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ABSTRACT OF DISSERTATION  
 
 
 
 

MOLECULAR RECOGNITION PROPERTIES AND KINETIC 
CHARACTERIZATION OF TRANS EXCISION-SPLICING REACTION 

CATALYZED BY A GROUP I INTRON-DERIVED RIBOZYME 
 

Group I introns belong to a class of large RNAs that catalyze their own excision 
from precursor RNA through a two-step process called self-splicing reaction. These self-
splicing introns have often been converted into ribozymes with the ability site specifically 
cleave RNA molecules. One such ribozyme, derived from a self-splicing Pneumocystis 
carinii group I intron, has subsequently been shown to sequence specifically excise a 
segment from an exogenous RNA transcript through trans excision-splicing reaction.  

The trans excision-splicing reaction requires that the substrate be cleaved at two 
positions called the 5’ and 3’ splice sites. The sequence requirements at these splice sites 
were studied. All sixteen possible base pair combinations at the 5’ splice site and the four 
possible nucleotides at the 3’ splice site were tested for reactivity. It was found that all 
base pair combinations at the 5’ splice site allow the first reaction step and seven out of 
sixteen combinations allow the second step to occur. Moreover, it was also found that 
non-Watson-Crick base pairs are important for 5’ splice site recognition and suppress 
cryptic splicing. In contrast to the 5’ splice site, 3’ splice site absolutely requires a 
guanosine. 

The pathway of the trans excision-splicing reaction is poorly understood. 
Therefore, as an initial approach, a kinetic framework for the first step (5’ cleavage) was 
established. The framework revealed that substrate binds at a rate expected for RNA-
RNA helix formation. The substrate dissociates with a rate constant (0.9 min-1), similar to 
that for substrate cleavage (3.9 min-1). Following cleavage, the product dissociation is 
slower than the cleavage, making this step rate limiting for multiple-turnover reactions. 
Furthermore, evidence suggests that P10 helix forms after the 5’ cleavage step and a 
conformational change exists between the two reaction steps of trans excision-splicing 
reaction. Combining the data presented herein and the prior knowledge of RNA catalysis, 
provide a much more detailed view of the second step of the trans excision-splicing 
reaction. 

These studies further characterize trans excision-splicing reaction in vitro and 
provide an insight into its reaction pathway. In addition, the results describe the limits of 



  

the trans excision-splicing reaction and suggest how key steps can be targeted for 
improvement using rational ribozyme design approach. 
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CHAPTER ONE- INTRODUCTION 
 

Ribonucleic acid, or RNA, is a biomolecule, that plays a pivotal role in the central 

dogma of molecular biology although it was initially thought to be a relatively passive 

molecule. The ability of RNA molecules to catalyze chemical reactions were discovered little 

more than two decades ago in the early 1980’s (1, 2). This discovery of catalytic RNA 

changed the old view of RNA. It was soon found that RNA catalysis occurs widely in nature, 

occurring in plants, bacteria, viruses, and lower eukaryotes and also in mammals (3, 4). Also, 

research has focused on characterizing these catalytic RNAs, or ribozymes, and utilizing their 

properties to catalyze new reactions (5-8). 

It has been previously shown that a ribozyme derived from a group I intron of a large 

ribosomal subunit from the opportunistic pathogen Pneumocystis carinii can catalyze the 

sequence specific excision of regions from an RNA transcript (9-11). The reaction was 

termed the trans excision-splicing (TES) reaction. Our interest in this system is three fold. 

First, the previous studies have uncovered many intriguing mechanistic questions. What is 

the sequence requirement for the two reaction steps? What is holding the 3’ exon 

intermediate between the two reaction steps? Is there a conformational change between the 

two steps. Second, this reaction has potential use as a biochemical tool for the sequence 

specific modification of RNA molecules. The ribozyme also has potential therapeutic 

applications in that it could be used to remove mutations (at the RNA level) that are 

implicated in a host of genetic diseases. Third, the ability to manipulate the substrate and 

catalytic portion of the molecule separately provides the trans excision-splicing reaction with 

the ability to serve as a unique model system for studying the structure and function of group 

I introns. The purpose of this research is to understand the fundamental principles that govern 

RNA catalysis. The research presented in this work further characterizes the TES ribozyme 

in vitro by elucidating molecular recognition properties for the determination of 5’ and 3’ 

splice sites (10). This thesis further describes investigation of the kinetic pathway of the TES 

ribozyme with emphasis on the first step of the reaction.  
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Investigation of the Molecular Recognition of Splice Sites in a Trans Excision-Splicing 

Reaction  

TES ribozyme recognizes their target through base pairing. These base pairing 

interactions also help to define sites where the backbone is cleaved (called splice sites). 

Previous works with the P. carinii group I intron-derived ribozyme, preserved the highly 

conserved nucleotide sequences that define the splice sites in the native group I introns. 

Specific sequence requirements at these critical positions would limit the sequences that 

could be a useful target for TES ribozymes. In conjunction with another member of Testa 

lab, Dana Baum, all possible sequences were identified that would allow the catalytic activity 

at the splice sites. These studies would be useful for obtaining insight into molecular 

recognition of the splice site by the ribozymes.  

These results showed that the sequence requirement at the 5’ splice site were not 

stringent like other group I intron-derived ribozymes. However, certain sequences lead to 

product degradation through cryptic splicing and should be avoided. This lax sequence 

specificity indicates the molecular recognition of the 5’ splice site is dependent on structure, 

and not sequence (i.e. base pairing). In contrast, the sequence requirement at the 3’ splice site 

is absolute. The 3’ splice site must have a guanosine for the second step of the TES reaction 

to proceed leading to the formation of TES product (10). These results provide guidelines for 

rational development of new TES target systems.  

 

Kinetic Characterization of the First Step of the Trans Excision-Splicing Reaction. 

To understand the mechanism of RNA catalyzed reactions, establishment of kinetic 

framework was widely used (12-14). These studies have been mechanistically informative. It 

has advanced our knowledge of the chemical basis and the pathway for the catalytic 

functions of these ribozymes. For trans excision splicing ribozyme, the rate constants for 5’ 

cleavage and exon ligation reactions in a single turnover reaction have been reported and 

possible mechanistic pathway has been proposed based on prior understanding of other group 

I intron-derived ribozyme reactions (10, 15). However, none of the reaction steps have been 

studied in detail and rate constants for individual steps have not yet been determined. Thus, a 
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detailed kinetic scheme would provide a foundation for further mechanistic understanding of 

trans excision splicing reaction. 

The kinetic pathway of the 5’ cleavage reaction shows that the substrate dissociation 

is comparable to the substrate cleavage step and the chemical step is masked by a rate-

limiting conformational change. These results further suggest that the product dissociation is 

so slow that it is rate limiting for multiple turnover reaction. These results provide 

mechanistic insights for understanding of the TES reaction and establish a basis for further 

studies on its mechanism. Furthermore, as the same ribozyme or its derivative has been used 

to develop new reactions (16, 17) where 5’ cleavage is the first reaction step, the framework 

presented herein will also provide a starting point for further enhancement of these reactions.  
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CHAPTER TWO-BACKGROUND 
 

Nucleic Acid Composition 

Central Dogma of Molecular Biology 

Nucleic acids occupy an important position in biological systems and participate in a 

wide array of complex cellular functions even though they are based on relatively simple 

nucleotide monomers. For example, in the cell, DNA stores all the genetic information. This 

double stranded DNA is transcribed into single stranded RNA and RNA acts as a template 

for translation of protein. This flow of genetic information was first described by Crick and is 

known as the central dogma of molecular biology (Figure 2.1) (18). 

 

Deoxyribonucleic Acid 

DNA, or deoxyribonucleic acid, is a polymer consisting of monomeric units termed 

nucleotides. Each of these units contains three components: a phosphate group, a 2’ deoxy-

D-ribose molecule (a sugar), and a nitrogenous aromatic heterocyclic nucleobase (19, 20) 

(Figure 2.2). The nucleobases are of two types: bicyclic purines and monocyclic pyrimidines. 

Purines are adenine (A) and thymine (T), while pyrimidines are guanine (G), and cytosine 

(C) (Figure 2.3). Each DNA nucleoside is joined by a phosphodiester from its 5’-hydroxyl to 

the 3’-hydroxyl group of one neighbor and by a second phosphodiester from its 3’-hydroxyl 

to the 5’-hydroxyl of its other neighbor (Figure 2.4). There are no 5’-5’ or 3’-3’ linkages in 

the regular DNA. The phosphodiester backbone has directionality from the 5’-carbon to the 

3’-carbon on the sugar. The uniqueness of a given DNA primary sequence is based solely on 

the sequence of its bases. The predominant DNA structure found under physiological 

conditions is termed as B-DNA. This form of DNA consists of two anti parallel strands of 

nucleic acid connected by base pairs around a central axis. The base pairs are formed by 

hydrogen bonding between the nucleobases (Figure 2.5) and the most common base pairs are 

called Watson-Crick base pairs. There are two sets of Watson-Crick base pairs: A-T or T-A 

(forming two hydrogen bonds) and C-G or G-C (forming three hydrogen bonds). These two 

sets of base pairs have an isomorphous geometry and thus A-T pairs can replace C-G pairs 
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and vice versa without changing the overall geometry of the helix. While Watson-Crick base 

pairing is predominant, other pairings have also been discovered although these base pairs 

are not isomorphous with Watson-Crick pairs. Most significant of them is the Hoogsteen 

pairs (21) (Figure 2.6). The nature of Watson-Crick base pairing results in a duplex structure 

composed of single strands that are self-complimentary so that knowledge of nucleobase 

sequence in one strand is sufficient to define the sequence of the other. This feature facilitates 

the replication and repair of DNA. 

 

Ribonucleic Acid 

RNA, or ribonucleic acid, like DNA is also a polymer of nucleotides. The main 

difference between RNA and DNA is that RNA contains a ribose sugar instead of a 

deoxyribose sugar. The ribose sugar has a hydroxyl group on its 2’-carbon (Figure 2.7), and 

the presence of this additional functional group makes RNA chemically less stable than 

DNA. The extra hydroxyl group also allows the RNA to have the catalytic functions 

discussed here. Another difference between RNA and DNA is that RNA uses nucleobase 

uracil while DNA uses thymine. In addition, some RNAs sometimes contain modified 

nucleobases like pseudouridine etc (Figure 2.8). 

 RNA, like DNA is a polymer with a phosphodiester backbone linked in a 5’ to 3’ 

direction (Figure 2.4). Therefore, like DNA the sequence of nucleobases determines the 

primary structure of RNA, but unlike DNA, RNA is typically single stranded. Presence of an 

additional 2’ hydroxyl group, helps RNA to fold so that it can base pair with complementary 

sections of itself (only when forming the secondary and tertiary structures), producing 

structures. The current model of RNA folding proposes that it is hierarchical in nature 

although there are well documented exceptions (22, 23). In a hierarchical folding model, 

primary sequence interacts to form the secondary structure, and from the secondary structure 

develops the tertiary structure (23-25). The formation of the tertiary structure minimally 

distorts the secondary structure.  

The secondary structure in RNA is dominated by Watson-Crick base pairs that form 

A-form double helices. The secondary structure forms first between neighboring regions in 

the primary sequence, followed by end-to-end stacking of adjacent helices (26). The 
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preformed helices in a secondary structure associate into bundles of helices (also known as 

structural domains) to constitute the tertiary structure. The tertiary structure is generally 

maintained by long-range interactions called tertiary interactions (27). The tertiary structure 

of large RNAs are often composed of several structural domains, which can assemble and 

fold independently (28, 29).  

RNA secondary structures are most commonly comprised of helices, internal and 

asymmetric loops, bulges, and junctions (Figure 2.9). Bases in loops, bulges, and junctions 

are sometimes paired but the pairing is usually non-canonical. Even unpaired nucleotides 

might not be single stranded and are frequently involved in a variety of interactions. These 

secondary structures play very important roles in substrate binding and determining the 

correct folding of RNA. For example, non Watson-Crick base pairs and coaxial stacking of 

helices are important mediators of RNA self-assembly. Non-canonical base pairs widen the 

major groove, thereby making it accessible to ligands (30).  

 

RNA Splicing 

Eukaryotic genes usually contain noncoding DNA sequences termed introns. RNA 

polymerases transcribe both the coding sequences (exons) and the introns to give large 

precursor RNAs. After transcription, the introns are removed by a process known as RNA 

splicing, which results in the introns being excised out and the flanking exons being ligated 

together (31). RNA splicing proceeds through two consecutive phosphotransesterification 

reactions forming mature RNA (32). The process requires sequence recognition, strand 

cleavage, and ligation. In addition, the splicing process must be efficient and accurate; error 

in pre-mRNA will destroy the reading frame for protein synthesis, inaccuracy in pre-rRNA 

and pre-tRNA will produce nonfunctional ribosomes and tRNAs  (33). In vivo, the splicing is 

carried out by a large, multicomponent, and dynamic RNA-protein complex termed as 

spliceosome (34, 35). It should be noted that in many cases, RNA splicing involves the RNA 

molecule not only as a substrate, but also as a catalyst.  
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RNA Catalysis 

Catalytic RNA or Ribozyme 

In the early eighties, it was discovered that naturally occurring RNA sequences have 

the ability to catalyze the cleavage of phosphodiester bonds in the absence of proteins (1, 36) 

which falsified the longtime thought that only proteins were capable of catalyzing chemical 

reactions. These RNA sequences have been termed “catalytic RNA”. 

Seven different classes of catalytic RNA motifs have been found in nature: 

hammerhead (37, 38), hairpin (39, 40), hepatitis delta virus  (HDV) (41), and Varkud satellite 

(VS) (42) catalytic RNAs, group I (2) and group II introns (43-45), and the RNA subunit of 

RNase P (1). Recently an eighth natural catalytic RNA motif, called glmS ribozyme, has been 

identified in a riboswitch (46) that only shows catalyzes cleavage of phosphodiester bond 

upon cofactor binding. In addition, RNA components of ribosomes have been shown to have 

catalytic activity (47).  

Based on their size and mechanism, the catalytic RNAs have been broadly divided 

into two categories. The hammerhead, HDV, VS, and glmS are small catalytic RNAs (also 

known as self-cleaving) of only 50-150 nucleotides, or even less. Other three catalytic RNAs 

(group I and II introns, and the RNA subunit of RNase P) are larger, several hundred 

nucleotides in length, and fold into complex structures containing single and double stranded 

regions, base triples, loops, bulges, and junctions. Surprisingly, with one exception, naturally 

occurring catalytic RNAs cannot be termed true enzymes (or catalysts) because they catalyze 

reactions that modify themselves. The exception is RNase P, which processes the 5’ end of 

tRNA precursors and is the only known example of a true naturally occurring RNA-based 

enzyme. However, all theses naturally occurring catalytic RNAs can be engineered, so that 

they can modify external RNA molecules in trans (intermolecular fashion) without becoming 

altered themselves. The engineered catalytic RNAs behave like true enzymes and are termed 

ribozymes (ribonucleic acid + enzyme). 

In addition to size, the catalytic mechanisms of small and large ribozymes are 

different, although all of them catalyze a phosphotransesterification reaction. The 

hammerhead, hepatitis delta virus (HDV), hairpin, Varkud satellite (VS), and glmS 

ribozymes perform site-specific reversible phosphodiester cleavage reaction. The reaction 
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proceeds due to an attack of a neighboring 2’-OH on the phosphorus atom and generates 5’ 

hydroxyl and 2’, 3’ cyclic phosphate termini (48) (Figure 2.10A). RNase P (49), self-splicing 

group I and II introns catalyze phosphodiester cleavage and ligation reactions that produce 5’ 

phosphate and 3’ hydroxyl termini (7, 50, 51) (Figure 2.10B). All these reactions proceed by 

attack of a nucleophile. This nucleophile is either 3’ hydroxyl of an external guanosine 

(group I intron), or water molecule (RNase P), or 2’ hydroxyl of an internal adenosine (group 

II introns). 

One absolute requirement for ribozyme catalysis is the presence of a divalent metal 

ion, most commonly Mg2+, or a high concentration of monovalent cations (most commonly 

Na+ or K+) (52-66). In this regard the ribozymes are similar to protein metalloenzymes and 

metal ions seemed to offer the chemical versatility that RNA functional groups lack (60). The 

phosphotransesterification reactions catalyzed by either small or large ribozymes are roughly 

equivalent to non-enzymatic hydrolysis of RNA and proceeds with an inversion of the 

configuration at the phosphorus atom undergoing nucleophilic attack (67-69). Inversion of 

the configuration suggests that the reactions follow an SN2 type in-line attack mechanism 

with the development of a pentacoordinate transition state or intermediate.  

 

Group I Intron Self-Splicing 

Group I introns belong to a phylogenetically diverse family of large RNAs, its size 

ranging from a few hundred nucleotides to around 3000. More than 2000 of them have been 

discovered to date in tRNAs, mRNAs, and rRNAs of prokaryotes but were not yet found in 

higher eukaryotes. The group I introns from phylogenetically diverse sources can be 

recognized by a common secondary structure, although they can show less than 10% overall 

sequence identity. A common secondary structure implies a common tertiary structure and a 

common splicing pathway (7). The catalytic activity of RNA was first discovered in the 

group I intron of the pre-rRNA of Tetrahymena thermophila (36). It was found that the intron 

could self-splice, excising itself out of the pre-rRNA in the absence of proteins.   

