One of the engineer's primary functions is to make decisions. His creative and constructive roles follow the decision-making and are dependent on it. The purpose of this paper is to explore this idea as it applies to highway location and to illustrate the use of mathematical models and high-speed digital computers in solving location problems.

If the engineer is basically a decision-maker then the terms "decision-making" and "the engineering process" are nearly synonymous. In fact, engineering has been defined as simply the use of available information "to determine the best course of action for some human undertaking."(1) Obviously the route from information acquisition and processing to final decision must be a logical one. Figure 1 shows schematically the sequential steps in the engineering process. (1)2

The basic steps; search, prediction, evaluation and decision are enclosed in rectangles; the outcome of each step is shown in brackets.

First some goal or objective must be defined for the project. This is usually done on the "executive level" and typically results in objective statements that are somewhat vague (from an engineering viewpoint). The engineer's initial step is to redefine and clarify the goal or goals in his own terms and to reconcile his redefinition with executive's original intention.

Secondly a search is made for feasible alternate solutions that will achieve the desired goals. Many possible solutions may be eliminated intuitively by the experienced engineer. There still remain, in most cases, a great many possibilities. The number of alternatives finally selected for further analysis depends on the time available to the engineer and the relative importance of the project.

Connected with each selected alternative is a set of consequences. These are mostly physical in nature and are normally expressed in terms of cubic yards, miles of roadway, road user costs, etc. Of increasing importance, however, to the present-day highway engineer is a determination of the intangible consequences of his work; i.e. such things as driver comfort and convenience, the appearance of the completed roadway and the social impact of the new road on nearby communities.

1 Numbers in parentheses refer to references listed at the end of the paper.
2 Figures 1, 2 and 3 were adapted from reference 1.
FIGURE 1 - THE ENGINEERING PROCESS
Predicting the consequences of a given engineering action requires the use of mathematical models, though they may not always be labeled as such. A mathematical model is an approximate representation of a portion of the real world. It never is a completely true representation and it is not particularly desirable that it be so. The degree of approximation permitted in a model is related to the level of analysis at which the engineer is working. Figure 2 illustrates the levels of analysis for a proposed transportation system. Decisions as to mode of transportation for example, are made at the highest or "technology" level; here the mathematical model may be extremely generalized. As the analysis proceeds to lower and more detailed levels the models must become increasingly true-to-life so that the engineer will be able to discriminate between the consequences of one course of action compared with another.

It is in the manipulation of mathematical models that the high-speed computer is the most useful to the would-be decision maker. By quickly and accurately performing the necessary routine calculations, the computer permits the engineer to evaluate and analyze a greater number of alternate solutions in the time available.

Evaluation of the predicted consequences of each alternative is usually done in monetary or economic terms. Though this may not be completely desirable in some cases, it is in keeping with the milieu in which the engineer operates; that is, the original goals are set by executives working within a fixed budget; so comparisons of alternate solutions to the problem must be couched in terms related to money. One phrase used to express the evaluation of an alternate is "measure of effectiveness" (1). In an analysis of highway location, this may be the total annual cost of an individual alternate or it may be a comparative measure such as the benefit-cost ratio.

Once the alternatives are evaluated they are compared with one another and with the original goals. The comparison must be unbiased and must consider the reliability of the data used in reaching this stage of the process. The best alternative may not satisfy the original goal; in this event either the goal must be lowered or the engineering process repeated for a new set of alternatives. If the two best alternatives have measures of effectiveness that are nearly equal the decision may be based on criteria other than the economic.

Figure 3 shows the application of the engineering process to a typical highway location. In this example there is an existing alignment with a measure of effectiveness based on total annual cost. The goal is to find an alignment with a minimum total annual cost that is also less than the status quo. Three alternatives are selected and their location defined in three dimensional coordinate system. A mathematical model is devised for each significant variable and from these the consequences of each alternate are predicted. By assigning a cost to each of the
Higher levels of analysis

Increasing discrimination of models

FIGURE 2 - LEVELS OF ANALYSIS
Find a good alignment which has a total annual cost less than that of the existing alignment TAC₀.

