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ORIGINAL ARTICLE

Bone Quality and Fractures in Women With Osteoporosis
Treated With Bisphosphonates for 1 to 14 Years
Hartmut H Malluche,1 Jin Chen,2,3 Florence Lima,1 Lucas J Liu,3 Marie-Claude Monier-Faugere,1 and
David Pienkowski4

1Division of Nephrology, Bone & Mineral Metabolism, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
2Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
3Department of Computer Science, University of Kentucky, Lexington, KY, USA
4F. Joseph Halcomb III, MD Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA

ABSTRACT
Oral bisphosphonates are the primary medication for osteoporosis, but concerns exist regarding potential bone-quality changes or
low-energy fractures. This cross-sectional study used artificial intelligence methods to analyze relationships among bisphospho-
nate treatment duration, a wide variety of bone-quality parameters, and low-energy fractures. Fourier transform infrared spectros-
copy and histomorphometry quantified bone-quality parameters in 67 osteoporotic women treated with oral bisphosphonates for
1 to 14 years. Artificial intelligence methods established two models relating bisphosphonate treatment duration to bone-quality
changes and to low-energy clinical fractures. The model relating bisphosphonate treatment duration to bone quality demon-
strated optimal performance when treatment durations of 1 to 8 years were separated from treatment durations of 9 to 14 years.
This may be due to a change in relationship of bone-quality parameters with treatment duration. This model also showed that the
effects of bisphosphonate treatment duration were most highly correlated with changes in means and standard deviations of
infrared spectroscopically derived mineral and matrix parameters and histomorphometric bone turnover parameters. A second
model related treatment duration to bone fracture in all 22 patients who fractured while on treatment with bisphosphonates
for more than 8 years. This second model showed that bisphosphonate treatment duration, not hip bone mineral density
(BMD), was the most strongly correlated parameter to these low-energy bone fractures. Application of artificial intelligence
enabled analysis of large quantities of structural, cellular, mineral, and matrix bone-quality parameters to determine relationships
with long-term oral bisphosphonate treatment and fracture. Infrared spectroscopy provides clinically relevant bone-quality infor-
mation of which bone mineral purity is among the most relevant. Nine or more years of bisphosphonate treatment was associated
with abnormal bone mineral purity, matrix abnormalities, and low-energy fractures. These data justify limiting bisphosphonate
treatment duration to 8 years. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society
for Bone and Mineral Research.

KEY WORDS: BONE QUALITY; OSTEOPOROSIS; BISPHOSPHONATES; DXA; FRACTURE RISK ASSESSMENT

1. Introduction

Osteoporosis is a health problem of major proportions. It
affects more than 200 million people worldwide, results in

more than 2 million fractures annually in the US, and hospital
admissions for osteoporotic fractures exceed those of heart
attacks, strokes, and breast cancer combined.(1–3) Osteoporotic
fractures may occur because of loss of bone quantity and—less
widely recognized—unfavorable changes to bone quality.(4,5)

Bisphosphonates are the primary modality for treating postmen-
opausal osteoporosis; their effectiveness is due to reduction of

osteoclastic activity accompanying high bone turnover.(6) Con-
cerns exist that bisphosphonate use may be associated with
bone-quality changes that reduce load-bearing mechanical
competence and this may partially explain reported occurrences
of low-energy fractures accompanying long-duration bispho-
sphonate use.(7) These reports dampen the enthusiasm of
patients and physicians for use of bisphosphonates to treat
osteoporosis.

Evidence supporting the hypothesis of a relationship between
long-term bisphosphonate use and bone-quality changes was
provided in our prior studies of bone structure(8) and mechanical
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properties.(9) These structural and material property changes
may be the manifestation of bisphosphonate-related changes
in bone cell activity and bone mineral or matrix structural or
compositional changes. Support for this hypothesis is found in
other studies suggesting changes in relative mineralization, crys-
tallinity, and crystal size or collagen cross-linking with bispho-
sphonate use.(10,11) This is shown through changes in the
distribution, but not mean values, of these parameters with vary-
ing bisphosphonate treatment duration. This may be due to
method of analysis, small numbers of study patients, limited
treatment duration, or small changes in bone-quality parameters
with bisphosphonate treatment duration.(12) Furthermore, the
relationship between bisphosphonate treatment duration and
low-energy bone fractures is also unclear. Thus, the objectives
of this study were to: (i) evaluate structural, cellular, turnover,
mineral and matrix parameters of bone, and relevant patient
data and their relationship with 1 to 14 years of bisphosphonate
treatment duration and (ii) to determine relationships between
bone fracture and structural, cellular, turnover, mineral and
matrix parameters of bone, relevant patient data, and bispho-
sphonate treatment duration.

2. Materials and Methods

2.1 Study design

Relationships among bone mineral, matrix, structural, and
dynamic properties with continuous oral bisphosphonate treat-
ment duration were evaluated from human anterior iliac crest
bone samples using histomorphometry and Fourier transform
infrared spectroscopy (FTIR) with a cross-sectional design. FTIR
is an established technique for analyzing various tissues in health
and disease; it is especially useful for quantifying various bone
mineral and matrix parameters reflecting bone quality and frac-
ture resistance.(13–16) Bone mineral parameters included mean
values and standard deviations of themineral tomatrix ratio, car-
bonate to phosphate ratio, and c-axis mineral crystal length
(crystallinity). The bonematrix parameter was the ratio of mature
to immature collagen cross-links (cross-linking ratio).
Histomorphometric-based bone structure parameters were
bone volume/tissue volume, trabecular separation, and trabecu-
lar thickness. Histomorphometric-based bone formation param-
eters were osteoid volume/bone volume, osteoid surface/bone
surface, osteoid thickness, number of osteoblasts/bone perime-
ter, erosion surface/bone surface, number of osteoclasts/bone
perimeter, mineral apposition rate, mineralizing surface/bone
surface, bone formation rate/bone surface, mineralization lag
time, and activation frequency. Clinical and biochemical data
were obtained from the patient’s medical records available at
time of biopsy and were also stored in the Kentucky Bone Regis-
try. Design of this study conformed to the Declaration of Helsinki
and was approved by the University of Kentucky Institutional
Review Board.

