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ABSTRACT OF THESIS 

 

 

 

GRAPHICAL MODELING AND SIMULATION OF A HYBRID HETEROGENEOUS 
AND DYNAMIC SINGLE-CHIP MULTIPROCESSOR ARCHITECTURE 

 

A single-chip, hybrid, heterogeneous, and dynamic shared memory multiprocessor 
architecture is being developed which may be used for real-time and non-real-time 
applications. This architecture can execute any application described by a dataflow 
(process flow) graph of any topology; it can also dynamically reconfigure its structure at  
the node and processor architecture levels and reallocate its resources to maximize 
performance and to increase reliability and fault tolerance. Dynamic change in the 
architecture is triggered by changes in parameters such as application input data rates, 
process execution times, and process request rates. The architecture is a Hybrid 
Data/Command Driven Architecture (HDCA). It operates as a dataflow architecture, but 
at the process level rather than the instruction level. This thesis focuses on the 
development, testing and evaluation of a new graphic software (hdca) developed to first 
do a static resource allocation for the architecture to meet timing requirements of an 
application and then hdca simulates the architecture executing the application using 
statically assigned resources and parameters. While simulating the architecture executing 
an application, the software graphically and dynamically displays parameters and 
mechanisms important to the architectures operation and performance. The new graphical 
software is able to show system and node level dynamic capability of the HDCA. The 
newly developed software can model a fixed or varying input data rate. The model also 
allows fault tolerance analysis of the architecture.  
 
KEYWORDS: Parallel Processing, Dataflow Graph, Static Load-Balancing Algorithm, 
Dynamic Load-Balancing Algorithm, Graphical Simulation. 
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1  INTRODUCTION 
 

1.1 Background  
Since the beginning of the computer era, much emphasis has been placed on 

maximizing throughput, performance, and being able to compute a wide range of 

applications. Realizing that the speed of the conventional von Neumann organization was 

at the mercy of technology, researchers sought newer and faster architectures. Out of this 

need was born the distributed and/or parallel data processor, in which many identical or 

non-identical computing elements work in harmony to solve a single problem. 

Initial distributed parallel architectures were vector processors or array processors 

[3]. Newer applications such as the rapid execution of massive programs encountered in 

high-energy nuclear physics research required much more sophisticated 

parallel/distributed architectures. Applications such as the processing of data from phased 

array radar or phased array sonar demanded still more from distributed/parallel 

architectures. In addition to the requirement of distribution of resources to process 

tremendously high data rates, systems must also sometimes cope with real-time 

environments and events must be triggered by input data rather than by a central 

scheduler. In order to meet these and other requirements, various research projects have 

been conducted within the Computer Architecture Laboratory by  at the University of 

Kentucky over past years. An initially proposed distributed/parallel architecture was a 

Dynamic Pipeline Computer Architecture (DPCA), a very loosely coupled, highly 

reconfigurable, real-time dataflow machine as described in [3].  

Since the completion of the first version of DPCA, many parallel computer 

architectures have been developed and implemented to meet current and future computer 

application requirements. The many computer architectures are commonly divided into 

three classes: multiprocessor (shared and distributed memory) architectures, distributed 

computer architectures, and dataflow architectures. The DPCA has since been refined and 

evolved to a new architecture – the Hybrid Data/Command Driven Architecture(HDCA). 

This architecture is a versatile, medium to coarse grain, dataflow/ Von-Neumann hybrid 

architecture developed to meet real-time radar, seismic, underwater sonar, and satellite 

applications. The architecture is a hybrid dataflow architecture since it uses conventional 
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Von-Neumann processors as Computing Elements (CEs). Rather than data flowing 

through the system to initiate processes, incoming system data is stored in shared 

memory and small control tokens that represent each data input flow through the system, 

initiating processes in correct order. Processes resident in CEs access/write data in a 

shared main memory through a scalable non-blocking circuit switch. 

 Compared to the DPCA, the HDCA moved from a loosely coupled and possibly 

distributed system to tightly coupled single-chip parallel architecture. The HDCA is 

reconfigurable at the “system” level in that it can execute a dataflow (or process flow) 

graph of any topology (cyclic or acyclic), with any number of inputs/outputs. It is 

reconfigurable at the “node” or process level in that if particular requested processes 

became “overly requested” as indicated by the control token queue of the processes 

executing, the requested process exceeding a statically determined queue threshold depth, 

additional process CEs containing the overly requested process(es) of the node can be 

dynamically activated to aid the over-queued node in processing in order to reduce the 

queue depth to an acceptable level. Other important features of the HDCA architecture 

are that it can use homogenous or heterogeneous CEs; it can be dynamic at the processor 

architecture level; it is scalable; CEs have parallel access to both medium-size data 

memories and large-file data memories; it has fault tolerant capabilities; it can utilize a 

distributed operating system; and it will be shown to be “hybrid,” that is, it is a cross 

between a dataflow and a Von-Neumann architecture. The architecture of HDCA will be 

presented later in Chapter 2. 

1.2 Thesis Objectives 
The objective of this master’s thesis is to develop a graphical software simulator 

capable of simulating the HDCA executing an application described by a dataflow or 

process graph. The purpose of the simulator is to enable the user to observe the 

movement of data or control tokens through the system, to see the dynamic configuration 

of the CEs, and finally to get a better intuitive and visional understanding of the HDCA 

system. One important feature of HDCA is that it is very sensitive to input data rate.  This 

simulator should be able to show processor-level dynamic changes and the ebb and flow 

of processor queue depth (load distribution/balancing) at each node as the input rate 

changes.   
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A new simulation algorithm has been developed, and the algorithm program, 

“hdca,” is written in the “C” programming language. GNU’s “libplot” library was used 

for graphical plotting under the LINUX operating system. Chapter 4 describes the 

simulation algorithm and explains the various modules of the algorithm that are used in 

the program “hdca.” Three applications were tested by the simulator, and the simulation 

results are presented in Chapter 5.  Chapter 6 concludes this thesis with a discussion of 

ongoing and future research related to the graphical simulation. 

1.3 Related Research 
Since the mid-sixties, large military equipment manufacturers and others have been 

involved in research projects in the field of computer graphics. By the 1970’s, this 

research had begun to bear fruit. Many obstacles had to be overcome in the early work in 

this exciting field, but soon computer-aided design (CAD) and flight simulators became 

viable products of the research efforts in computer graphics [10].  

Computer graphics have been used extensively in conjunction with simulations. The 

pioneer software was described in [10]. Some general-purpose software was introduced 

in [13].  Most of this software used mathematical simulation and plotted graphs using the 

simulation result. They couldn’t be used to simulate dynamic dataflow computer 

architectures. Then, many special-purpose graphic simulators were developed, such as 

the graphic simulator for the CAD of parallel manipulators described in [11] and an 

animated graphical simulator for multiple switch architectures described in [12]. In the 

early nineties, Mahyar R. Malekpour developed a simulator for heterogeneous dataflow 

architectures [8]. This simulator is able to simulate the execution of a graph on a given 

system, but it needs the dataflow graph as the input, and then subtracts the information 

from the dataflow and does simulation. The output is a data file, not a graphic. 

This thesis will present a new graphical simulator, hdca, which can simulate the 

execution of any application described by a dataflow graph on the dynamic HDCA 

graphically. By watching control token flow through the graph and the dynamic changing 

of the HDCA configuration, one can visually observe the execution of a computer 

program (application) on the HDCA. The ebb and flow of queues at each node (an 

indication of load distribution among processors) is especially evident as the simulation 

unfolds.
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2   OVERVIEW OF HDCA 
 

The Hybrid Data/Command Driven Architecture (HDCA) is an innovation in 

computer architecture which incorporates many highly desirable features. Among these 

are the ability to function in a real-time environment as a data driven machine at the 

process level, a high degree of fault tolerance, and dynamic reconfigurability. Many 

applications require that a computer analyze data as soon as it is generated by some other 

device. Examples of this type of application may be found anywhere that automatic 

monitoring devices are employed. A computer that is to be used in such an application 

must operate in a real-time mode. In order to prevent delays in the analysis of the data, 

the data itself should initiate computation. A computer system possessing this ability is 

said to be data driven. [2] 

Parallel processing and pipelining are two major architectural techniques for 

improving the performance of computers. In parallel processing two or more parts of a 

given job are executed simultaneously in order to reduce the total time required to 

process the job. Pipelining is employed where large numbers of jobs that require the same 

sequence of processes are encountered. The HDCA is a parallel pipeline architecture, 

which is able to execute algorithms of any structure. The structure of most computer 

algorithms may be represented in the form of a dataflow graph.   

2.1 Dataflow Technique 
Dataflow architectures are the smallest class of the three classes of parallel 

architectures described in chapter one. They may exist at fine, medium, or coarse grain 

levels. Dataflow architectures at the fine grain level generally operate by having basic 

single arithmetic/logic operations executed upon the availability of required single 

element data variables and they do not contain program counters at the instruction level. 