FIGURE 3 - THE ENGINEERING PROCESS APPLIED TO A HIGHWAY LOCATION
consequences, the alternates are valued and a decision is made based on the relative degree to which each alternate satisfies the original goal.

Most of the practical difficulties encountered in applying the decision-making process to a highway location are concerned with the definition of the proper mathematical model for each of the variables (or consequences). Figure 4 is a list of some of the variables in a typical location problem (2). Shown for each variable is an appropriate model. It is obvious from this list that a "mathematical model" may be anything from an exact formula to a subjective thought process of the engineer.

The remainder of this paper will be devoted to a description of one of the listed models: The DTM Design System (3). This is a series of five computer programs developed in the Civil Engineering Laboratories of the Massachusetts Institute of Technology for the purpose of expediting the computation on earthwork quantities and associated geometric data. The system is very flexible in its application and may be used at any stage from reconnaissance to final design. In the present context, however, its use in decision-making is of primary interest.

Figure 5 serves to illustrate the origin of the system's title; "DTM". A band of interest has been delineated on a topographic map within which it is proposed to analyze one or more possible locations for a highway. The terrain within the band of interest is "digitized" by taking cross sections at regular intervals along a base line. Position of the base line is horizontal defined in some sort of coordinate system, usually the State Plane. When the cross section data is punched into IBM cards, the resulting deck is, in effect, a Digital Terrain Model; hence the abbreviation, DTM. More accurate and detailed cross sections obviously yield a DTM that more closely represents the terrain. The accuracy needed in a particular situation depends once again on the level at which the analysis is being made (Figure 2). Terrain may be digitized from other sources such as aerial photographs or field measurements.

This first computer program in the System edits the digitized terrain data according to certain specifications selected by the engineer. Using the output of this program the engineer corrects and re-edits the terrain deck until it is error-free.

Figure 6 is a flow chart illustrating the reasoning process behind a typical location analysis. The logic, procedural looping and feedback aspects of the chart are already familiar to most highway engineers.

3 Figures 5, 6, 7, 8, and 9 were adapted from reference 3.
Table of Mathematical Models

<table>
<thead>
<tr>
<th>Name</th>
<th>Variable</th>
<th>Mathematical Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earthwork Cost</td>
<td>ec</td>
<td>DTM Design System</td>
</tr>
<tr>
<td>Structures Costs</td>
<td>sc</td>
<td>Ky. Department of Highways Bridge Cost Data</td>
</tr>
<tr>
<td>Pavement Costs</td>
<td>pc</td>
<td>Ky. Department of Highways Pavement Cost Data</td>
</tr>
<tr>
<td>Drainage Costs</td>
<td>dc</td>
<td>Drainage Design System</td>
</tr>
<tr>
<td>Interchange Costs</td>
<td>ic</td>
<td>DTM Design System or Volumetric Quantities Program</td>
</tr>
<tr>
<td>Relocation Costs</td>
<td>rc</td>
<td>Volumetric Quantities Program</td>
</tr>
<tr>
<td>Land Costs</td>
<td>lc</td>
<td>Zone Cost Evaluation Program</td>
</tr>
<tr>
<td>Percentage Vehicles of Class n</td>
<td>k</td>
<td>Ky. Department of Highways Traffic Data</td>
</tr>
<tr>
<td>Fuel Cost</td>
<td>fc</td>
<td>Vehicle Simulation and Operating Cost Program</td>
</tr>
<tr>
<td>Tire Cost</td>
<td>trc</td>
<td>AASHO "Red Book"**</td>
</tr>
<tr>
<td>Oil Cost</td>
<td>oc</td>
<td>AASHO "Red Book"**</td>
</tr>
<tr>
<td>Vehicle Maint. Cost</td>
<td>mtc</td>
<td>AASHO "Red Book"**</td>
</tr>
<tr>
<td>Depreciation Cost</td>
<td>dpc</td>
<td>AASHO "Red Book"**</td>
</tr>
<tr>
<td>Time to Travel Alignment</td>
<td>t</td>
<td>Vehicle Simulation and Operating Cost Program</td>
</tr>
<tr>
<td>Unit Time Costs</td>
<td>tc</td>
<td>No Model Available - Engineer's Discretion</td>
</tr>
<tr>
<td>Time Unreliability Costs</td>
<td>tur</td>
<td>No Model Available - Engineer's Discretion</td>
</tr>
<tr>
<td>ADT Volume</td>
<td>vol</td>
<td>Kentucky Department of Highways Traffic Data</td>
</tr>
<tr>
<td>Annual Increase in Traffic</td>
<td>av</td>
<td>Kentucky Department of Highways Traffic Data</td>
</tr>
<tr>
<td>Interest Rate</td>
<td>i</td>
<td>No Model Available - Engineer's Discretion</td>
</tr>
<tr>
<td>Service Life</td>
<td>n</td>
<td>No Model Available - Engineer's Discretion</td>
</tr>
<tr>
<td>Length of Alignment</td>
<td>mi</td>
<td>DTM Location and Design Systems</td>
</tr>
<tr>
<td>Maintenance Cost</td>
<td>mc</td>
<td>Kentucky Department of Highways Maintenance Cost Data</td>
</tr>
</tbody>
</table>