2.2 Patients

This was a retrospective cross-sectional study of bone samples
selected from among a population collected from the past three
decades and stored in the registry. The included bone samples
were from a consecutive series of adult female patients with
osteoporosis previously treatedwith oral bisphosphonates (alen-
dronate, risedronate, or ibandronate) who presented to the Uni-
versity of Kentucky Metabolic Bone Disease Clinic for turnover

evaluation to decide optimal therapy continuation. These
patients were previously diagnosed by dual-energy X-ray
absorptiometry (DXA) of the femoral neck or lumbar spine or
by low-energy fracture regardless of DXA score and were offered
a minimally invasive anterior iliac crest bone biopsy with double
tetracycline labeling for workup of turnover for choice of ther-
apy. Bone biopsies are routinely offered by our clinic to all
patients with metabolic bone disorders; approximately 85%
agree to the biopsy. All study patients signed an Institutional
Review Board–approved consent form permitting their results
to be used for subsequent scientific studies. Low-energy frac-
tures were defined as radiologically observed fractures occurring
in the absence of documented trauma.

2.3 Inclusion and exclusion criteria

The inclusion criteria were adult (age older than 21 years) female
patients with osteoporosis who were treated with oral bispho-
sphonates for at least 1 year and had verified intake of double-
tetracycline labeling. The exclusion criteria were genetic diseases
(such as osteogenesis imperfecta, hypophosphatemic rickets,
etc.), chronic kidney or liver diseases, primary hyperparathyroid-
ism, neoplasms, or previous treatment with medications known
to alter bone metabolism (except oral bisphosphonates).
Patients presently or previously treated with anticonvulsants or
long-term steroids or those with documented chronic alcohol-
ism, drug addiction, malabsorption, malignancy, bariatric sur-
gery, Paget’s disease, osteogenesis imperfecta, hemiplegia or
paraplegia, organic illness with potential influence on bone
metabolism, or uncontrolled systemic illness were also excluded.

2.4 Bone biopsy, histology, and histomorphometry

Before bone biopsy, patients received oral demeclocycline
hydrochloride (300 mg) twice daily for 2 days, followed by a
10-day tetracycline-free interval and another course of tetracy-
cline hydrochloride (250 mg) twice daily for 4 days. Anterior iliac
crest bone biopsies were performed under local anesthesia after
an additional 4 days. Iliac crest bone samples were fixed with
ethanol at room temperature, dehydrated, and embedded in
polymethylmethacrylate as described previously.(17) Serial sec-
tions of 3-μm and 7-μm thickness were cut with a microtome
equipped with a carbide-edged knife. Sections were stainedwith
modified Masson-Goldner trichrome stain. Unstained sections
were prepared for phase-contrast and fluorescence light micros-
copy. Bone histomorphometry for static and dynamic parame-
ters of bone structure, formation, and resorption was
performed at a magnification of 200� using the Osteoplan II sys-
tem (Carl Zeiss, New York, NY, USA). All measured histomorpho-
metric parameters complied with the recommendations of the
nomenclature committee of the American Society for Bone and
Mineral Research.(18,19)

2.5 Infrared spectroscopy

Two to five 4-μm-thick sections were cut from each embedded
bone sample, and each section was individually sandwiched
between two barium fluoride discs. The sandwiched sample
was placed on the stage of a Nexus 6700 Fourier Transform Infra-
red Spectrometer (Thermo Electron, Waltham, MA, USA). Infrared
spectra were collected over most of the trabecular bone area of
each sample using an automated routine. Separate background
scans were done to enable spectral subtraction and correction of
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errors attributable to the environment, BaF discs, and embed-
ding material.(20)

2.6 Fourier transform infrared spectroscopic image
analysis

Analysis of these spectroscopic images began by automated
identification of the area of bone scanned by the infrared beam.
This area was defined as the sum of 6 μm� 6 μm scanned pixels.
Location of these pixels were determined from a grid established
by passing a straight line along the longitudinal axis of the trabe-
culum and then arranging a series of parallel lines spaced 6 μm
apart along this line. These parallel lines ranged in length from
one edge of a trabeculum to the opposite edge of the same tra-
beculum within the field of view (Fig. 1). Values for the mineral
and matrix response parameters, ie, mineral to matrix ratio, car-
bonate to phosphate ratio, c-axis mineral length, and cross-
linking ratio, were calculated from the scans taken in the area
defined by these lines (Fig. 1). These values were determined
for each 6 μm � 6 μm area on the surface of each examined tra-
beculum using reported techniques.(20) Mean values and stan-
dard deviations of each spectroscopic parameter within each
sample were determined. Approximately 325 individual bone
areas, each 6 μm � 6 μm, were scanned per patient.

Measured mineral and matrix parameters were divided into
low, medium, or high categories. Thresholds for these categories
were as follows: Low were those values less than the mean value
of the lower half minus 1 SD, high were those greater than the
mean value of the greater half plus 1 SD, and the medium cate-
gory consisted of all measurements above low but below high.
Specific values denoting the low or high thresholds are shown
for each of the mineral and matrix parameters (Table 1).