Dataflow architectures at the medium and coarse grain level may contain normal Von-

Neumann processors using program counters.  At the medium and coarse grain level, 

individual processes resident within the Von-Neumann processors are triggered by the 

arrival of data (normally data sets consisting of multiple data elements) on an input queue 

and are executed concurrently. Because of this data-driven nature, directed graphs, 
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specifically dataflow graphs, are used to describe the actions of an application program 

that executes on a dataflow architecture system. [4] 

A typical application dataflow graph is illustrated in Figure 2.1 where the nodes in 

the graph represent medium to coarse grained processes and the directed arcs represent 

the flow of data from one process to another. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1  Typical Dataflow Graph 

  

Any dataflow graph consists of three basic structures: 

1) The linear pipeline (Figure 2.2a) 

2) The fork (Figure 2.2b) 

3) The join (Figure 2.2c) 

The linear pipeline accepts data/commands (a command is a control token rather 

than data which initiates a process) from one node while producing data/commands for 

only one node. 

Two types of forks exist: selective and nonselective. The selective fork produces 

data/commands along a single output path, at any given time, while the nonselective fork 

produces data/commands along all output paths. 
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Likewise, two types of joins exist: selective and nonselective. The selective join 

accepts data/commands from only one input path at a time while the nonselective join 

accepts data/commands only when all paths contain data/commands for input. 

 

  

 

 

 

a. Linear Pipeline 

 

 

 

 

 

 

 

 

 

 

                       b. ) Fork                                                      c.)  Join 

Figure 2.2   Basic Structures of Dataflow Graphs 

 

2.2    Basic Structure of HDCA 
The HDCA evolved over time from the distributed computer architecture of DPCA. 

At a high level, the DPCA consists of a number of identical, general purpose computing 

elements (CEs), which are connected to memory buffers through a system of circuit 

switches as shown in Figure 2.3. The CEs are the fundamental building blocks from 

which the various configurations that the system may assume are formed. Depending 

upon the specific application, a CE may range from a small microcomputer type 

processor, which can store a short set of instructions, to a powerful superscalar type 

processor with many megabytes of program and data memory.  
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Figure 2.3   Basic Structure of a DPCA 
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With current day VLSI technology, it is now possible to put all the CEs and other 

circuits in just one IC chip. Thus HDCA has evolved from a loosely coupled and possibly 

distributed system to a more tightly coupled single-chip architecture. Figure 2.4 (This 

figure is from [6]) is the block diagram of the HDCA. The input data is facilitated by high 

speed FIFOs, which may be loaded externally and unloaded by the CE, which is 

designated to handle the input process. The CE moves the input data from the FIFOs into 

the Data Memory and creates Process Request Control Tokens (PRTs) that are mapped 

by the process mapper (Control Token Mapper) to the initial process of an executing 

application. 

The input process of a dataflow graph, which is being executed by the system, is 

treated as the beginning process. The beginning process links to the data block pointed to 

by the PRT and executes its algorithm on the data. Upon completion, this process will 

deposit its results back into the data memory, then generate a control token and send the 

token to the token mapper.  The mapper will route this token to the queue of the next 

node to process the data. Data is moved through the system by the continuous routing of 

control tokens from one CE to another. The final output is memory-mapped through an 

exit port in the CE-Data Memory Circuit Switch. Since both the input and the output are 

accessed through this switch, one or several CEs may be designated to handle the input or 

output processes. Further information on the Token Controlled HDCA can be found in 

references [3,4.5]. 

 

2.3 Application Mapping and Load-Balancing Strategy of HDCA 
Since applications are represented by dataflow graphs, a real-time dataflow 

architecture must be able to map the dataflow graph representation of any problem space 

to its system hardware in order to function properly. Two load balancing strategies are 

used for this mapping purpose in the HDCA system – static (prior to execution of the 

application) load balancing and dynamic (while the application is in execution) load 

balancing.  

There are usually a limited number of Computing Element (CE) processors in any 

architecture. So an efficient static load balancing algorithm is needed to analyze 

algorithms in order to allocate the system’s resources in the optimum configuration, map  



 9 
 

 

…… 

          Input 
           FIFOS  

     Data 
         Memory 

         CE – Data Memory Circuit Switch 

 CE0 
   

Q 

CE2 
   

Q

 CE1 
   

Q 

CEn-1   

Q

…… 

CE-Mapper 
  Control 
   Token 
   Router  

Control 
 Token 
Mapper 
  Input  
 Queue Control 

Token 
Mapper 

  CE-File Circuit Switch 

File       File Memory       File  

…

…… 

…… …… 

OOUUTTPPUUTT

    IINNPPUUTT  

OBUS 

 

 

 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4   Block Diagram of HDCA 

 

. . . . .



 10 
 

 

processes to a minimum number of CEs and meantime, meet the real-time timing 

requirements. J. Cochran has developed a static load balancing algorithm, applicable to 

the HDCA, in [2]. The program “COPY” analyzes a dataflow algorithm to be mapped to 

the HDCA and calculates the number of necessary copies of process needed to execute a 

given algorithm with maximum efficiency based on input data rates, process execution 

times, and queuing levels in the input buffers of the system processor. Static load 

balancing is effective as long as these parameters remain at expected levels. However, 

when these system parameters experience unexpected fluctuations, such as the input data 

rate exceeding the maximum limits, the static load balancing algorithm will become 

ineffective and in such cases dynamic load balancing is used to schedule the processes 

dynamically during run time.  

Once a system starts running, dynamic load balancing is required to handle both 

“expected” and “unexpected” situations. The main expected situation is the case when a 

requested process has been mapped to and resides in several CEs. Dynamic load 

balancing is required to select the most appropriate CE from several containing a copy of 

the requested process based on a certain criteria. Unexpected situations include omission 

of parameters from the static load balancing algorithm, other unplanned interruptions and 

delays, possible impreciseness of the static load balancing algorithm at certain specific 

times, and when a CE fails. In short, the dynamic load balancing mechanism prevents 

excessive queuing of data and commands at a node during run-time and in doing such it 

balances the load over the entire system. The goal of the load balancing circuit within the 

parallel architecture is to dynamically maintain a queue level for each processor at or 

below a statically set queue threshold level at each processor which will allow soft 

system real-time constraints to be met. The dynamic load balancing function for the 

HDCA is performed by the “Mapper Control Token Queue” and “Control Token 

Mapper”, which are shown within Figure 2.4. 

Detailed description of the dynamic load balancing algorithm and dynamic load 

balancing circuits can be found in [4] and [6]. The static load balancing algorithm 

developed by J. Cochran can be found in [2]. Since this thesis will use the result of the 

program “COPY,” there will be an introduction of the algorithm used by “COPY” in 

Chapter 3.
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3 QUEUING THEORY MODELING OF THE HDCA 
 

3.1 Review of Queuing Theory Model 
The problem of providing to the operating system the static load balancing 

algorithm involves detailed mathematical modeling of the architecture. These models are 

used to determine the effect of changes in system parameters on the demand for resources 

and they are heavily based on queuing theory. In a dataflow graph, each node can be 

modeled as a buffer and a Computing Element (CE). The buffer is a storage place where 

the data is entered and stored for the CE to process while the CE is busy processing other 

data. Thus, each node is an individual queuing system and the entire system composes a 

queuing network. 

The input data rates, the process execution times, and the queuing levels in the input 

buffers of the system nodes are the most important system parameters to incorporate into 

the model of the HDCA. The inclusion of these parameters allows for the analysis of the 

throughput time for each node in the system and ultimately, the determination of the 

number of copies of each node (process) necessary to execute a given algorithm with 

maximum efficiency. 

The following symbols will be used throughout the discussion of modeling the 

various nodes, which may compose a general dataflow graph. 

iR   = the number of jobs (process request tokens in the case of the HDCA) input to 

the buffer of a node per unit time. 

oR  = the number of jobs output from the computing element per unit time. 

         ( )n t = the number of jobs in the buffer at time t. 

qt  = the length of time that a job spends in the buffer awaiting execution. 

st  = the length of time that a job spends in the CE in execution. 

tt  = the throughput time (data input-to-output time) for a node. 

at = acceptable delay or throughput time for a node. 

sct  = service time of a clogging node. 

Tt = the throughput time for the system. 
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N = number of copies of a node required to maintain tt  within acceptable limits. 

The simplest dataflow graph consists merely of an input, a functional node, and an 

output as illustrated in Figure 3.1 (a) and its hardware representation is shown in Figure 

3.1 (b). A complex dataflow graph is composed of many nodes. In such cases, a second 

subscript is added to the basic symbol for the parameters as listed above. For example, 

2iR  is used to denote the input data rate to node number two, and 7qt  represents the time 

that a job spent waiting in the buffer of node seven. 
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(a)   A Single-Node Dataflow Graph 
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(b)   Hardware Oriented Representation with Pertinent Parameters 

Figure 3.1   Single-Node 
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From the above definitions and Figure 3.1 (b), the following relationships can be 

derived algebraically. Equation (1) assumes that the input buffer is never empty. 

