Effects of Lactic Acid Bacteria on the Quality of *Achnatherum splendens* Silage

Y. L. Xue
Inner Mongolia Agricultural and Animal Sciences College, China

G. M. Yin
Inner Mongolia Agricultural and Animal Sciences College, China

H. P. Zhao
Inner Mongolia Agricultural and Animal Sciences College, China

Q. Z. Sun
Inner Mongolia Agricultural and Animal Sciences College, China

Zhu Yu
China Agricultural University, China

See next page for additional authors

Follow this and additional works at: https://uknowledge.uky.edu/igc

Part of the Plant Sciences Commons, and the Soil Science Commons

This document is available at https://uknowledge.uky.edu/igc/22/1-11/11

The 22nd International Grassland Congress (Revitalising Grasslands to Sustain Our Communities) took place in Sydney, Australia from September 15 through September 19, 2013. Proceedings Editors: David L. Michalk, Geoffrey D. Millar, Warwick B. Badgery, and Kim M. Broadfoot

Publisher: New South Wales Department of Primary Industry, Kite St., Orange New South Wales, Australia

This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Presenter Information
Y. L. Xue, G. M. Yin, H. P. Zhao, Q. Z. Sun, Zhu Yu, and C. S. Bai

This event is available at UKnowledge: https://uknowledge.uky.edu/igc/22/1-11/11
Effects of lactic acid bacteria on the quality of *Achnatherum splendens* silage

YL Xue^{AB}, **GM Yin**^A, **HP Zhao**^A, **QZ Sun**^B, **Z Yu**^C and **CS Bai**^D

^A Institute of Grassland Sciences, Inner Mongolia Agricultural and Animal Sciences College, Huhhot, 010030, Inner Mongolia, People’s Republic of China
^B Institute of grassland research of CAAS, Huhhot, 010010, Inner Mongolia, People’s Republic of China
^C College of Animal Science and Technology, China Agricultural University, Beijing, 100094, People’s Republic of China
^D College of ecology, Shenyang Agricultural University, Shenyang, 110161, Liaoning, People’s Republic of China

Contact email: xueyanlin_1979@163.com

Keywords: *Achnatherum splendens*, lactic acid bacteria, silage, fermentation qualities.

Introduction

Achnatherum splendens is an important forage for ruminant animals, but it has a high fiber content, and there is little information about the quality of *Achnatherum splendens* silage. This experiment was undertaken to study the effects of lactic acid bacteria on the quality of *Achnatherum splendens* (AS) silage.

Materials and methods

The AS was harvested at pre-bud stage and immediately cut into 1~2 cm pieces. The AS was ensiled with lactic acid bacteria (LAB1 2.5 g/t, LAB2 5.0 g/t, 5×10⁵ CFU/g FW) and without LAB as control (CK). The three bagged AFR silages of each treatment were stored at room temperature and sampled for analyzing quality at 60d.

Results

The water soluble carbohydrate (WSC), crude protein (CP) and neutral detergent fibre (NDF) content, buffering capacity, and in vitro digestibility of silage material were 56.29 g/kg, 139.36 g/kg, 655.77 g/kg, 126.97 mE/kg, and 456.03 g/kg. The pH of the silage treated with LAB was significantly lower and the LA content was significantly higher than control (*P*<0.01), but the acetic acid (AA) content, and NH₃-N/TN was not significant between treatments (*P* >0.01). There was no PA and BA in the silage. Adding LAB to the silage can significantly increase the IVDMD compared with control (*P*<0.01). When treated with LAB, the DM, CP, NDF and ADF contents in the silage were no different from the control.

Conclusion

The fermentation quality of the control was poor. The pH was significantly reduced (*P*<0.05) and the content of lactic acid and the In vitro digestibility of DM were significantly increased (*P*<0.05) in the silage when lactic acid bacteria were added compared with the control. Adding lactic acid bacteria to *Achnatherum splendens* silage has the capacity to improve the quality of the silage.

Table 1. Mean chemical composition (g/kg), buffering capacity (mE/kg) and in vitro digestibility (g/kg) of the silage material

<table>
<thead>
<tr>
<th></th>
<th>DM</th>
<th>WSC</th>
<th>CP</th>
<th>NDF</th>
<th>ADF</th>
<th>ADL</th>
<th>BC</th>
<th>IVDDM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>408.04</td>
<td>56.29</td>
<td>139.36</td>
<td>655.77</td>
<td>364.24</td>
<td>74.45</td>
<td>126.98</td>
<td>456.03</td>
</tr>
</tbody>
</table>

Table 2. The fermentation quality (g/kg), chemical composition (g/kg) and in vitro digestibility (g/kg) of *Achnatherum splendens* silage. Means in the same row with different letters differ significantly (*P*<0.01).

<table>
<thead>
<tr>
<th>Treatments</th>
<th>pH</th>
<th>LA</th>
<th>AA</th>
<th>PA</th>
<th>BA</th>
<th>NH₃-N/TN</th>
<th>DM</th>
<th>CP</th>
<th>NDF</th>
<th>ADF</th>
<th>ADL</th>
<th>BC</th>
<th>IVDDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK</td>
<td>4.57 a</td>
<td>7.35 b</td>
<td>1.68</td>
<td>0</td>
<td>0</td>
<td>198.62</td>
<td>391.19</td>
<td>142.16</td>
<td>651.94</td>
<td>362.69</td>
<td>72.98 b</td>
<td>481.57 b</td>
<td></td>
</tr>
<tr>
<td>LAB1</td>
<td>4.33 b</td>
<td>11.82 a</td>
<td>2.41</td>
<td>0</td>
<td>0</td>
<td>194.98</td>
<td>400.40</td>
<td>141.87</td>
<td>647.68</td>
<td>363.72</td>
<td>85.94 a</td>
<td>509.71 a</td>
<td></td>
</tr>
<tr>
<td>LAB2</td>
<td>4.26 b</td>
<td>9.35 b</td>
<td>1.78</td>
<td>0</td>
<td>0</td>
<td>189.49</td>
<td>415.73</td>
<td>142.15</td>
<td>650.47</td>
<td>362.72</td>
<td>75.05 b</td>
<td>488.25 b</td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>0.03</td>
<td>0.55</td>
<td>0.32</td>
<td>0</td>
<td>0</td>
<td>3.10</td>
<td>5.71</td>
<td>1.11</td>
<td>4.20</td>
<td>2.93</td>
<td>0.85</td>
<td>3.75</td>
<td></td>
</tr>
</tbody>
</table>