Prior to this reaction, the intron folds into its catalytically active form through 

extensive base pairing and tertiary interactions. Through this folding pathway, the helices P1 

to P9.0 form the catalytic core of the intron (Figure 2.11). The helices are further organized 
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in two principal pseudo-helical domains: domain P4-P5-P6 and domain P3-P7-P8 (70, 71). 

These two domains together form a cleft in which helices P1 and P10 reside. These two 

helices together constitute the internal guide sequence (IGS) of the intron and form by base 

pairing with the endogenous 5’ and 3’ exons (7).  

The self-splicing reaction of a group I intron consists of two consecutive 

phosphotransesterification reactions. The first catalytic step of self-splicing reaction is called 

5’ cleavage (Figure 2.12) reaction. This step is initiated by either an exogenous guanosine or 

one of its 5’ phosphorylated forms (GMP, GDP or GTP) (7). The exogenous guanosine 

nucleotide binds a specific site located in P7 helix, known as the guanosine binding site 

(GBS) (Figure 2.11) (72, 73). The 3’ hydroxyl of this guanosine acts as a nucleophile and 

attacks the phosphodiester backbone at the 5’ splice site within the P1 helix. The 5’ splice 

site is defined by the last nucleotide of the 5’ exon, base-paired to a specific nucleotide that is 

part of the internal guide sequence of the intron. The last nucleotide of the 5’ exon is 

normally a uridine, exceptionally a cytidine, and paired to a conserved guanosine (part of the 

IGS) in all known group I Introns. Therefore,  a conserved G●U wobble pair at the 5’ end of 

the P1 helix defines the 5’ splice site (74-76). Due to the nucleophilic attack the backbone is 

cleaved, resulting in a free 3’ hydroxyl on the terminal uridine nucleotide (part of G●U 

wobble pair), the last base of the 5’ exon. The exogenous guanosine nucleophile after the 

first catalytic step gets covalently attached to the end of the intron (2, 36, 77).  

The second catalytic step is the exon ligation reaction, in which the newly generated 

free 3’ hydroxyl of the terminal uridine attacks the phosphodiester backbone at the 3’ splice 

site (Figure 2.12) (78, 79). This results in ligation of the exons and excision of the intron. 

Following its excision, the intron goes on to circularize via an intramolecular reaction 

pathway. The 3’ splice site of a group I intron is defined by a guanosine which always 

precedes the splice site (80, 81). Mutational analysis (82) confirmed the importance of this 

nucleotide in defining this site. This conserved G is known as ωG and it needs to bind the 

GBS for exon-ligation step. However, the exogenous G binds the GBS prior to the first step 

and needs to be removed so that ωG can bind. This is achieved through a conformational 

change preceding the second step, which replaces the exogenous G with the ωG at the GBS. 

The nucleotide preceding the ωG is not conserved among group I introns, but is nevertheless 

important for the determination of the 3’ splice site as demonstrated in the Tetrahymena and 
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sunY introns (82, 83). The sequences preceding 3’ splice site form the P9.0 helix and along 

with P10 helix can participate in the determination of the 3’ splice site. In addition, formation 

of these two helices precisely positions the 3’ exon and brings the phosphodiester bond 

between the ωG and 3’ exon next to the nucleophilic 3’ hydroxyl group of the 5’ exon, 

resulting in the exon ligation reaction.  

 

Group I Intron-Derived Ribozymes 

Group I introns are frequently exploited as model systems for a thorough 

understanding of RNA structure, function and reactions. Because the self-splicing introns 

evolved to act as a single-turnover catalyst, studies often utilize group I intron-derived 

ribozymes that can catalyze multiple turnover reactions. These ribozymes are essentially 

introns lacking their endogenous 5’ and 3’ exons (5, 84). Such group I intron derived-

ribozymes recognize an exogenous RNA substrate by base-pairing, and cleave the substrate 

using either exogenous guanosine or 3’ terminal guanosine or hydrolysis (6, 16, 79, 84-87). 

New non-native ribozyme reactions are also developed by exploiting the molecular 

recognition interactions and the inherent catalytic properties of the intron. In addition, it has 

been shown that the IGS sequence of these ribozymes can be mutated so that it can target 

different substrates. This characteristic has been exploited for engineering group I intron-

derived ribozymes that target and react with specific sequences. The trans excision-splicing 

reaction studied throughout this work was developed based on the self-splicing reaction of 

group I introns, in fact, the ribozyme catalyzing this reaction is itself derived from a self-

splicing group I intron (9, 88, 89).  

 

The Trans Excision-Splicing Reaction 

The Trans Excision-Splicing (TES) reaction was developed by the Testa lab using a 

ribozyme derived from a group I intron in the ribosomal RNA of the opportunistic pathogen 

Pneumocystis carinii (9, 88, 90) (Figure 2.13). This ribozyme can catalyze sequence specific 

excision of a targeted sequence (from 1 to at least 28 nucleotides) from an exogenous RNA 

substrate (10, 91). Prior to the reaction, the ribozyme folds into its catalytically active form 

and binds the substrate (Figure 2.13). The ribozyme folding and substrate binding are similar 
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in TES and self-splicing reactions. RE1 base pairs with the 5’ region of the substrate (5’ 

exon), forming the P1 helix (Figure 2.13 and 2.14). RE2 base pairs with the segment targeted 

for excision (when larger than a single nucleotide), forming the P9.0 helix, while RE3 base 

pairs with the 3’ region of the substrate (3’ exon) to form the P10 helix (Figure 2.13 and 

2.14). It should be noted that like self-splicing reaction, all the base pairing interactions 

mentioned above are not absolutely required for reactivity. Engineered ribozymes without the 

ability to form either P9.0 or P10, still retain the ability to catalyze reactions (91, 92). 

After the ribozyme binds the RNA substrate, the reaction proceeds with two 

phosphotransesterification reactions that are analogous to the self-splicing reaction (Figure 

2.12). Prior to the reaction, the 3’ terminal guanosine (G344) of the ribozyme binds to the 

guanosine binding site (5, 79, 84) and then activates its 3’ hydroxyl of the nucleoside for 

nucleophilic attack. This phosphotransesterification reaction releases the 5’ exon, linking the 

3’ exon of the substrate to the 3’ end of the ribozyme (P. P. Dotson, unpublished result). The 

cleavage site (located within helix P1) for the first catalytic step (5’ cleavage) is at the 

position that is equivalent to 5’-exon/intron junction in the self-splicing intron (the splice site 

is known as 5’-splice site). This step does not require an exogenous guanosine. In the second 

step (exon-ligation), the newly released nucleophilic 5’ exon attacks a specific base within 

the 3’ exon of the intermediate, simultaneously ligating the exon intermediates and excising 

an internal segment from the substrate. To position the 3’ exon mimic for the second 

nucleophilic attack, the 3’ exon mimic forms a P10 helix with the ribozyme (Figure 2.14). 

The 3’ splice site is defined by a guanosine (Figure 2.14) and this G acts like the ωG from 

the intron, and presumably interacts with the guanosine binding site (GBS) in the ribozyme.  

 

Experimental Methods used for Nucleic Acids 

Gel Electrophoresis 

Electrophoresis is the separation of charged molecules in an applied electric field. 

Positive or negative charges are common in biomacromolecules. When placed in an electric 

field, charged biomolecules move towards the electrode of opposite charge due to the 

electrostatic attraction. The main method of analysis used in these studies is gel 

electrophoresis.  
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Hydrated gel networks have many desirable properties for electrophoresis. The most 

important of them is that they are chemically inert which allows for separation of molecules 

based on physical rather than chemical differences. Theoretically, the molecules should 

separate with respect to net charge, size, and shape. For nucleic acids, charge and shape are 

consistent and hence size is the sole determining factor for separation. Gel networks are 

polymers that are either crosslinked or non-crosslinked. The two most common gels used for 

studying nucleic acids are agarose and polyacrylamide. The agarose is a polymer composed 

of a repeating disaccharide unit called agarobiose which consists of galactose and 3, 6-

anhydrogalactose. These gels are used widely in separation of DNA molecules and are most 

commonly used in the concentration range 0.5-2.0 % allowing separation of molecules up to 

50 kb. A far stronger gel, also suitable for separation of nucleic acids, is the polymerized 

acrylamide. The inclusion of a small amount of N, N’ methylene bisacrylamide allows 

formation of a crosslinked gel with a highly-controlled porosity. For separation of nucleic 

acids, the ratio of acrylamide: N, N’ methylene bisacrylamide is usually 19:1 and can be used 

with nucleotides when a difference in size down to single nucleotides needs to be observed. 

A polyacrylamide gel is usually set between two glass plates and held there while it is run. 

The nucleic acid samples are applied to the gel at one end and migrate under the influence of 

the electric field vertically to the other end. Smaller molecules move faster and so move 

farther down the gel, while larger molecules remain higher up on the gel. One of the most 

common methods for visualizing and analyzing polyacrylamide gels is autoradiography. 

 

Autoradiography 

Autoradiography is a method, by which radioactive material can be localized; for 

example, within a particular tissue, cell, or even molecule. In this technique, a sample 

containing a radioactive substance is placed in direct contact with a layer of a photographic 

emulsion specially designed for autoradiography. Thus, autoradiography utilizes two 

components, radioactive molecules, and photographic emulsions. The molecule is usually 

radiolabeled with three types of radioisotopes- high energy (32P), medium (14C, 35S) and low 

(3H); all of them are β-emitters. The emulsions contain suspensions of silver halide (AgCl, 

AgF, AgBr, AgI). After the radioactive specimens are fixed on a fixed two-dimensional 
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surface (e.g. PAGE gel), the emulsion is exposed to it. Each β-particle emitted from the 

molecules converts some of the silver ions to silver atoms within a film emulsion. The image 

is revealed by subsequent development of the film which results in the reduction of all of the 

silver atoms of an entire silver halide crystal to metallic silver (93). This process creates a 

hole in the lattice corresponding to that area containing radioactive specimens. The 

development process results in images or bands corresponding to the orientation of the 

specimens on the gel. One disadvantage of this process is that the atoms of silver are likely to 

lose their electrons and return to the silver ions. Hence, the image is likely to fade.  

Traditional autoradiography requires X-ray film; however, the process of storage 

phosphor visualization or phosphorimaging provides an additional method of visualizing 

radioactive reactions. Plates, or screens, are coated with a solid phosphor, which store energy 

in the photostimulable crystals. Typical phosphors are CaWO4, BaFCl•Eu2+, and rare-earth 

oxysulfides. The screen is exposed to the radioactive substance and the energy from the β-

particles ionizes the rare earth metals, liberating electrons to the conduction band of the 

phosphor crystals. The screen is then scanned laser light of approximately 633 nm, which 

releases the trapped electrons and emits photons at 390 nm (94). The emitted photons are 

detected with a conventional photomultiplier tube and are used to form an image. This image 

is presented on a computer screen and the radioactive substances can be quantified using 

specialized computer programs (94). Although this process requires a more expensive 

instrument and specific software so that the image can be manipulated and the radioactive 

substances can be quantified, the time to acquire images is reduced 80-90%. The images of 

PAGE gels shown in these studies have been acquired using this method.  

 

Site Directed Mutagenesis 

Over last 25 years, because of recombinant DNA technology, a technique known as 

site-directed mutagenesis has become one of the most important and powerful tools in 

modern genetics. Its power lies in its ability, by chemical and enzymatic manipulation, to 

change a specific DNA target in a predetermined manner.  

One very important component of the site directed mutagenesis is oligonucleotide 

primers of known unique sequences that also carry the changes needed to be incorporated to 
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the DNA. The changes in a mutant DNA sequence may be single or multiple. They may 

involve base changes, base deletions, or base additions. The length of the primers must be 

sufficient to overcome the likelihood that their sequence would occur randomly in the large 

number of nontarget DNA sequences that are in the sample.  

The first site-directed mutagenesis strategies employed single-stranded M13 

bacteriophage DNA (95) and required around 24 hours to complete the process. The advent 

of polymerase chain reaction (PCR), the discovery of thermostable DNA polymerases with 

proofreading functions and high fidelity have made the site-directed mutagenesis a rapid and 

efficient method. Site-directed mutagenesis, as it is practiced today, is an automated 3-step 

process. The first step is denaturation where the reaction mix is heated to 95 OC for about 1 

minute to separate the two strands of the DNA template. The second step is annealing (or 

renaturation) where the reaction mixture is cooled to a certain temperature allowing the 

oligonucleotide primers to anneal to the DNA template (most common temperatures used for 

annealing being in the range of 50-55 OC). The third step is elongation (or synthesis) and in 

this step, the reaction mixture is heated to a temperature ideal for the DNA polymerase. The 

polymerase then catalyzes the synthesis of the DNA strand. The polymerase uses the 

oligonucleotide primers to initiate the process and progresses in the 5’→3’ direction. These 

three-step cycles are repeated over and over until a sufficient amount of product is produced. 

The polymerase also uses the template DNA to direct what nucleotide should be added to the 

growing chain (the method is outlined in Fig. 2.15). In addition, the use of DNA polymerase 

with proofreading ability ensures synthesis of new DNA strand with very few errors. The 

presence of hemimethylated sites in DNA, (5’Gm6ATC3’) is important for site directed 

mutagenesis. These sites occur quite commonly in DNA obtained from cells but are absent in 

enzymatically synthesized DNA from PCR. The endonuclease DpnI recognizes these 

hemimethylated sequences and destroys the template DNA leaving the newly synthesized 

mutant DNA intact. The mutant DNA can then be cloned into any plasmid of choice and 

grown in a common strain of E. coli; the most commonly used one being DH5α. 

 

 

 

Copyright © Joy Sinha 2006 
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FIGURE 2.1: Central Dogma of Molecular Biology 
Schematic, simplified description of the central dogma of molecular biology. Double-

helical DNA is replicated and passed on from one generation to the next. DNA encodes the 

information on amino acid sequence in protein. DNA transfers this information to RNA via 

transcription, which in turn, is transferred into protein through translation. In retroviruses 

information can also be transferred from RNA to DNA through a process called reverse 

transcription. Several additional processes, such as post-transcriptional and post-translational 

modifications, are not depicted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 15



  

 

 

 

 

 

 

 

 

FIGURE 2.2: Deoxyribonucleotide  
Deoxyribonucleotides are the monomers that make up a DNA strand. Each 

deoxyribonucleotide consists of a phosphate group, a deoxyribose sugar, and a nitrogenous 

heterocyclic base. The identity of the nitrogenous base distinguishes each nucleotide.  
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FIGURE 2.3: Nitrogenous Bases in DNA 
The four nitrogenous heterocyclic bases found in DNA. Adenine and guanine are 

purine bases, while thymine and cytosine are pyrimidine bases. Each base is typically 

referred to by its single letter abbreviation: A = Adenine, G = Guanine, T = Thymine, and C 

= Cytosine. These single letter abbreviations are also used to designate the nucleotides of 

DNA. It should be noted that in the above figures the deoxyribose sugar is denoted simply as 

sugar. 
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FIGURE 2.4: Chain Form of DNA 
Fragment of DNA linked by 3’, 5’phosphodiester bonds. Only a single base was 

shown which is a guanosine. The rest of the bases were not shown for simplicity. Instead, 

their position in a chain is marked with letter N, which could be any of the nucleobases. Also, 

note that only the functional hydrogen atoms are shown. The chain direction is from 5’ to 3’-

end as shown by arrow.  
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FIGURE 2.5: Watson-Crick Base Pair 

Schematic description of the Watson-Crick base pairs. The top pair is A : T pair 

which results from adenine base pairing with thymine via two hydrogen bonds. The pair at 

the bottom are G : C pair resulting from guanine pairing with cytosine via three hydrogen 

bonds. For simplicity, only the functional hydrogen atoms are shown and the deoxyribose 

sugar is not shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 19



  

 

 

                             

 

 

 

 

FIGURE 2.6: Hoogsteen Base Pair 

Schematic description of the Hoogsteen base pair illustrated with A : T pair. These 

pairs are not isomorphous with Watson-Crick pairs because the glycosidic bond orientation is 

different. 
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FIGURE 2.7: Ribonucleotide  

Ribonucleotides are the monomers that make up an RNA strand. Each ribonucleotide 

consists of a phosphate group, a ribose sugar, and a nitrogenous base. The identity of the 

nitrogenous base distinguishes each nucleotide. A key difference between the nucleotides 

found in DNA and the nucleotides found in RNA is the presence of a hydroxyl group on the 

2’ position of the ribose sugar. Base denotes any of the nitrogenous heterocyclic base, which 

for RNA will be A, G, C or U (see figure 2.7). 
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FIGURE 2.8:  Uracil and Pseudouridine  

The base thymine in DNA is replaced by uracil in RNA (left). The difference between 

thymine and uracil is the absence of a methyl group in uracil. Uracil is typically referred to 

by its single letter abbreviation of U. The base pseudouridine is one the most common 

modified nucleobases found in RNA (right). The orientation of the functional groups in this 

base is different from uridine. Pseudouridine is typically referred to by its single letter 

abbreviation of ψ. Note that the only the functional hydrogens are shown and ribose denotes 

the location of the ribose sugar. 
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FIGURE 2.9: RNA Secondary Structure  