 

1o sR t=                                                                                         (1)  

( ) ( ) ( 1/ )i o i o i sn t R t R t R R t R t t= − = − = −                                       (2) 

( )q st n t t=                                                                                        (3) 

( ) ( ( ) 1)t q s s s st t t n t t t n t t= + = + = +                                                 (4) 

 

If the calculated throughput time tt  for a given node is found to be unacceptable, 

the node is said to be “clogged” and additional copies of CE need to be initiated in order 

to remove the “clog.” The additional copies of the node would be placed in parallel with 

the clogging node as in Figure 3.2, and would perform the same function as the original 

node. The service time of the new multi-copy node is sct N , where sct  is the service time 

of the original clogging node and N is the number of copies present in the multi-copy 

node.  

/sc aN t t= ⎡ ⎤⎢ ⎥                                                                                 (5) 

where at  is the acceptable delay time for the node and must be greater than or at least 

equal to the inverse of iR  because it is impossible for data to be output faster than they 

are input. 

The above equations form the basis of a mathematical queuing model for a simple 

dataflow graph. 

A complex dataflow graph can be resolved into basic component configurations 

such as the Linear Pipeline, the Fork, the Join, and the Feedback Node. The queuing 

theory models of each of these configurations are developed below. 
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Figure 3.2   A Multi-Copy Node 

 

 

33..11..11  LLIINNEEAARR  PPIIPPEELLIINNEE  
 

Figure 3.3 illustrates a linear pipeline configuration dataflow graph and its hardware 

oriented representation. The system throughput time Tt is merely the sum of the delays 

contributed by the individual nodes. Equation (6) and (7) give the formula for individual 

node delay time and system throughput time. 

 

( ( ) 1)t st n t t= +                                                                                 (6) 

1

N

T ti
i

t t
=

=∑                                                                                           (7) 

f

f

f

f
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By substituting equation (6) into equation (7), we have 

1
( ( ) 1)

N

T i si
i

t n t t
=

= +∑  

If the value of Tt  is not acceptable, the node with the longest throughput time (clogging 

node) needs to be determined and duplicated by the operating system. The throughput 

time of the new system thus formed can then be calculated. The above procedure is 

repeated until the value of Tt  is acceptable. 
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(a)   Dataflow Graph of a Linear Pipeline System 
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(b) Hardware Oriented Representationof a Linear Pipeline System 

Figure 3.3   Linear Pipeline System 
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33..11..22  FFOORRKK  
 

Figure 3.4 shows a dataflow graph and hardware oriented representation of a 

generalized fork. The letter S denotes the source node and D denotes a destination node. 

Chapter 2 has mentioned two types of fork – selective fork and nonselective fork. 

For selective fork, the data vector leaves the source node and then chooses one path to 

proceed at a certain probability. Let’s define P(x) as the probability that a given data 

vector will follow path x upon reaching the fork. Then we can have: 

 

1 (1)path osR R P=                                                                              (8) 

but 

11path iDR R= , 

therefore 

1
(1)iD osR R P=                                                                                (9) 

In general, 

( )ix osR R P x= .                                                                               (10) 

 

Note: If P(x) is a normalized probability distribution, then 

                               

1
( ) 1

N

x
P x

=

=∑ .                                                                                 (11) 

 

For nonselective fork, the data vector leaves the source node and then proceeds to all the 

following paths, so 

 

( ) 1P x =  for all x, so  

 ix osR R=  

The throughput time for any branch of the fork system can be considered as the 

source node and the particular destination node to compose a linear pipeline. Then the 

techniques we introduced in the last section can be used to determine the Tt . 
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(a)    Dataflow Graph of a Fork 
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(b)    Hardware Representation of a Fork 

Figure 3.4   Fork 
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33..11..33  JJOOIINN  
 

A join is a node at which two or more branches merge to enter a single node as 

shown in Figure 3.5. There are also two types of join – selective join and nonselective 

join. A selective join processes the data on a “first come, first served” basis. In this case, 

the input data rate to node D, denoted iDR , is simply the sum of the output data rates from 

all the source nodes whose data flows are joined. That is, 

1
j

N

iD os
j

R R
=

= ∑ .                                                                               (12) 

The throughput time for a given data vector entering the system of Figure 3.5 can be 

determined as follows. The data vector will enter one of the source nodes Sn and will first 

be delayed by an amount of time equal to the throughput time of that node, tnt . The data 

vector will then join with data from the other source nodes at the input of the destination 

node to await execution. The time needed for the data vector to transit the destination 

node can be found by application of a combined form of equations (2) and (4): 

 

  ( )1 1t i s st R t t t= − +⎡ ⎤⎣ ⎦                                                               (13)     

 

Upon substituting equation (12) in equation (13), we have 

 

 
1

1 1 .
j

N

tD os sD sD
j

t R t t t
=

⎡ ⎤⎛ ⎞
= − +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦
∑                                                 (14) 

 

We can now find the system throughput time for the data vector entering the join through 

any source node n. 

1
1 1

j

N

Tn sn os sD sD
j

t t R t t t
=

⎡ ⎤⎛ ⎞
= + − +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑                                            (15) 

 

A nonselective join processes the data in a certain order (other than first come, first 

served). In this thesis, only the selective join was simulated. So the detail of nonselective 
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join will not be discussed. A detailed description of an example of nonselective join can 

be found in [2,3]. 
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(a)   Dataflow Graph of a Join 
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(b)   Hardware Representation of A Join. 

Figure 3.5   Join 
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33..11..44  FFEEEEDDBBAACCKK  
 

In certain systems a data vector returns to the input queue of the node after it left the 

node for further processing. Such a node is considered as a feedback node with a portion 

of its output coupled back to its input. The dataflow graph for a simple feedback node is 

shown in Figure 3.6. The output of a feedback node is a fork, so a probability distribution 

must be determined for a feedback node in order to model it accurately. This probability 

distribution, denoted ( )fP n , is defined as the probability that a data vector leaving node n 

will “feedback” to node n. Referring to Figure 3.6, the rate at which data returns from the 

output to the input side of node n is fR . This feedback rate can be calculated as follows: 

 

 ( ) 'f f oR P n R=    ,                                                                  (16) 

 

Where 'oR is the total output rate from the computing element of node n. Similarly, the 

output rate of node n as seen by a subsequent node is 

 

( )1 ( ) 'o f oR P n R= − .                                                              (17) 

 

The input of the feedback node is considered as a join. The total input rate to the 

computing element of the node, 'iR , will be the sum of the rates from preceding data 

sources and the feedback rate. Therefore,  

 

'i i fR R R= +                                                                          (18) 

 

By substituting 'iR  for iR  in equation (13), we can find the nodal throughput time for a 

data vector entering the buffer of a feedback node at any time t, i.e., 

 

( )' 1 1t i s st R t t t= − +⎡ ⎤⎣ ⎦                                                          (19) 
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The throughput time of the feedback system depends on the total number of times that a 

given data vector passes through the buffer and computing element. 

    
0

I

T ti
i

t t
=

=∑ ,                                                                        (20) 
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(a)   Dataflow Graph of a Feedback Node 
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(b) Hardware Oriented Representation 

Figure 3.6   Feedback Node 
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3.2 Static Load Balancing Algorithm Analysis for Program “COPY” 
The HDCA is capable of changing its configuration so that it can execute a given 

algorithm with maximum efficiency. Once the algorithm has been developed in the form 

of a dataflow graph, we can use the program “COPY” to determine beforehand the 

optimum number of copies of multi-copy processes, which are required to insure that 

“clogging” does not occur at any node within a flow graph. A general dataflow graph of 

an algorithm can be thought of as being composed of a number of pipelines, each 

executing its own algorithm on the data that is input to it. So, the following five steps are 

applied in this analysis algorithm: 

1. Decompose the dataflow graph into its constituent pipelines. 

2. Classify each node of the dataflow graph as to whether it is a fork, a join, a 

singular node, or a common node. 

3. Determine the data arrival rate of each node. 

4. Calculate the number of copies of each node that will be required to minimize 

queuing at the input buffers of the computing elements and thus maximize the 

system throughput. 

5. Determine pairs and/or groups of processes that can be combined to reduce 

computing element demand. 

In order to understand how this flow-graph analysis algorithm functions, let us 

analyze an example dataflow graph manually according to this algorithm. Figure 3.7 is a 

general dataflow graph and is adapted from the example radar problem presented in 

reference [14]. Table 3-1 contains sample parameter values from the graph. The node or 

process is labeled by P followed by two numbers; P means process; the first number is 

the level number in the graph, and the second number is the node number in the same 

level. For example, P31 is the first process on the 3rd level in the dataflow graph. 

