 

EFG-7 electron gun. The specimen is placed 10 centimeter from the electron gun. As an 

early experiment, only nine strain gages are attached on the negative (electroded) side. 

It is then connected to a power amplifier to allow the potential of the electrode to be 

controlled (Vb). The experimental protocol required the experiment to be enclosed in a 

vacuum chamber and exposed to a vacuum condition, 5x10-7 torr (mm Hg). The bare 

side is subjected to the electron flux, which is kept constant at emission current 60 

microampere and the beam energy of 400 eV. A sketch of the experimental setup is 

included as Figure 5.1. 

 

amplifier

signal generator

ia

is

is

ip

material electrode

electron gun

inside vacuum chamber  
Figure 5.1. Experiment setup 
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The backpressure voltage (Vb), electron beam diameter, beam position, and 

beam motion (constant position or raster) were all varied to some degree in these 

experiments. Note that the electron gun used in these experiments is a flood gun, thus 

even when small spot sizes are achieved with this gun, electron current is still 

distributed over a large area surrounding the target spot. The strains were recorded by 

the 9 strain gages atop the remaining electrode.  The strain gages were single direction 

gages, measuring strain in the base-tip direction.  A 24-channel strain gage data 

acquisition system was used to record all of the strain signals simultaneously when the 

various inputs were applied to the plate. The matrix outlining all of the tests is included 

as Table 5.1.   

Various beam types were used and are illustrated in Figure 5.2.  Static, 

nonmoving beams were applied at three different locations.  The �Center� location refers 

to a spot on the piezoelectric plate which is opposite strain gage #5.  The �Corner� 

location refers to a location opposite strain gage #1 and the �Base� location refers to a 

target on the plate opposite strain gage #5.   The first section of Table 1 lists all of the 

experiments run using static beams irradiating these locations.  The table notations 

indicate the step voltage applied to the electrode to stimulate the strain change and the 

diameter of the beam as it appeared on a phosphor screen mounted near the 

piezoelectric sample.  Note that because a flood gun was used in these tests the 

diameters are only useful when compared to each other and have no absolute meaning. 

For example, the focus is set to be as small as 1 mm in diameter, the beam is still 

dispersed, as is seen from the beam profile in Figure 5.3.  

Six different rastering beams were also used and strain results recorded.  The 

electron beam was set to scan across the locations of strain gages #1, 2, and 3 (Vert 2); 

4, 5, and 6 (Vert 1); and 7, 8, and 9 (Vert 3).  Tests were also run with the beam 

scanning across strain gages #1, 4, and 7 (Horz 2); 2, 5, and 8 (Horz 1); and 3, 6, and 9 

(Horz 3).  The second and third sections of Table 2 list all of the experiments run using 

the beam rastering.  Table notations indicate the electrode step voltage, the beam 

diameter as measured on a phosphor screen, and the rate of the raster scan.   
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Table 5.1.  Matrix of Test Conditions  
 
 

  Center Corner Base 
  (step, diameter of beam) (step, diameter of beam) (step, diameter of beam) 

  0-100 V,1mm 0-100 V , 1mm 0-100 V , 1mm 
  0-100 V,10mm 0-100 V , 10mm 0-100 V , 10mm 
  0-(-100)V , 1mm 0-(-100)V , 1mm 0-(-100)V , 1mm 
  0-(-100)V , 10mm 0-(-100)V , 10mm 0-(-100)V , 10mm 
   

  Vert 1 Vert 2 Vert3 
  (step, diameter of beam, 

raster rate) 
(step, diameter of beam, 
raster rate) 

(step, diameter of beam, 
raster rate) 

  0-100 V , 1mm 1Hz 0-100 V , 1mm 1Hz 0-100 V , 1mm 1Hz 
  0-100 V , 10mm 1Hz 0-100 V , 10mm 1Hz 0-100 V , 10mm 1Hz 
  0-(-100)V , 1mm 1Hz 0-(-100)V , 1mm 1Hz 0-(-100)V , 1mm 1Hz 
  0-(-100)V , 10mm 1Hz 0-(-100)V , 10mm 1Hz 0-(-100)V , 10mm 1Hz 
  0-100 V , 1mm 10Hz 0-100 V , 1mm 10Hz 0-100 V , 1mm 10Hz 
  0-100 V , 10mm 10Hz 0-100 V , 10mm 10Hz 0-100 V , 10mm 10Hz 
  0-(-100)V , 1mm 10Hz 0-(-100)V , 1mm 10Hz 0-(-100)V , 1mm 10Hz 
  0-(-100)V , 10mm 10Hz 0-(-100)V , 10mm 10Hz 0-(-100)V , 10mm 10Hz 
   