RNA is typically single stranded, however; it has the ability to base pair and to form 

structures. RNA secondary structures are comprised of helices, hairpin loops, internal and 

asymmetric loops, bulges, and junctions.  
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FIGURE 2.10: Chemical Steps of Self-Splicing and Self-Cleaving Reactions of 

Ribozymes  

 (A) The small ribozymes catalyze the reversible self-cleaving reaction where the 2’ 

hydroxyl which is part of the ribozyme is the attacking nucleophile and the bridging oxygen 

is the leaving group. (B) The self-splicing reactions of RNase P and self-splicing introns 

involve attack of an exogenous nucleophile on the phosphodiester backbone. The nucleophile 

varies from ribozyme to ribozyme. It can be 3’ hydroxyl of an exogenous guanosine (group I 

introns) or 3’ hydroxyl of an adenosine within the ribozyme (group II introns) or a water 

molecule (RNase P). All the different nucleophiles are generalized as ROH. For self-splicing 

reactions, the bridging 3’ oxygen is the leaving group. The second step of the self-splicing 

reaction is simply the reverse of the scheme shown above. Both self-cleaving and self-

splicing reactions proceed with an inversion of the stereochemical configuration at the 

reaction center implying the attack of the nucleophile is SN2 type. N-1 and N+1 denote the 

nucleosides on the 5’ and 3’ sides of the reactive phosphodiester.  
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FIGURE 2.11: Predicted Secondary Structure of the Pneumocystis carinii Self-Splicing 

Group I Intron  

The primary and the predicted secondary structure of the self-splicing intron from the 

opportunistic pathogen Pneumocystis carinii (9). The helices P1-P9 are marked. Solid lines 

indicate a direct connection in the primary sequence and arrowheads emphasize the 

directionality of the chain. Watson-Crick base pairs (▬) and non-Watson-Crick base pairs 

(●) are indicated. The uppercase lettering denotes intron sequences whereas the endogenous 

exons are in lowercase. The catalytic core of the intron is enclosed in grey. The catalytic core 

contains recognition elements RE1, RE2, and RE3. These recognition elements form helices 
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P1, P9.0 and P10 respectively. The guanosine binding site, in helix P7, is shown with the 

grey oval and the bases involved in G binding are shown in bold. The circled guanosine at 

the 3’ end of the intron binds to the guanosine binding site. The cleavage sites for the two 

steps of self-splicing are shown by bold arrows.  
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FIGURE 2.12: Self-Splicing Reaction of a Group I Intron  

Scheme of the group I intron self-splicing reaction (10). The intron is in gray and the 

endogenous exons are in black. The intron, in presence of metal ions folds into its 

catalytically active form and base pairs with the endogenous exons. Three important 

interactions for target identification are helices P1 (base pairs with 5’ exons), P9.0 (within the 

intron) and P10 (base pairs with 3’ exons). An exogenous guanosine nucleotide binds a 

particular site in the intron (known as the guanosine binding site) and the 3’ hydroxyl group 

of this nucleotide acts as a nucleophile to attack the 5’ splice site in the first reaction step. 

The phosphodiester backbone is cleaved at the 5’ splice site, resulting in a 3’ hydroxyl on the 
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terminal nucleotide of the 5’ exon (typically a uridine). The guanosine cofactor becomes 

attached to the end of the intron. 

In the  second step , the 3’ hydroxyl on the terminal nucleotide of the 5’ exon acts as a 

nucleophile and attacks the 3’ splice site which is immediately after a guanosine (referred to 

as ωG; shown as gray circle). This attack results in ligation of the two exons and release of 

the intron. 
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FIGURE 2.13: Predicted Secondary Structure of the Pneumocystis carinii Ribozyme  

Predicted secondary structure of the Pneumocystis carinii group I intron-derived 

ribozyme. Primary structure is essentially identical to the intron as depicted in Figure 2.11. 

The chief difference being that the 8 bases from the 5’ end and last 4 bases from the 3’ end of 

the intron are missing. The last base at the 3’ end of the ribozyme, a guanosine, is marked 

(position is 344). The heavy black lines schematically show the secondary structure of the 

ribozyme and red lines indicate a direct connection between sequence elements. The 

arrowheads emphasize the directionality of the chain. The helices P1-P10 are labeled. Shown 
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are only those ribozyme bases that pair with an exogenous substrate. The uppercase letters 

signify the ribozyme while the lower case letters the exon mimics. The ribozyme recognition 

elements (RE1, RE2 and RE3) are in bold. The 5’ and 3’ exons pair with recognition 

elements RE1 and RE2 to form P1 and P10 helices. The P9.0 helix does not form with the 

particular substrate shown because of lack of complementary bases. The arrows designate the 

two splice sites. 
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FIGURE 2.14: Trans Excision-Splicing Reaction  

Schematic representation of the trans excision-splicing reaction. The bridge region, 

being excised out, is in blue, the flanking exons are in black, and the TES ribozyme is in 

gray. The sequence targeted for excision is further distinguished with a broken line. The 

recognition elements from the self-splicing intron are used for substrate binding. RE1 base 
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pairs with the 5’ exon (to form the P1 helix), RE3 base pairs with the 3’ exon (to form the 

P10 helix) and RE2 base pairs with the insert (when longer than a single nucleotide) targeted 

for excision (to form P9.0). A nucleophilic attack by the 3’ terminal G344 of the ribozyme 

(see Figure 2.13) cleaves the backbone at the 5’ splice site in the first reaction step (5’ 

cleavage), resulting in a 3’ hydroxyl on the terminal nucleotide of the 5’ exon (typically a 

uridine). In the second reaction step (exon-ligation), the 3’ hydroxyl of the terminal 

nucleotide of the 5’ exon performs a nucleophilic attack on the 3’ splice site, immediately 

after a guanosine that defines the end of the insert region (termed ωG). This results in exon 

ligation and excises out the bridge region. It should be noted that the excised  segment is 

attached to the 3’ end of the ribozyme after the second step.  
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FIGURE 2.15: Site Directed Mutagenesis 
A mismatched oligonucleotide (G to an A) is annealed to a DNA template and 

extended with DNA polymerase. The template is then digested with DpnI restriction enzyme 

and cloned into E. coli to obtain mutant DNA. 
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CHAPTER THREE- STUDYING MOLECULAR RECOGNITION OF SPLICE 
SITES IN A TRANS EXCISION SPLICING REACTION 

 

Introduction 

The trans excision-splicing (TES) reaction, as discussed in the previous chapter, 

consists of two consecutive phosphotransesterification reactions (Figure 3.1): a 3’ terminal 

G344-mediated 5’ cleavage (P.P. Dotson, unpublished results) followed by exon ligation. It 

has been shown, in an earlier study from our lab that the TES reaction ribozyme can excise a 

variety of sequences, including the excised segment as little as a single nucleotide (10). It has 

also been demonstrated that different substrates can be targeted by rationally modifying the 

substrate recognition elements of the ribozyme (10, 15).  

While developing the TES reaction, and in previous studies on this reaction, two 

highly conserved elements of self-splicing group I introns were maintained. The rationale 

behind retaining these two conserved elements originated from their role in defining the 

splice sites in group I introns. The two conserved elements are: the u-G wobble pair at the 

end of P1 helix and (2) the last base of the 3’ exon, known as ωG (Figure 3.1). The u-G 

wobble pair specifies the 5’ splice site (9, 10, 76, 96-99) whereas ωG is known to a major 

determinant of the 3’ splice site (57, 100-105). To distinguish between the ribozyme and 

substrate, lowercase nucleotide abbreviations refer to the substrate, uppercase refers to the 

ribozyme, and the 5’ splice site refers to the base pair that forms between -1 of the substrate 

and position 12 of the ribozyme (Figure 3.1).  

Mutagenesis of the highly conserved u-G wobble pair to any other base pairs 

significantly reduces ribozyme’s activity (76, 106). However, two well-known exceptions are 

c-A and c-G base pairs, which can substitute the u-G wobble pair at the 5’ splice site (76, 

105, 107). It has also been reported that ωG can be substituted with ωA, with either no 

change required to the catalytic core (108) or by modifying the guanosine binding site of the 

ribozyme so that it can accommodate adenosine (107, 109). These previous results suggest 

that the sequence requirement for the splice sites for group I intron/ribozyme is not absolute. 

In the context of the TES reaction, a highly specific requirement for the splice site will limit 

the choice of targets. Therefore, it is of interest to analyze the sequence specificity of the 
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splice site in the TES reaction. I worked with another member of the Testa lab, Dana Baum, 

to analyze the sequence specificity at the splice sites. 

In this investigation, all 16 combinations of base pairs at the 5’ splice site and all four 

bases at the 3’ splice site were used for the TES reaction. To limit the reaction variables and 

simplify analysis, a simple RNA substrate was employed. A single nucleotide, analogous to 

the ω position in group I introns, is excised from this substrate. In addition, these substrates 

can not form the P9.0 helix because of lack of complementary bases in the ribozyme (10) 

(Figure 3.1). These studies were undertaken to provide a more thorough understanding of the 

sequence requirements for the TES reaction, specifically at the 5’ splice site and for the ω 

position of the 3’ splice site. Furthermore, this information will be invaluable for developing 

guidelines for what sequences the ribozymes can target, what sequences can be excised, and 

the specificity of these reactions. These studies will also provide insight into the molecular 

recognition of the splice sites by this P. carinii ribozyme.  

 

Materials and Methods  

Oligonucleotide Synthesis and Purification 

DNA oligonucleotides were obtained from Integrated DNA Technologies (Coralville, 

IA) and used without further purification. RNA oligonucleotides were obtained from 

Dharmacon (Lafayette, CO). These RNA oligonucleotides contained an orthoester protecting 

groups at the 2’ positions, which were removed following the manufacturer’s protocol using 

100 mM acetate-TEMED buffer (pH 3.8). Unlabeled oligonucleotides were used without any 

further purification. Radiolabeled RNAs were prepared by phosphorylation of the 5’-terminal 

hydroxyl group with T4 polynucleotide kinase (New England Biolabs; Beverly, MA) and [γ-
32P] ATP (Amersham Pharmacia Biotech; Piscataway, NJ). Labeled RNA oligonucleotides 

were gel purified on a 20% native polyacrylamide gel and the products were isolated from 

the gel slices by crush-soak elution as described (9). 
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Plasmid Construction and Synthesis 

The P.carinii ribozyme plasmid precursor, P-8/4x, was constructed as described 

previously (10). Modifications to alter the guanosine in the 12 position of the ribozyme, 

which is part of the wobble pair at the 5’ splice site and to delete the RE3 sequences that are 

involved in P10 formation were made using site-directed mutagenesis. The following pairs of 

primers were used for altering the ribozyme at the 12 position (underlined base represents the 

altered bases as compared to P-8/4x): 5’ CGACTCACTATAGAGCGTCATGAAAGCGGC3’ 

and 5’ GCCGCTTTCATGACGCTCTATAGTGAGTCG3 to create P-8/4x-5’C; 5’ 

CGACTCACTATAGAGAGTCATGAAAGCGGC3’ and 5’ 

GCCGCTTTCATGACTCTCTATAGTGAGTCG3 to create P-8/4x-5’A 5’ 

CGACTCACTATAGAGTGTCATGAAAGCGGC3’ and 5’ 

GCCGCTTTCATGACACTCTATAGTGAGTCG3’ to create P-8/4x-5’U. The following 

primer pair was used to create P-8/4x-noP10:  
5’CGACTCACTATAGGTCATGAAAGCGGC3’ and 
5’GCCGCTTTCATGACCTATAGTGAGTCG3’. The site-directed mutagenesis reactions 

were conducted with 15 pmol of each primer, 25 ng P-8/4x parental plasmid, 2.5 units of Pfu 

DNA polymerase (Stratagene; La Jolla, CA), and 0.5 µM dNTPs in a buffer consisting of 10 

mM KCl, 10 mM (NH4)2SO4, 20 mM Tris-HCl (pH 8.8), 2 mM MgSO4, 0.1% Triton X-100, 

and 0.1 mg/mL BSA in a total reaction volume of 50 µL. The reaction mixtures were initially 

subjected to denaturation at 95 OC for 30 s. The reaction mixtures were then run through 16 

cycles; each cycle consisted of the following steps: 95 OC for 30 s, either 55 OC or 60 OC for 

2 min, and 68 OC for 6 min. After the site directed mutagenesis, the parental plasmids were 

then digested with 20 units of DpnI (Invitrogen; Carlsbad, CA) in 4.2 µL of manufacturer’s 

buffer for at least 2 h at 37 OC. A 3 µL aliquot of this mixture was used to transform 

Escherichia coli DH5α competent cells (Invitrogen). The resultant plasmids were then 

purified using a QIAprep Spin Miniprep kit (QIAGEN; Valencia, CA), and sequenced for 

confirmation (Davis Sequencing; Davis, CA).  
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Transcription 

All ribozyme precursor plasmids were linearized with XbaI restriction enzyme. The 

linearized plasmids were purified from the reaction mixture using a QIAquick PCR 

Purification kit (QIAGEN). The ribozyme was synthesized by run-off transcription from the 

XbaI linearized plasmid. A typical transcription reaction contained 40 mM Tris-HCl (pH 

7.4), 1.25 mg/mL BSA, 5 mM spermidine, 5 mM dithiothreitol, 5 mM MgCl2, 1.5 mM each 

rNTP, 1 µg of linearized plasmid, 4 µL of T7 RNA polymerase (10,000 units/µL) in 80 µL 

and was incubated for at least 2 h at 37 OC. The resultant RNAs were purified using 

QIAGEN-tip 100 anion-exchange columns. First, each column was equilibrated with 4.0 mL 

of buffer I (750 mM NaCl, 50 mM MOPS (pH 7.0), 15% ethanol, and 0.15% Triton X-100). 

Second, the transcription reactions were loaded onto the column, and the columns were 

washed with 7.0 mL of buffer I. Third, the ribozymes were eluted using 4.0 mL of buffer II 

(1.0 mM NaCl, 50 mM MOPS (pH 7.0) and 15% ethanol). The eluted ribozymes were 

precipitated with 2-propanol and further purified with an ethanol precipitation. Finally, the 

ribozymes were dissolved in sterile water. The ribozyme concentration was determined 

spectrophotometrically at 260 nm using a Beckman DU-650 UV-Vis spectrophotometer, 

assuming an extinction coefficient that was sum of those for the individual nucleotides (ε = 

3.2 x 106).  

 

TES Reactions 

All reactions were single turnover with ribozyme in excess of radiolabeled substrate. 

The reactions were conducted at 44 OC in H10Mg buffer consisting of 50 mM HEPES (25 

mM NaHEPES), 135 mM KCl, and 10 mM MgCl2. Prior to each reaction, 200 nM ribozyme 

in 5 µL H10Mg buffer was preincubated at 60 OC for 5 min for creating a homogenously 

folded ribozyme population prior to cooling to 44 OC. The reactions were initiated by 

addition of 1 µL of an 8 nM radiolabeled substrate (110) (also in a H10Mg solution). The 

final concentrations of the ribozyme and substrate in the reaction mixture were 166 nM and 

1.3 nM respectively. Reaction times for the TES reactions investigating the 5’ splice site 

were either 15 min or 1 h. The 3’ splice site studies and the rP-8/4x-noP10 reactions were 

allowed to proceed for 1 h. All reactions were terminated by addition of an equal volume of 
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2x stop buffer (10 mM urea, 0.1x TBE, 3mM EDTA). The products and reactants were 

denatured at 90 OC for 1 min and then separated on a denaturing 12.5% polyacrylamide gel. 

The gel was placed on chromatography paper (Whatman 3MM CHR) and dried under 

vacuum for 1 h at 70 OC. The bands were visualized on a Molecular Dynamics Storm 860 

PhosphorImager and the radioactivity in the bands was quantified using Imagequant 

(Molecular Dynamics). All data reported are the average of at least two independent assays. 

 

Kinetics of the Trans Excision-Splicing Reaction 

The observed rate constants for TES reactions with various base pairs at the 5’ splice 

site were obtained under single turnover conditions. A 200 nM solution of the ribozyme in 25 

µL H10Mg buffer was preincubated at 60 OC for 5 min for creating a homogenously folded 

ribozyme population prior to cooling to 44 OC. Then 5 µL of an 8 nM solution of 

radiolabeled substrate in H10Mg buffer at 44 OC was added to initiate the reaction. Product 

yields were determined by withdrawing a 3 µL aliquot at designated times and quenching 

with an equal volume of 2x stop buffer. Reactions were followed to completion and reaction 

products were resolved on a denaturing 12.5% polyacrylamide gel. Before loading on a gel, 

the reactants and products were denatured by heating at 90 OC for 1 min. The gel was dried 

under vacuum and the bands were visualized and quantified as described above. The 

observed rate constants were obtained from Sigmaplot (Jandel) by using a single exponential 

equation [P]t = [P]∞(1-e-kt). In this equation, [P]t and [P]∞ are the percentages of product 

formed at time t and end point, respectively; t equals time and k is the first order rate 

constant. Each observed rate constant represents an average of values from at least two 

independent assays with a standard deviation less than 10%. 