The first step is to decompose the dataflow graph into its constituent pipelines. A 

pipeline is merely a string of connected nodes through which data may pass in traveling 

through a system from an input point to an output point. Our example dataflow graph is 

composed of three pipelines. Pipeline one is made up of the processes labeled P11, P21, 

P31, P41, P51, P61, and P71. The second pipeline contains P11, P21, P32, P41, P51, P61, and  
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Figure 3.7   Example of A General Dataflow Graph 
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Table 3-1:   Sample Parameter Values for Example Dataflow Graph 
 

Process 

Designation 

Execution Time 

(Milliseconds) 

Process Length 

(Kilobytes) 

11 0.85 0.425 

21 1.63 2.5 

31 1.3 0.5 

32 0.32 0.05 

33 2.7 1.5 

41 0.96 0.85 

51 1.87 0.45 

61 0.69 15.0 

71 1.12 0.9 

 

Input Data Rates (data items/millisecond) 

Peak Load: 3.8 

Average Load: 2.5 

 

Probability Distributions for Forks 

P11->33: 0.65 

P11->21:  0.35 

P21->32: 0.2 

P21->31: 0.8 

 

Program Memory/Computing Element: 16 kilobytes 

 

P71. And the last pipeline has nodes P11, P33, P51, P61, and P71. Next step is to classify each 

node as to whether it is a fork, a join, a singular node, or a common node. In this graph, 

P11 and P21 are forks; P41 and P51 are joins. P31, P32, and P33 are contained in only one 

pipeline each, so they are referred to as singular nodes. P61 and P71 are contained in more 

than one pipeline but they are neither forks nor joins. They are referred to as common 
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nodes. Once all the nodes have been classified, the next step is to find the data arrival 

rates at each node based on the queuing models that have been discussed in section 3.1. 

According to Table 3-1 and Figure 3.1, we know that the data enters the system at P11 at a 

rate of 3.8 Data Items per Millisecond (DI/msec.) under peak load. Here the forks are all 

selective. So the input rate at P21 equals the rate for P11 (3.8 DI/msec.) times the 

probability that a given data item will go from P11 to P21 (P11->21=0.35). The input rate at 

P33 equals the rate for P11 times the probability that a given data item will go from P11 to 

P31 (P11->33=0.65). Similarly, the data rate at P31 equals the data rate calculated at P21 

times P21->31, times P21->32 for P32. All the data coming out of P31 and P32 goes to P41 as 

P41 is a join. The data rate of P41 is the summation of data rate of P31 and data rate of P32. 

The data rate of P51 equals data rate of P51 plus the data rate of P33. P61 and P71 form a 

linear pipeline with source node P51. In this case the input data rates to both P61 and P71 

are the same as that of P51. The results of the above analysis for both the peak rate case 

and average rate case are summarized in Table 3-2. 

Once the data arrival rates are calculated and the process execution times are given 

in Table 3-1, the maximum number of copies of each node is just the product of the data 

arrival rate of that node and its process execution time, rounded up to the next integer. 

Results of these calculations for all the nodes of our example flow graph for both peak 

and average data rates are also presented in Table 3-2. 

The program “COPY” can also combine the processors needed by different nodes 

in order to reduce the total CE usage. Reference [2] has a detailed description of this 

combination. The original program “COPY” was written in BASIC in [2], and a detailed 

programming algorithm was introduced in Chapter 4 of [2]. Then the BASIC version 

COPY was adapted into a C version “copy” in [1]. Since both references were written 

some time back and there are not any soft copies of the program, the “C” version 

program needs to be recompiled. It is considered a part of this thesis. When running the 

program, the same example data parameters were used as illustrated in [2] in order to 

validate the computing results. The achieved results are the same as those listed in [2], 

and this demonstrates that the newest version of “copy” works correctly as desired.   
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Table 3-2:   Results of the Analysis of the Example Flow Graph 

 

Node Peak Rate 

(DI/msec.) 

# of Copies 

(Peak) 

Avg. Rate 

(DI/msec.) 

# of Copies 

(Average) 

P11 3.8 4 2.5 3 

P21 1.33 3 0.87 2 

P31 1.06 2 0.7 1 

P32 0.27 1 0.17 1 

P33 2.47 7 1.63 5 

P41 1.33 2 0.87 1 

P51 3.8 8 2.5 5 

P61 3.8 5 2.5 2 

P71 3.8 3 2.5 3 
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4 GRAPHICAL SIMULATOR  
 

4.1 Programming Environment and Language 
 The simulator was developed using the C programming language and compiled 

using GNU’s “gcc” compiler. It should be run under the LINUX operating system. 

GNU’s 2-D Vector’s Graphics Library, libplot 4.1, from the Plotutils Package is used to 

do the plotting part of the job. GNU libplot 4.1 is a free function library for drawing two-

dimensional vector graphics. It can produce smooth, double-buffered animations for the 

X Window System, and can export graphics files in many file formats. It is “device-

independent” in the sense that its API (Application Programming Interface) is to a large 

extent independent of the display type or output file format.  

The graphics programs and GNU libplot can export vector graphics in the following 

formats.  

1. X:  If this output option is selected, there is no output file. Output is directed to a 

popped-up window on an X Window System display.  

2. PNG: This is “portable network graphics” format, which is increasingly popular 

on the Web.  

3. PNM: This is “portable anymap” format. There are three types of portable 

anymap format: PBM (portable bitmap, for monochrome images), PGM (portable 

graymap), and PPM (portable pixmap, for colored images).  

4. GIF: This is pseudo-GIF format rather than true GIF format.  

5. SVG: This is a Scalable Vector Graphics format. SVG is a new, XML-based 

format for vector graphics on the Web.  

6. AI: This is the format used by Adobe Illustrator. Files in this format may be 

edited with Adobe Illustrator (version 5, and more recent versions), or other 

applications.  

7. PS: This is an idraw-editable Postscript format. Files in this format may be sent to 

a Postscript printer, imported into another document, or edited with the free idraw 

drawing editor.  

8. CGM : This is Computer Graphics Metafile format, which may be imported into 

an application or displayed in any Web browser with a CGM plug-in.  
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9. Fig: This is a vector graphics format that may be displayed or edited with the free 

xfig drawing editor.  

10. PCL 5: This is a powerful version of Hewlett--Packard's Printer Control 

Language. Files in this format may be sent to a LaserJet printer or compatible 

device. 

11. HP-GL: This is Hewlett--Packard's Graphics Language. 

12. ReGIS: This is the graphics format understood by several DEC terminals (VT340, 

VT330, VT241, VT240) and emulators, including the DECwindows terminal 

emulator, dxterm.  

13. Tek: This is the graphics format understood by Tektronix 4014 terminals and 

emulators, including the emulators built into the xterm terminal emulator program 

and the MS-DOS version of kermit.  

14. Metafile: This is a device-independent GNU graphics metafile format. The plot 

program can translate it to any of the preceding formats.  

In the program hdca.c, the X Plotter is used to plot the graphic and the output is in 

the X format, that is, the output is directed to a pop-up window on an X Window system 

display.  

There are bindings for C, C++, and other languages. The C binding, which is the 

most frequently used, is also called libplot, and the C++ binding, when it needs to be 

distinguished, is called libplotter.      

For more information about Plotutils Package, please see the following website. 

http://www.delorie.com/gnu/docs/plotutils/plotutils_toc.html#SEC_Contents 

 

4.2 Simulation Algorithm 
The program “COPY” described in Chapter 3 computes the optimum number of 

copies of a process required to ensure smooth flow of data. These values will be used in 

the graphic simulation. The simulation mainly consists of 4 modules: Graphic 

Module(GM), Simulation Module(SM), Update Module, and Shutoff Module. The 

relationship between these four modules and the program “COPY” is illustrated in Figure 

4.1. 
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Figure 4.1   Relationship Between COPY and HDCA Modules 

 

Graphic Module (GM) takes the results of “COPY” and other data parameters, and 

draws a dataflow graph on the screen, with an empty queue beside each node. Then the 

Simulation Module (SM) takes over the program. As the simulation is proceeding, the 

status of each copy of the process (busy or idle) and the queue depth change dynamically. 

Whenever the change occurs, the Update Module works and updates all the parameters 

that are used in the GM. GM then redraws the dataflow graph while the simulation is 

going on. The Shutoff Module is used for fault tolerance analysis. The program can enter 

the Shutoff module at the beginning of the simulation module. There is no clear boundary 

between the four modules. They work closely to produce a smooth graphic simulation. 

These modules will be discussed in more detail. 
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44..22..11  GGRRAAPPHHIICC  MMOODDUULLEE  ((GGMM))  
 

The basic function of the GM is to collect the required data and draw the basic 

dataflow graph on a graphics screen. GM operates on a screen area of 4000x4500 

Graphic Display Units (GDUs) of a pop up X Window. The program is not terminal 

dependent, though. It can be adapted to display the vector graph in other formats. GM 

adjusts all sizes and types of dataflow graphs to fit on to the screens by calculating the 

spaces between the processes. As shown in Figure 4.2, the upper 4000x500 area is used 

for the title, and the lower 4000x4000 area is used for the dataflow graph.  
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Figure 4.2   Schematic of the Display Screen 

 

For the purpose of drawing, the dataflow graph is treated like a column vector and 

several row vectors. The rows of the column vector are called “levels” and the columns 

of each row vector are called “nodes”. Each node represents a process and is represented 
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by a 200x200 GDUs square box. The user must input the number of levels and the 

number of nodes of each level of the dataflow graph before the execution of the program. 

