Grazing Alters Ecosystem Functioning and C:N:P Stoichiometry of Grasslands along a Regional Precipitation

Yongfei Bai
Chinese Academy of Sciences, China

Jianguo Wu
Chinese Academy of Sciences, China

Chris M. Clark
Arizona State University

Qingmin Pan
Chinese Academy of Sciences, China

Lixia Zhang
Chinese Academy of Sciences, China

See next page for additional authors

Follow this and additional works at: https://uknowledge.uky.edu/igc

Part of the Plant Sciences Commons, and the Soil Science Commons

This document is available at https://uknowledge.uky.edu/igc/22/1-13/15

The XXII International Grassland Congress (Revitalising Grasslands to Sustain Our Communities) took place in Sydney, Australia from September 15 through September 19, 2013.

Publisher: New South Wales Department of Primary Industry, Kite St., Orange New South Wales, Australia

This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Presenter Information
Yongfei Bai, Jianguo Wu, Chris M. Clark, Qingmin Pan, Lixia Zhang, Shiping Chen, Qibing Wang, and Xingguo Han

This event is available at UKnowledge: https://uknowledge.uky.edu/igc/22/1-13/15
Monitoring and managing grass and forage biomass resources at the landscape level

Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation

Yongfei Bai A, Jianguo Wu AB, Chris M. Clark B, Qingmin Pan A, Lixia Zhang A, Shiping Chen A, Qibing Wang A and Xingguo Han A

A State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's republic of China, http://lvec.ibcas.ac.cn/en/
B School of Life Sciences and Global Institute of Sustainability, Arizona State University, Tempe, AZ, 85287-4501, USA, http://sustainability.asu.edu/about/
Contact email: yfbai@ibcas.ac.cn

Keywords: China–Mongolia transect, N cycling, plant and soil pools, plant functional group, Eurasian steppe.

Introduction

Grasslands have experienced dramatic shifts in structure and functioning driven primarily by human disturbances and global climate change. The long-term grazing has resulted in widespread declines in biodiversity and ecosystem functioning and services. This is triggered by the direct and indirect effects of grazing and often mediated by the complex interactions between vegetation and environmental. Thus, it is critical to obtain a better understanding of how grazing, abiotic factors and biotic–abiotic interactions influence key properties of ecosystem functioning and sustainability and thereby provide guideline for improving grassland management practices in the Eurasian steppe.

We examined the effects of grazing on ecosystem functioning and C:N:P stoichiometry along the 700 km China–Mongolia transect (CMT) using consistent methods. The CMT, which covers a wide range of biotic and abiotic conditions, enables us to observe the total effects of multiple mechanisms that probably operate simultaneously but vary in their relative strengths across regions. The key research questions we are trying to address are: 1) How has grazing affected ecosystem functioning (i.e. species richness, above- and below-ground biomass and litter biomass) and C:N:P stoichiometry of grasslands along the regional precipitation gradient during the last 50 years? 2) How do the responses of plant and soil C, N and P pools and stoichiometry to grazing differ among community types? 3) What is the relative importance of plant functional group (PFG) composition and species plasticity in influencing ecosystem functioning and stoichiometry?

Methods

We established 18 paired study sites on a regional transect across a precipitation gradient along the China–Mongolia border, which runs 700 km and covers three major community types: meadow steppe, typical steppe and desert steppe. The ungrazed (control) sites were located within the fenced buffer zone along the China–Mongolia border, which has not been grazed by large herbivores for more than 50 years. In contrast, the grazed sites were inside the Chinese border, which have been subjected to grazing of different intensities since the 1950s. Leaf samples of 15 dominant and subdominant species, standing dead, litter, above- and below-ground standing biomass of herbaceous plants, and soil samples were sampled in 10 quadrats (1m×1m) located randomly within a 100m × 100m area. C, N, P contents for both plant tissue and soil samples were measured in the laboratory after the transect survey.

Results

Long term grazing had marked impacts on the pattern of plant species richness, above-ground biomass and litter biomass along a precipitation gradient, but not on below-ground biomass (Fig. 1).

Grazing increased the foliar N, P contents of the dominant species in meadow and typical steppes, decreased their C:N ratio, and had strong impacts on their N:P ratio. Grazing significantly changed C, N and P pools in the grassland ecosystems, and thus their C:N:P stoichiometry.

Conclusion

Long-term grazing under high intensities not only alters ecosystem productivity and biodiversity (Bai et al. 2007), but also C, N and P pools and stoichiometry across the Inner Mongolian grassland, implicating that grazing altered N cycling in grassland ecosystems. The effects of grazing on C:N:P stoichiometry and ecosystem functioning are strongly mediated by precipitation and vegetation types. Grazing accelerates N cycling in meadow steppe, restrains N cycling in desert steppe, and it has both positive and negative effects on N cycling in typical steppe. Grazing-induced ecological C:N:P stoichiometry changes are mainly attributed to the functional responses of dominant species and plant functional group composition. Grazing significantly increased the foliar N, P contents of dominant species in
meadow and typical steppes, decreased their C:N ratio, and had strong impacts on their N:P ratio. As plant stoichiometric responses to grazing ranged from large in the meadow steppe to small in the typical steppe to generally insignificant in the desert steppe, this implies that different underlying mechanisms operated along the regional precipitation gradient. Our findings suggest that reducing the stocking rate and restoring the vastly degraded steppes are essential to sustain native steppe biodiversity, ecosystem functioning and biological capacity for mitigating the impact of climate change in the Inner Mongolia grassland.