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Abstract: Epidemiological data positively correlate plasma serum amyloid A (SAA) levels with
cardiovascular disease severity and mortality. Studies by several investigators have indicated a
causal role for SAA in the development of atherosclerosis in animal models. Suppression of SAA
attenuates the development of angiotensin II (AngII)-induced abdominal aortic aneurysm (AAA)
formation in mice. Thus, SAA is not just a marker for cardiovascular disease (CVD) development, but
it is a key player. However, to consider SAA as a therapeutic target for these diseases, the pathway
leading to its involvement needs to be understood. This review provides a brief description of the
pathobiological significance of this enigmatic molecule. The purpose of this review is to summarize
the data relevant to its role in the development of CVD, the pitfalls in SAA research, and unanswered
questions in the field.

Keywords: cardiovascular disease; abdominal aortic aneurysm; serum amyloid A; HDL

1. Introduction
The SAA Family

Serum amyloid A (SAA) proteins are a family of low molecular weight proteins of
104–112 amino acid residues first described almost 50 years ago [1]. There are four SAA
genes in the human genome, of which two are acute-phase proteins, SAA1 and SAA2. One
is a pseudogene (SAA3); however, in mice and other species, SAA3 is expressed and is
an acute-phase protein [1,2], and one is expressed constitutively (SAA4). The SAA1 and
SAA2 genes are coordinately regulated and are arranged ‘head-to-head’ in a gene cluster,
which also contains SAA3 and SAA4 on chromosome 11p15.1 and on chromosome 7 in
human and mouse, respectively, as shown in Figure 1 [3–5]. SAA is remarkably conserved
in mammalian evolution. Human SAA1 and SAA2 are 96% homologous over their entire
length and correspond to mouse SAA1.1 and SAA2.1. Mice encode and express full-length
SAA3 [6]. Murine SAA1.1 and SAA2.1 are 91% identical to each other and approximately
67% identical to murine SAA3. Mouse SAA3 shares 70% amino acid identity with human
SAA1 [7]. While SAA3 is thought to exert functional effects similar to the other two human
and mouse SAA isoforms [8,9], isoform-specific differences in SAA function have not been
rigorously investigated. Though human SAA1 and SAA2 as well as mouse SAA1.1 and
SAA2.1 share high amino acid sequence identity, only human SAA1 and mouse SAA1.1
are deposited into amyloid fibrils [10,11].
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Figure 1. Map of the human and mouse SAA gene families. The human family spans 150 kb on chromosome 11p15.1, and 
the mouse family spans 45 kb on chromosome7p. The relative positions of flanking genes are indicated in the human 
cluster. Arrows within SAA genes indicate 5′→3′ orientation of the gene. The human genes (top), SAA1 and SAA2 encode 
two major acute-phase proteins, and SAA3 (SAA3P) is a pseudogene. SAA4 encodes a constitutively expressed protein. 
MouseSaa1 (designated Saa1.1), Saa2 (designated Saa2.1), and Saa3 encode three acute-phase SAA isoforms. Mouse Saa4 
encodes a constitutively expressed SAA isoform and is present at lower levels (bottom). 

The major site of synthesis of SAA is considered to be the liver [12–14]. However, 
extrahepatic expression of SAA has been reported in several different species, including 
humans, mice, and rabbits [15]. SAA mRNA and protein were reported to be expressed 
widely in many human tissues, including stomach, small and large intestine, breast, pros-
tate, thyroid, lung, pancreas, kidney, and brain neurons [16]. Adipose tissues express SAA 
isoforms, and it is reported that, in obesity, adipocytes express more SAA than hepato-
cytes [17,18]. In mice, SAA3 is an acute-phase reactant expressed by hepatocytes, adipo-
cytes, and, to a lesser extent, macrophages [19–21]. In normal healthy states, plasma SAA 
levels are low. However, chronically elevated SAA is found in a wide variety of patholog-
ical conditions, including obesity, rheumatic diseases, cancer, and cardiovascular disease 
[1,22]. Presence of the SAA genes in human atherosclerotic lesions has been demonstrated 
by Meek et al. as early as 1994 [23]. Whether SAA plays a direct role in the pathogenesis 
of these chronic inflammatory diseases, rather than simply being a marker of inflamma-
tion, has been a topic of intense investigations over the past several decades. 