   

  Horz 1 Horz 2 Horz 3 
  (step, diameter of beam, 

raster rate) 
(step, diameter of beam, 
raster rate) 

(step, diameter of beam, 
raster rate) 

  0-100 V , 1mm 1Hz 0-100 V , 1mm 1Hz 0-100 V , 1mm 1Hz 
  0-100 V , 10mm 1Hz 0-100 V , 10mm 1Hz 0-100 V , 10mm 1Hz 
  0-(-100)V , 1mm 1Hz 0-(-100)V , 1mm 1Hz 0-(-100)V , 1mm 1Hz 
  0-(-100)V , 10mm 1Hz 0-(-100)V , 10mm 1Hz 0-(-100)V , 10mm 1Hz 
  0-100 V , 1mm 10Hz 0-100 V , 1mm 10Hz 0-100 V , 1mm 10Hz 
  0-100 V , 10mm 10Hz 0-100 V , 10mm 10Hz 0-100 V , 10mm 10Hz 
  0-(-100)V , 1mm 10Hz 0-(-100)V , 1mm 10Hz 0-(-100)V , 1mm 10Hz 
  0-(-100)V , 10mm 10Hz 0-(-100)V , 10mm 10Hz 0-(-100)V , 10mm 10Hz 
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  Center, beam diameter = 1mm             Center, beam diameter = 10mm 
  

 
Corner with various beam diameters       

 
 

 
Base with various beam diameters 

 

  
  Vert3           Vert1          Vert2 
 
 
Figure 5.2.  Sketches of beam inputs used in experiments. 
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      a. 
 

 
      b. 
 
Figure 5.3. EFG-7 electron beam profile: a. in 3D, b. in 2D 
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 There are 60 sets of data (by Table 5.1.), but for brevity only 6 of them are 

presented here. Other results are presented in Appendix D. Results from two static 

beam locations, Center and Corner, and one raster location, Vert1, are presented.  In all 

cases the results from the small beam spot (1mm) are used.  The strain responses are 

due to two step changes in electrode potential, a 0-100 V step and a 0- -100 step. The 

captions on Figures 5.4 - 5.8 indicate the beam type and electrode (Vp) potential change 

that stimulated the illustrated strain changes.  

 
Figure 5.4.  Step up and step down response for center beam experiments. 

magenta    : strain gage 1  black   : strain gage 6 
cyan   : strain gage 2  magenta … : strain gage 7 
red   : strain gage 3   cyan … : strain gage 8 
green   : strain gage 4  red … : strain gage 9 
blue   : strain gage 5 

 
A clear trend is the faster rate of strain change in response to the positive Vb 

steps relative to the negative steps.  In fact, there appear to be two distinct time 

constants. If Vb is stepped up (from 0 to 100V) the time constant is about 1 second. 

That means the charge in the plate changes from the initial value to the final value in 

approximately 1 second. But if Vb is stepped down, the time constant is nearly 60 

seconds. This means the charge in the plate takes significantly more time to change 

from the initial value to the final value. As can be see in the previous pictures, the strain 

needs almost one minute to reach steady state value. 
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Figure 5.5. Step up and step down response for corner beam experiments. 
 
 

 
 
Figure 5.6. Step up and step down response for vertical beam experiments. 
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A number of conclusions can be drawn from this data.  First, the fastest strain 

changes are typically seen in the location of the electron flux.  In Figure 5.4 the fastest 

change in the strain response corresponds to gages #4 and 5 when the electron beam 

is aimed at strain gage #5.  In Figure 5.5 the fastest response is in strain gage #1, again 

when the electron flux is aimed in this location (referring to Figure 5.2.).  And finally, 

when the beam is rastered across strain gages #4, 5, and 6 (Figure 5.6.) the most rapid 

strain responses were observed in these gages. This phenomenon will be discussed 

more thoroughly on the next subchapter. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Plot of secondary electron yield against incoming energy 