The total area of trabecular bone scanned by the infrared
beam was calculated for each sample. The mean value of each
parameter in each category (Table 1) was normalized by the total
bone area from which that value was obtained. Mean and stan-
dard deviations of these area-normalized values were then
determined. The analyses extracted a total of 44 infrared
spectroscopy-based parameters and 12 histomorphometric
parameters. These parameters were analyzed using statistical
methods and machine-learning modeling to quantify the rela-
tionship between bone quality and bisphosphonate treatment
duration.

2.7 Statistics and machine-learning modeling

The goal of machine-learning techniques was to generate the
best prediction of an independent variable from a variety of
dependent variables. Once a satisfactory prediction was
obtained, machine-learning methods were then used to identify
the parameters that contributed most to model performance.
Statistical and machine-learning analyses used these infrared
spectroscopy, histomorphometry, and patient-based parameters
to understand relationships among bone quality, bisphospho-
nate treatment duration, and fracture. Two computational chal-
lenges were addressed. The first challenge arose from the
disparity between the large number of parameters analyzed
compared with the number of study subjects. This disparity fre-
quently leads to the computationally difficult(21) problem of data
overfitting that besets construction of robust machine-learning
models. To overcome this challenge, XGBoost, an established
and optimized distributed gradient boosting algorithm,(22) was
adapted from the library of R statistical software.(23) By imple-
menting conventional machine-learning algorithms under the
Gradient Boosting framework,(24) XGBoost offered superior regu-
larized model formalization to control overfitting and was thus
capable of providing parallel-tree boosting that effectively solves
this challenge. Before employing XGBoost, a minimum redun-
dancy/maximum relevance feature reduction method (mRMR)
was used to identify the most critical features in each candidate
model based upon the data.(25)

The second challenge arose from the lack of a uniform or nor-
mally distributed bisphosphonate treatment duration (Fig. 2).
Clearly, more patients were treated for short durations compared
with those treated for long durations. Although a slight imbal-
ance is generally of no concern, challenges arise in machine-
learning if imbalances in the data are substantial. This challenge
was resolved using repetitive random down-sampling(26) to gen-
erate a balanced set (equal numbers of patients in each bispho-
sphonate treatment duration category) of training data from the
original data set. Cross-validation was used to reduce random
effect. Data analysis was performed using R version 3.6.3
(R Foundation for Statistical Computing) and the R package
XGBoost. Model parameters were tuned using the caret package
in R.

To support the applicability of the sample size used and the
generalizability of the models developed, the effort focused on

Fig 1. Mineral to matrix ratio on trabecular bone surface. Representative
surface of a single trabeculum and grid guiding systematic Fourier trans-
form infrared spectroscopic (FTIR) measurements. Variations in the min-
eral to matrix ratio (the bone mineral quality parameter shown) are
denoted using different color shades. Dark red denotes bone surface
with high mineral to matrix ratio; light orange denotes bone surface with
low mineral to matrix ratio. The thin dark line defining the longitudinal
axis of the trabeculum references subsequently constructed multiple
orthogonal lines along which FTIR scans were made each 6 μm. Red
and green circles denote trabecular boundaries. Background area (white
region) was excluded. All mineral and matrix properties were measured
along the orthogonal lines with a 36-μm square area resolution.
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bone-quality parameters with minimum redundancy and maxi-
mum relevance. In addition, the XGBoost model was made more
conservative by restricting the maximum depth of trees, tuning
the XGBoost parameters γ and η to minimize loss reduction
and step size shrinkage, as well as utilizing L1 and L2 regulariza-
tion techniques.

3. Results

3.1 Subjects

Pertinent characteristics of the 67 included study patients are
shown (Table 2). Analysis of the relationships between bone-
quality changes and bisphosphonate treatment duration was
non-trivial due to the plethora of data obtained. For this reason,
a meta-analysis machine-learning model was developed using a
two-step process. The first step involved consideration of the
range of observed bisphosphonate treatment durations as a
two-category discrete variable in which the categories were

separated by varying treatment durations. The separation point
distinguishing these two categories varied from 5 to 9 years. Fit
of this model, assessed using the area under the curve (AUC) of
the receiver operating characteristic (ROC)metric, was optimized
(AUC = 0.88) when the bisphosphonate treatment duration cat-
egories were distinguished at the 8-year time point (Table 3).
That is, the relationship between changes in bone-quality
parameters and bisphosphonate treatment duration was opti-
mal when treatment duration was separated into two categories,
ie, from 1.1 years to the end of 8 years and 9 years to the maxi-
mum of 14 years.

The second step of this process involved use of the identified
optimal two duration categories, 1 to 8 and 9 to 14 years of
bisphosphonate treatment. The bone-quality machine-learning
model was then optimized by sequential inclusion of various
infrared spectroscopic and histologic bone-quality parameters
as well as various patient parameters (Table 4). Differentiation
between the resulting models was then accomplished using
the AUC metric. The results showed that the best performance
(AUC= 0.90) was obtained using three different types of param-
eters: Two were infrared spectroscopic and histomorphometric
and one was a patient-specific parameter (bone mineral density
[BMD] hip). The results of these sequential analyses are shown in
ascending order (Table 4).

3.2 Machine-learning duration model

The relationship between bisphosphonate treatment duration
and all infrared spectroscopic, histomorphometric, and patient-
related parameters were analyzed using machine-learning
(Supplemental Fig. S1). Only those parameters with estimated
linear coefficients exceeding 0.2 were retained in amodel linking
bisphosphonate treatment duration with bone quality. The
retained parameters include parameters of mineral perfection,
collagen maturity, histologic cell and turnover parameters, and
BMD of the hip (Fig. 3).