 

Competition Studies 

The competition studies were also conducted under ribozyme excess condition. 200 

nM ribozyme was preannealed in H10Mg buffer for 5 min at 60 OC, slow cooled to 44 OC 

and 8 nM of the radiolabeled substrate in H10Mg buffer was added to initiate the reaction. 

The reaction was allowed to proceed for 5 min and then 1000-fold excess of unlabeled TES 

product (over substrate) in H10Mg buffer was added to the reaction mixture to chase the 
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reaction. Addition of the competitor or chase ensures that the dissociated radiolabeled 

substrate/product/intermediate will not rebind the ribozyme. Following the addition of the 

competitor, the time course of the reaction was followed over a period of 90 min. The 

substrate and products were denatured by heating at 90 OC for 1 min prior to loading on a 

12.5% denaturing polyacrylamide gel. The products were separated, visualized, and 

quantified as described above. 

 

Results 

Molecular Recognition at the 5’ Splice Site.  

To investigate the molecular recognition of the 5’ splice site, the simplest TES 

substrate system was chosen, from which a single nucleotide is excised (Figure 3.1). The 

P9.0 helix is not utilized in this test system and the excised nucleotide corresponds to ωG. 

Four different 10-mer substrates (5’ augacygcuc 3’; y stands for a, c, g or u) were synthesized, 

each containing a different nucleoside at position -1. These substrates were allowed to react 

with four different ribozymes, where the position 12 of each ribozyme has been mutated to 

incorporate different nucleoside (shown in Figure 3.3). Therefore, between four substrates 

and four ribozymes allowed for testing all 16 possible base pair combinations at the 5’ splice 

site (Figure 3.3). Previous reports have suggested that the optimum reaction time for the TES 

reaction was 1 h (10). Therefore, initially the reactions were allowed to proceed for 1 h. It 

was found that under these conditions, all 16 base pair combinations produced 5’ cleavage 

product (first step-product). However, the extent of reaction varied significantly depending 

on the base pair at the 5’ splice site (Figure 3.4). As the product of the second reaction step 

(exon-ligation) must necessarily have undergone the first reaction step (5’ cleavage), the 

reported values for the 5’ cleavage product reflect the combined total of both first and second 

steps of the TES reaction. It was also observed that seven out of sixteen base pair 

combinations gave an appreciable amount (>10%) of complete TES product (Figure 3.4). 

However, some base pairs (u-A, a-U, c-G, g-C, and c-C) showed cleavage infidelity or 

cryptic splicing (defined as the propensity of the ribozyme to cleave at positions other than 

the normal splice site) and these base pairs produced an appreciable amount of side products 

(termed as cryptic products). Interestingly, all the cryptic products were shorter than the 9-
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mer TES product. To determine when these cryptic products appear during the reaction, time 

courses of the reactions were established.  

For ease of analysis, the results from the time courses were divided into three groups. 

Figure 3.5 shows representative gels from each group. The first group represents all non-

Watson-Crick base pairs (except c-C pair). Presence of these base pairs at the 5’ splice site 

does not produce appreciable cryptic products, even where substantial TES product forms 

(Figure 3.5A). In the second group, cryptic products appear after 15 min (Figure 3.5B). This 

group contains only Watson-Crick pairs at the 5’ splice site. The third group contains only 

the c-C pair. In this case, cryptic products appear much earlier (at 1 min) and to a greater 

extent than the other combinations (Figure 3.5C). These data imply that the Watson-Crick 

pairs produce cryptic products after TES product formation, while c-C pair produces them 

shortly after substrate binding. Based on these results, the 5’ splice site sequence in the TES 

reaction was reinvestigated. For this, the time courses were particularly informative as they 

identified when the cryptic products are forming. Accordingly, the reaction time was adjusted 

to 15 min (earlier end point was 1 h) so that cryptic product formation is minimized, yet the 

yield of the TES product is appreciable. 

 As expected, cryptic product formation was effectively eliminated at the shorter time  

(Figure 3.6). Reducing the reaction time to 15 min did not change the trend for TES product 

formation and seven base pairs out of sixteen base pair combinations produced an 

appreciable amount (>10%) of complete TES product (Figure 3.6). These base pairs were the 

u-G and c-A wobble pairs, all four Watson-Crick base pairs, and the a-G non Watson-Crick 

pair. The conserved u-G wobble pair is the most effective, producing 68% TES product, with 

the c-A wobble pair being the next highest (43%). This is not surprising since it has been 

known from other studies that these two wobble pairs were allowed at the 5’ splice site. Of 

particular interest are the Watson-Crick base pairs because they produced a relatively high 

amount of TES product (>25%). The Watson-Crick pairs are not a natural splice site base 

pair and have been known to be inhibitory towards the ribozyme catalysis; particularly to the 

5’ cleavage step. However, the presence of a wobble pair is not necessary for the exon 

ligation step in group I intron self-splicing (74). The result for the TES reaction is consistent 

with the previous observations. However, not all the Watson-Crick pairs at the 5’ splice site 

allow the exon-ligation reaction in a self-splicing reaction of group I introns. In this regard, 
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the P. carinii ribozyme can be thought of as unique. Nevertheless, these data suggest that 

similar to the 5’ cleavage step, multiple base pair combinations at the 5’ splice site allow the 

exon ligation step (second step) in a TES reaction. 

It seems that the sequence of both the exon (the substrate) and the ribozyme (at the 5’ 

splice site) is important for each reaction step. Only some general trends are noted here. 

Guanosine is favored in the IGS of the ribozyme, with all four possible combinations giving 

over 60% first step (5’ cleavage) and only the g-G combination producing less than 10% TES 

product during the 1 h reaction. Cytosine in either the ribozyme or substrate is unfavorable 

for TES product formation. However, a cytosine in Watson-Crick pair or c-A wobble pair is 

favorable. In addition, a high level of 5’ cleavage product does not necessarily translate to a 

high level of TES product; a good example being the presence of an adenosine at the -1 

position in the substrate (Figure 3.6). Adenosine at this position leads to at least 30% 5’ 

cleavage reaction with all four ribozymes, but only a-U and a-G pairs lead to significant 

amounts of TES product (Figure 3.6).  

The observed rate constants for product formation (in the absence of the cryptic 

products) were also obtained from the time courses. Table 1 summarizes the effect of base 

pairs at the 5’ splice site on the observed rate constants (kobs) of the TES reactions. It should 

be noted that kobs values were determined for only those base pair combinations where 

appreciable amount of TES product (>10%) was formed. It was found that the conserved u-G 

wobble pair has the fastest rate of TES product formation. The ribozyme-substrate complex 

containing either c-G or g-C base pair was only two-fold slower than a u-G wobble pair 

(second fastest). The reaction with either a-U or u-A base pair at the 5’ splice site was 3-fold 

slower than the rate of either c-G or g-C, and around 10-fold slower. Although the c-A can 

adopt a wobble conformation and produced the second highest amount of TES product, it is 

over 10-fold slower than u-G pair. The slowest rate constant was with the a-G pair at the 5’ 

splice site. This implies that the identity of the base pair at the 5’ splice site does affect the 

observed rate constant of the TES reaction. 
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The Source of Cryptic Products.  

Presence of a Watson-Crick base pair at the 5’ splice site led to formation of cryptic 

products. Such cryptic product formations have been observed previously in group I 

ribozyme reactions, although all the reported occurrences involved cryptic cleavage of the 

substrate (74, 111, 112). Time courses of the TES reaction showed that the cryptic products 

form only after 15 min implying that the source is not the substrates. This leaves either 5’ 

exon intermediate or TES product as the probable source for the cryptic products. To 

determine the source of cryptic products, time course of TES reactions were followed 

utilizing a mimic (6-mer) of the 5’ exon product of the 5’ cleavage reaction, and a mimic (9-

mer) of the expected TES product. In these assays, the ribozyme-substrate complex produced 

either u-A pair (Figure 3.8) or c-G pair (data not shown) at the 5’ splice site. Degradation of 

the 6-mer mimic would imply that source of the cryptic product is the 5’ exon intermediate 

while degradation of the 9-mer mimic would imply that the source of the cryptic product is 

the TES product. The results show that only the 9-mer, and not the 6-mer, produces cryptic 

products (Figure 3.8). An identical result was obtained with a c-G pair at the 5’ splice site 

using an identical assay. Therefore, this evidence suggests that the origin of the cryptic 

product is the TES products themselves, and not the 5’ exon intermediate generated from the 

5’ cleavage step. In this pathway product build up is required before cryptic splicing can 

proceed and that explains why cryptic products occur only at relatively long reaction time. 

Interestingly, it was observed that along with the cryptic sites the TES product was also 

cleaved at the correct 5’ splice site. This implies that some amount of 5’ cleavage product (6-

mer) originated from the TES product.  

 

The Mechanism of Cryptic Product Formation 

There could be two possible routes for 5’ cleavage infidelity resulting in cryptic 

product formation. First, the TES product stays bound to the ribozyme, but changes binding 

register through exon slippage (113). Variation of this route has been reported where instead 

of exon slippage, cryptic sites were created due to P1 helix translocation (76, 97, 114). An 

alternative route for cryptic product formation involves dissociation of the product from the 

ribozyme, followed by rebinding in alternative binding registers creating a different 5’ splice 
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site. To characterize which of these two routes the TES reaction follows for cryptic product 

formation, competition assays were utilized. In these competition assays, TES reactions were 

allowed to proceed for a time, and before cryptic products started to form, a large excess of 

unlabeled TES product was added. If the labeled product dissociates, the excess unlabeled 

product will out compete the labeled product for rebinding a free ribozyme. Therefore, the 

labeled product dissociation is essentially irreversible under these conditions and would lead 

to a decrease in the amount of cryptic product. If the product remains bound, the excess 

competitor would have no effect and the amount of cryptic product would remain the same. 

These studies utilized ribozyme-substrate combinations having either u-A pair (Figure 3.8) or 

c-G pair (data not shown) at the 5’ splice site. The presence of the competitor leads to an 

almost total elimination of cryptic products (Figure 3.9, data not shown for c-G). This 

supports the route where the TES products dissociate and then rebind free ribozyme creating 

alternative splice sites, which are utilized to generate cryptic product.  

 

Molecular Recognition at the 3’ Splice Site.  

Guanosine is universally conserved at the ω position of group I introns and specifies 

the 3’ splice site through binding to the guanosine binding site (GBS) (105, 115). In the 

simple 10-mer substrate utilized herein, the excised nucleotide corresponds to the ω position 

of the self-splicing introns. To assess for the sequence specificity of the 3’ splice site the 10-

mer substrate was again used and the ω position was altered in these substrates such that it 

contains different nucleoside in each substrate (total of four substrates were used). It was 

found that the 5’ cleavage step proceeds with all four substrates (Figure 3. 9) although the 

reactivity varies. A guanosine at the ω position gave the maximum amount of 5’ cleavage 

product. Strikingly, the TES product was observed only when guanosine is at the ω position 

(Figure 3.9) implying that the sequence specificity is absolute for the second step. It has been 

reported that the sequence specificity at the ω position could be altered by modifying the 

GBS so that it can bind adenosine (104, 116). However, such modifications in the P. carinii 

ribozyme did not produce the desired result (data not shown).  

For group I intron-catalyzed reactions, three distinct RNA-RNA interactions are 

known to participate in the determination of the 3’ splice site. These interactions are the 
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binding of the conserved ωG (which precedes the reactive 3’ splice site phosphodiester bond) 

to the guanosine binding site, the P9.0 and the P10 helices (57, 100-105, 115, 117-120). 

Although these individual elements are important, not all of them are required at once for 

correct determination of the 3’ splice-site (82, 83, 103, 121, 122). In TES reactions with the 

simplest substrate system (single nucleotide excision), the helix P9.0 cannot form because 

complementary bases are absent. Therefore, of the three RNA-RNA interactions, only ωG 

and P10 are present. The ωG binding to the GBS was reported to be a weak interaction (72) 

and hence, the formation of P10 helix would expected to be important for binding the 3’ exon 

intermediate generated from the 5’ cleavage reaction. To test this hypothesis, the RE3 

recognition element of the rP-8/4x ribozyme was deleted to obtain rP-8/4x-noP10 ribozyme. 

This modification lowered the extent of the TES reaction (~10% maximum) but more 

importantly TES product formed in the absence of P9.0 and P10. This implies that of the 

three interactions, ωG is sufficient for the recognition of 3’ splice site in the TES reactions. 

       

Discussion 

Molecular Recognition at the 5’ Splice Site.  

In self-splicing reactions group I introns determine the 5’ splice site with remarkable 

specificity. The basis for the 5’ splice site specificity is primarily due to a phylogenetically 

conserved u-G wobble pair at the end of the P1 helix. Exceptions at the 5’ splice site are 

limited solely to c-G pair (107). Hence, it is expected that the 5’ splice site in a TES reaction 

will be limited to either a u-G pair (74, 99, 123-127) or a c-G base pair (107). In these cases, 

the guanosine is present at position 12 of the ribozyme (located in RE1, as shown in Figure 

3.1), and uracil or cytosine is at the -1 position of the substrate. Changing this u-G pair to any 

other base pair significantly alters the ribozyme’s activity. However, among all the natural 

base combinations at the 5’ splice site, only a c-A pair retains the greatest reactivity (74, 128, 

129). A protonated form of the c-A pair can base pair in a wobble configuration. Therefore, it 

was postulated that the geometry (or shape) rather than a specific functional group of the 

bases is important for the correct determination of the 5’ splice site (76, 106, 130).  

The model for the 5’ splice site recognition by wobble pairs proposes an important 

role for its unique backbone structure. X-ray crystallography studies on tRNAPhe (131, 132) 
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and an NMR structure of a model of a P1 helix (52) showed that a u-G wobble pair perturbs 

the RNA helix by positioning U closer to the helix axis and G away from it. This distorted 

backbone of the wobble pairs is now accessible for nucleophilic attack in the 5’ cleavage 

reaction and plays an important role in determining the correct 5’ splice site. In addition, the 

u-G wobble pairs create a unique site in the minor groove of RNA by exposing its free 

exocyclic amine group of guanosine (at ribozyme position 12) to the solvent. This exposed 

exocyclic amine is now ideally positioned for tertiary interactions contributing to the 

recognition of the correct 5’ splice site (98, 99, 106). However, there are well documented 

differences in molecular recognition between different introns (9, 133-140). Therefore, it is 

of interest to identify and understand the sequence requirements of the 5’ splice site for P. 

carinii ribozymes. This knowledge will be useful for developing effective and specific TES 

ribozymes. In this work, the activity, effectiveness, and consequence of all the 16 possible 

base pair combinations at the 5’ splice site in the TES reaction were tested.  

The results presented herein show that substituting the highly conserved u-G wobble 

pair with any other natural base pair combinations does not prevent the ribozyme from 

recognizing the 5’ splice site through the 5’ cleavage step. However, not all these base pair 

lead to appreciable amount of TES product through the exon ligation step. Only seven 

combinations produce appreciable amount of TES product. These base pairs are the u-G and 

c-A wobble pairs, all four Watson-Crick pairs, and the a-G pair. Nevertheless, all base pair 

combinations at the 5’ splice site allow the 5’ cleavage reaction. The result suggests that the 

interactions involved in 5’ splice site determination are not stringent. This substrate 

promiscuity at the 5’ splice site was unexpected and is in contrast to results reported for 

analogous reactions using Tetrahymena ribozyme (74, 125). The interpretation of these 

results is that, for P. carinii-derived ribozymes, the 5’ splice site determination is not entirely 

dependent on having specific functional groups in the ribozyme at position 12 or the 

substrate at -1 position. Out of 16 combinations, 7 combinations give an appreciable amount 

of TES product suggesting that the last base of the substrate at the 5’ splice site is not crucial 

for the second step (exon-ligation reaction). It has been reported that sequence specificity for 

the exon ligation reaction is not stringent (74) and therefore, the lax sequence requirement for 

the exon-ligation step in a TES reaction is not unexpected. Nevertheless, some inferences 

concerning the TES reaction can be drawn. First, a purine in the IGS of the ribozyme is 
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beneficial and there is a strong bias for the u-G pair at the 5’ splice site. Second, the Watson-

Crick base pairs at the 5’ splice site produce substantial amount of cryptic products. Third, it 

is interesting that although u-G and c-A give substantial amounts of TES products, g-U and 

a-C combinations do not. This observation implies that merely the presence of a wobble pair 

is not enough for ensuring an efficient TES reaction. The wobble pair must have a purine in 

the ribozyme and a pyrimidine in the substrate. Fourth, a high level of 5’ cleavage activity 

does not necessarily translate into effective exon ligation reaction. For example, a-A, a-C, 

and g-G combinations produce reasonable amounts of 5’ cleavage product, yet they each 

produce only about 2% TES product (Figure 3.6). This particular observation leads to a 

model in which a thermodynamically stable base pair at the 5’ splice site is beneficial for the 

exon-ligation reaction. This requirement for a thermodynamically stable base pair is 

primarily for precise positioning of the newly created 3’-OH group in the vicinity of the 3’ 

splice site. This model is consistent with the previously proposed model for the exon ligation 

reaction in the Tetrahymena ribozyme (74).  