 

The difference in time constant mentioned before also occurred here. To explain 

this time difference phenomenon, Figure 1.4. is redrawn above. If the primary electron 

has energy less than EI, the secondary electron yield is less than 1. That means the 

primary electron is absorbed, and a net negative charge is immediately resident on the 

plate surface. This will induce a bigger pushing force for the next incoming primary 

electron, which in turn travels with slower speed. The primary electron energy will drop 

until at some point the whole system will be shut down. If the primary electron energy 

lies between Emax and EII, the primary electron will push more electron out from the plate 

(due to the secondary electron yield greater than 1). The next electron will travel with 

EI      Emax              EII 

Electron yield 

Effective 

C
urrent 
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greater speed and energy, until the energy reaches EII. As soon as the energy is greater 

than EII, the same phenomenon happens when the energy is less than EI. So EII is a 

stable point. 

When an electron strikes the plate, there are a number of interactions that can 

take place [2,3], and energy is transferred to the electrons in the plate. Recall that energy 

of electron lies in discrete levels, as shown in Figure 5.7. If an electron receives some 

amount of energy, it will be excited to a higher level. If the energy is big enough, it will 

be excited to vacuum, thus positive and negative charges (i.e. holes and electrons) are 

released.   

 

Figure 5.7. Electron levels of energy 

 

The constant electron beam can be considered as an excitation to the plate. Its 

presence quickly changes the energy equilibrium of the whole system, until it resides on 

EII point on Figure 1.3. When the backpressure voltage is increased, the plate becomes 

more positive. The primary electron energy will increase due to the faster velocity of the 

electrons. The secondary electron yield will fall below 1. This means the primary 

electrons are absorbed, and their energy is not enough to eject electrons residing on the 

plate. 

On the other hand, when the backpressure voltage is reduced, primary electrons 

of an energy less than EII strike the plate, and their energy is transferred to eject slightly 

more electrons than that of the incident.  This energy exchange and electron excitation 

process takes time, so the result is a slower strain change when the electrode is 
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stepped down, which decelerates the incident electrons, than when it is stepped up. 

These processes manifest themselves in the secondary yield curve, where electrons 

with energies greater than EII generate negative charges on a dielectric surface, and 

those with energies less than EII stimulate positive surface charges.  

 
 

Blooming Effect 
 

These experiments show that the fastest and largest changes in strain take place 

where the electron flux strikes the surface. The results from the experiments show a 

slight difference, i.e. the rest of the area also responds to the electron flux, although with 

much slower rate. The following experiment was conducted to investigate this 

phenomenon in more detail. The same specimen as in Chapter III and IV (with 16 strain 

gages on the electroded side) is subjected to backpressure Vb = 0 when illuminated by 

electron beam. This sets the zero point for the test. Then the electron gun is turned off 

and Vb is increased to 200 volt. The next step is to shoot the plate with 400 eV energy, 

60 microampere emission current, approximately 1 cm in diameter for 2 seconds, as is 

denoted in Figure 5.8.  

 

Figure 5.8. Electron flux is activated at the center of the plate with Vb = 200 V 
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a. 

 
b.

 

 
c.  

 

 
d. 

  

 
e. 

Figure 5.9. Strain distribution sequence with electron beam in the middle: 

       a. t = -0.4 s,  b. t = 0.4 s,  c. t = 0.6 s,  d. t = 0.8 s,  e. t = 1 s 
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The strain distribution sequence is presented in Figure 5.9. At first only the 

area under illumination responds to the electron flux, denoted by high strain on the 

center. Then the strain distributes along the plate until the whole surface has high 

strain. This is slightly different from what is suggested by analytical and numerical 

solutions provided in Chapter II. A clearer view of how the charge (and strain) 

distributes along the material is provided by placing the electron flux on the edge of 

the material, as depicted in Figure 5.9. The results are presented in Figure 5.10. 

Again, it is clearly seen that the area under illumination (i.e. strain gage no 1 or the 

left lower corner of the plate) developed the strain first. Then the rest of the area 

follows. This phenomenon is called �blooming�. 