2. SAA Biology 
2.1. Regulation of SAA Production 

Pro-inflammatory cytokines such as Interleukin-1β (IL-1β), Interleukin-6 (IL-6), in-
terferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) serve as regulators in hepatic 
production of SAA during the acute-phase response [1,12]. SAA is also induced by inflam-
matory stimuli in other cell types, including adipocytes, muscle cells, and intestinal cells 
[24]. IL-6 seems to be the most critical stimulus of SAA early in the acute-phase response, 
but the combined activity of all factors gives the highest level of transcription [1]. IL-6 acts 
via gp130/STAT3 in hepatocytes to induce SAA [25]. However, mice deficient in IL-6 can 
produce at least a partial acute-phase response, depending on the stimulus [1]. Cytokines 
other than IL-6 also share a gp130 receptor and may compensate for IL-6 deficiency [1]. A 
glucocorticoid-responsive element (GRE) is found in human SAA1 but not SAA2 [1]. Con-
sistently in hepatocytes, SAA1, and not SAA2, was found to be preferentially stimulated 
by dexamethasone; however, cytokine-driven induction is required for this stimulation 
[26]. Thorn et al. [27] reported that the acute-phase SAA genes are subject to regulatory 
constraints that differ according to cell type. A variety of transcription factors, including 

Figure 1. Map of the human and mouse SAA gene families. The human family spans 150 kb on chromosome 11p15.1,
and the mouse family spans 45 kb on chromosome7p. The relative positions of flanking genes are indicated in the human
cluster. Arrows within SAA genes indicate 5′→3′ orientation of the gene. The human genes (top), SAA1 and SAA2 encode
two major acute-phase proteins, and SAA3 (SAA3P) is a pseudogene. SAA4 encodes a constitutively expressed protein.
MouseSaa1 (designated Saa1.1), Saa2 (designated Saa2.1), and Saa3 encode three acute-phase SAA isoforms. Mouse Saa4
encodes a constitutively expressed SAA isoform and is present at lower levels (bottom).

The major site of synthesis of SAA is considered to be the liver [12–14]. However, extra-
hepatic expression of SAA has been reported in several different species, including humans,
mice, and rabbits [15]. SAA mRNA and protein were reported to be expressed widely in
many human tissues, including stomach, small and large intestine, breast, prostate, thyroid,
lung, pancreas, kidney, and brain neurons [16]. Adipose tissues express SAA isoforms,
and it is reported that, in obesity, adipocytes express more SAA than hepatocytes [17,18].
In mice, SAA3 is an acute-phase reactant expressed by hepatocytes, adipocytes, and, to a
lesser extent, macrophages [19–21]. In normal healthy states, plasma SAA levels are low.
However, chronically elevated SAA is found in a wide variety of pathological conditions,
including obesity, rheumatic diseases, cancer, and cardiovascular disease [1,22]. Presence
of the SAA genes in human atherosclerotic lesions has been demonstrated by Meek et al.
as early as 1994 [23]. Whether SAA plays a direct role in the pathogenesis of these chronic
inflammatory diseases, rather than simply being a marker of inflammation, has been a
topic of intense investigations over the past several decades.

2. SAA Biology
2.1. Regulation of SAA Production

Pro-inflammatory cytokines such as Interleukin-1β (IL-1β), Interleukin-6 (IL-6),
interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) serve as regulators in hep-
atic production of SAA during the acute-phase response [1,12]. SAA is also induced by
inflammatory stimuli in other cell types, including adipocytes, muscle cells, and intestinal
cells [24]. IL-6 seems to be the most critical stimulus of SAA early in the acute-phase
response, but the combined activity of all factors gives the highest level of transcription [1].
IL-6 acts via gp130/STAT3 in hepatocytes to induce SAA [25]. However, mice deficient in
IL-6 can produce at least a partial acute-phase response, depending on the stimulus [1].
Cytokines other than IL-6 also share a gp130 receptor and may compensate for IL-6 defi-
ciency [1]. A glucocorticoid-responsive element (GRE) is found in human SAA1 but not
SAA2 [1]. Consistently in hepatocytes, SAA1, and not SAA2, was found to be preferentially
stimulated by dexamethasone; however, cytokine-driven induction is required for this
stimulation [26]. Thorn et al. [27] reported that the acute-phase SAA genes are subject to
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regulatory constraints that differ according to cell type. A variety of transcription factors,
including NF-kB, C/EBP, YY1, AP-2, SAF, Sp1, and STAT3, are involved in the induced
expression of the acute-phase response resulting in increased SAA production [12].