USING THE SYSTEM FOR HIGHWAY LOCATION

TERAIN DATA PROCUREMENT

TERAIN EDIT PROGRAM

SELECTION OF HORIZONTAL ALIGNMENT

ALIGNMENT DESIGN/GEOMETRY

ALIGNMENT DESIGN OFFSETS

PROFILE PLOT PROGRAM

IS ALIGNMENT WORTH CONSIDERING?

YES

SHOULD MODIFICATION BE MADE?

YES

NO

ROADWAY DESIGN PREPARATION

SELECTION OF VERTICAL ALIGNMENT AND TEMPLATE

ROADWAY DESIGN TEMPLATE

ROADWAY DESIGN VOLUMES

SLOPE STAKE AND MASS HAUL PLOTS

CAN IMPROVEMENT BE MADE BY VERTICAL MODIFICATION?

YES

NO

CAN IMPROVEMENT BE MADE BY HORIZONTAL MODIFICATION?

YES

NO

IS MATERIAL CLASSIFICATION IMPORTANT TO COST?

YES

NO

MATERIALS CLASSIFICATION

END

FIGURE 6 - FLOW CHART HIGHWAY LOCATION ANALYSIS
Figure 7 shows this same process as automated in the DTM System. As can be seen, the computer performs only the routine calculations and graphical plotting. The engineer enters the process at critical points that require his judgement; setting of the terrain edit specifications, selection of horizontal and vertical alinement and the design of the cross section or template.

A selected horizontal alinement for the previously described band of interest (Figure 5) is indicated by the heavy line in Figure 8. The alinement is described to the computer in the same way as the base line except that some curve defining parameter (radius, degree of curve, external or tangent) must be specified for each point of intersection.

The Alinement Design Program then computes all the usual curve data and interpolates in the terrain deck to obtain the ground elevations at intervals along the proposed alinement. The elevation and the perpendicular offset from the base line of each point on the center line are punched (as part of the program output) into special "offset cards". This set of cards is then used (with appropriate scale data) as input to the Profile Plot program. The output of this run, when printed on a specially wired machine, produces an accurate ground profile which the engineer uses to design the vertical alinement.

Input for the Roadway Design program includes the vertical alinement (as specified by the station, elevation and length of vertical curve for each intersection of grade lines) and a series of cards setting forth the shape of the template, cut and fill slopes and other necessary design parameters. (Figure 9). Program output consists of the finish grade elevation, slope stake coordinates, station-to-station and cumulative cut or fill and the mass haul ordinate for each station. The slope stake and mass haul data may be graphically represented by a procedure similar to that described for the profile plot.