The next experiment is to place the electron beam on the edge. The beam is 

placed at the edge of the plate, as presented in Figure 5.10. The results are 

presented in time sequence in Figure 5.11. 

 

Figure 5.10. Electron flux is activated at the center of the plate with Vb = 200 V 
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a. 

 
b.

 

 

 

  c.       d. 

 

Figure 5.11. Strain distribution sequence with electron beam on the edge: 

         a. t = 0.4 s,  b. t = 0.6 s,  c. t = 0.8 s,  d. t = 1 s 

 

Note that the expansion of the strain as a function of time is similar to the surface 

charge blooming predicted by Attard and Ganachaud [5] 
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CHAPTER SIX 

CONCLUSIONS AND FUTURE WORK 
 

 

Conclusions 
 

 The static and quasi-static state of a piezoelectric material under electron flux 

influence is the primary interest in this research. Two sets of mathematical analysis are 

presented, one is qualitative analysis from piezoelectric electro-mechanical set of 

equations developed by Love and Tzou, the other one is numerical analysis using 

piezoelectric constitutive equations. Several sets of experiments are carried out to 

investigate the behavior of the material under electron influence, i.e. material�s 

sensitivity to distance from the source of excitation (electron gun), electron flow 

(secondary electron and electrode current), time response, and distribution of charge 

and strain in the material. A complete analysis of the experimental results is conducted 

based on the mathematical analysis.  

 The electro-mechanical equations need a lot of simplification for a thin, 

rectangular piece of material. The solution is obtained by considering that the material is 

a simply-simply supported thin rectangular structure, thus the effect of the clamps 

holding the material in place is not considered. The effect of temperature is also not 

considered, assuming that the temperature is always steady at room temperature (27oC 

or 80oF). The result shows that only the surface area under electron influence changes 

in strain, while the rest of the surface virtually does not change from initial condition. 

 The constitutive equations are only discussed briefly, and the material properties 

are inputted into Ansys program. Again, a simply-simply supported model is used, and 

the result shows the same thing as the electro-mechanical solution. 

 From the first experiment it is shown that the sensitivity of piezoelectric strain to 

electron beam excitation depends on the distance between the specimen and the 

source of excitation (i.e. the electron gun). The farther the specimen is from the gun, the 

more sensitive it is to the change in backpressure voltage. It is likely that the vacuum 
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chamber wall acts as an electron collector, so when the specimen is close to the wall, 

the secondary electrons are attracted to the wall, making the electron flow better. 

 The secondary electron flow is dependent to the polarity of the backpressure 

voltage. If the backpressure voltage is positive, primary electrons come with greater 

speed, thus their energy increases. Referring to Figure 1.4, the secondary electron yield 

drops below 1, so the excess electrons flow through the ampere meter, hence the 

negative current. If, on the other hand, the backpressure voltage is set negative, the 

primary electrons come with slower speed, thus increasing the secondary electron yield 

greater than 1. Excess electrons in the plate are thrown out through the secondary 

electron emission. At this state almost no current is detected through the ampere meter.  

The magnitude of electrode current is linearly related to the emission current, 

which is obvious from Kirchoff�s Law. The magnitude of the strain is barely affected by 

the magnitude of emission current, but the strain time constant drops when the emission 

current rises. This phenomenon can be considered as a classic R-C series circuit 

problem, when the charging time of the capacitor is related exponentially with the 

magnitude of the current flowing through the circuit. 

 A set of experiments were conducted to explore the charging rate of the 

piezoelectric material. There is a significant difference between the time response of the 

material when the backpressure is increased (approximately 1 second) and that when 

the backpressure is decreased (approximately 60 seconds). This difference is due to 

the fact that increasing the backpressure voltage will reduce the secondary electron 

flow. There are more primary electrons that reside in the material than local electrons 

expelled from the material. There is still energy transfer from the primary electrons to 

the locals, but it is not enough to exit the electrons into secondary electrons. If the 

backpressure is reduced, the secondary electron yield will increase above 1. The 

primary electrons will transfer their energy to the electrons in the plate so they can be 

exited into vacuum. This transfer process, along with the lack of moving charge in the 

material, slows down the material response to change in backpressure. 