One key test for this model will be a correlation between the observed rate constants 

(kobs) for the TES product formation and base pair strength at the 5’ splice site. The kobs 

values were obtained for reactions producing appreciable amount of TES (>10%) product. 

For ease of analysis, these values can be divided into four groups. The fastest TES reaction 

was with u-G wobble pair at the 5’ splice site. This result is expected as u-G wobble pair is 

the natural choice for the 5’ splice site and the ribozyme has evolved to exploit this pairing. If 

the 5’ splice site contains the stronger Watson-Crick base pairs, c-G and g-C, the kobs is 

reduced 2.5-fold compared to the native system. This kinetic data implies that cytidine at 

position 12 does not severely affect the rate. This also implies that the tertiary interactions 

required for native splice site determination are either absent or sequence independent. The 

presence of weaker Watson-Crick pairs, u-A and a-U, reduced the kobs by 11-fold compared 

to the u-G pair. The slowest reactions were with c-A and a-G base pair combinations; each 

being approximately 20-fold slower than the u-G wobble pair. It is remarkable that the c-A 

wobble pair is one of the slowest pair although it produces the second highest amount of TES 

product. Taken together, these results suggest that there is a significant correlation between 

base pair strength at the 5’ splice site and the observed rate constant of TES reactions. 
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Therefore, it supports the proposed model in which a thermodynamically stable base pair at 

the 5’ splice site is beneficial for the exon ligation reaction of the TES reaction.  

 

Molecular Recognition at the 3’ Splice Site.  

The molecular recognition of the 3’ splice site was determined by altering the 

nucleotide at the ω position, which is the base excised from the 10-mer substrate. The results 

indicate that any base at the ω position allowed the 5’ cleavage step. However, only the 

presence of ωG allowed the exon ligation step (second step) (Figure 3. 10). Therefore, the 

sequence requirement at the 3’ splice site is absolute. The ω position must be a guanosine for 

the complete TES reaction. This is presumably due to the required and specific binding of the 

ωG with the guanosine binding site (GBS). Simply stated, in its current incarnation, P. 

carinii ribozyme requires a guanosine as the last (or only) base to be excised from the 

substrate. Switching this specificity would require an alteration of the GBS of the ribozyme 

and this has been done with the Tetrahymena ribozyme to change the specificity from 

guanosine to adenosine (104, 116). These same mutations, however, did not produce the 

same change in specificity for the P. carinii ribozyme (data not shown). Evidently, existing 

knowledge on ωG-guanosine binding site interactions for the P. carinii ribozyme is not 

enough and more information is required for rational redesigning of the GBS. Nevertheless, 

one possible conclusion is that there could be a difference between the recognition of the ωG 

by the Tetrahymena and P. carinii ribozymes. 

 

P9.0 and P10 are not Required for TES Reactions.  

Three RNA-RNA interactions, ωG, P10, and P9.0, have been shown to be at least 

partially responsible for the molecular recognition of the 3’ splice site in self-splicing 

reactions. The experiments for studying sequence specificity of the 3’ splice site utilized TES 

substrates from which a single nucleotide is excised. The corresponding ribozyme-substrate 

complex does not have the P9.0 helix as substrate bases complementary to RE2 are absent 

and its absence does not seem to have any significant detrimental effect on the TES reaction 

(124). Therefore, of the three interactions, only ωG and P10 are present in these experimental 

set ups (Figure 3. 1). In the reaction pathway of group I ribozyme reactions, ωG binds to the 
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guanosine binding site after the 5’ cleavage step (55, 57, 108, 115, 141, 142). Furthermore, it 

has been reported that ωG binding to the GBS is a relatively weak interaction (72, 119, 141, 

143). Therefore, it was expected that the formation of P10 helix would be crucial in binding 

the 3’ exon intermediate to the ribozyme. Evidence presented in this study however show 

that P10 is not required for either step of the TES reaction. The established model of group I 

intron/ribozyme catalyzed reactions proposes the primary role of P10 to bind the 3’ exon. 

The unanswered question then is why the 3’ exon intermediate does not dissociate from the 

ribozyme between the two steps of the TES reaction in the absence of P10. In the proposed 

reaction pathway of the TES reaction, the 3’ exon after the first nucleophile attack is attached 

to the 3’ end of the ribozyme preventing its dissociation.  

This result is surprising because the same ribozyme without the P9.0 and P10 helices 

loses its ability to catalyze the complete TES reaction when excising a 20 nucleotide segment 

(91). However, addition of a P9.0 interaction to the ribozyme restored reactivity (91). 

Therefore, the absence of TES product while excising a longer segment can be attributed to 

the dissociation of the 3’ exon intermediate after the 5’ cleavage step. This problem of the 3’ 

exon intermediate dissociation seems to be not as overwhelming for a single nucleotide 

excision. This indicates that there are functional differences between TES reactions where a 

single base is excised relative to excising multiple bases. 

 

A Mechanism for Ribozyme-Mediated TES Product Degradation. 

Experiments illustrated that at long reaction times TES products dissociate and rebind 

the ribozyme. The TES product after rebinding, is degraded through a 5’ cleavage reaction at 

one or more alternative 5’ splice sites. Neither P1 helix translocation nor slippage of the 

docked 5’ exon was detected in these studies. However, based on current evidence, a model 

for cryptic splicing can be established where the product dissociates and then rebinds to 

activate the cryptic splice sites. It should be noted that c-C is a special case where the 

substrate also appears to be involved in the cryptic splicing. Nevertheless, these results show 

an undiscovered alternative mechanism for cryptic splicing where the ribozymes needs to 

bind the dissociated TES product. Of course, effects of the reaction conditions (ribozyme 
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excess and long reaction times) cannot be ruled out and probably have a significant effect on 

this degradation mechanism.  

 

Non-Watson-Crick Base Pairs at the 5’ Splice Site Can Play a Role in Determining the 

Binding Register of Reaction Substrates.  

Previous investigations of the self-splicing reaction (96-99, 114) have shown that the 

cryptic splice sites are activated in 5’ cleavage reactions due to the substrate shifting from the 

original binding register to another register without dissociation (114). Such a mechanism 

probably exists in the TES reactions when there is a c-C base pair at the 5’ splice site. 

However, for other base pair combinations at the 5’ splice site, especially with Watson-Crick 

base pairs, cryptic sites are activated only after the correct TES product forms, dissociates 

from the ribozyme and rebinds. As translocation of the substrate was not detected, a priori, 

the TES products must rebind to the ribozyme in the wrong binding register to activate the 

cryptic sites. However, TES products with non-Watson-Crick combinations at the 5’ splice 

site do not undergo cryptic splicing implying an important role for the non-Watson-Crick 

base pair at the 5’ splice site. In this role, the non-Watson-Crick base pair, using the 

structural perturbation of the sugar-phosphate backbone at the 5’ splice site caused by its 

presence, specifies the binding register of the substrates. The perturbation of the backbone 

would prevent the formation of a continuous P1-P1ex (extended) helix. On the other hand, 

Watson-Crick pairs at the 5’ splice site would allow formation of a structurally uniform 

continuous P1-P1ex helix. A continuous P1-P1ex helix would be structurally uniform and 

contain no distortion of the sugar phosphate backbone to define the 5’ splice site. Without 

this key molecular recognition element, the P1 helix (resulting from 5’ exon binding the 

ribozyme) docks to the catalytic core of the ribozyme in multiple registers, activating various 

cryptic sites within the P1 helix for subsequent 5’ cleavage reactions. It should be noted that 

the roles of a stable base pair and those of a non-Watson-Crick base pair in defining the 

correct 5’ splice site are not mutually exclusive for the exon ligation step. Their roles must be 

combined in order to allow the exon ligation step to proceed. 

Evidence presented herein suggests that the TES product is the source of the cryptic 

products, c-C pair being an exception. This implies that at 1 h, the yield of the TES products 
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with Watson-Crick pairs at the 5’ splice site should be higher than originally calculated. The 

actual yield of the TES product then will be the sum of the yields of the TES and cryptic 

products. Therefore, for all Watson-Crick pairs, the extent of the TES reaction increases to 

over 50% in 1 h reactions. In addition, as some of the TES products were cleaved into 6-mers 

(which is the same size as the expected 5’ exon intermediate), the quantified 5’ cleavage 

product in all the TES reactions would have originated from the cleavage of TES products. 

Therefore, the quantified TES products obtained herein, at all time points is at a minimum. It 

is also of interest to note that the TES reaction conditions, e.g. huge excess of ribozyme, are 

perhaps aiding the formation of cryptic product. Product degradation may not be as prevalent 

under conditions utilizing lower ribozyme concentrations. 

 

What is the Role of ωG in Determining the Binding Register of Substrates?  

The cryptic splicing observed herein originates from the TES products having a 

Watson-Crick base pair at the 5’ splice site; not from the TES substrates having a Watson-

Crick base pair at the 5’ splice site. The difference between the substrates and the products is 

the presence of ωG in the former, suggesting a role of the ωG. In this role, ωG specifies the 

correct binding register of the substrate and prevents its subsequent cryptic splicing. This can 

be achieved either by thermodynamic stabilization or due to a structural peculiarity. 

However, it has been reported that guanosine binding to the GBS is very weak (Kd = 5 µM) 

(72, 73, 119, 143). Therefore, it is unlikely that the ωG imparts a substantial thermodynamic 

stability to the substrate and thus, stability can be excluded from its possible roles. The ωG 

located immediately after the 5’ splice site (Figure 3.1), could have a single nucleotide bulge 

conformation. The single nucleotide bulge might aid in determining proper binding registers 

by distorting of the uniform sugar-phosphate backbone at the correct 5’ splice site. This 

structural perturbation can then be recognized by the ribozyme for directing proper docking 

of the substrate to the IGS. Because the 5’ cleavage reaction proceeds with any base at the ω 

position, it is not even necessary to have a guanosine at this position. It should be noted that 

the ωG is not known to play any role in 5’ cleavage or in determining the 5’ splice site in the 

self-splicing reaction. However, there is a simple reason behind ωG not being involved in 

defining the 5’ splice site in the self-splicing reaction; it is part of the intron (instead of the 
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substrate) and distant to the 5’ splice site. The role of ωG in determining the correct 5’ splice 

site in a TES reaction, proposed above, is in contrast to the established role of ωG. From the 

current results, it is unclear whether the ribozyme’s use of ωG as a molecular recognition 

component is accidental or has some evolutionary significance. Nevertheless, in the context 

of the TES reaction, this unexpected function for ωG in aiding the fidelity of the reaction is 

important.  

 

Implications.  

Accurate splicing is essential for a successful ribozyme catalyzed reaction and an 

important question is the processes involved in determining the splice sites. The results 

presented herein reveal an outline of the molecular recognition processes involved in the 

selection of splice sites for both steps of the TES reaction. The implication of this study is 

that it facilitates improvement of the design principles for developing effective target systems 

for these trans excision-splicing ribozymes. It is now possible to target a wider range of TES 

substrates, and with more sequence specificity, particularly with regard to the 5’ splice site. 

This information will provide a foundation for rational designing of TES ribozymes as 

potential biochemical and therapeutic tools. In addition, this study unraveled a previously 

undiscovered and unexpected molecular recognition principles exploited by group I intron-

mediated catalytic reactions. Lastly, a new mechanism for cryptic splicing was detected in 

this study. However, these results do not provide a complete picture of the molecular 

recognition processes. A much more comprehensive understanding requires a detailed 

structural study.  
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Table 3.1: Observed Rate Constants for Base Pair Combinations Producing 

Appreciable TES Product in 15 Minutes. 

 
Table 1.  Observed Rate Constants for Base 
Pair Combinations Producing Appreciable 
TES Product In 15 Minutes. 

Base Pair  kobs (min-1) 
u·G 1.96 
c-G 0.79 
g-C 0.67 
a-U 0.20 
u-A 0.16 
c·A 0.11 
a-G 0.08 

 

 

 

 

 

 
The data show the observed rate constants (kobs) for the base pairs at the 5’ splice site 

that produce appreciable TES product after 15 minutes (92). Reactions were conducted with 

1.3 nM 5’ end labeled substrate and 166nM ribozyme at 44 OC in 10 mM MgCl2. Aliquots 

were periodically removed over a period of 15 minutes. Data were fit to a single exponential 

equation to obtain the observed rate constants. Each observed rate constant is the average of 

two independent assays with a standard deviation of less than 10%. 
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FIGURE 3.1: Scheme of the Two Step Trans Excision-Splicing Reaction 

The rP-8/4x ribozyme (only the catalytic core is shown) is in uppercase lettering, the 

10-mer substrate is in lowercase lettering, and the single guanosine nucleotide to be excised 

is in italics and against grey background (92). The base to be excised corresponds to the ω 

position of the self-splicing introns, and so will be referred to as the substrate ω position. The 

ribozyme recognition elements RE1, RE2, and RE3 base pair with the substrate to form the 

P1, P9.0, and P10 helices respectively. It should be noted that the P9.0 helix does not form in 

this system because of a lack of complementary bases. The sites of catalysis for the first (5’ 

cleavage) and the second step (exon ligation) are shown with arrows in the uppermost 

diagram. The P10 helix is boxed. The -1 position of the substrate and the 12 position of the 

ribozyme are shown in white lettering in the uppermost diagram and define the 5’ splice site. 
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FIGURE 3.2: The G●U Wobble Pair  

The structure of a G●U wobble pair which is commonly found in RNA structures. 

This base pair is highly conserved at the 5’ splice site of group I introns. The formation of 

this wobble pair requires a sideways shift of one base relative to its position in the regular 

Watson-Crick geometry resulting in a distorted backbone. The hydrogen bonding interactions 

also free two functional groups: an exocyclic amine group on the guanosine and a carboxyl 

group on the uracil.  
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FIGURE 3.3: Test System for 5’ Splice Site Sequence Requirements 

Diagram of the model TES reaction used (92). See Figure 3.1 for more detailed 

information. All the substrates were 10 nucleotide long (depicted in lowercase lettering). The 

-1 position of the substrate (designated as y, where y = u, g, c, or a) and the 12 position of the 

ribozyme (designated as x, where x = G, C, A, or U) are shown in white lettering and define 

the position of the native 5’ splice site. Every combination of the four nucleotides at x and y 

was analyzed.  
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FIGURE 3.4: Results for the 5’ Splice Site During 1 Hour Reaction Times  

A representative polyacrylamide gel using all 16 base pair combinations at the 

5′ splice site (top) and graph of the of all products formed in 1 h in the TES reactions as a 

function of 5′ splice site sequence (bottom) (92). The complete substrate sequence used in 

each reaction and the base at ribozyme position 12 (in uppercase lettering) is shown above its 

corresponding lane. The position on the gel of the 10-mer substrate, the 9-mer product, and 

the 6-mer intermediate are labeled. All other bands represent cryptic products. Note that there 

is some sequence-dependent migration variability between these lanes. The lanes marked 

“buffer” had substrate augacugcuc incubated as a typical reaction in the absence of ribozyme, 
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both with (+) and without (-) added buffer. The black bars on the graph represent 9-mer TES 

products, the white bars represent 6-mer 5’ cleavage products, and the gray bars represent all 

the cryptic products formed. The results are the average of three independent assays, and the 

standard deviation in all cases is less than 10%. It should be noted that the order of the data in 

the graph does not correspond to the loading order of the representative gel. 
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FIGURE 3.5: Time Courses Following the Appearance of Cryptic Products  

Reactions were conducted with 166 nM ribozyme and 1.3 nM 5’ end labeled substrate 

at 44 OC in H10Mg buffer. Time points were taken by removing aliquots at specified times 

listed above each lane. The bands are labeled as: 10-mer substrates (S), the 9-mer TES 

products (P), the 6-mer intermediates (I), and the cryptic products (C). The lane labeled (+) 

Buffer contains a 120 min reaction in the absence of ribozyme. (A) TES reaction with the 

substrate augacugcuc and the ribozyme rP-8/4x places a u-G wobble pair at the 5’ splice site, 

which is conserved at the 5’ splice site in group I introns and ribozymes derived from them 

(92). No cryptic products form in this case. This combination is representative (in terms of 
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cryptic product formation) of all the other base pair combinations (excluding the Watson-

Crick base pairs and the c-C pair). (B) TES reaction with the substrate augaccgcuc and the 

ribozyme rP-8/4x places a c-G pair at the 5’ splice site (92). The cryptic products begin to 

appear after the 15 min and this combination is representative of all Watson-Crick base pair 

combinations at the 5’ splice site. (C) TES reaction with the substrate augaccgcuc and the 

ribozyme rP-8/4x-5’C places a c-C pair at the 5’ splice site (92). Note that cryptic products 

begin to appear after 1 min. 
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FIGURE 3.6: Results for the 5’ Splice Site During 15 Minute Reaction Times  

Reactions were conducted with 1.3 nM 5’ end labeled substrate and 166 nM ribozyme 

for 15 min at 44 OC in 10 mM MgCl2. (Top) Representative polyacrylamide gel using all 16 

base pair combinations at the 5’ splice site (92). Each complete substrate sequence and the 

base at ribozyme position 12 (in uppercase lettering) is shown above its corresponding lane. 