2.2. The Current Challenges and Controversies in the Study of SAA

Understanding the true physiological functions of SAA has been met with several
challenges. The majority of the studies investigating the biological activities of SAA have
been performed in vitro using recombinantly expressed SAA (rSAA). However, in recent
years there have been reports that indicate the unreliability of such proteins, adding to the
complexity of understanding SAA. Studies have reported a discrepancy between rSAA
of bacterial origin and endogenous SAA, purified from acute-phase plasma. Bjorkman
et al. and Christenson et al. observed a lack of inflammatory capacity with endogenous
SAA when compared to rSAA of bacterial origin [28,29]. There is also skepticism on the
pro-inflammatory activities of the E. coli-derived rSAA, suspecting that LPS contamination
may be a major contributing factor to the observed cytokine-like activities. Given the
lipid-binding propensity of SAA, LPS may be difficult to separate from the rSAA proteins.
Although the LPS content of most of the manufacturer’s products is below 1 ng/mg of SAA
protein, an effect of contaminating LPS cannot be excluded, especially considering that
TLR4 is one of the SAA receptors. Certain in vitro studies indicate similarities in biological
properties shown by endogenous SAA and rSAA. The rSAA (a chimeric protein comprised
of hSAA1 with three amino acid replacements/additions from PeproTech Inc., Rocky Hill,
NJ, USA) showed potent antiapoptotic effects by decreasing caspase-3/7 activities, and
activity was also demonstrated by endogenously purified SAA [29].

The presence of multiple isoforms is the cause of another primary challenge in the field.
In part, as SAA3 is a pseudogene in humans, many studies have neglected SAA3 when
determining the biological effects of SAA. For example, De Beer et al. have reported that
the deficiency of endogenous acute phase SAA1.1 and SAA2.1 did not affect atherosclerotic
lesions in apolipoprotein E-deficient (apoE−/−) mice [30], which was later found to be
due to the pro-atherogenic properties of SAA3 in these mice [9]. The presence of multiple
receptors of SAA is yet another challenge, as the downstream signaling by the protein
may differ based on the type of receptor activities and expression levels in different cell
types. SAA has been shown to exert biological effects via multiple receptors, including
formyl peptide receptor-like 1(FPRL-1) [31–37], FPRL-2 [38,39], TLR2 [40,41], TLR4 [33,42],
SR-BI [43,44], CD36 [45], RAGE [46–48], and LDL receptor-related protein 1 [49].

3. HDL Association

A puzzling aspect of SAA biology shown in numerous studies is that forced overex-
pression of systemic SAA by itself does not evoke an inflammatory response in mice [50,51],
raising questions about how SAA can exert a myriad of activities in vitro yet be seemingly
inert in vivo.