The highest magnitude in strain responses is due to the location of the electron 

flux, but after some time, most of the surface has the same strain magnitude with that 

directly under electron flux influence. This is called blooming effect. Blooming happens 
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because the primary electrons transfer their energy to local electrons so they have 

enough energy to pass the energy barrier and be exited as free electron. The 

trajectories of these electrons are denoted by Boltzmann transport theory. 

  

 

Future Work 
 

 As implied in the conclusion part, a more complete mathematical analysis needs 

to be conducted that takes into account the temperature effect and initial strain. The 

specimen can be considered as a cantilever plate, or one side of the rectangle can be 

constrained to a specific strain, instead of a simply-simply-supported model. The 

excitation (i.e. electron beam) can also be modeled closer to the actual beam profile 

presented in Figure 5.3. 

The dynamic aspects of piezoelectric material under electron flux influence can 

be investigated. Instead of feeding a step or quasi-static signal to backpressure voltage, 

wide variety of rapid-changing signals can be used, such as ramp, impulse, sinusoidal 

with different frequencies or even white noise. These signals can also be fed into the 

electron beam power supply to vary the energy and current of the electron beam.  

Different kinds of material can be investigated, such as PVDF, to find out the 

most suitable material under certain condition. Also, an electron collector can be 

installed to catch the secondary electrons to see the effect of better electron flow from 

the system. 

In computational analysis, the results of this research can be put into a Monte 

Carlo simulation to model electron movement in piezoelectric material in a certain 

condition. Another simulation using Ansys can also be carried out to predict how the 

material will react given a certain condition and excitation. This simulations will give 

some ideas about the shape, magnitude, intensity or energy of the excitation (electron 

beam and/or backpressure voltage) needed to control a certain shape and type of 

material. 
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Appendix A: Vacuum Chamber Specification 
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Appendix B: Ansys56 Codes 
 
/filename,pzt5h
/prep7 
 
! Element type definition, material property definitions 
 
et,1,solid5 
mp,ex,1,6.2e10 
mp,ey,1,6.2e10 
mp,ez,1,4.8e10 
mp,nuxy,1,.24 
mp,nuxz,1,.31 
mp,nuyz,1,.31 
mp,gxy,1,2.5e10 
mp,gyz,1,2.0049e10 
mp,gxz,1,2.0049e10 
mp,kxx,1,43 
mp,perx,1,3.84e14 
mp,pery,1,3.84e14 
mp,perz,1,3.84e14 
 
 
! Define PIEZ and ANEL Data Tables 
 
tb,piez,1,,,, 
tbmodif,1,3,-13.3576 
tbmodif,2,3,-13.3576 
tbmodif,3,3,22.0524 
tbmodif,5,2,14.8559 
tbmodif,5,2,14.8559 
 
tb,anel,1,,,, 
tbmodif,2,1,7.572e10 
tbmodif,3,1,2.572e10 
tbmodif,4,1,2.4346e10 
tbmodif,8,1,7.572e10 
tbmodif,9,1,2.4346e10 
tbmodif,13,1,5.9686e10 
tbmodif,17,1,2.5e10 
tbmodif,20,1,2.0049e10 
tbmodif,22,1,2.0049e10 
 
! Define keypoints to define geometry 
 
k,1,0,0,0 
k,2,.075,0,0 
k,3,.075,.05,0 
k,4,0,.05,0 
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k,5,0,0,2e-3 
k,6,.075,0,2e-3 
k,7,.075,.05,2e-3 
k,8,0,.05,2e-3 
 
 
! Define lines based on keypoints 
 
l,1,2 
l,2,3 
l,3,4 
l,4,1 
l,5,6 
l,6,7 
l,7,8 
l,8,5 
l,1,5 
l,2,6 
l,3,7 
l,4,8 
 
 
! Define areas based on keypoints 
 
a,1,2,3,4 
a,5,6,7,8 
a,1,2,6,5 
a,2,3,7,6 
a,3,4,8,7 
a,1,4,8,5 
 
 
! Define volume 
 
ksel,s,,,1,8,1 
lslk,,1 
asll,,1 
va,all 
 
 
! Mesh geometry 
 
vmesh,all 
 
save 
finish 
 
 
! Apply BC's 
 
/solu 
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! Constrain areas 
 
ksel,s,,,1 
ksel,a,,,4 
ksel,a,,,8 
ksel,a,,,5 
lslk,,1 
asll,,1 
nsla,,1 
d,all,all,0 
allsel 
 