The position on the gel of the 10-mer substrates, the 9-mer products, and the 6-mer 

intermediates are labeled. All other bands represent cryptic sites. Note that there is some 

sequence-dependent migration variability between these lanes. The lanes marked ‘buffer’ had 

substrate augacugcuc incubated as a typical reaction in the absence of ribozyme, both with 

(+) and without (-) added buffer. (Bottom) Graph of the percent of all products formed in 15 
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min in the TES reactions as a function of 5’ splice site sequence (92). The black and white 

bars on the graph represent 9-mer TES and 6-mer 5’ cleavage products respectively. The 

gray bars represent all the cryptic products formed. The results are the average of four 

independent assays and the standard deviation in all cases is less than 10%. Note that the 

order of the data in the graph does not correspond to the loading order of the representative 

gel. Data has been ordered according to percent TES product formation. 
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FIGURE 3.7: Time Courses to Identify the Source of the Cryptic Products 

Representative polyacrylamide gel showing the time course of TES reactions utilizing 

9-mer TES product (left) and 6-mer intermediate (right) as reaction substrates (92). Reactions 

were conducted with 1.3 nM radiolabeled substrate and 166 nM ribozyme at 44 OC in 

H10Mg buffer. The ribozyme used in each case was rP-8/4x-5’A, that creates a u-A base pair 

at the 5’ splice site when paired with the substrate augacugcuc. The positions of the 9-mer 

and 6-mer starting materials are indicated. Unlabeled bands are cryptic products. The lanes 

marked ‘buffer’ were incubated as a typical reaction for 120 min in the absence of ribozyme, 

both with (+) and without (-) the reaction buffer. The gel clearly shows that cryptic products 

only occur when using the 9-mer TES product. 
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FIGURE 3.8: Competition Studies Investigating Product Dissociation and Rebinding  

Reactions were conducted with 1.3 nM radiolabeled substrate and 166 nM ribozyme 

at 44 OC in 10 mM MgCl2. The ribozyme used in each case was rP-8/4x-5’A, which creates a 

u-A base pair at the 5’ splice site by pairing with the substrate augacugcuc. The reaction were 

allowed to proceed for 5 min and then 1.3 µM of the unlabeled TES product (1000-fold 

excess over substrate) was added to the reactions. Shown are graphs comparing reactions in 

the absence (left) and presence (right) of the unlabeled competitor (92). TES products are 

represented by black circles, 6-mer 5’ cleavage products by white circles, and all cryptic 

products by white triangles. The addition of competitor prevents the formation of cryptic 

products indicating that the products dissociate and in the presence of competitor, are unable 

to rebind ribozymes for cryptic cleavage. 
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FIGURE 3.9: Results for the 3’ Splice Site for 1 Hour Reaction Times  

Reactions were conducted with 1.3 nM radiolabeled substrate and 166 nM ribozyme 

for 1 h at 44 OC in 10 mM MgCl2. (A) Diagram of the TES reaction used (92). All the four 

substrates used were 10-mers (lowercase lettering), where y is one of each of the four 

nucleotides. Note that y represents the substrate position analogous to the ω position of self-

splicing introns. The recognition elements from ribozyme rP-8/4x are shown in uppercase 

lettering. (B) Graph of the percent of all products formed in the TES reactions as a function 

of 3’ splice site sequence (92). The black and white bars represent 9-mer TES products and 

6-mer 5’ cleavage products respectively. The results are the average of two independent 

assays and the standard deviation in all cases is less than 10%. Note that only ωG produces 

TES product.  
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FIGURE 3.10: Results for Reactions Where No P10 Formation Is Possible  

Reactions were conducted with 1.3 nM 5’ end labeled substrate and 166 nM ribozyme 

for 1 h at 44 OC at the MgCl2 
concentrations listed on the graph. (A) Diagram of the TES 

system used (92). The substrate 10-mer is in lowercase lettering and the ribozyme catalytic 

core is in uppercase lettering. P10 does not form in this system as recognition element RE3 is 

absent (RE3 is located above RE1 in the unmodified ribozyme). (B) Representative 

polyacrylamide gel of TES reactions in the absence of P9.0 and P10 (92). The 10-mer 

substrate, the 9-mer product, and the 6-mer intermediate on the gel are indicated at the right. 

The far left lane is a positive control using the 10-mer substrate and rP-8/4x ribozyme with 

P10. The average product yield was 10% from two independent assays. 
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CHAPTER FOUR - KINETIC FRAMEWORK OF THE FIRST STEP OF THE 
TRANS EXCISION-SPLICING REACTION 

 

Introduction 

As discussed in the previous two chapters, a group I intron-derived ribozyme from the 

rRNA of the opportunistic pathogen, Pneumocystis carinii, can catalyze the trans excision-

splicing (TES) reaction. In this reaction, the ribozyme sequence specifically excises out a 

segment from an exogenous RNA transcript.  

A serious impediment to the mechanistic understanding of TES reaction is a lack of 

information on its kinetic pathway. Over the last two decades several studies have dissected 

the individual steps of RNA catalyzed reactions by establishing kinetic framework of the 

corresponding reactions (12-14, 144-147). This approach has been mechanistically 

informative and has greatly advanced our understanding of the chemical basis for the RNA 

catalysis. For the TES reaction, observed rate constants of the two steps have been measured 

and based on prior knowledge of the ribozyme reactions, a possible reaction pathway has 

been proposed. However, rate constants for various binding and dissociation steps associated 

with the two TES reaction steps have not yet been determined. A detailed kinetic scheme 

would provide a detailed view of its reaction pathway and facilitate further mechanistic 

understanding of the TES reaction. Therefore, towards a detailed understanding of the TES 

reaction, the elemental rate constants associated with the 5’ cleavage reaction were 

determined using a combination of kinetic and equilibrium binding assays. In addition, 

identifying the kinetic pathway provides a basis for comparing the 5’ cleavage reaction (and 

TES reaction) with other characterized group I ribozymes. Furthermore, these results provide 

insights into the mechanistic and biological function of the TES reaction and establish a basis 

for further studies on its mechanism. 
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Materials and Methods 

Nucleic Acid  Synthesis and Purification 

RNA substrate oligonucleotides were obtained from Dharmacon (Lafayette, CO) and 

orthoester protection of its 2’ hydroxyl groups were removed using 100 mM acetate-TEMED 

buffer following the manufacturer’s protocol. Unlabeled RNAs were used without any 

further purification. The substrate RNAs were 5’-end radiolabeled with T4 polynucleotide 

kinase (New England Biolabs; Beverly, MA) and [γ-32P] ATP (Amersham Pharmacia 

Biotech; Piscataway, NJ). Labeled oligonucleotides were gel purified on a 20% 

nondenaturing polyacrylamide gel and purified by crush-soak method as described (9). The 

ribozyme precursor plasmid, P-8/4x, was generated as described (9). 

 

Transcription 

Prior to run-off transcription, the ribozyme plasmid, P-8/4x was linearized with XbaI 

and purified from the reaction using a QIAquick PCR Purification kit (QIAGEN, Valencia, 

CA) following the manufacturer’s protocol. Ribozyme, rP-8/4x, was prepared by run-off 

transcription of XbaI digested ribozyme plasmid P-8/4x using T7 RNA polymerase. 

Transcription of the ribozyme was conducted under the conditions previously described (10) 

and following transcription, the resultant RNA was isolated as described previously (10). The 

ribozyme was 2-propanol precipitated and further purified with an ethanol precipitation. 

Finally, the ribozyme was dissolved in sterile water and concentration was determined 

spectrophotometrically at 260 nm using a Beckman DU-650 UV-Vis spectrophotometer, 

assuming an extinction coefficient that was the sum of those for the individual nucleotides (ε 

= 3.2 x 106).  

 

Analysis of 5’ Cleavage Reaction Catalyzed by rP-8/4x Ribozyme. 

All the experiments reported here were conducted at 44 OC in H10Mg buffer 

consisting of 50 mM HEPES (25 mM NaHEPES), 135 mM KCl and 10 mM MgCl2. These 

conditions were previously reported as optimal conditions for trans excision splicing reaction 

and thus were used for this kinetic study. Before the reactions, the 200 nM ribozyme in 25 
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µL of H10Mg buffer was preincubated at 60 OC for 5 min and then allowed to slow cool to 

44 OC. The reaction was initiated by adding 5 µL of an 8 nM radiolabeled substrate, also 

preincubated in H10Mg buffer at 44 OC, to the ribozyme solution. To assay for cleavage, 3 

µL aliquots were removed at times and further reaction was quenched by adding an equal 

volume of 2x stop buffer. The substrate and products were denatured at 90 OC for 1 min and 

then separated on a 12.5% denaturing polyacrylamide gel. The bands were visualized and 

quantified as described above. To obtain values for observed rate constant of substrate 

cleavage, data were fit with Kaleidagraph (Synergy Software; Reading, PA) curve-fitting 

program using the single exponential equation,  

                                     [P]t = [P]∞(1-e-kt)                                                                    (1) 

where [P]t and [P]∞ are the percentages of product formed at time t and end point, 

respectively; t equals time and k is the first order rate constant. 

 

pH/ Rate Determinations 

All ribozyme reactions were performed in 50 mM buffer containing 10 mM MgCl2 

and 135 mM KCl at 44 OC. Buffers were MES (pH 5.0-6.8), HEPES (pH 6.8,  7.0, 7.5), or 

EPPS (pH 7.5, 8.0, 8.5). The observed rate constants of substrate cleavage (kobs) were 

obtained under single turnover conditions. In all cases, 200 nM ribozyme in 25 µL total 

volume was preincubated at 60 OC for 5 min (in reaction buffer), then slow cooled to 44 OC. 

Reactions were initiated by adding 5 µL of 8 nM radiolabeled substrate (also preincubated at 

44 OC in the same buffer). The final concentrations of the ribozyme and radiolabeled 

substrate in each reaction mixture were 166 nM and 1.3 nM respectively. Aliquots were 

removed from the reaction mixture at specified times and quenched with an equal volume of 

stop buffer. The reactions were followed to completion and reactants were separated on 

12.5% denaturing polyacrylamide gels. The bands were visualized and quantified as 

described above. The observed rate constants were determined using Equation 1. 

 

Measurement of the substrate dissociation rate constant (k-1) 

Pulse-chase experiments were used to measure the rate of ribozyme-substrate 

dissociation, k-1. In these experiments, 200 nM of ribozyme in 10 µL H10Mg buffer was first 
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allowed to react with 2 µL of 8 nM 5’ radiolabeled substrate (also in H10Mg buffer) for a 

period of t1 = 30 s. Then the chase phase was initiated by diluting 5 µL of reaction mixture 

with 25 µL of H10Mg buffer so that [E] < KM. During the chase period, t2, dissociation of 

labeled substrate from the ribozyme was essentially irreversible. During the chase period, 

aliquots were removed from time to time and further reaction was quenched by adding an 

equal volume of 2x stop buffer. An otherwise identical reaction, but without the dilution, was 

carried out in parallel. The pseudo-first-order rate constants of the chase and control reactions 

(after t1) were obtained from single-exponential fit to the plot of product formation against t2. 

The observed cleavage rate during the chase period will be the sum of cleavage and 

dissociation as shown in equation 2:  

                                            kobs, chase = kobs, control + k-1                                                             (2) 

In this equation kobs, control is the observed rate constant of the control reaction under ribozyme 

excess conditions and kobs, chase is the observed rate constant of the chase reaction. 

 

Measurement of the Substrate Association Rate Constant (k1).  

The rate constant for substrate binding, k1, was measured using a series of pulse-chase 

experiments. At least five concentrations of ribozyme ranging from 36-240 nM in 5 µL 

H10Mg buffer were combined with 1 µL of 8 nM 5’ end labeled substrate in H10Mg reaction 

buffer and allowed to react in total reaction volume of 6 µL. The concentration of ribozyme 

ranged from 30-200 nM and radiolabeled substrate was 1.3 nM. For each ribozyme 

concentration, several chase reactions were initiated by removing 1 µL of reaction mixture 

and diluted five-fold at various times, t1 ranging from 15 to 120 s. The addition of chase 

makes the dissociation of the substrate essentially irreversible. The chase reaction was 

allowed to proceed for 15 min (t2 = 15 min) at which point the 5’ cleavage reaction is 

essentially complete. The reaction was then quenched with an equal volume of 2x stop buffer 

and amount of product was measured. The percent of product formed during the chase period 

was plotted against time t2. Observed rate constants (kobs) were obtained by fitting the data to 

Equation 1 and were plotted against ribozyme concentration. Under the reaction conditions, 

the observed rate constant is related as, kobs = k1 [E] + k-1 (12, 148).  
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Measurement of the Dissociation Constant, Kd
P of the Ribozyme-Product Complex.  

The equilibrium dissociation constant Kd
P

 of the 5’ exon mimic binding to the 

ribozyme was determined using native polyacrylamide gel electrophoresis (9, 11, 145, 149). 

In this assay, several concentrations of ribozyme (final concentrations ranging from 1.5 nM 

to 350 nM were preannealed in 5 µL total volume containing 3.4% glycerol and H10Mg 

buffer for 5 min at 60 OC. The solutions were then allowed to cool to 44 OC. Then, 2.5 µL of 

a stock of 1 nM radiolabeled 5’ exon mimic in H10Mg buffer at 44 OC was added. The 

mixture was incubated at 44 OC for 90 min. To maintain integrity of the bound species during 

gel electrophoresis, the gel and the running buffer were made of H10Mg buffer and were 

prewarmed to 44 OC before the samples were loaded. The bound and unbound 5’ exon 

mimics were separated from each other by running 6 µL of each reaction on a 10% native 

polyacrylamide gel. The gel was placed on chromatography paper (Whatman 3MM CHR) 

and dried under vacuum for 30 min at 70 OC. The bands were visualized as described above. 

Data were fit with Kaleidagraph curve fitting program using the equation:  θ = [ribozyme]u 

/([ribozyme]u + Kd)  (9, 150). In this equation, Kd is the equilibrium dissociation constant of 

the 5’ exon mimic, θ is the fraction of 5’ exon mimic bound to the ribozyme, and [ribozyme]u 

is the concentration of unbound ribozyme in the reaction. 

 

Measurement  of  Rate Constant  of  5’ Cleavage Product Dissociation (k-3). 

The dissociation rate constant of the 5’ exon intermediate (k-3), was measured by a 

pulse-chase protocol, followed by analysis of the ribozyme/product complex using native 

polyacrylamide gel electrophoresis. In a typical experimental to measure k-3, A solution of 

350 nM ribozyme in 10 µL H10Mg buffer containing 3.4% glycerol were preincubated for 5 

min at 60 OC and then allowed to slow cool to 44 OC. Then 5 µL of 1 nM 5’ end labeled 5’ 

exon intermediate was added and the reaction mixture was incubated at 44 OC for 30 min to 

allow complete binding. A chase reaction was then initiated by the addition of 40 µL of 5.4 

µM unlabeled 5’ exon intermediate in reaction buffer to follow the practically irreversible 

dissociation of 5’ exon intermediate from the ribozyme-5’ exon complex. The final 

concentrations of the reactants in the chase reaction were 54 nM ribozyme, 45 pmol 5’ end 

labeled 5’ cleavage product, and 4 µM unlabeled 5’ exon intermediate (as chase) in 50 µL 
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reaction volume. Time points were taken by withdrawing 5 µL aliquot from the reaction 

mixture and immediately loaded onto a running 10% native polyacrylamide gel. Dissociation 

rate was obtained using equation 1.  

 

Results 

Substrate for Kinetic Characterization of the First Step of TES Reaction 

One potential problem in studying only the 5’ cleavage step of the TES reaction is 

that the second step, exon ligation, cannot be prevented with the unmodified 10-mer TES 

substrate (where a single nucleotide is excised). Therefore, a modified substrate system was 

employed in which the second step of the TES reaction was prevented using a substrate with 

a deoxyribose-ωG [r(5’AUGACUdGCUC3’)] (Figure 4.1). To test the ability of this new 

deoxy-ωG substrate to undergo the 5’ cleavage reaction, it was allowed to react with the 

ribozyme under optimized TES reaction conditions. The deoxy substrate has a kobs value of 3 

± 0.5 min-1 (Figure 4.1) whereas a value of 3.7 min-1 was obtained with the ribose-ωG 

substrate from a control reaction. The values of the observed rate with both the modified and 

unmodified substrates are in reasonable agreement with the previously reported value of 4 

min-1 (10). Therefore, deoxyguanosine-ωG substrate can reasonably mimic the ribose-ωG 

substrate. Importantly, the deoxyguanosine-ωG substitution inhibits the exon-ligation step 

and thus only the 5’ cleavage step can be studied. Note that unless mentioned otherwise, all 

kinetic data presented herein were obtained from this deoxyribose-ωG substrate. 

 

Rate Constant of Substrate Cleavage, k2.  

Experiments under ribozyme excess conditions were used to determine the pseudo-

first-order rate constant for cleavage of substrate. Under these conditions, the ribozyme-

product complex is ultimately denatured by addition of stop buffer and hence product 

dissociation is not observable. Therefore, these experiments typically measure the rate of 

substrate cleavage from the ribozyme-substrate complex.  