SAA is a lipophilic apolipoprotein, and lipid-free SAA is generally not detected in
plasma. The majority of liver-derived SAA is typically found associated with high-density
lipoprotein (HDL) fraction [52–54]. During severe inflammation, SAA can become the
major apolipoprotein on HDL [24]. The presence of SAA on HDL affects properties of
both SAA and HDL. Many of the properties attributed to SAA are lost when SAA is
HDL-bound [50,55]. The inert nature of HDL-bound SAA may be the reason why forced
overexpression of systemic SAA by itself does not evoke an inflammatory response in
mice [51]. In vitro studies have indicated that HDL-bound SAA can be acted upon by re-
modeling factors, which could destabilize the HDL particle, probably releasing lipid-poor
SAA [56]. One such factor is the cholesteryl ester transfer protein (CETP), which facilitates
the exchange of triglycerides on triglyceride-rich lipoprotein with cholesteryl ester on HDL.
In vitro studies have shown that CETP-mediated remodeling of HDL facilitates the release
of lipid-poor SAA from HDL, as well as the transfer of SAA to apoB-containing lipopro-
teins [54,56,57]. The masking effect of HDL on SAA’s properties could be to protect the host
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from tissue damage under homeostatic conditions; it seems likely there are mechanisms to
blunt systemic SAA’s inflammatory effects unless it is present in the appropriate context.
The removal of SAA from HDL (lipid-free SAA) may give rise to a form that is predisposed
to change conformation, potentially in multiple ways. SAA protein with altered conforma-
tion could have potent biological properties, or it may be prone to aggregation and tissue
deposition and have deleterious effects on organ function [58].

In vitro studies have indicated that the presence of SAA on HDL could affect some
of HDL’s properties. HDL has a variety of functions, most important being its anti-
inflammatory action and its capacity to promote cholesterol efflux. Acute phase HDL (AP-
HDL) containing SAA loses its anti-inflammatory properties and becomes pro-
inflammatory [59]. Consistently, AP-HDL carrying SAA is unable to inhibit palmitate-
induced expression of pro-inflammatory cytokines, while AP-HDL from mice deficient
in SAA1.1 and SAA2.1 exhibits comparable anti-inflammatory action as native HDL [60].
Studies using 3T3-L1 adipocytes indicated that AP-HDL has a reduced capacity to promote
cholesterol-efflux compared to AP-HDL from mice deficient in SAA1.1 and SAA2.1 [60].
This is apparently attributable to the binding of cell-surface proteoglycans by the SAA on
the HDL, which precludes the ability of HDL to function as a cholesterol acceptor.

Whether SAA affects HDL’s ability to efflux cholesterol during inflammation is a
subject of controversy. Although inflammation impairs reverse cholesterol transport [61],
de Beer et al. have reported that mice lacking SAA1 and 2 exhibit no impairment in
reverse cholesterol transport of radiolabeled cholesterol from macrophages to the feces
in vivo [62]. However, upon comparison of five inbred mouse strains whose native HDL
proteomes differed quantitatively, SAA1 was inversely correlated with ABCA1-dependent
cholesterol efflux [63]. Banka et al. reported a dose effect, in that there was a significant
SAA-mediated reduction in cholesterol efflux only when the SAA content of HDL reached
about 50% of the total HDL protein [64]. Adding to the confusion is the report that SAA
promotes cholesterol efflux. Kisilevsky et al. [65,66] demonstrated that lipid-free SAA2.1
and peptides derived from SAA2.1, but not SAA1.1, promoted efflux. SAA was not only
shown to function as a ligand for scavenger receptor class B1 (SR-B1) to promote cholesterol
efflux [67], but it also inhibited selective cholesteryl ester uptake from HDL particles [68].
The contrasting conclusions from these studies about the impact of SAA on cholesterol
efflux are in part attributable to the differences in approach and methodologies. The use
of animal models is perhaps the most reliable method currently available to study the
biological function of SAA. SAA levels dramatically increase during acute inflammatory
states, for example, from baseline levels of less than 1% to greater than 20% of the HDL
protein content by 20 h of endotoxin treatment in mice and returning to baseline levels by
50 h [69]. Currently published animal models of SAA include mice deficient in a single
SAA isoform (SAA1.1−/−, SAA2.2−/−, SAA3−/−), mice deficient in several isoforms
(SAA1.1, SAA2.1 double knockout; SAA1.1, SAA2.1, SAA3 triple knockout), and mice
deficient in all four SAA isoforms [9,49,70–72]. In addition, there are models of SAA
over-expression [51,73].