According to the number of the levels of the dataflow graph -- N, GM divides the 

4000x4000 area screen into N rectangular boxes of 200 GDUs high along the y-axis. The 

spacing between these boxes is determined by the number of levels “N” and the total 

available space in the y direction. In this thesis, the total available space in the y direction 

for drawing the dataflow graph is 4000 GDUs and the total available space in the x 

direction is 4000 GDUs too. The decrement or the space between two levels is (4000/N-

200). The levels are drawn top down. Each level is now considered independently as a 

1xn matrix where n is the total number of nodes in that level. The nodes are drawn from 

left to right. GM calculates the “increment” or the spacing between the nodes in that level 

in a similar way. The boxes are spaced equally within the level. The top level is drawn at 

half the “decrement” from the top and the bottom level is drawn at half the “decrement” 

above the bottom. Likewise, the first node in a level is drawn at one half the value of 

“increment” from the left end of the x-axis and the last node in a level is drawn at one 

half the value of “increment” from the right end of the x-axis. Once a square is drawn, 

coordinates of its top and bottom midpoints are used to calculate the coordinates of the 

top midpoint of its queue box and all of these coordinates are stored for later use. The 

next step is to divide each square into a number of initial copies, as calculated by the 

program “COPY”. GM divides the height of the square into several segments, which 

equal the number of initial copies, and draws horizontal lines indicating the copies of the 

process. Then GM draws an empty queue at the right side of the process box and draws a 

line at the position where the queue depth is 4, indicating the initial threshold. GM 

finishes the drawing of the dataflow graph by connecting the paths between the processes 

and queue boxes. The initial dataflow graph is drawn in red.  

When the simulation is running, GM puts a dot inside the copy of process box 

indicating the copy is busy, and puts a cross inside the box indicating the copy is shut off.  

With the input rate changing, the number of copies of a CE that is needed might exceed 

the initial number calculated by the program “COPY”. In this case, GM will draw extra 

copies at the left side of the process box in green. The total number of copies will also be 

labeled in green. Whenever one extra copy of processor is initiated, the threshold of the 
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queue will increase by two automatically. The line indicating the threshold of the queue 

is also redrawn in green. When a job is finished by one process, it is routed to the next 

process by the Simulation Module, meanwhile, GM draws an arrow line indicating the 

direction of the data flow. GM needs to update and reproduce the dataflow graph 

whenever changes happen.  

Figure 4.3 is an example dataflow graph drawn by GM. This dataflow graph has 7 

levels altogether. Each node is labeled by its level number followed by its node number. 

Based on the number of initial copies calculated by the program “COPY”, the process 

boxes are divided into several smaller boxes. At the lower left corner of each process box 

is the number of copies that is needed in order to keep the queue level below the 

threshold. In this graph, all the numbers are the same as the initial numbers, so they are 

all labeled in red. All queues are empty, and all the thresholds are equal to 4. The arrow 

lines show the data flow direction. 
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Figure 4.3   An Example Dataflow Graph 
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44..22..22  SSIIMMUULLAATTIIOONN  MMOODDUULLEE  ((SSMM))  
 

The Simulation Module (SM) is the core of the program. It monitors the status of 

each copy of the processor and queue, allocates resources dynamically, routes the data 

accordingly, and keeps the program running correctly. Without SM, GM could only draw 

a static two-dimension vector graph. It is the SM that makes the dynamic simulation 

possible.   

As shown in Figure 4.4, the SM contains three major loop structures that control the 

logic of the simulation. The outermost loop is the master clock, which controls the timing 

of the whole system simulation. It is assumed that each loop takes 1 microsecond to 

execute. So we give this loop a new name, “micro-cycle.” The final count of this loop is 

the number of micro-cycles that the simulation has run. The second loop is the control of 

level. The third one is the control of the node in each level. SM scans from the first level 

to the last level, and from the first node to the last node in each level. Inside the third 

loop, there are many small loops to check the status of each copy of the processor, 

including whether a copy is shut down, busy, or free, whether a shutdown copy needs to 

be reopened and whether a busy copy has finished the job. When new data comes, if there 

are any free copies available, SM will execute the job. If there is no free copy, then SM 

puts the job in the queue. When there is no new incoming data, SM checks the queue of 

the node. If the queue is not empty and there is a free copy available, SM will execute 

one job from the queue and decrease the queue level. Also, the queue depth needs to be 

checked. If the queue level exceeds the threshold, a new processor needs to be activated 

to process the data and the threshold of the queue increases by two. When the queue level 

falls below the new queue threshold, SM will deactivate the extra copy of the processor 

and set the threshold back to its previous value.  

The node at the first level, which receives data for the system, is called “topnode.” 

Since the “topnode” is different from other nodes, it is processed separately at the 

beginning of the program. When a token/data item arrives at the input, SM scans the 

copies of that node to see if any free copies are available for process execution on this 

data. If there are no free copies available, the data item is stored in the queue and the 

queue counter is incremented. Otherwise the copy that is idle absorbs the incoming data 

and begins execution of its program on the data item. 



 35 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4   High Level Flow Chart for Simulation Module

Start 

Get Parameters From 
Files or Keyboard

t = Simutime? 

Go to a New Level 

Go to a New Node 

Check Queue and Status of Each 
Copy; Execute Job or Route Job; 
Increase Execution or Shutdown 
Time; Update the Status of Each 

Copy; Update the Graph. 

Last Node in 
the Level?

Last Level? 

End 

Yes

Yes

Yes

No

No

No

Increase time 

Simulation 
Finished?

Yes

No



 36 
 

 

44..22..33  UUPPDDAATTEE  MMOODDUULLEE  
 

When SM detects that a node has finished processing incoming data, it routes the 

data to the subsequent node. If the current node is a singular node, SM finds the 

subsequent node and increases the counter “nodejob” of the next node.  

If the current node is a fork, the data output after being processed by the fork is 

directed to one of the branches associated with the fork, depending upon the probability 

associated with that branch and the random number generated by the function “random.” 

The probabilities associated with that branch of the fork are not absolute probabilities, but 

are modified as “cumulative probabilities.”  The following example shows how to 

calculate the “cumulative probabilities.” Suppose a fork has 3 branches a, b, and c 

respectively, and let the probabilities associated with these branches be 0.1, 0.3, and 0.6. 

The cumulative probability assigned by SM to the branch a is 0.1. The cumulative 

probability to branch b is the summation of 0.1 and 0.3, that is, 0.4. The cumulative 

probability to branch c is the summation of 0.1, 0.3, and 0.6, that is, 1.0. In other words, 

cumulative probability is just the accumulation of the previous absolute probability. If the 

random number that is generated by the function “random” is greater than or equal to the 

associated cumulative probability, SM will route the data to this branch and increase the 

counter “nodejob” for this subsequent node. If not, SM will check the next branch and 

perform the above procedure again.  

If the current node is a “tailpiece,” that means there is no subsequent node. After the 

data is processed, one job is finished. SM decreases the counter of the left jobs “jobleft.” 

The Update Module is used to route jobs and to reset the status of the copies of the 

processor. Although it is explained as a different module, it is actually a subroutine and is 

embedded in the Simulation Module. After Update Module finishes its job, SM will take 

over the program again and continue its simulation. 

4.3 Program “hdca” 
The “C” program “hdca” is shown in Appendix A. It is based on an old “C” 

program “dpca” which is described in [1].  Some basic types of variables and structures 

from “dpca” have been kept, and new data structures have been added to the program 

“hdca.” The algorithm for drawing the dataflow graph didn’t change very much, but the 
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simulation algorithm is totally new. In “hdca,” the whole program is divided into several 

major functional blocks with each block performing a specific function. In this way, the 

program is very flexible and adding new functionalities becomes very easy. The program 

consists of five parts: preprocessor commands, global variable definitions, function 

prototypes, main function, and sub functions. Preprocessor commands define all the 

standard library header files the program will use. In this program, three header files are 

used: “stdio.h” is a standard input/output library; “math.h” is the mathematical 

declaration library; and “plot.h” defines all the functions that are used for drawing the 

graph. Preprocessor commands tell the compiler to include these three libraries when the 

program is compiled. The second part defines all the global variables that are accessed by 

all the functions. There are four structures defined in the program. Structure “link” 

defines the information for the links in the dataflow graph including the level number and 

the node number of both the source node and destination node, and the absolute 

probability for the fork branch. Structure “data” is used to store the coordinates of the 

upper midpoint and lower midpoint of the node box, and upper queue midpoint. Structure 

“nodeinfo” is used for the information. Element “fork” indicates whether a node is a fork, 

a singular node, or a tailpiece. “Processtime” is used to store the processing time of the 

node.  Structure “copyinfo” defines two flags and two counters. Flag “shutflag” indicates 

whether a copy of the processor is shut down or not. The value of 1 means the copy is 

already shut down; the value of 0 means it is not. “Stopcount” is the counter used to 

record the time that this copy has been shut down. Flag “busycopy” indicates whether 

this copy is busy or not; 1 means it is busy and 0 means it is free. Table 4-1 lists the 

functionality of some arrays used in the program. There are 12 function prototypes 

including “draw_dataflow,” “draw_link,” “arrow,” “simulation,” “shutoff,” “redraw,” 

“update,” “draw_queue,” “draw_shut,” “draw_busy,” “draw_extracopy,” and “varate.” 