Two of the parameters shown in Fig. 3 express changes in
mean values of bone mineral parameters and two parameters
express changes in mean values or standard deviations of bone
matrix parameters. Examples of actual infrared spectroscopic
images from which bone mineral and matrix quality data were
obtained, ie, the carbonate to phosphate ratio and matrix matu-
rity (ratio of mature to immature collagen cross-links) are shown
(Figs. 4A, B and 5A, B).

3.3 Machine-learning fracture model

Twenty-two(22) study patients sustained nontraumatic fractures
during bisphosphonate treatment (Tables 5 and 6). Machine-
learning methods were again employed to analyze the relation-
ship between all studied bone parameters and bisphosphonate
treatment in these 22 patients. The presence or absence of bone

Table 1. Threshold Values for Categorization of FTIR Parameters

FTIR parameter
Low category
threshold

High category
threshold

Mineral to matrix ratio 3.580 5.230
Carbonate to
phosphate ratio

0.008 0.010

C-axis mineral crystal
length

1.072 1.164

Cross-linking ratio 3.065 3.769

FTIR = Fourier transform infrared spectroscopy.

Fig 2. Distribution of bisphosphonate treatment durations among the
study subjects.

Table 2. Pertinent Characteristics of the 67 Study Subjects at Time of Iliac Crest Bone Biopsy

Mean Standard deviation Median Minimum Maximum

Age (years) 60 8 59.00 34 77
BMD spine (t value) �2.48 0.97 �2.50 �4.20 0.70
BMD hip (t value) �1.90 0.88 �2.05 �4.10 1.00
Body mass index 25.08 5.13 23.51 15.96 43.53
Duration of bisphosphonate treatment (years) 5.60 2.95 5.00 1 14

BMD = bone mineral density.
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Table 3. Model Performance Resulting From a Meta-Analysis Relating Bone Parameters to Bisphosphonate Treatment Duration

Bisphosphonate treatment
duration categories (years)

Model fit parameters First treatment period Second treatment period

AUC Accuracy Precision Sensitivity F-1 Precision Sensitivity F-1

1–5 and 6–14 0.71 0.71 0.77 0.59 0.67 0.67 0.82 0.74
1–6 and 7–14 0.75 0.73 0.70 0.79 0.74 0.77 0.67 0.71
1–7 and 8–14 0.77 0.76 0.92 0.59 0.71 0.69 0.94 0.80
1–8 and 9–14 0.88 0.87 0.93 0.82 0.86 0.84 0.92 0.87
1–9 and 10–14 0.82 0.89 0.88 0.90 0.89 0.91 0.88 0.89

AUC = area under the receiver operating characteristic curve.
F-1 denotes the harmonic mean of precision and sensitivity. Bone parameters used in the model consist of infrared spectroscopic parameters, histomor-

phometric parameters, and body mass index. Boldface denotes treatment duration categories with optimal model performance.

Table 4. Results of Candidate Machine-LearningModels Relating Categorical Bisphosphonate Treatment Duration to the Various Param-
eter Types Shown

Parameter type

Model fit
parameters First treatment period Second treatment period

AUC Accuracy Precision Sensitivity F-1 Precision Sensitivity F-1

Histomorphometry 0.60 0.63 0.67 0.56 0.61 0.60 0.70 0.65
Infrared spectroscopy 0.70 0.72 0.82 0.56 0.66 0.67 0.88 0.76
Infrared spectroscopy and histomorphometry 0.86 0.85 0.96 0.74 0.83 0.80 0.96 0.87
Infrared spectroscopy, histomorphometry, and
patient age

0.88 0.84 0.91 0.76 0.82 0.80 0.92 0.85

Infrared spectroscopy, histomorphometry, and
patient BMI

0.88 0.87 0.93 0.82 0.86 0.84 0.92 0.87

Infrared spectroscopy, histomorphometry, and
patient BMD hip and BMI

0.89 0.87 0.84 0.92 0.87 0.93 0.82 0.87

Infrared spectroscopy, histomorphometry,
and BMD hip

0.90 0.88 0.83 0.96 0.89 0.96 0.80 0.87

AUC = area under the receiver operating characteristic curve; BMI = body mass index; BMD = bone mineral density.
F-1 denotes the harmonicmean of precision and sensitivity. Boldface denotes the parameters associatedwith optimalmachine-learning performance of

the duration model.

Fig 3. Relative importance and relationship of various bone relevant parameters to bisphosphonate treatment duration as determined by the machine-
learningmodel. This model is referred to in the text as the “durationmodel.” Length of the horizontal bars denotes themagnitude of the linear coefficient
in the machine-learning duration model; direction and color of the bars denote the sign of the coefficient. Red bars extending to the left denote coeffi-
cients negatively correlated with increasing bisphosphonate treatment duration; teal bars extending to the right denote coefficients positively correlated
with increasing bisphosphonate treatment duration.

JBMR® Plus BISPHOSPHONATE AND BONE QUALITY IN FRACTURES 5 of 10 n



fracture was modeled as a function of both categorical and con-
tinuous bisphosphonate treatment duration, and bone quality
measured using infrared spectroscopic, histomorphometric,
and patient-related parameters. The AUC metric was again used
to determine the parameters that provide the best fit with frac-
ture (Table 7). Optimum model performance (AUC = 0.88) for
overall fit to the presence or absence of bone fractures was
obtained when bisphosphonate treatment duration (continuous
variable) and bone-quality parameters (infrared spectroscopic
and histomorphometric) were included in the model (Table 7).
This model was dominated by bisphosphonate treatment dura-
tion (continuous) and the infrared spectroscopic bone-quality
parameters; inclusion of the histomorphometric parameters con-
tributed little to the model.