4. Pathophysiologic Roles of SAA

From an evolutionary perspective, remarkable upregulation of SAA during acute
inflammation, along with its high degree of conservation through at least 500 million years
of evolution, indicates that SAA plays an important survival role in the systemic response
to acute injury and infection. However, SAA expression is inappropriately and persistently
elevated in chronic inflammatory diseases, which has been associated with increased risk or
poor prognosis for numerous chronic diseases, including CVD and cancer [22,74]. Whether
SAA is merely a marker of increased risk or plays a direct role in the pathogenesis has
been a topic of investigation by several research groups. Collectively, experiments using
murine models of altered SAA expression suggest that, more than being just a biomarker
of inflammation, SAA appears to play a causal role in the pathogenesis of CVD, including
abdominal aortic aneurysms (AAA) and atherosclerosis.
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5. SAA and Cardiovascular Diseases
SAA and Abdominal Aortic Aneurysms

According to estimates, 5–10% of men and 1–2% of women 65–79 years of age in the
United States are currently living with AAA, and approximately 15,000 will die each year
due to AAA rupture. The etiology of AAA is multi-factorial [75,76], including congenital
connective tissue abnormalities, vasculitis of the aortic vasa vasorum, and obesity. However,
regardless of the cause, clinical management remains limited and involves monitoring AAA
size by ultrasound, with a recommendation for surgical repair if the aortic diameter reaches
>5.5 cm, when the risk of fatal rupture is estimated at≥10% per year [77]. Surgical therapies
have shown no benefit in the treatment of small aortic aneurysms (<5 cm), as the risk of
rupture is comparable to the risks of surgical intervention. This asymptomatic interval
of “watchful waiting” provides an opportunity for medical intervention to reduce AAA
expansion and, hence, the risk of rupture. Unfortunately, despite multiple clinical trials,
no therapy has proven effective in blunting AAA progression. Although a retrospective
analysis demonstrated that ACE inhibitors decreased the risk of aneurysm rupture [78],
blockade of the renin–angiotensin system (RAS) has not been found to affect the growth of
human AAAs in prospective studies [79], highlighting the need to understand the precise
mechanisms underlying AAA risk on an individual basis. Thus, there is an urgent need to
not only uncover mechanisms underlying AAA expansion but also to identify biomarkers
that may be used as a surrogate marker for progression and provide better information
than periodic ultrasound imaging alone.

In a widely used animal model, chronic infusion of AngII to hypercholesterolemic
male mice (e.g., apoE−/− or LDLR−/− mice) produces progressive abdominal aortic lumen
dilation and pathology that closely resembles the human AAA [80]. Major similarities
include a pathogenic role for inflammation, similarities in risk factors (e.g., male gender,
obesity), and a likelihood of aneurysm rupture with progressive growth.

AngII infusion induces systemic SAA in mice [71], likely due to AngII’s ability to
upregulate TNFα and IL-6 through NF-kB activation [81]. Our group reported the key
finding that apoE−/− mice deficient in SAA are protected from AngII-induced AAA.
We also reported that SAA co-localizes with breaks in the elastin lamina, prominent
matrix metalloproteinase activity, and macrophages in aneurysmal tissue of apoE−/− mice
chronically infused with AngII [71]. The investigations are underway to discover the
mechanisms leading to the SAA-mediated promotion of AAA formation in mice.

6. SAA and Atherosclerosis

Chronic elevation of SAA is found in humans with CVD and CVD risk factors [82,83].
Localized and systemic elevations in SAA have been observed in CVD. Increased circulat-
ing SAA is associated with CVD mortality [84]. Among patients admitted with a diagnosis
of acute myocardial infarction, elevation of serum amyloid A protein at the time of hospi-
talization predicts a poor outcome [85]. SAA can be a direct mediator in the development
and progression of atherogenesis and atherothrombosis [86]. Analysis of inflammatory
markers at the site of ruptured plaques in patients with acute myocardial infarction indi-
cated increased SAA levels, and its levels in the lesions were markedly elevated compared
with systemic levels. SAA was detected both within the thrombus itself and white blood
cells contained therein. The locally elevated levels of SAA indicate that SAA is produced at
the site of coronary occlusion either by cells of the atherosclerotic arterial wall or by the
white blood cells trapped in the thrombus [87].