Table 4-2 shows the functionalities of these prototypes.  
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Table 4-1:   Description of the Global Arrays 

Variable Name Function 

Level Number of the total levels of the dataflow graph 

Node[i] Number of the total nodes in ith level  

Copy[i][j] Number of copies needed for the ith level jth node during the 

simulation  

Initialcopy[i][j] Number of copies needed for the ith level jth node that is 

calculated by program “COPY” 

Qthreshold[i][j] Threshold of the queue for node ij 

Max_extracopy[i][j] Maximum number of the extra copies that node ij can initiate 

X X coordinate 

Y Y coordinate 

Dec Decrement between levels 

Inc Increment between nodes 

Decval[i][j] Height of each copy for node ij 

Linknum Number of total links 

totaljob Total number of jobs that need to be executed 

Jobleft Number of jobs that still need to be executed 

Path[i].lf Level number of source node for ith link 

Path[i].nf Node number of the source node for ith link 

Path[i].lt Level number of destination node for ith link 

Path[i].nt Node number of destination node for ith link 

Path[i].probability Absolute probability that the data follows this link 

Midpoint[i][j].x1 X coordinate of the bottom midpoint for node ij 

Midpoint[i][j].y1 Y coordinate of the bottom midpoint for node ij 

Midpoint[i][j].x2 X coordinate of the upper midpoint for node ij 

Midpoint[i][j].y2 Y coordinate of the upper midpoint for node ij 

Midpoint[i][j].qx X coordinate of the queue’s upper midpoint for node ij 

Midpoint[i][j].qy Y coordinate of the queue’s upper midpoint for node ij 
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Table 4-1:   Description of the Global Arrays (Continue) 

Variable Name Function 

Information[i][j].fork Flag that indicates whether node ij is a fork, a singular 

node, or a tailpiece 

Information[i][j].processtime Process time for node ij 

Nodecopy[i][j].shutflag[k] Flag that indicates whether the kth copy of node ij is shut 

down 

Nodecopy[i][j].stopcount[k] Shut down time for the kth copy of node ij 

Nodecopy[i][j].busyflag[k] Flag that indicates whether the kth copy of node ij is busy 

Nodecopy[i][j].exetime[k] Execution time for the kth copy of node ij 

 

 

 

Table 4-2:   Functionalities of the function program in HDCA 

Function Name Functionality 

Draw_dataflow Draw all the nodes of the given dataflow graph 

Draw_link Draw all the links between the nodes and empty queues for all nodes 

Redraw Redraw the data flow graph according to the current status 

Draw_queue Draw the queue  

Draw_shut Place a cross in the shut down copy 

Draw_busy Place a dot in the busy copy 

Draw_extracopy Draw extra copies for the node 

Arrow Draw an arrow 

Simulation Simulate the program 

Update Update all the variables and route the data  

Clear_one_queue Erase one token from the queue 

Clear_busy Erase the dot which is used to indicates the copy is busy 

Clear_shut Erase the cross which is used to indicate the copy is shut down 

Shutoff Shut down a copy  
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Figure 4.5 is the flow chart for the main program of “hdca.” The first piece of data 

that a user should input is whether the program is to be run in a user input environment or 

in the auto input environment, that is, whether “sel” is 1 or 0. If “sel” equals 1, then the 

program gets all the data from the keyboard. If “sel” equals 0, the program enters the auto 

input branch, and gets all the required data from a series of files that are stored in the 

same directory as the main program. Since the program needs a large amount of data 

before it can run, it is very easy to get confused when a user is trying to form the data 

files. The user input environment will be very helpful in such a case.  Two environments 

work in a similar way, except that auto-input mode needs to open and close a set of files. 

In both cases, the program needs to get the number of levels (N), the number of nodes in 

each level (node[10]), all links(path[100]) , and the number of copies in each node 

(nodecopy[10][10]). With these data ready, the program is capable of initiating the plotter 

and calling function “draw_dataflow” and “draw_link” to draw a complete dataflow 

graph before simulation begins. Then the program also needs some parameters such as 

whether a node is a fork, the processing time for each node, and the probability for each 

path of a fork in order to do simulation. These parameters are called α parameters. They 

are stored in the structure array “information[10][10]” except that the probability is stored 

in structure array “path[100].probability”. After the α parameters are input and stored, the 

user needs to input the total number of tokens/data items at the top node, the average 

speed ratio at which the data is input at the top node, the total simulation time, whether 

any copy needs to be shutdown, and whether the input rate is variable. After getting all of 

this information, the program is ready to do simulation. Then the program calls the 

function “simulation.” When the simulation is done, GM draws a complete dataflow 

graph with the status as it was. Then the “main” program closes the plotter and finishes 

the simulation. The “main” program looks very easy, because all the detailed jobs have 

been taken care of by the sub functions like “draw_dataflow,” “draw_link,” “Simulation,”  

etc. According to their functionalities, the programs are categorized into four modules: 

graphical module, simulation module, update module, and shutdown module. The 

following pages will explain all the sub-functions according to their module category. 
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Figure 4.5   Flow Chart for Program HDCA 
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Figure 4.5   Flow Chart for Program HDCA (Continue 2) 
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Figure 4.5   Flow Chart for Program HDCA (Continue 3) 
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44..33..11  GGRRAAPPHHIICC  MMOODDUULLEE  ((GGMM))  
 

 In this module, there are 11 function programs: “draw_dataflow,” “draw_link,” 

“draw_queue,” “clear_one_queue,” “draw_shut,” “clear_shut,” “draw_busy,” 

“clear_busy,” “draw_extracopy,” “redraw,” and “arrow.” 

These functions will be explained one by one. 

a. Draw_dataflow 

 This function takes only one parameter passed by the calling function, “plotter.”  

Parameter “plotter” is defined in the main program when initializing the plotter. It is a 

pointer of type “plPlotter” and is created by calling “pl_newpl_r.” The parameter values 

of this plotter are specified by calling the “pl_setplparam” function. The “pl_setplparam” 

function acts on a “plPlotterParams” object, which encapsulates Plotter parameters. When 

a Plotter is created by calling “pl_newpl_r,” a pointer to a “plPlotterParams” object is 

passed as the final argument. Then calling the function “pl_openpl_r” will open the 

plotter. The plotter is alive until it is closed by calling “pl_closepl_r.” During its lifetime, 

it needs to be passed to the called function as a parameter in order to plot any graph. So 

“draw_dataflow” takes this parameter, and operates on the data or variables that are 

defined as global variables. The data type “plPlotter” and all the functions starting with 

“pl_” and ending with “-r” are defined in the “libplot” library. See reference [15] for 

more information about “libplot” library. 

The flow chart for “draw_dataflow” is shown in Figure 4.5. In the main program, 

function “pl_space_r(plotter, 0, 0, 4000, 4500)” takes two pairs of arguments, specifying 

the positions of the lower left and upper right corners of a rectangular window in the user 

coordinate system that will be mapped to the output device that graphics will be drawn in. 

That is, the coordinate of the lower left corner is (0,0) and the coordinate of the upper 

right corner is (4500,5000) in the user coordinate system. “Pl_space_r” sets the affine 

transformation from user coordinates to device coordinates. At the beginning of the 

program, function “pl_ffontsize_r(plotter, 150)” sets the font size to 150, then draws a 

title for the graph at the top of the rectangular box. After that, the font size is set to 75, 

and is used to label the node name, queue name, and etc. Then the decrement between the 

levels is calculated according to the number of total levels and this value is stored in the 
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Figure 4.6   Flow Chart for “draw_dataflow” 
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Figure 4.6   Flow Chart for “draw_dataflow” (Continued 2) 
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variable “dec.” Then the program enters three loops. The outer loop calculates the 

increment between nodes in a certain level and stores the value to the variable “inc.” In 

the second loop, the program draws a 200x200GDUs size box for each node in that level. 

According to the result of the program “COPY,” the program divides the box into several 

small rectangular boxes with each small box representing a copy of the process. The 

nodes are drawn from left to right for the same level. The box furthest to the left 

represents the first node and the box furthest to the right represents the last node. The first 

level is drawn on the upper side and the last level is on the lower side. After drawing all 

the copies, the program labels the number of copies each node needs. If the number is the 

same as the initial assigned number, it is labeled in red. If the number is greater than the 

initial assigned number, it is labeled in green. That means that initially assigned 

processors are not enough to produce a smooth simulation that keeps the queue level 

below the queue threshold, and some extra copies of the process have been initiated. All 

the midpoint coordinates are then stored for later use. The program then draws an empty 

queue box, labels the queue threshold, and labels the queue name. An arrow line from the 

queue box to the process box indicates that the data enters the queue first, and then is 

executed when there is a free copy of the processor. Then the program enters the inner 

loop to check whether extra copies need to be drawn. By this time these three loops end, 

all nodes, queues and labels have been displayed on the screen.  

b.     Draw_datalink 

The only parameter passed by the calling function is still the Plotter. The flow chart 

for program “draw_link” is shown in Figure 4.7. The function of this program is very 

pure: draw all the links between the source nodes and the destination nodes. The dataflow 

graph can be cyclic or acyclic. The feedback line makes the drawing a bit complicated. 