Nine parameters in the fracture model had estimated linear
coefficients exceeding 0.2 (Fig. 6). These were included in the
machine-learning model relating bone fracture to continuous
bisphosphonate treatment duration, infrared spectroscopic,
and histomorphometry-based bone-quality parameters. The
important role of bone mineralization in this fracture model is
reflected by the fact that six of these nine parameters are mineral
related. Parameters associated with an increasing likelihood of
bone fracture were (in decreasing order of importance):
increased bisphosphonate treatment duration, increased car-
bonate substitution for phosphate in bone mineral, increased
collagen maturity, increased mineralization, decreased

mineralization distribution, and increased mineral crystal length.
Hip BMD and patient age were not critical parameters in the frac-
ture model. Details regarding the estimated linear coefficients of
all parameters analyzed relative to bone fractures are provided in
Supplemental Fig. S2.

4. Discussion

New information is provided guiding use of continuous oral
bisphosphonate treatment for postmenopausal osteoporosis,
supporting prior work citing the usefulness of infrared spectros-
copy to evaluate bone quality. This demonstrates the clinical rel-
evance of bone mineral quality.

Relationships between bone-quality parameters and bispho-
sphonate use were manifested by machine-learning analyses
only when duration was analyzed as a two-category (1 to 8 and
9 to 14 years) variable but not as a continuous variable. This
may be explained by bone quality, which changes positively with
bisphosphonate use for up to 8 years of treatment, but after this
period it changes negatively with continuing bisphosphonate
use. This explanation is consistent with our prior finding showing
increases in trabecular architecture-based strength estimates
occurring at approximately 7.5 years of bisphosphonate use,
then decreases in trabecular architecture-based strength occur
with continuing use.(8) It is noteworthy that these similar

Fig 4. (A) Images from FTIR examination of prepared trabecular bone surfaces. These images colorimetrically depict varying carbonate to phosphate
ratios in individual 6 μm� 6 μm square areas of trabecular bone surface. Greater color intensity denotes bone surfaces with greater values of the carbon-
ate to phosphate ratio. These images were obtained from different study patients each aged 59 years. The left image was obtained from a patient treated
with bisphosphonates for 3 years, the right image from a patient treated for 10 years. The image from the longer bisphosphonate treatment duration
shows more pixels with greater carbonate to phosphate ratio. (B) Images from FTIR examination of prepared trabecular bone surfaces. These images col-
orimetrically depict varying carbonate to phosphate ratios in individual 6 μm � 6 μm square areas of trabecular bone surface. Greater color intensity
denotes bone surfaces with greater values of the carbonate to phosphate ratio. These images were obtained from different study patients each aged
59 years. The left image was obtained from a patient treated with bisphosphonates for 3 years, the right image from a patient treated for 10 years.
The image from the longer bisphosphonate treatment duration shows more pixels with greater carbonate to phosphate ratio.
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treatment durations, ie, 7.5 and 8 years, were discovered using
different techniques quantifying different bone-quality parame-
ters.(8) The observed 8-year time point in the present duration
model offers valuable new information identifying a treatment
period after which adverse changes to bone, including atypical
fractures, occur. This is consistent with observations from prior
studies.(11,27,28)

Machine-learning analyses demonstrated the importance of
bone quality and underscore previous work noting the useful-
ness of infrared spectroscopy for assessing bone-quality
changes.(12,13,29) Specifically, four of the seven largest linear coef-
ficients in the duration model and six of the eight largest linear
coefficients in the fracture model were bone-quality parameters
obtained from infrared spectroscopy. The relationship between

Fig 5. (A) Images from FTIR examination of prepared trabecular bone surfaces depicting ratios of mature to immature collagen cross-links. Darker colors
represent bone surfaces with greater ratios ofmature to immature collagen cross-links. Both images were obtained from study patients aged 63 years. The
left image was obtained from a patient treated with bisphosphonates for 4 years, the right image from a patient treated for 12 years. The image from the
patient treated for 12 years shows an increased ratio of mature to immature collagen cross-links. (B) Images from FTIR examination of prepared trabecular
bone surfaces depicting ratios of mature to immature collagen cross-links. Darker colors represent bone surfaces with greater ratios of mature to imma-
ture collagen cross-links. Both images were obtained from study patients aged 63 years. The left image was obtained from a patient treated with bispho-
sphonates for 4 years, the right image from a patient treated for 12 years. The image from the patient treated for 12 years shows an increased ratio of
mature to immature collagen crosslinks.

Table 5. Pertinent Characteristics of Patients Who Fractured While on Bisphosphonate Treatment (n = 22)

Mean Standard deviation Median Minimum Maximum

Age at time of biopsy (years) 61 9 61.50 34.00 77.00
BMD hip (t value) �1.90 0.77 �1.90 �3.50 �0.50
Body mass index 25.57 4.83 25.49 18.75 33.80
Duration of treatment (years) 7.28 3.36 6.50 2.50 14.00

BMD = bone mineral density.

Table 6. Pertinent Characteristics of Patients Who Did Not Fracture While on Bisphosphonate Treatment (n = 45)

Mean Standard deviation Median Minimum Maximum

Age at time of biopsy (years) 59 8 59 39 77
BMD hip (t value) �1.90 0.93 �2.10 �4.10 1.00
Body mass index 25.06 5.43 23.74 15.96 43.53
Duration of treatment (years) 4.81 2.35 4.00 1.00 11.33

BMD = bone mineral density.
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bone quality and bisphosphonate treatment was observed not
just for changes in mean values of some bone-quality parame-
ters but also in the distributions of these parameters. The latter
was previously shown in a study demonstrating changes in het-
erogeneity of bone-quality parameters with bisphosphonate
treatment duration.(12) The present study’s novel application of
machine-learning methods for the holistic analysis of the large
volume and variety of analyzed bone-quality parameters con-
firmed prior findings and identified significant new relationships
between mean values and distributions of bone-quality parame-
ters with bisphosphonate treatment duration.