Studies in experimental animals have indicated that SAA plays a causal role in the
development of atherosclerosis. SAA binds to heparan sulfate proteoglycans (HSPG),
and O’Brien et al. showed that atherosclerotic lesions of both apoE−/− and low-density
lipoprotein receptor-deficient (LDLR−/−) mice contained demonstrable SAA, whose level
correlated highly with lesion area, HSPG, and perlecan content [88]. Proteoglycan-mediated
lipoprotein retention is thought to be a critical step in atherosclerosis development [89].
Lentivirus-mediated over-expression of SAA1 in male apoE−/− mice resulted in increased
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inflammatory cell infiltration and increased atherosclerotic lesion development in the
whole aorta and the aortic root in chow-fed mice [90]. Our group has shown that repeated
injections of adenoviral vector expressing human SAA1 in apoE−/− mice in the immune-
tolerant recombination activating gene-1-deficient background increased atherosclero-
sis [91]. We also demonstrated that even a single injection of the adenoviral vector encod-
ing SAA1, resulting in only a brief elevation of circulating SAA, was sufficient to increase
atherosclerosis [91]. However, we reported no reduction in atherosclerosis in the absence
of endogenous SAA1.1 and SAA2.1 in apoE−/− (DKO) mice fed with a standard rodent
diet or western diet [30]. In a subsequent study, we were able to show that suppression of
SAA3 (via anti-sense oligonucleotide) in DKO mice significantly reduced atherosclerosis
compared to apoE−/− mice [9]. These results indicate that all acute-phase SAA isoforms
have pro-atherogenic properties, and that suppression of the three isoforms of SAA may
be necessary for atheroprotection. In a separate study, deficiency of SAA1 and SAA2 in
macrophages decreased the atherosclerotic lesion area in the ascending aorta in LDLR−/−

mice only in early lesion development [92].

7. Possible Mechanisms for SAA’s Role in AAA and Atherosclerosis

Our studies, as well as studies by other groups, have demonstrated that SAA enhances
NLRP3 inflammasome activation and activation of IL-1β in cells [55,93–95]. SAA-mediated
inflammasome activation in dendritic cells and human synovial fibroblasts has been linked
to allergic asthma [96] and gout [97], respectively. NLRP3 inflammasomes are demon-
strated to play a role in promoting AAA formation [98,99], and deficiency of the NLRP3
inflammasome prevents AAA formation in AngII-infused apoE−/− mice [98]. Dihlmann
et al. reported a significantly increased expression of inflammasome components in human
AAA tissue compared to normal human aorta [100], and IL-1β is considered a major factor
promoting vessel wall degradation in human AAA [101,102]. We have reported that SAA
is required for AngII-induced increases in IL-1β secretion in mice [55].

In addition to the activation of NLRP3 inflammasomes, there are several other re-
ported properties of SAA that could potentially enhance the development of AAA for-
mation. Based on in vitro studies, SAA possesses a variety of activities, including cy-
tokine induction [90,103,104], leukocyte chemotaxis [31,105], and upregulation of genes
involved in the remodeling of extracellular matrix (ECM), including TGF-β [106] and
MMPs [32,107–109]. These activities have been attributed to signaling through a number
of “pattern recognition receptors” (PRRs) (Figure 2), including formyl peptide receptor-like
1(FPRL-1) [31–37], FPRL-2 [38,39], TLR2 [40,41], TLR4 [33,42], SR-BI [43,44], CD36 [45],
and the LDL receptor-related protein 1 (LRP1) [49]. SAA induces production of tissue
factor and tumor necrosis factor in peripheral blood mononuclear cells (PBMC) and im-
mortalized macrophages [103,110] as well as other pro-inflammatory cytokines, such as
IL-1β, monocyte chemoattractant protein-1 (MCP-1), IL-6, IL-18, and macrophage inflam-
matory protein-1 alpha (MIP-1α) in both monocytes and local stromal cells [86,103]. SAA
was demonstrated to prolong survival of polymorphonuclear cells by suppressing the
apoptotic machinery. The actions were mediated in part through activation of MAPK
kinase/ERK and PI3K/Akt signaling pathways, which led to the inhibition of caspase-3
activation, an effect mediated through formyl peptide receptor-like 1/lipoxin A4 receptor
activation [111]. Chemotactic potential of recombinant human SAA was first reported by
Badolato et al. [112]. Later, several other studies indicated the chemotactic capacity of
SAA to multiple cell subsets, including dendritic cells, mast cells, T cells, endothelial cells,
fibroblasts, and smooth muscle cells [113]. Several in vitro actions of SAA are known to be
mediated through the G protein-coupled FPRL-1 receptor [36,37,114]. Recombinant human
SAA stimulates matrix-metalloprotease-9 upregulation via the FPRL1 receptor in human
monocytic cells in vitro [32]. SAA may affect key events underlying acute coronary syn-
dromes by contributing to endothelial dysfunction, promoting thrombosis, and enhancing
leukocyte trafficking and activation [90,115]. However, many of these above-described
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properties of SAA were reported from in vitro experiments performed with recombinant
or purified SAA and need to be tested in vivo to validate the mechanisms.
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SAA is a highly fibrillogenic molecule. Chronically elevated levels of SAA may cause
systemic amyloidosis. In vitro studies have shown that SAA can directly bind to fibrin
and thus can affect coagulation by promoting amyloid formation in fibrin, and it can also
induce platelets to be more prothrombotic [116]. SAA is shown to be a potent inducer
of tissue factor from peripheral blood mononuclear cells from patients with coronary
artery disease; thus, prothrombotic effects of SAA may contribute to atherogenesis and its
complications [86].