At the beginning, the program enters a small loop to draw input lines for all topnodes. 

Then another loop draws the output lines at the last level of the dataflow graph. If there 

are feedback lines for these tailpiece nodes, then draw the feedback lines. If the 

destination node is on the left side of the source node, draw the feedback line at the left 

side of the source node. If the destination node is on the right side of the source node, 

draw the feedback line at the right side of the node. Last, the program searches all the 

links and draws the paths from the source nodes to the queues of the destination one by  
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Figure 4.7   Flow Chart for “draw_link” 
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Figure 4.7   Flow Chart for “draw_link” (Continued 2) 
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one. If the level of source node is greater than the level of destination node, this link is a  

feedback. In order to draw a nice graph, the position of the destination node has to be 

considered. If the destination node is on the left side of the source node, draw the 

feedback line at the left side of the graph; if the destination node is on the right side of the 

source node, draw the feedback line to the right side of the graph. 

c.  Draw_queue 

This program draws the queue for a node as the queue level starts to build up. 

Figure 4.8 is the flow chart for “draw_queue.” This function program takes three 

arguments from the calling function – the plotter, the number of the level “l,” and the 

node number “n”. Each pair of (l,n) decides which node this program works on. The 

queue depth is stored in “queue[l][n].” Each time this function is called, it draws 

queue[l][n] small boxes inside the large empty queue box, representing that there are 

queue[l][n] data, or tokens, in the queue for node “ln.” Function “pl_box_r(plotter, 

x1,y1,x2,y2)” draws a rectangle box starting from the corner (x1,y1) and ending at the 

point (x1,y1), with the point (x2,y2) as the opposite corner. Then function 

“pl_marker_r(plotter, x1+50, y1+12,4,4)” puts a dot inside the box. (x1,y1) of the first 

box is calculated according to the upper midpoint coordinates. Then (x2,y2) is calculated 

according to (x1,y1). After each loop, increase y1 by 25 and the plotter is ready to plot 

the next box for the next loop. Before drawing each box, the program checks whether the 

number of the queue level is greater than the queue threshold. If yes, the pen color is set 

to green instead of red so that the user can easily notice that the queue level exceeds the 

threshold and can expect a new processor to be started. 

 

d. Clear_one_queue 

This function erases one token from the queue each time one control token is 

removed from the queue to be executed. 

e. Draw_shut  

This program works on a specific copy of a node and draws a cross inside the copy 

box. It takes four arguments: plotter, number of level “l,” number of node “n,” and the 

number of copies for this node “cp.” “Decval[l][n]” is the height of each copy for node 

“ln.” According to the upper midpoint coordinate of the node--(a2,b2), “decval[l][n],”  
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Figure 4.8   Flow Chart for “draw_queue” 
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an extra copy, then (x1,y1) is calculated by a different formula, and it is drawn in green. 

The dot indicates that this copy is busy. 

h. Clear_budy 

This function erase the dot that has been drawn by “draw_busy” when the copy is 

not busy any more. 

i. Draw_extracopy 

This program is only called when the real needed number of copies exceeds the 

original number of copies. The extra copies are drawn on the left side of the node box in 

green instead of inside the node box in red, so that they can be easily noticed by the user. 

The program takes three arguments: plotter, the level number “l,” and the node number 

“n.” The Plotter is the same plotter that is opened during the initialization time. Pair (l,n) 

defines which node the program is going to work on. (a1,b1) is the coordinate of the 

lower midpoint of the node box. According to (a1,b1), the lower left corner coordinate 

(x1,y1) is calculated. Then a 200x25 GUDs rectangle box is drawn representing a copy. 

A loop is done for more copies. Local variable “copies” represents the number of extra 

copies that need to be drawn. In the real system, the resource is limited. So we set the 

maximum number as 4 for this value. There are only 4 extra copies available in order to 

reduce the queue level below the threshold. 

j. Redraw 

This program works together with all of above functions to update the graph each 

simulation cycle. Before this function is called, the full dataflow graph has been drawn on 

the screen. When the simulation starts, the status of each copy and the queue changes. At 

the end of each simulation cycle, this program is called to redraw the graph with queues, 

busy copies, shut down copies, or extra copies. If only dots and lines need to be added to 

the graph, the existing graph does not need to be erased. But if the queues, the extra 

copies, and the dots and the cross inside each box need to be cleared, everything on the 

screen has to be cleared and the whole dataflow graph needs to be redrawn again. So a 

flag “updateflag” is defined in the program “simulation” to indicate whether the dataflow 

graph on the screen needs to be totally cleared before we redraw it. At the beginning of 

the program, the flag “updateflag” is checked to see whether “pl_erase_r” needs to be 

called to clear the whole screen and redraw all the node boxes. Then all the input and 
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output lines are added. Then two loops are executed to check each and every one of the 

nodes. If a node’s queue is not empty, then call “draw_queue” to draw the queue for this 

node. If any copy of this node is shut down, ie. “shutflag” for this copy is 1, then call 

“draw_shut” to draw the cross inside this copy box. If this copy is busy, ie. “busyflag” for 

this copy is 1, then call “draw_busy” to print a dot inside this copy box. In this way, the 

user can easily see which copy is busy, which copy is shut down, and how many tokens 

are in the queue. Figure 4.9 shows the flow chart for this program.  
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Figure 4.9   Flow Chart for Program “redraw” 
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44..33..22  SSIIMMUULLAATTIIOONN  MMOODDUULLEE  ((SSMM))  
 

The simulation module includes only one program “simulation.” The flow chart for 

program “simulation” is shown in Figure 4.10. At the beginning of the simulation, the 

program checks to see whether any processor needs to be shut down. If yes, the program 

will enter the Shutoff Module to shut down the processor. Then it enters the master clock 

loop to simulate the running of the program. The user need not input any information at 

this point. All the required data is read from the main program. The information required 

by the SM is the processing time for each node, information regarding the node, whether 

the node is a fork or a singular node, and the absolute probabilities associated with all the 

branches of that fork if the node is a fork, and number of data/tokens available at the 

input to the system. The rate of input will determine the interval at which the data/tokens 

are input into the system. For example, if the input rate is 4 data/tokens per millisecond, 

the SM will input data every 250 microseconds since 1000 microseconds equals 1 

millisecond. Since the simulation is not real-time in nature, it is appropriate to treat each 

“period” of master clock as one microsecond. So for an input rate equal to 4, the SM will 

input data every 250 master periods. Since the processing times for the nodes are given in 

milliseconds, all the processing times are scaled to microseconds in the main program for 

the purpose of simulation. For example, if the processing time for the top node is 0.85 

milliseconds and the input rate is 4, the processing time is scaled to 850 microseconds. 

When the simulation begins, it needs to run 850 loops in order to finish a job in the top 

node.  

In the program, “simutime” represents the total simulation time and “inrate” 

represents the input rate. The “simutime” needs to be input by the user at the time of 

simulation. It should be in the unit of microseconds. The input rate can be either fixed or 

variable. If the input rate is fixed, it equals the “speedratio” that the user enters at the 

beginning of the simulation. But in the real system, the incoming events usually occur 

randomly, so the input rate is variable. In this case, a function “varate(speedratio)” will 

generate some random numbers around the number of “speedratio.” Variable “inflag” 

simulates the time when a new data/token needs to be input. When the time counter 

equals to “inflag,” “nodejob[1][1]” will increase by 1, meaning that the job for node 11 is 

increased by 1. Remember, the unit of the “simutime” that the user needs to input is in 
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Figure 4.10   Flow Chart for Program “simulation” 
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Figure 4.10   Flow Chart for Program “simulation” (Continued 2) 
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Figure 4.10   Flow Chart for Program “simulation” (Continued 3) 
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Figure 4.10   Flow Chart for Program “simulation” (Continued 4) 
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microseconds, and the unit of “inrate” is in microseconds. After checking the input time, 

the program enters a two level loop to check each and every node. For example, for node 

“ln,” if there is a newly incoming job, that is “nodejob[l][n] >0,” the program will do a 

small loop to check whether any free copy is available. If yes, it will set the “busyflag”of 

this copy to 1 indicating this copy is occupied by the job and it will set the “exetime” to 

zero meaning that the execution just started. If not, put the job in the queue of this node. 