Bone mineral purity, measured using the carbonate to phos-
phate ratio, was the most significant bone-quality parameter in
the bisphosphonate treatment duration machine-learning

model. This ratio quantifies the relative amount of carbonate
substituted for phosphate in bone mineral crystal. Increases in
this ratio with increasing bisphosphonate treatment duration
may be a consequence of reduced bone turnover, resulting in
older bone, longer-lived mineral, and thus more time for carbon-
ate to substitute for phosphate in the mineral crystal structure.
The importance of the carbonate to phosphate ratio in the dura-
tion and fracture machine-learning models is underscored by
publications investigating relationships among bone quality,
hormone replacement therapy, as well as proximal femoral and
low-energy fractures.(13,30,31)

The second most significant parameter in the duration model
was the decrease in standard deviation of bone with low colla-
gen maturity. Thus, with increasing bisphosphonate treatment

Table 7. Results of CandidateMachine-LearningModels Relating Bone Fractures in Patients Receiving Bisphosphonate Treatment to Var-
ious Parameter Types

Parameter type

Model fit
parameters No fracture Fracture

AUC Accuracy Precision Sensitivity F-1 Precision Sensitivity F-1

Histomorphometry 0.44 0.55 0.67 0.58 0.55 0.47 0.50 0.49
Duration (categorical) 0.60 0.84 0.81 1.00 0.89 1.00 0.60 0.71
Duration (continuous) 0.72 0.71 0.77 0.73 0.75 0.62 0.67 0.64
Infrared spectroscopy 0.78 0.74 0.90 0.65 0.76 0.62 0.89 0.73
Infrared spectroscopy and histomorphometry 0.86 0.81 0.88 0.79 0.84 0.73 0.83 0.78
Infrared spectroscopy and duration
(continuous)

0.86 0.78 0.86 0.77 0.81 0.70 0.80 0.74

Infrared spectroscopy and
histomorphometry and duration
(continuous)

0.90 0.83 0.96 0.76 0.84 0.72 0.94 0.81

AUC = area under the receiver operating characteristic curve.
F-1 denotes the harmonicmean of precision and sensitivity. Boldface denotes the parameters associatedwith optimalmachine-learning performance of

the fracture model.

Fig 6. Relative importance and relationship of various bone parameters to fracture in bisphosphonate-treated patients as shown in themachine-learning
model. This model is referred to in the text as the “fracture model.” Length of the horizontal bars denotes the magnitude of the linear coefficient in the
machine-learning duration model; direction and color of the bars denote coefficient sign. Red bars extending to the left denote coefficients negatively
correlated with increasing likelihood of fracture; teal bars extending to the right denote coefficients positively correlated with increasing likelihood of
fracture.
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duration, the range of values for the ratio of mature to immature
collagen cross-links decreased. As expected, the duration model
showed that hip BMD was a significant parameter (third in
importance) directly related to bisphosphonate treatment dura-
tion. This is consistent with increased mineralization observed in
a prior study of 32 postmenopausal women with osteoporosis
treated with bisphosphonates for 6.4 � 2.0 years.(32) The fourth
and fifth most significant parameters of the model indicate that
fewer osteoclasts and reduced activation frequency accompany
longer bisphosphonate treatment durations. These findings are
consistent with the known effect of bisphosphonates on bone
turnover(33,34) and with the reported 84% reduction in remodel-
ing activity observed in iliac crest bone samples from the previ-
ously cited study.(32) The previously shown increase in mineral
to matrix ratio with increasing bisphosphonate treatment dura-
tion(12) was confirmed by the present study but was ranked
11th of the 15 duration-model analyzed parameters.

The machine-learning fracture model showed that bispho-
sphonate treatment duration was the most important feature
predictive of the observed low-energy fractures, ie, longer
bisphosphonate treatment duration was associated with greater
likelihood of fracture. This finding agrees with a study of 196,129
postmenopausal women treated with bisphosphonates showing
that compared with women treated for 3 to 5 years, treatment
for 8 or more years was associated with an almost fivefold
increase in hazard ratio for atypical fractures.(27)

Relevance of bonemineral purity, quantified by the carbonate
to phosphate ratio, was demonstrated by this parameter’s rank
(second most important) in the fracture machine-learning
model. This finding is supported by a study of 60 bisphospho-
nate-naive female patients with fractures who had decreased
carbonate to phosphate ratios in iliac crest cancellous bone com-
pared with 60 sex-, age-, and BMD-matched controls.(13) Differ-
ences in the direction of the relationships observed in these
studies may be explained by the different patient populations.

Relative bone mineralization, quantified by the mineral-to-
matrix quality parameter, was the third most important parame-
ter in the machine-learning fracture model. Thus, the likelihood
of low-energy fracture in patients treated long term with bispho-
sphonates is directly related to increased relative bone minerali-
zation. This finding is consistent with data showing that
increased mineralization is associated with decreased fracture
toughness.(35)

Bisphosphonate treatment is associated with increased hip
BMD and consequentially reduction in fracture risk.(36) Although
hip BMDwas the third most important parameter in the duration
model and was directly related to bisphosphonate use, hip BMD
was not among the top 25 parameters in the fracture model. This
finding suggests that the low-energy fractures in study patients
treated with bisphosphonates for more than 8 years are those
due to diminished bone quality and turnover changes occurring
with long-term bisphosphonate use.