The observed rate constants were measured in reactions containing various ribozyme 

concentrations (5-300 nM) and 1.3 nM of 5’ end labeled substrate (Figure 4.3B). The 
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observed rate constants of substrate cleavage (kobs) at the lower ribozyme concentrations (5-

40 nM) increased linearly with the ribozyme concentration. This linear dependence reflects 

the apparent second order rate constant, k2/KM′ and the slope gave a value of (2.8 ± 0.5) x 107 

M-1 min-1 (Figure 4.4A).  

The observed rate constants were also plotted in an Eadie-Hofstee type plot. From 

these Eadie-Hofstee plots, the value of k2 = 3.9 ± 0.2 min-1 was obtained from the y-intercept 

(Figure 4.4B). This value of k2 implies the maximum first order rate of substrate cleavage 

under single turnover conditions. The absolute value of the slope gives a value of apparent 

Michaelis constant KM′ = 98.3 ± 0.5 nM. This value of apparent Michaelis constant implies 

the ribozyme concentration at which the reaction rate is half-maximal.  

 

Dependence of Rate Constant of Substrate Cleavage on pH.  

For ribozyme-mediated reactions, the attacking nucleophile needs to be deprotonated 

prior to chemical step. This information is usually obtained from studying the dependence of 

the rate of corresponding reaction on pH. The rate of cleavage step of Tetrahymena (151-

154), Anabaena (143) and Azoarcus (155) group I introns and several small ribozymes (156-

158) show a log-linear increase in rate with pH in the acid range, consistent with a single 

deprotonation step that must take place to cleave the substrate.  

The effect of pH to the 5’ cleavage reaction was determined by measuring the 

observed rate constants (kobs) in the pH ranging from 5.0 to 8.5. The logarithm of the 

observed rate constants for substrate cleavage in the 5’ cleavage reaction increases linearly 

with pH between pH 5-7 with a slope of 0.5 ± 0.03 (Figure 4.5). The pH-rate profile also 

shows an observable leveling after pH 7 and good evidence has been provided with 

Tetrahymena group I intron-derived ribozyme that this represents a pH dependent 

conformational change of the ribozyme (153, 154). This conformational change thus sets a 

limit that cannot be exceeded even though the rate of chemistry (kc) continues to increase 

with increasing pH (153, 154). As the rate constant of substrate cleavage (k2) is masked by a 

conformational change, k2 will not be equivalent to the rate of chemistry. The cleavage rate 

of 0.3 min-1 at pH 5.0 can be extrapolated to pH 7.5 providing a value of 5.7 ± 1.1 min-1 for 

the rate constant of chemistry (kc). 
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The observed rate constant of the 5’ cleavage reaction was determined in multiple 

buffers with overlapping pH (pH 6.8: MES and HEPES; pH 7.5: HEPES and EPPS). These 

control experiments have indicated that there is no buffer-specific effect on the observed rate 

constants (kobs). It should be noted that the rate constants of substrate cleavage were not 

determined outside the pH range depicted because protonation or deprotonation of 

nucleotides is expected to cause general chemical denaturation of the ribozyme (159).  

 

Rate Constant of Substrate Dissociation (k-1) 

The rate constant for substrate dissociation was determined in a pulse-chase 

experiment where 166 nM ribozyme and a trace amount of 5’ end labeled substrate were 

used in the 5’ cleavage reaction (Figure 4.6A). The reaction was allowed to proceed for time 

t1= 30s, at which the reaction mixture was diluted by addition of a large volume of reaction 

buffer so that [E] < KM′. The time t1 was so chosen that it is enough for substrate binding 

while a significant fraction of substrate remain unreacted. The chase period, t2, was followed 

for a period of 15 min. The first-order rate constants of the chase (kobs, chase) and control 

reactions (kobs, control) after t1 were obtained from single-exponential fit to the plot of product 

formation against t2 (Figure 4.6B). The observed rate constant of the chase reaction is faster 

than that of control reaction because the ribozyme-substrate complex decays via parallel 

pathways of substrate dissociation and 5’ cleavage step. The dissociation rate constant was 

calculated using equation 2 giving a value of k-1 = 0.9 ± 0.04 min-1.  

It should be noted that this value should only be regarded as a lower limit for k-1 

because the ribozyme-substrate complex might reach the maximal amount before the first 

time point (30 s). However, these data indicates that the substrate cleavage does not follow a 

Michaelis-Menten kinetic mechanism because the rate constant for substrate dissociation (k-1) 

is comparable to the cleavage rate constant (k2). Thus, the ribozyme-substrate complex did 

not reach thermodynamic equilibrium with free ribozyme before proceeding to the chemistry 

step. In addition, the rate-limiting step under substrate subsaturating (k2/KM′) conditions is 

not simply substrate association (k1) but a combination of k1, k-1, and k2, because k2 is only 

slightly slower than k-1. 
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Rate Constant of  Substrate Association (k1).  

The substrate dissociation being comparable to the cleavage step implies that the 

second-order rate constant, k2/KM′, will be a combination of substrate association (k1), 

dissociation (k-1) and chemical (k2) steps. Thus, the second-order rate constant can be 

represented as k2/KM′ = k1k2/(k-1 + k2) (160). As discussed earlier, a value of 2.8 x 107 M-1 

min-1 was obtained for the apparent second order rate constant, k2/KM′. Using this value of 

k2/KM′ and the values of k2 and k-1 (3.9 min-1 and 0.9 min-1 respectively), the calculated value 

for rate constant of substrate association will be 3.4 x 107 M-1 min-1.  

This value was confirmed by measuring it directly by pulse-chase method outlined in 

Figure 4.6A. Ribozyme and radiolabeled substrate were combined for varying times, tl (15 s 

to 120 s, before the reaction was complete), followed by addition of excess buffer to prevent 

further binding. Following addition of the chase, the mixture was left for a time t2 = 15 min 

to ensure that essentially every radiolabeled substrate that had complexed to ribozyme during 

tl, was converted to product. The amount of product formed was plotted against time t1 

(Figure 4.7A). The kobs values reflect the rate of approach to the equilibrium of ribozyme-

substrate complex formation and is the sum of the association and dissociation rates (kobs = k1 

[E] + k-1). The slope of the plot kobs against ribozyme concentration gives the rate constant of 

substrate association, kl = (1 ± 0.01) x 107 M-1 min-l (Figure 4.7B). This value reasonably 

agrees with the calculated value of 3.4 x 107 M-1 min-1. 

 

Reversibility of 5’ Cleavage Reaction.  

Under single turnover conditions, the kobs of 5’ cleavage reaction with 166 nM 

ribozyme is 3.9 min-1 with a typical end point of 70-80%. The time course shows a plateau 

around 10 min and over a period of 15-60 min, this does not change. This suggests either 

existence of an internal equilibrium or only 70-80% of the substrate is reactive. To test 

whether an internal equilibrium between ribozyme-substrate and ribozyme-product 

complexes exists, a pulse-chase experiment was used as described before (85). In this assay, 

the 5’ cleavage reaction was first allowed to proceed to completion and then an excess of 

unlabeled 5’ exon intermediate was added (Figure 4.8A). The addition of a large excess of 

unlabeled 5’ exon mimic will prevent rebinding of radiolabeled substrate and 5’ exon 
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intermediate. The result shows that bound radiolabeled product can be converted back to 

radiolabeled substrate although the conversion is not quantitative (Figure 4.8B). 

Regeneration of the substrate indicates that an internal equilibrium exists. This also provides 

further proof that product dissociation is slower than substrate dissociation. If the product 

dissociation is faster than the substrate then addition of chase would force product to 

dissociate and further 5’ cleavage reaction will be observed. Regeneration of radiolabeled 

substrate indicates that chase is displacing the substrate and the bound intermediates are 

reacting to generate the substrate. This shows that an internal equilibrium exists and the 5’ 

cleavage reaction is reversible. This also implies that at least some of the 3’ exon does 

remain bound to the ribozyme and not completely dissociate as suggested earlier (10, 15). 

This makes sense as the 3’ exon intermediate is attached to the 3’ end of the ribozyme as 

proposed recently (P. P. Dotson, unpublished results). 

 

Equilibrium Dissociation Constant of Substrate and Product.  

A trace amount of 5’ end-labeled 5’ cleavage product mimic was allowed to bind with 

different concentrations of ribozyme (1-200 nM) for 90 min at 44 OC in H10Mg buffer. The 

ribozyme-product complex and unbound 5’ cleavage product mimic were then separated on a 

native polyacrylamide gel. The equilibrium dissociation constant, Kd
P, of the 5’ cleavage 

product mimic 69 ± 6 nM was determined from the plot of fraction bound against ribozyme 

concentration as mentioned before (9, 150) (Figure 4.9). It should be noted that the value 

obtained here is over 5-fold higher than the previously reported value of 13 nM (9, 11). This 

discrepancy could be explained by the reaction conditions. Change in reaction conditions, 

especially temperature, weakens the stability of RNA-RNA helix and affect the values of 

equilibrium dissociation constant (161). The assays used in this study to obtain Kd, were 

conducted at 44 OC in 10 mM MgCl2; whereas the previously reported assays were 

conducted at 37 OC in H15Mg buffer.  

The equilibrium dissociation constant of the substrate was not directly determined, as 

the binding equilibrium could not be established prior to the 5’ cleavage reaction. However, 

the equilibrium dissociation constant of the substrate, Kd
S, can be estimated from the ratio of 

 75



  

substrate association (k1) and dissociation (k-1) rate constants. The value of Kd
S determined 

through this method was 90 nM. 

 

Rate Constant of 5’ Cleavage Product (5’ Exon Intermediate) Dissociation (k-3).  

The dissociation rate constant (k-3) of the 5’ cleavage product (5’ exon intermediate) 

was determined using a pulse-chase assay, combined with native polyacrylamide gel 

electrophoresis. In this assay, an excess of ribozyme was mixed with ~1 nM of 5’ end labeled 

5’ exon mimic in H10Mg buffer containing 3.4 % glycerol and then incubated at 44 OC for 

30 min to allow binding to reach equilibrium. An excess amount of unlabeled 5’ exon mimic 

was then added to initiate the chase (Figure 4.10A). The time course of the chase period was 

followed by removing aliquots at designated times. These aliquots were directly loaded onto 

a running native polyacrylamide gel. The fraction of 5’ exon product dissociated after chase, 

was corrected for the unbound fraction at time t1 (before the chase was initiated), and then 

plotted against time t2. The rate constant of product dissociation obtained using equation 1 

was 0.05 ± 0.002 min-1 (Figure 4.10B). This value of 5’ exon product dissociation shows that 

its dissociation is slower than substrate dissociation and implies that under multiple turnover 

conditions, 5’ exon product dissociation will be the rate-limiting step.  

 

Discussion 

Summary of Kinetic Results. 

The ribozyme from P. carinii pre-rRNA catalyzes sequence-specific excision of 

nucleotides as shown in Figure 3.1 (for a schematic diagram see Figure 2.14). To discuss the 

kinetic data, it is useful to consider a simple reaction scheme for the 5’ cleavage step (first 

step) of the TES reaction as shown in Figure 4.2. The following is a brief description of the 

5’ cleavage reaction proceeding from left to right as shown in Figure 4.2.  

Under single turnover condition, the substrate binds the ribozyme at a rate 

approaching the lower limit of the RNA helix formation. After formation of the ribozyme-

substrate complex, it can partition between the cleavage step and dissociation. However, it 

was found that the rate of substrate dissociation is comparable to the rate of cleavage step.. 
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This suggests that the ribozyme-substrate complex is not in thermodynamic equilibrium with 

free substrate and ribozyme. The fraction of substrate that goes on to the cleavage step 

generates two exon intermediates, 5’ exon and 3’ exon. A significant fraction of these 

intermediates remains docked to the catalytic core and has the ability to undergo the reverse 

reaction. The 5’ exon is released at a rate that is slower than the dissociation of substrate. 

Release of the 5’ exon is so slow that it is rate limiting for multiple-turnover reaction. 

However, the slow release of the 5’ exon product makes good biological sense for the TES 

reaction. It ensures that the 5’ exon is docked to the ribozyme long enough, thereby allowing 

its ligation with the 3’ exon in the second step of the TES reaction. It should be noted that 

after the 5’ cleavage step, the 3’ exon intermediate is covalently attached to the ribozyme. 

This implies that its dissociation is not a limiting factor for the TES reaction and therefore, its 

dissociation was not determined. 

 

Rate Constants of Substrate and 5’ Exon Intermediate Binding. 

The rate constants of substrate and 5’ exon product association, determined herein, 

are 1 x 107 M-1 min-1 and 3.5 x 107 M-1 min-1 respectively. It should be noted that these 

values are far below the diffusional limit of 1011 M-1 min-1 for collision of small molecules 

(162). However, the values of 1 x 107 M-1 min-1 and 3.5 x 107 M-1 min-1 are well within the 

range of expected values for the formation of RNA duplexes, value of which is estimated to 

be 107-109 M-1 min-1 (163-167). Substrate and product association rate constants of 

hammerheads (14, 148), hepatitis delta viruses (168), hairpins (169) and Tetrahymena group 

I ribozyme (12, 170) have also been found to be in the range of 107-108 M-1 min-1. Based on 

this comparison, the substrate and 5’ exon product association rate constants determined 

herein are close to the expected value. Thus, like other ribozyme-catalyzed reactions, the 

assembly of either ribozyme-substrate or ribozyme-5’ exon product complex in the TES 

reaction, is also due to the process of simple helix formation.  

 

Rate Constant of Substrate Cleavage.  

The rate constant for the 5’ cleavage reaction, k2, under single turnover conditions is 

3.9 min-1. Catalytic power of an RNA-cleaving ribozyme can be estimated by comparing the 
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observed rate constant of a catalyzed reaction to that of an equivalent uncatalyzed reaction. 

In simulated physiological conditions the uncatalyzed rate constant of the 

phosphotransesterification reaction (knoncat) is estimated to be 10-9 min-1 (12, 171). Thus, a 

rate of 3.9 min-1 for the 5’ cleavage reaction represents a catalytic rate enhancement 

(k2/knoncat) of approximately 109-fold. This rate enhancement also corresponds to 

approximately 13 kcal/mol of transition-state stabilization. This value is obtained from the 

equation ∆GO = -RT ln (k2/knoncat), as discussed (12). Although P. carinii ribozyme is 

providing 109-fold rate increase, it is still two orders of magnitude slower than the self-

splicing Tetrahymena ribozyme cleavage reaction (kc = 350 min-1) (12). However, 

Tetrahymena ribozyme can undergo 3’ terminal guanosine-mediated 5’ cleavage reaction (5, 

79, 84, 85)  which is ~10-fold slower than the corresponding reaction in P. carinii ribozyme 

(85). It should be noted that since these cleavage rates were not obtained under the same 

reaction conditions, the significance of this comparison is limited. Furthermore, the observed 

rate of substrate cleavage shows pH independence between pH 7 and 8.5 implying that at this 

range the rate of chemistry associated with substrate cleavage is masked by a conformational 

change. The simplest interpretation of this result is that the rate of substrate cleavage, k2, is 

not equivalent to the rate of chemistry. 

 

Helix P10 Forms After the First Step.  

The TES reaction proceeds by two consecutive phosphotransesterification reactions. 

In the first step, the substrate binds the ribozyme and the reaction is initiated by the 3’ 

terminal G344 of the ribozyme (Figure 2.11) which binds to the guanosine binding site. The 

nucleophilic attack by the 3’ hydroxyl of the 3’ terminal G344 breaks the phosphodiester 

bond at the 5’ splice site (Figure 2.14). This result in a 5’ exon intermediate with a free 3’-

hydroxyl group and the 3’ exon intermediate is covalently attached to the ribozyme. Prior to 

the second step, there is a conformational change, which replaces the 3’ terminal guanosine 

with the ωG of the substrate in the guanosine binding site. The structural rearrangement also 

leads to the formation of the P10 helix, suggesting that P10 helix does not form before the 

first step. This is consistent with the established pathway of group I intron-derived ribozyme 

reactions. However, as an extreme possibility, the P10 helix could still form before the 5’ 
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cleavage step. Compared to the 5’ exon product of the 5’ cleavage reaction, the substrate is 

longer by four nucleotides (see Figure 4.1). Therefore, it is expected that if P10 helix forms 

before the 5’ cleavage step, the substrate will bind the ribozyme more strongly. However, the 

data shows that the equilibrium dissociation constants of the substrate and 5’ exon product 

are similar (Figure 4.2). This implies that the 3’ exon does not provide additional stability to 

the substrate and P10 helix is not forming before the first step.  

 

ωG Does Not Interact with the GBS Prior to or During the 5’ Cleavage Reaction.  

In the TES reaction, the ωG, which is part of the substrate, lies just 3’ to 5’ splice site. 