 
! Apply 100-V to area 1 
 
ksel,s,,,1,4 
lslk,,1 
asll,,1 
da,all,volt,100 
allsel 
 
 
! Apply 0-V to area 2 
 
ksel,s,,,5,8 
lslk,,1 
asll,,1 
nsla,,1 
nsel,u,,,422,423,1 
 
nsel,u,,,436,437,1 
d,all,volt,0 
allsel 
 
! Apply -50-V to some particular nodes 
 
nsel,s,,,422 
nsel,a,,,423 
nsel,a,,,437 
nsel,a,,,436 
f,all,amps,+25e-6 
allsel 
 
! Run solution for given conditions 
 
solve 
 
save 
finish 
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Appendix C: Matlab Codes 
 
 
C.1. Matlab Simulation of Piezoelectric Material Response to Electron Flux 
 
%Initialization of the plate 
clear; 
clf reset; 
 
a=0.075; 
b=0.05; 
rho=7500; 
h=0.001975; 
 
x=0:0.001:0.075; 
y=0:0.001:0.05; 
D=544.9; 
P=5e6; 
 
for r=0:0.002:0.01, 
for theta=0:(2*pi/10):2*pi, 
       
xs=0.035+(r*cos(theta)); 
ys=0.025+(r*sin(theta)); 
 
%Defining the Mode Shape of the Plate 
lamdax=25; 
lamday=0; 
uk=0; 
for m=1:50, 
 for n=1:50, 
    U3k=(sin((m*pi*x/a)))'*(sin(n*pi*y/b)); 
  U3k2=U3k.*U3k; 
 
  Nk1=trapz(x,U3k2); 
  Nk=trapz(y,Nk1); 
 
  U3ks=(sin((m*pi*xs/a)))'*(sin(n*pi*ys/b)); 
  Fk=(P/(rho*h*Nk))*U3ks; 
   
  ohm=(lamdax^4)*(D/(rho*h)); 
  ohmk=ohm.*ohm; 
  nk=Fk/(ohmk); 
  uk=uk+(nk.*U3k); 
 end 
end 
 
end 
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end 
 
mesh(uk); 
xlabel(�x (mm)�); 
ylabel(�y (mm)�); 
zlabel(�Strain�); 

 

C.2. Matlab Code for Generating Blooming Sequence, by Haiping Song 
 

Exp3dm.m 

% 
%  To plot some experiments solution 
% 
 
fid=fopen('CS10s.txt','r'); 
Sdate=fscanf(fid,'%12f'); 
Time=[0:1/16:899/16]; 
PXX=[0 20 35 50 65 75]; 
PYY=[0 10 20 30 40 50]; 
for j=2:17 
%   PZ_EX(:,j-1)=Sdate(j:17:(959*17+j)); 
   PZ_EX(:,j-1)=Sdate(j:17:(959*17+j))-Sdate(j); 
   PZ_EX1(1,j-1)=PZ_EX(1,j-1);PZ_EX1(2)=PZ_EX(2,j-1); 
end 
% 
delt=50;nframes=12; 
MM=moviein(nframes); 
imm=[80:10:300]; 
 
%This is the fraction of picture to be displayed; 
iss=size(imm); 
for jm=1:iss(2) 
itim=imm(jm); 
PZ_ALL(1:6,1:6)=0.0;PZ_ALL(2,2:5)=PZ_EX(itim,13:16);PZ_ALL(3,2:5)=PZ_EX(itim,9:12); 
PZ_ALL(4,2:5)=PZ_EX(itim,5:8);PZ_ALL(5,2:5)=PZ_EX(itim,1:4);%PZ_ALL(3,4)=0.0; 
 