Among the many parameters studied, patient age was not a
significant parameter in the treatment duration or fracture
models. Spine BMD was not included among the analyzed
parameters because of the inferior fracture predictive value of
spine BMD compared with hip BMD.(37,38)

Limitations of the study are those that are characteristic of a
cross-sectional design. In addition, most patients in the study
used alendronate, thus the analyses were unable to discern the
effect of other oral bisphosphonates. Inclusion of bone biopsies
in the study results in a study size that is small compared with
those of epidemiologic studies; however, the employed sample

size is sufficient to enable machine-learning analyses to identify
key bone-quality parameters and create models that signifi-
cantly relate these parameters to treatment duration and low-
energy fracture. We recognize that 22 fractures occurring in
67 patients on long-term bisphosphonate treatment is a rela-
tively high percentage (32.8%); however, no selection bias can
be identified to explain this result.

Continuous use of oral bisphosphonates exceeding 8 years is
associated with significant declines in bone mineral quality and
increases in low-energy bone fractures. These findings provide
evidence for an 8-year maximum time limit for uninterrupted
treatment. Bone quality is an important aspect of skeletal health
and should be considered when evaluating the efficacy of vari-
ous bonemetabolic therapies. Inadequate bone quality is related
to increased likelihood of low-energy fracture. Infrared spectro-
scopic examination of biopsied tissue samples provides critically
important, but otherwise unavailable, information describing
bone quality.

Disclosures

All authors state that they have no conflicts of interest.

Acknowledgments

We acknowledge funding support from the National Institutes of
Health-National Institute of Arthritis and Musculoskeletal and
Skin Diseases (award R01AR061578) and the Kentucky Nephrol-
ogy Research Trust.

The data that support the findings of this study are available
on request from the corresponding author. The data are not pub-
licly available due to privacy or ethical restrictions.

Authors’ roles: Study design: HM and DP. Study conduct: HM,
MCF, FL, and DP. Data collection: MCF and FL. Data analyses: HM,
MCF, LL, JC, FL, and DP. Data interpretation: HM, MCF, LL, JC, FL,
and DP. Drafting manuscript: HM, LL, JC, and DP. Revising manu-
script content: HM, MCF, LL, JC, FL, and DP. Approving final ver-
sion of manuscript: HM, MCF, LL, JC, FL, and DP. HM takes
responsibility for the integrity of the data analyses.

PEER REVIEW

The peer review history for this article is available at https://
publons.com/publon/10.1002/jbm4.10549.

References

1. Cooper C, Melton LJ 3rd. Epidemiology of osteoporosis. Trends Endo-
crinol Metab. 1992;3(6):224-229.

2. Holroyd C, Cooper C, Dennison E. Epidemiology of osteoporosis. Best
Pract Res Clin Endocrinol Metab. 2008;22(5):671-685.

3. Singer A, Exuzides A, Spangler L, et al. Burden of illness for osteopo-
rotic fractures compared with other serious diseases among post-
menopausal women in the United States. Mayo Clin Proc. 2015;
90(1):53-62.

4. Nordin M, Frankel VH. Biomechanics of bone. Basic biomechanics of
themusculoskeletal system. 4th ed. Philadelphia: LippincottWilliams&
Wilkins; 2012.

5. Felsenberg D, Boonen S. The bone quality framework: determinants
of bone strength and their interrelationships, and implications for
osteoporosis management. Clin Ther. 2005;27(1):1-11.

6. Drake MT, Clarke BL, Khosla S. Bisphosphonates: mechanism of action
and role in clinical practice. Mayo Clin Proc. 2008;83(9):1032-1045.

JBMR® Plus BISPHOSPHONATE AND BONE QUALITY IN FRACTURES 9 of 10 n

https://publons.com/publon/10.1002/jbm4.10549
https://publons.com/publon/10.1002/jbm4.10549


7. Brody JE. A perfect storm for broken bones. The New York Times.
February 12, 2018.

8. Ward J, Wood CL, Pienkowski D, Malluche HH. Stiffness and strength
of bone in osteoporotic patients treated with varying durations of
oral bisphosphonates. Osteoporos Int. 2016;27(5):2681-2688.

9. Pienkowski D, Wood CL, Malluche HH. Young’s modulus and hard-
ness of human trabecular bone with bisphosphonate treatment
durations up to 20 years. Osteoporos Int. 2019;30(2):277-285.

10. Boskey AL, Spevak L, Ma Y, et al. Insights into the bisphosphonate
holiday: a preliminary FTIRI study.Osteoporos Int. 2018;29(3):699-705.

11. Lloyd AA, Gludovatz B, Riedel C, et al. Atypical fracture with long-term
bisphosphonate therapy is associated with altered cortical composi-
tion and reduced fracture resistance. Proc Natl Acad Sci U S A. 2017;
114(33):8722-8727.

12. Boskey AL, Spevak L, Weinstein RS. Spectroscopic markers of bone
quality in alendronate-treated postmenopausal women. Osteoporos
Int. 2009;20(5):793-800.

13. Boskey AL, Donnelly E, Boskey E, et al. Examining the relationships
between bone tissue composition, compositional heterogeneity,
and fragility fracture: a matched case-controlled FTIRI study. J Bone
Miner Res. 2016;31(5):1070-1081.

14. Smith TEL, Wooster MJ, Tattaris M, Griffith DWT. Absolute accuracy
and sensitivity analysis of OP-FTIR retrievals of CO2, CH4, and CO over
concentrations representative of "clean air" and "polluted plumes.".
Atmos Meas Tech. 2011;4:97-116.

15. Boskey A, Camacho NP. FT-IR imaging of native and tissue-
engineered bone and cartilage. Biomaterials. 2007;28(15):2465-2478.

16. Ishimaru Y, Oshima Y, Imai Y, et al. Raman spectroscopic analysis to
detect reduced bone quality after sciatic neurectomy in mice. Mole-
cules. 2018;23(12):3081.