8. Systemic vs. Local Production of SAA

SAA1 and SAA2 are synthesized predominantly in the liver in response to inflam-
matory stimuli, which contributes to the majority of systemic SAA levels [24]. However,
several other cell types, including adipocytes and intestinal cells, also express SAA upon
stimulation. The role of local versus systemic SAA is a topic of investigation—SAA may ex-
ert effects locally at the sites of tissue injury or inflammation and/or systemically through
its presence in circulation (Figure 3). As forced overexpression of systemic SAA does
not evoke an inflammatory response in mice, it is logical to assume that HDL—the main
transporter of SAA—masks SAA from exerting its inflammatory properties. SAA may only
be able to exert effects if unmasked by the remodeling of HDL and deposited at the site of
inflammation. In addition, SAA may exert its effects in a paracrine fashion from the cells or
tissues that are in close proximity to the site of injury or inflammation. For example, there is
a significant amount of perivascular adipose tissue (PVAT) accumulation surrounding the
aorta [117]. SAA is persistently elevated in obesity [18,118]. Indeed, adipocytes are thought
to be a predominant source of local and even systemic SAA in the setting of obesity [18,118].
Obesity is associated with AAA and increases the risk of cardiovascular-related mortality,
and it is a risk factor for the development of AAA in humans as well as in mice [119–122].
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SAA derived from PVAT may contribute to the occurrence or progression of obesity-driven
AAA formation. The increased expression of SAA by adipocytes in obesity potentially
acts as a direct link between obesity and its comorbidities, including diabetes and car-
diovascular diseases [18]. Smoking, a major risk factor for AAA, also induces systemic
SAA [123].
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Figure 3. Three possible non-exclusive pathways, whereby SAA impacts the development of
atherosclerosis/AAA formation. SAA secreted by the liver, peri-aortic adipose tissues, and/or
aorta possibly act in an endocrine, paracrine, or autocrine way respectively by NLRP3 inflamma-
some activation [55,93–95,99] and cytokine, chemokine, and/or MMP expression [32,71,107–109],
exacerbating the development of atherosclerosis/AAA.

9. Conclusions

Using animal models, SAA has been shown to play causal roles in the development of
CVD, such as atherosclerosis and AAA. As described above, the studies clearly indicate that
SAA is not merely a marker for the disease but actively involved in the pathogenesis. Thus,
SAA is a potential therapeutic target to consider. However, several important questions
still remain in the field including the mechanisms for SAA’s involvement, kinetics of its
effect, the source, and systemic or localized expression.

10. Key Points

Deficiency/suppression of SAA attenuates atherosclerosis and abdominal aortic
aneurysm in mice.

In vitro studies indicate SAA to have proinflammatory properties, and it activates the
NLRP3 inflammasome. HDL association of SAA appears to mask its activity.
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