This configuration could allow ωG to bind to the guanosine binding site prior to the 5’ 

cleavage reaction. This model is reasonable because the TES reaction does not utilize 

exogenous G, which would normally compete with ωG for binding the guanosine binding 

site prior to the 5’ cleavage step (in the self-splicing reaction). There are three pieces of 

evidence, however, that suggest that ωG does not interact with the guanosine binding site 

prior to or during the 5’ cleavage reaction. First, the 3’ terminal G344 has to bind the 

guanosine binding site to catalyze the first step and G344 can be considered as analogous to 

the exogenous G. Second, the presence or absence of the 2’-hydroxyl group of ωG does not 

significantly alter the 5’ cleavage reaction (data not shown). Third, the presence or absence 

of ωG itself does not significantly alter the observed rate constant of the 5’ cleavage reaction 

(data not shown). This conclusion, then, is consistent with the established pathway of self-

splicing, in which ωG plays no determinable role in the 5’ cleavage step (7).  

 

Intervening Conformational Change Between the Two Reaction Steps.  

The kinetic framework shows that substrate dissociation is faster than the product 

dissociation (Figure 4.2) implying the presence of some additional interactions to prevent 

product dissociation. A simple explanation is that there exists a local conformational change 

of the ribozyme catalytic core although the current set of data does not distinguish between 

whether the conformational change occurs during or after the reaction. However, from the 

prior knowledge of the pathway of the self-splicing reaction, a possible role for the 

conformational change in the TES reaction can be established. The self-splicing reaction 
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requires a local conformational change between the two reaction steps; replacement of the 

exogenous G at the guanosine binding site with the ωG and formation of P10 helix (7, 104, 

108, 109). It has been shown that ωG is required in the TES reaction for the correct 

determination of the 3’ splice site. To accomplish this it needs to bind the guanosine binding 

site (92). The absence of ωG does not change the rate constant of the 5’ cleavage reaction 

(data not shown) implying that ωG is not interacting with the guanosine binding site prior to 

the 5’ cleavage step. Furthermore, P10 helix is not forming before the first step. Therefore, it 

is reasonable to propose that the local conformational change in the TES reaction is similar to 

the self-splicing reaction.  

 

Implications.  

Implication Regarding Sequence Specificity.  

The 5’ cleavage reaction outlined in this report appears to be following a kinetic 

mechanism in which substrate cleavage and substrate dissociation are comparable. 

Furthermore, the apparent second order rate constant, k2/KM′, approaches the rate of substrate 

association (k1). These results suggest that, at least in vitro, if the P. carinii ribozyme utilizes 

P1 pairing to bind a substrate for the 5’ cleavage reaction, the TES reaction, then the resultant 

reaction will be sequence specific. This is primarily because, under these conditions, partially 

complementary targets will dissociate before reacting. Hence, to increase sequence 

specificity for the TES reaction, mismatches in the P1 helix can be introduced. It is one of the 

most suggested method for enhancing ribozyme sequence specificity (13) and is likely to be 

an effective strategy for the P. carinii ribozyme. However, it should be noted that the 5’ 

splice site is not sequence specific in a TES reaction (92) and thus, to increase sequence 

specificity the mismatches must be introduced at other positions in the P1 helix as 

demonstrated in other ribozymes (11, 13, 172).  

 

Comparison to Other Ribozymes. 

Having described the pathway of the TES reaction, one question arises: how similar 

(or different) is the 5’ cleavage reaction compared to similar reactions catalyzed by other 
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group I introns? Two main participants for the comparison are Tetrahymena and Anabaena 

group I ribozymes, whose 5’ cleavage reactions have been characterized before (12, 143). It 

should be noted that one key difference is that the 5’ cleavage step in Tetrahymena and 

Anabaena has been characterized in presence of exogenous G, whereas for P. carinii the 5’ 

cleavage requires 3’ terminal G344.  

All three ribozymes bind their substrate and products with a rate constant that is close 

to the value of RNA-RNA helix formation. However, under single turnover conditions, the 

first order rate constant of Tetrahymena ribozyme is faster than both the Anabaena and 

Pneumocystis carinii ribozymes. In a multiple turnover reaction, Anabaena ribozyme is 

faster than both Tetrahymena and P. carinii. Because of Anabaena’s weaker P1 base pairing 

(only 3 bp P1 helix), it is not rate-limited by product dissociation. However, both 

Tetrahymena and P. carinii (both have 6 bp P1 helix) ribozymes are rate-limited by their 5’ 

exon intermediate product dissociation. Finally, the 5’ cleavage reaction rate increases for all 

the three ribozymes with pH between pH 5 and 7 which is indicative of a single 

deprotonation step prior to substrate cleavage. In addition, all three become insensitive to pH 

after pH 7, apparently due to a rate-limiting conformational change. Thus, these three group I 

ribozymes, differing in the identity of their active site nucleotides, are nevertheless 

functionally very similar.  
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FIGURE 4.1: Test System for Kinetic Characterization of the 5’ Cleavage Reaction 

Diagram of the model 5’ cleavage reaction used. The rP-8/4x ribozyme (only the 

catalytic core is shown) is in uppercase lettering, the 10-mer substrate is in lowercase 

lettering, and the deoxyguanosine nucleotide used for freezing the reaction after the 5’ 

cleavage step is distinguished with a grey background. This deoxyguanosine base 

corresponds to the ω position of the self-splicing introns, and so will be referred to as the 

substrate ω position. The ribozyme recognition elements RE1, RE2, and RE3 base pair with 

the substrate to form the P1, P9.0, and P10 helices respectively. It should be noted that the 

P9.0 helix does not form in this system because of a lack of complementary bases. The sites 

of catalysis for the 5’ cleavage step is shown with arrow. The P10 helix is boxed. The 5’ 

splice site is defined by the G-U wobble pair at the 3’ end of P1 helix.  
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k2 = 3.9 min-1
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k1 = 1x107 M-1 min-1

k-1 = 0.9 min-1

k-3 = 0.05 min-1

k3 = 3.5 x 107 M-1min-1

Kd
S = 90 nM kc = 5.7 min-1

E + P

Kd
P = 69 nM
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Kd
S = 90 nM kc = 5.7 min-1

FIGURE 4.2: The Minimal Kinetic Scheme for 5’ Cleavage Reaction. 

Values were measured at 44 OC in 10 mM MgCl2, 50 mM HEPES (pH 7.5), and 135 

mM KCl. E denotes rP-8/4x ribozyme, S, substrate and P, 6-mer 5’ cleavage product. The 

equilibrium and rate constants determined in this study are indicated next to the individual 

steps. The calculated rate constants are in bold and further distinguished with red lettering. 
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FIGURE 4.3: 5’ Cleavage Reactions under Single Turnover Conditions. 

(A) Representative polyacrylamide gel with the 5’ end labeled substrate and 166 nM 

rPC ribozyme. The positions of the substrate and the 5’ cleavage product on the gel are 

labeled. The lane marked (+) buffer contains a 15 min reaction in the absence of the 

ribozyme. The time point (minutes) is shown above each lane. (B) Representative plot of the 

5’ cleavage reaction at 10 nM (○), 20 nM (□), 43 nM (◊), 166 nM (∆), and 300 nM (●) rP-

8/4x ribozyme concentration. Observed rate constants (kobs) were obtained from these plots, 

and are the average of two independent assays. All data points between the two independent 

assays have a standard deviation less than 15%.  
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FIGURE 4.4: Determination of k2 and k2/KM’  

(A) Representative plot of the kobs values from Figure 4.4 B versus ribozyme 

concentration (5-40 nM). The resulting k2/KM′ value (2.8 ± 0.5 x 107 M-1 min-1) is the average 

of the two independent assays. (B) A representative Eadie-Hofstee plot of the data in panel 

B. The plot resulted in a value of k2 = 3.9 ± 0.2 min-1 from the y-intercept and KM′ = 98.3 ± 

0.5 nM from the slope. These values are the average of the two independent assays.  
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FIGURE 4.5: The pH Dependence of the 5’ Cleavage Reaction. 

The plot shows observed rate of cleavage as a function of pH. The observed rate 

constants of 5’ cleavage reaction were determined with 166 nM rP-8/4x ribozyme and 1.3 

nM 5’ end labeled substrate at 44 OC. The following buffers were used: sodium acetate pH 

4.6-5.0; MES, pH 5.0-6.8; HEPES, pH 6.8-7.5; EPPES, pH 7.5-8.5; CHES, pH 8.5-9.5. The 

concentration of each buffer was 50 mM and contained 135 mM KCl and 10 mM MgCl2. 

Each point on the graph is from at least two independent experiments with a standard 

deviation less than 15%. The data were fitted with a linear equation. The y-intercept with the 

dotted line depicts the calculated value of the observed rate of cleavage at pH 7.5. 
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FIGURE 4.6: Determination of Rate Constant for Substrate Dissociation (k-1).  

(A) Scheme of the pulse-chase experiment, which was conducted in H10Mg buffer at 

44 OC and 166 nM ribozyme. The chase was initiated by diluting the reaction mixture with 

H10Mg buffer. (B) Representative plot of hydrolyzed substrate, after t1, versus time (t2) with 

(closed circles) and without (open circles) added chase. The resultant first order rate 

constants obtained with (kobs, chase = 2.5 ± 0.04) and without (kobs, control = 1.5 ± 0.01 min-1) the 

chase are the average of two independent assays. All data points between the two 

independent assays have a standard deviation less than 10%. The rate of substrate 

dissociation, k-1, is 0.9 ± 0.04 min-1 from the equation kobs, chase = kobs, control + k-1. 
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FIGURE 4.7: Determination of the Rate Constant for Substrate Association (k1).  

 (A) Representative plot of pulse-chase experiments in H10Mg buffer at 44 OC with 

five different ribozyme concentrations: 30 nM (○), 50 nM (▲), 100 nM (◊), 150 nM (♦), and 

200 nM (●). The quantified kobs values for the ribozyme concentrations are 0.4 ± 0.04, 0.6 ± 

0.01, 1.2 ± 0.02, 1.4 ± 0.03 and 2.1 ± 0.03 min-1, respectively. These values are the average 

of two independent assays. All data points between the two independent assays have a 

standard deviation less than 10%. (B) Representative plot of the kobs values obtained from 

Figure 6A against ribozyme concentration. The line is fit to the equation kobs = k1[E] + k-1 and 

the substrate association rate (k1 = 1 ± 0.01 x 107 M-1 min-l) was calculated from the slope. 

Note that these values are the average of the two independent assays.  
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FIGURE 4.8: 5’ Cleavage Products Can Undergo the Reverse Reaction and Existence 

of an Internal Equilibrium. 

Regeneration of the substrate provides evidence for the existence of the internal 

equilibrium. (A) Scheme of the pulse-chase experiment, which was conducted using 166 nM 

ribozyme and a trace amount of 5’ end labeled substrate in H10Mg buffer at 44 OC. The 

reaction was allowed to proceed for 15 min (t1) followed by addition of excess unlabeled 5’ 

exon product as the chase. (B) A plot of the disappearance of substrate in a normal reaction 

(no chase, closed circles) and reappearance of the substrate in presence of chase (open 

circles). Each point on the plot is the average of two independent experiments, and have a 

standard deviation less than 15%. 
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FIGURE 4.9: Determination of Equilibrium Dissociation Constant, Kd
P.  

In the reaction, varying concentrations of rP-8/4x was mixed with trace amounts of 5’ 

end radiolabeled 5’ cleavage product in H10Mg buffer containing 3.4 % glycerol. Shown is a 

representative plot of the percent 5’ cleavage product bound versus ribozyme concentration. 

The resultant value of Kd
P is 69 ± 6 nM, and it is the average of two independent assays. All 

data points between the two independent assays have a standard deviation less than 15%. 
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FIGURE 4.10: The Dissociation Rate Constant of the 5’ Cleavage Product (k-3). 

(A) Scheme of the pulse-chase experiment conducted with rP-8/4x ribozyme and 5’ 

end labeled 5’ exon mimic in H10Mg buffer containing 3.4% glycerol at 44 OC. In this 

reaction t1 = 30 min. Excess unlabeled 5’ exon mimic was added to initiated the chase, and 

product dissociation was followed by a native gel-shift assay. (B) Representative plot of the 

fraction of unbound product versus chase time, t2. The rate of product dissociation, k-3, is 

0.054 ± 0.002 min-1, which is the average of two independent assays. All data points between 

the two independent assays have a standard deviation less than 15%. 

 

 

 

 

 

                        

 91



  

CHAPTER FIVE - CONCLUSIONS 
 

It has been shown that the Pneumocystis carinii group I intron-derived ribozyme can 

catalyze the trans excision-splicing (TES) reaction in vitro (10, 15). However, there are 

unanswered questions about the molecular basis for the reaction, particularly regarding the 

selection of splice sites, as well as the mechanism and kinetic pathway. The work presented 

herein further characterizes the P. carinii ribozyme in vitro and gives insight into the 

molecular recognition of the 5’ and 3’ splice sites by this ribozyme. This study also provides 

a kinetic framework of the first step of the TES reaction.  

 

Molecular Recognition of Splice Sites in a TES Reaction 

The work investigating the sequence requirements of the trans excision-splicing 

ribozyme at the 5’ and 3’ splice sites has provided further insight into the molecular 

recognition of this ribozyme. The sequence requirement at the 5’ splice site is not absolute, 

as all base pair combinations allow the 5’ cleavage reaction to proceed. Mutating the highly 

conserved u-G wobble pair to other base pair combinations did not prevent the TES reaction.  

TES product yields were appreciable in several cases. We showed that appreciable amount of 

TES product formation (>25%) required a stable base pair (either Watson-Crick or wobble 

pair) at the 5’ splice site, indicative of a much stricter sequence requirement for the exon 

ligation step. The data also show that some combinations at the 5’ splice site produced 

cryptic products, the source being the TES products. We developed a model for the 

mechanism of cryptic splicing and identified a pathway for cryptic product formation. It was 

also found that cryptic splicing occurred only with Watson-Crick base pairs at the 5’ splice 

site. This suggests that the ribozyme recognizes a structural perturbation in the P1 helix. 

Non-Watson-Crick base pairs and ωG can play a role in 5’ splice site determination by 

creating this perturbation and suppressing the cryptic cleavage. The role of structural 

perturbation in suppressing cryptic splicing had never been demonstrated before.  

The sequence requirement at the 3’ splice site on the other hand is absolute. Presence 

of only a guanosine at the ω position allows the exon-ligation reaction leading to the 

formation of TES product. The specificity of the ribozyme for ωG is guided by the guanosine 

binding site of the ribozyme. Attempts at redesigning this site to interact with a different 
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nucleotide were unsuccessful. Therefore, in its current incarnation, the TES ribozyme is only 

able to remove single guanosine insertions or sequences ending in guanosine from RNA 

substrates.  

The results of this study provided a framework of the molecular recognition processes 

involved in both steps of the TES reaction (and the analogous steps of self-splicing). These 

results particularly advance our knowledge regarding the selection of the splice sites. 

Knowledge gained from this study could be employed for improvement of the design 

principles for further development and future application of these ribozyme-mediated 

excision reactions. The improved design principles will be useful for developing new TES 

target systems, particularly in terms of the 5’ splice site. In addition, this study unraveled a 

new mechanism for cryptic splicing. Taken together, these results indicate that group I 

intron-derived ribozymes catalyze reactions using pathways that are much more diverse than 

previously thought.  

 

Kinetic Characterization of the 5’ Cleavage Step of the TES Reaction 
 

The work investigating the kinetic characterization provided an insight into the 

elemental rate constants associated with the 5’ cleavage reaction. These values of the 

elemental rate constants were used to establish a minimal kinetic scheme of the 5’ cleavage 

reaction. The scheme suggests that under single turnover condition, the substrate binds the 

ribozyme in a random manner to form the ribozyme-substrate complex. After formation of 

ribozyme-substrate complex, it can partition between either the cleavage step or dissociation, 

with dissociation being comparable to the cleavage step. The fraction of substrate that is 

cleaved generates two exon intermediates, 5’ exon and 3’ exon. As the 3’ exon intermediate 

gets covalently attached to the 3’ end of the ribozyme its dissociation is not a limiting factor 

on either the 5’ cleavage or TES reaction. However, 5’ exon intermediate dissociation is so 

slow that it is rate limiting for the 5’ cleavage reaction under multiple turnover condition. 

Identifying the limits of this reaction will be useful for developing guidelines for more 

efficient TES reactions, particularly in terms of the turnover.  

Although kinetic framework for the 5’ cleavage reaction was established, it also 

provided insight into the second step of the TES reaction. One stated goal for this study was 
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to answer several intriguing unanswered questions regarding the mechanism of the TES 

reaction. Our data suggest that helix P10 does not form before the 5’ cleavage step. In 

addition, it was found that there exists a conformational change between the two steps of the 

TES reaction. When combined with the proposed reaction pathway of the TES reaction, a 

probable function of this conformational change emerges. Simply stated, the conformational 

change in the TES reaction, removes the 3’ terminal guanosine from the guanosine binding 

site, puts the ωG in the guanosine binding site, and forms P10 helix. Taken together, these 

two results in particular are very informative because they indicate a similarity between the 

self-splicing and TES reaction.  

Having established a model for the mechanism of the TES reaction, several questions 

arise: are other group I intron-derived ribozymes can catalyze this reaction and more 

efficiently? Are there qualitative differences in the way they catalyze the TES reaction? 

Unfortunately, at this time there is no straightforward answer to these questions because 

answering these questions will require a series of exhaustive studies with other group I 

intron-derived ribozymes.  
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