17. Malluche H, Faugere MC. Atlas of mineralized bone histology. Basel,
Switzerland: Karger; 1986.

18. Parfitt AM, Drezner MK, Glorieux FH, et al. Bone histomorphometry:
standardization of nomenclature, symbols, and units. Report of the
ASBMR Histomorphometry Nomenclature Committee. J Bone Miner
Res. 1987;2(6):595-610.

19. Dempster DW, Compston JE, Drezner MK, et al. Standardized nomen-
clature, symbols, and units for bone histomorphometry: a 2012
update of the report of the ASBMRHistomorphometry Nomenclature
Committee. J Bone Miner Res. 2013;28(1):2-17.

20. Malluche HH, Porter DS, Monier-Faugere MC, Mawad H,
Pienkowski D. Differences in bone quality in low- and high-turnover
renal osteodystrophy. J Am Soc Nephrol. 2012;23(3):525-532.

21. Silverman SL, Abrahamsen B. The duration and safety of osteoporosis
treatment. 1st ed. Cham, Switzerland: Springer International Publish-
ing; 2016. XVI, 338 p.

22. Chen T, Guestrin C, editors. XGBoost: a scalable tree boosting system.
In: Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining; 2016.

23. Team RC. R: a language and environment for statistical computing.
R Foundation for Statistical Computing; 2019. Available at: https://
www.R-project.org/. Accessed October 29, 2020.

24. Alexey N, Knoll A. Gradient boosting machines: a tutorial. Front Neu-
rorobot. 2013;7:21.

25. Radovic M, Ghalwash M, Filipovic N, Obradovic Z. Minimum redun-
dancy maximum relevance feature selection approach for temporal
gene expression data. BMC Bioinformatics. 2017;18(1):9.

26. Drummond C, Holte RC, editors. C4.5, class imbalance and cost sensi-
tivity: why undersampling beats over-sampling. In: Workshop on
Learning from Imbalanvced Datasets II. Citeseer; 2003.

27. Black DM, Geiger EJ, Eastell R, et al. Atypical femur fracture risk versus
fragility fracture prevention with bisphosphonates. N Engl J Med.
2020;383(8):743-753.

28. Bala Y, Depalle B, Farlay D, et al. Bonemicromechanical properties are
compromised during long-term alendronate therapy independently
of mineralization. J Bone Miner Res. 2012;27(4):825-834.

29. Kourkoumelis N, Zhang X, Lin Z, Wang J. Fourier transform infrared
spectroscopy of bone tissue: bone quality assessment in preclinical
and clinical applications of osteoporosis and fragility fracture. Clin
Rev Bone Miner Metab. 2019;17:24-39.

30. Wang ZX, Lloyd AA, Burket JC, Gourion-Arsiquaud S, Donnelly E.
Altered distributions of bone tissue mineral and collagen properties
in women with fragility fractures. Bone. 2016;84:237-244.

31. McCreadie BR, Morris MD, Chen TC, et al. Bone tissue compositional
differences in women with and without osteoporotic fracture. Bone.
2006;39(6):1190-1195.

32. Bala Y, Farlay D, Chapurlat RD, Boivin G. Modifications of bone mate-
rial properties in postmenopausal osteoporotic women long-term
treated with alendronate. Eur J Endocrinol. 2011;165(4):647-655.

33. Boivin GY, Chavassieux PM, Santora AC, Yates J, Meunier PJ. Alendro-
nate increases bone strength by increasing the mean degree of min-
eralization of bone tissue in osteoporotic women. Bone. 2000;27(5):
687-694.

34. Chavassieux PM, Arlot ME, Reda C, Wei L, Yates AJ, Meunier PJ. Histo-
morphometric assessment of the long-term effects of alendronate
on bone quality and remodeling in patients with osteoporosis.
J Clin Invest. 1997;100(6):1475-1480.

35. Wainwright SA, BiggsWD, Currey JD, Gosline JM.Mechanical design in
organisms. New York: Halsted Press; 1976.

36. Rodan G, Reszka A, Golub E, Rizzoli R. Bone safety of long-term
bisphosphonate treatment. Curr Med Res Opin. 2004;20(8):1291-1300.

37. Leslie WD, Lix LM, Tsang JF, Caetano PA, Manitoba Bone Density Pro-
gram. Single-site vs multisite bone density measurement for fracture
prediction. Arch Intern Med. 2007;167(15):1641-1647.

38. Leslie WD, Martineau P, Bryanton M, Lix LM. Which is the pre-
ferred site for bone mineral density monitoring as an indicator
of treatment-related anti-fracture effect in routine clinical prac-
tice? A registry-based cohort study. Osteoporos Int. 2019;30(7):
1445-1453.

JBMR Plus (WOA)n 10 of 10 MALLUCHE ET AL.

https://www.R-project.org/.
https://www.R-project.org/.

	Bone Quality and Fractures in Women with Osteoporosis Treated with Bisphosphonates for 1 to 14 Years
	Repository Citation

	Bone Quality and Fractures in Women with Osteoporosis Treated with Bisphosphonates for 1 to 14 Years
	Digital Object Identifier (DOI)
	Notes/Citation Information
	Authors

	Bone Quality and Fractures in Women With Osteoporosis Treated With Bisphosphonates for 1 to 14Years
	1  Introduction
	2  Materials and Methods
	2.1  Study design
	2.2  Patients
	2.3  Inclusion and exclusion criteria
	2.4  Bone biopsy, histology, and histomorphometry
	2.5  Infrared spectroscopy
	2.6  Fourier transform infrared spectroscopic image analysis
	2.7  Statistics and machine-learning modeling

	3  Results
	3.1  Subjects
	3.2  Machine-learning duration model
	3.3  Machine-learning fracture model

	4  Discussion
	  Disclosures
	Acknowledgments
	  PEER REVIEW

	References