If rock excavation quantities are to be determined separately a fifth program of the series (Materials Classification) may be employed. Use of this program requires an input of soundings that defines a "rock model" in the same format as the original terrain model. The Materials Classification program can also be used for the complex earthwork computations that often occur at interchanges and at junctions of bifurcated roadways.

Supplied by the computer with the physical consequences of his selection the engineer may now make his evaluation and decide if modifications are required to improve the design (Figure 6). The entire process is then repeated for each alinement selected.

The above describes only one of the mathematical models that have been successfully computerized. Some other programs developed at MIT include those for Volumetric Quantities (borrow pits, channels, etc.)
SYSTEM FLOW CHART
Terrain Preparation Phase

- Terrain Data Input Form
- DTM Terrain Data Deck
- Terrain Preparation Edit

Alignment Design Phase
- Horizontal Alignment Input Form
- Alignment Design Geometry Input
- Alignment Design Offsets
- Profile Plot
- Flattened Ground Profile

Roadway Design Phase
- Roadway Design/Preparation
- Roadway Design/Template
- Roadway Design/Volumes
- Slope Stakes Plot
- Mass Mound Diagram

Materials Classification Phase
- Roadway Design Input Forms 1 and 2
- Template and Template Design
- Vertical Geometry Slopes Intercepts
- Slope Stakes Plot
- Mass Mound Diagram

FIGURE 7 - FLOW CHART DTM LOCATION SYSTEM
FIGURE 8 - DESIGNATION OF TRIAL ALIGNMENT
Zone Cost Evaluation (right-of-way cost estimates) (5) and Vehicle Simulation and Operating Cost (road user costs) (6). Attempts have also been made, with some degree of success, to automate the selection process itself (7,8).

In conclusion, it should be emphasized that mathematical models and computers are not intended to replace human judgement in the decision-making process; they are simply useful tools.
DTM ROADWAY DESIGN

INPUT FORM 2

NOTE To fill in input form start at 6 and work both ways. Sign convention is as shown. DYTIE and DZTIE are shown minus.

<table>
<thead>
<tr>
<th>LEFT SLOPES</th>
<th>ADDITIONAL PARAMETERS</th>
<th>IT # 9</th>
<th>RIGHT SLOPES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLLO 4.0</td>
<td>CLHI 2.0</td>
<td>0.0</td>
<td>CRHI -2.0</td>
</tr>
<tr>
<td>FLLI 4.0</td>
<td>FLHI 2.0</td>
<td>0.0</td>
<td>CRLO -4.0</td>
</tr>
</tbody>
</table>

TEMPLATE SEGMENTS

<table>
<thead>
<tr>
<th>IT # 7</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DY 1.0</td>
<td>DZ 0.0</td>
</tr>
<tr>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>0.0</td>
<td>-2.0</td>
</tr>
<tr>
<td>-2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>-10.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>-2.0</td>
</tr>
<tr>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

VOLUME START IT # 12

<table>
<thead>
<tr>
<th>BLSTA</th>
<th>CLSTA</th>
<th>CUTV</th>
<th>FILLV</th>
<th>CUMC</th>
<th>CUMF</th>
<th>HAUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>10550</td>
<td>0</td>
<td>4350</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>-420</td>
</tr>
</tbody>
</table>

FIGURE 9 - DEFINITION OF TEMPLATE AND ADDITIONAL PARAMETERS
REFERENCES

Acknowledgement

The authors wish to thank the staff of the Civil Engineering Laboratories, Massachusetts Institute of Technology for permission to use illustrations from their publications and for their help and cooperation in introducing the DTM and other computing systems into civil engineering courses at University of Kentucky. They are also grateful to the personnel of the University of Kentucky Computing Center for setting up the tour of the Center and for their many hours of consultation in adapting the MIT programs to the U.K. computing machinery.