% 
%  To smooth meshes by cubic smoothling spline method 
% 
 
%PZ_ALL 
for icc=2:5 
   if icc~=3 
      valuey=csaps([10 20 30 40],PZ_ALL(icc,2:5),0.4,[0:10:50]); 
   else 
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      PPIN=[PZ_ALL(icc,2:3),PZ_ALL(icc,5)]; 
      valuey=csaps([10 20 40],PPIN,0.4,[0:10:50]); 
   end 
   PZ_ALL(icc,:)=valuey; 
end 
%PZ_ALL 
for jcc=1:6 
   valuex=csaps([0 20 35 50 65],PZ_ALL(1:5,jcc),0.4,[0 20 35 50 65 75]); 
   PZ_ALL(2:6,jcc)=valuex(2:6).'; 
end 
%PZ_ALL 
% 
% 
%mesh(PXX,PYY,PZ_ALL.');VIEW(150,50); 
% 
% 
%pause 
ky=3;knotsy=augknt([0 16.7 33.4 50],ky); 
sp=spap2(knotsy,ky,PYY,PZ_ALL); 
yy=[-2:2:52]; vals=fnval(sp,yy); 
%mesh(PXX,yy,vals.');VIEW(150,50); 
% 
coefsy=fnbrk(sp,'c'); 
kx=3; knotsx=augknt([0 20 50 75],kx); 
sp2=spap2(knotsx,kx,PXX,coefsy.'); 
coefs=fnbrk(sp2,'c').'; 
xv=[0:1.5:75]; yv=[0:1:50]; 
values=spcol(knotsx,kx,xv)*coefs*spcol(knotsy,ky,yv).'; 
%mesh(xv,yv,values.'); 
%[cs,h]=contour(xv,yv,values.',20);; 
h=surf(xv,yv,values.'); view(0,90);colorbar;%axis([0 80 0 50 -20 50]); 
%set(h,'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 
MM(:,jm)=getframe; 
end 
movie(MM,5,2); 
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Appendix D: Results for Experiments on Time Response 
 

All data have the same format: 

   : strain gage 1    : strain gage 4  ⋅⋅⋅ : strain gage 7 
  : strain gage 2    : strain gage 5  ⋅⋅⋅ : strain gage 8 
  : strain gage 3    : strain gage 6  ⋅⋅⋅ : strain gage 9 
   
Refer to table 5.1 for the location, movement and focus of the electron beam 
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Appendix E: Nomenclature 
 

Π = charge build-up when the electrons hit the plate, determined from the experiments. 

α1, α2, α3 = coordinate in 1st, 2nd, and 3rd direction 

χ = mobility of the electron in the material  

∈  = ∈ r∈ o         

∈ r = relative dielectric constant  

∈ o = permitivity of vacuum = 8.85 x 10-12 F/m 

ηk(t) = modal participation factor 

λ = wavelength of the wave function 

µ = Poisson ratio 

ν = frequency of the wave function 

ρ = mass density 

σ = ionic mobility 

ω = frequency 

 

A = frequency factor, obtained from the probability of a jump caused by an average 

energy hωo with respect to all probable energy 

A1, A2 = Lamé parameters  

C = material capacitance 

D = electric flux density 

Ē = electric field  

Ēv = electric field in vacuum 

Ē i = electric field in ith direction 

Eb = energy barrier  

Ep = energy of particle   
Et = the total energy received from the interaction with primary electron 

Mm
ij = mechanical bending moments  

Me
ij = electric bending moments  

Nm
ij = mechanical membrane forces  
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Ne
ij = electrical membrane forces  

Q = the charge at time t 

Qf = the charge at initial time 

Qm
ij = mechanical transverse shear forces  

Qe
ij = electrical transverse shear forces  

R = material resistance 

R1, R2 = radii of curvature 

S = strain 

T = stress tensor 

U = potential energy  

V = potential 

Vp = potential on positive surface 

Vb = the potential on negative surface (backpressure voltage) 

Y = Young modulus 

YI = bending stiffness 

 

a = distance between lattice 

[c] = elastic constant matrix 

e = electron charge (1.6 x 10-19 C) 

[e] = piezoelectric constant matrix 

eij = conventional mechanical stress 

h = thickness of piezoelectric plate 

hP  = Planck constant (6.63 x 10-34 J.s) 

ħ = 
π2

h         

i = electric current  

j = electric current density 

k = wave number = 
λ
π2  

m = electron mass   

n = density of electron 
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p = particle momentum 

p* = the probability that the electron flux will cause a local ion (electron) to jump across 

a barrier 

p(x,y,t) = force acting on x-y plane 

q  = surface charge density 

tc = time constant 

v = the speed of electron 

x*,y* = the point/points where p applies 
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