In both cases, “nodejob[l][n]” needs to be decremented by 1 meaning that this new job 

has been processed, either being  executed, or waiting in the queue. After processing the 

new job, the program does another loop to check the status of all the copies. If any copy 

is shut down for the time being, then check the “stopcount” to see how long this copy has 

been shut down. If the time is not enough, then increase the “stopcount” by 10, or reopen 

the copy by setting the “shutflag” to zero and ask the user whether more copies need to 

be shut down. If any copy is busy, then check the “exetime” to see whether the executing 

time equals to the processing time for node “ln.” If yes, enter the update module to route 

the data and update the status of the copy. If not, increase the “exetime” by 1. Then 

another loop is executed to check the queue for this node. If the queue depth exceeds the 

queue threshold and the number of extra copies is less than the maximum number of 

extra copies, then increase the queue threshold by 2 and start a new copy of the processor 

to help to process all the jobs in the queue starting from the next cycle. If the queue depth 

is below the threshold, no extra copies are needed, so the program checks all copies to see 

whether free copies are available to execute the job. Each free copy executes one job 

from the queue, and the queue decreases by 1. After checking the queue, the program 

needs to check whether the extra copies that are started earlier need to be deactivated. If 

the queue level falls back below the queue threshold, then deactivate one extra copy and 

decrease the queue threshold by 2. This ends the loop of checking all of the nodes of the 

dataflow graph. At this time, the status of the copies and the queue levels for all the nodes 

might be different from the last cycle, so “redraw” is called to redraw the dataflow graph 

on the screen. The last step in one master clock cycle is to check “jobleft,” the number of 

jobs that have not been finished. If “jobleft” is greater than zero but the simulation time 

has reached the number that the user assigned, then the simulation time is not enough. If 
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“jobleft” is zero but the simulation time has not reached the number, then finish the 

simulation immediately. 

 

44..33..33  UUPPDDAATTEE  MMOODDUULLEE  
 

The update module has only one program: “update( ).” It takes four arguments from 

the calling function: “plotter,” the level number “l,” the node number “n,” and the copy 

number “cp.” The update module is embedded in the SM and is called only when a job is 

finished at a node. Figure 4.11 shows the flow chart for “update”. The local variable 

“word” represents whether the node is a fork, a singular node or a tailpiece. In case of a 

singular node, or “word” equals to zero, the program searches all the links to find the 

subsequent node where the data should go. Once the subsequent node is found, increase 

the “nodejob” for that node and sets copy “cp” of the current node to free. Meanwhile, 

draw an arrow line from the lower midpoint of the current node box to the queue of the 

subsequent node. If the current node is a fork, things became more complicated. Since the 

type of fork used for the modeling is a selective fork, the data output after being 

processed by the fork is directed to only one of the branches associated with the fork. So 

we need to have a mechanism to find out which branch the data should go to. In this 

program, function “random” is used to generate a random number. If the accumulative 

probability associated with a branch is greater than this random number, then route the 

data to this branch by increasing the “nodejob” of the subsequent node of this branch by 

one, and draw an arrow line from the current node to the next node indicating the data 

flow direction. If this branch is a feedback, then the position of this arrow line depends on 

the position of the destination node. If the destination node is on the left side of the 

current node, then draw the feedback line at the left side of the screen. If the destination 

node is on the right side of the current node, then draw the feedback line at the right side 

of the screen. After directing the data to the subsequent node, set the copy “cp” of the 

current node free by changing “busyflag” of this copy to 0 and clearing the execution 

time. If “word” equals to 2, this means the current node is the tailpiece. In this case, just 

free the copy “cp” and clear the execution time “exetime” for this copy. Then decrease 

“jobleft” by one, indicating that one job just finished. 
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Figure 4.11   Flow Chart for Program “update” 
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44..33..44  SSHHUUTTOOFFFF  MMOODDUULLEE  
 

This module is used to shut down any copy of a processor and to do fault tolerance 

analysis. “Shutoff” is the only program in this module. Each time this program is called, 

the user needs to input the level number, node number and copy number of the node that 

the user wants to shut down. Then the copy is “shut down” simply by setting the 

“shutflag” to 1, and meanwhile set “stopcount” of that copy to 0 meaning the beginning 

of the “shut down.” The shut down time should be the integer number times of the 

processing time of that node. This integer number should also be inputted by the user at 

the beginning of this module. After shut down of a specific copy, the user can choose to 

shut down more copies, or go back to the simulation mode.  

 

4.4 Input and Output File Format 
The program “hdca” can get all needed data either from a keyboard or from a series 

of files. If the program is run in the auto input environment, it needs to read data from 5 

files: “dataset,” “labelset,” “informationset,” “timeset,” and “probabilityset.” “Labelset” 

and “timeset” are generated by the program “COPY.” So we need to run program 

“COPY” before we start the simulation.  In order to run “COPY,” file “copyset” is 

needed if the program “COPY” needs to run in the auto input environment. Let’s take the 

example that we described in 3.2 and Figure 3.7 to see how these files are comprised. 

Copyset: 
3 
7 1 1 2 1 3 1 4 1 5 1 6 1 7 1 
7 1 1 2 1 3 2 4 1 5 1 6 1 7 1 
5 1 1 3 3 5 1 6 1 7 1 
0.85 0.425 1.63 2.5 1.3 0.5 0.96 0.85 1.87 0.45 0.69 15.0 1.12 0.9 0.32 0.05 2.7 1.5 
16 3.8 2.5 1 0.35 0.35 0.65 0.8 0.2 1 
Labelset: 

4 3 2 1 7 2 8 3 5  
Dataset: 

7 1 1 3 1 1 1 1 1 1 2 1 2 1 3 1 3 1 4 1 4 1 5 1 5 1 6 1 6 1 7 1 2 1 3 2  
3 2 4 1 1 1 3 3 3 3 5 1 0 0 0 0  
Informationset: 

1 1 0 0 0 0 0 0 2 
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1  
Timeset: 

0.850000  
1.630000  
1.300000  
0.320000  
2.700000  
0.960000  
1.870000  
0.690000  
1.120000 

Probabilityset: 

0.35 0.65 0.8 0.2 

For “copyset,” the first number represents how many pipelines are in the graph. For 

Figure 3.7, there are 3 pipelines altogether. Then the following three groups represent 

three pipelines, with the first number indicating the total number of nodes in the pipeline 

and the rest of the numbers show the nodes in the pipeline. Each node is represented by 

two numbers, with the first number representing the level number and the second number 

representing the node number in the level. For example, node A is represented by 11, and 

node D is indicated by 32. The following numbers are the execution time in milliseconds 

and process length in kilobytes for each and every node in the dataflow graph. The 

beginning of the last line indicates the memory size that is available for the process in 

kilobytes, maximum input rate, and average input rate. After that, “1” indicates that the 

fork needs to be considered, so the following 5 numbers are the absolute probabilities for 

all the fork branches in the graph. The last number indicates whether the combinable 

processes are desired. “1” means “yes,” and “0” means “no.”   

In “labelset,” the numbers represent the number of copies that the node needs for 

the “clog” free simulation. They are in the order of the nodes P11, P21, P31, P32, P33, P41, 

P51, P61, and P71. 

In “dataset,” the first number “7” is the total number of levels in the graph. The 

following 7 numbers are the number of nodes in these 7 levels, starting from the first 

level to the 7th level. Starting from the 9th number, every four digits form a link. For 

example, “1 1 2 1” means a link from P11 to P21. The last four zeroes terminates the input 

of the links. 
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In “informationset,” “1” means the node is a fork, “0” means the node is a singular 

node, and “2” means the node is a tailpiece. So, in this case, P11 and P21 are forks, node 

P71 is a tailpiece and all other nodes are singular nodes. 

In “timeset”, the numbers are the processing time for P11, P21, P31, P32, P33, P41, P51, 

P61, and P71. They are in milliseconds. 

In “probabilityset,” they are the probabilities from P11 to P21, from P11 to P33, from 

P21 to P31, and from P21 to P32. 

4.5 How to run HDCA? 
The program “hdca” is designed to run under the Unix operating system. In order to 

run this program, the user needs to have the discussed 5 files ( dataset, labelset, 

informationset, timeset, and probabilityset) ready in the directory. And the GNU’s 

“libplot” library should also be installed in the system. The “libplot” library is contained 

in the GNU Plotutils Package. The package is free software. Its source code is distributed 

as a gzipped tar file, 3.3 megabytes in size. It can be installed on GNU/Linux, FreeBSD, 

and Unix systems. Go to this website to find how to get the software. 

http://www.gnu.org/software/plotutils/ 

How to compile? 

Libplot was installed in the dirctory “gnulib” in an user account “czhen2”, then the 

following command was used to link the library when the program was compiled: 

Gcc hdca.c –L/homes/czhen2/gnulib/lib –lplot –I/homes/czhen2/gnulib/include –o hdca 

After successful compilation, an executable file “hdca” was generated. Then “hdca” 

was typed to run this program. Some parameters need to be inputed interactively as the 

program is running. Table 4-2 contains the print out of  an actual run of program “hdca.” 

The dynamic simulation graph will be introduced in Chapter 5. 
 

Table 4-3:   Example Run of Program “hdca” 

czhen2@lily:~/thesis> hdca (Enter) 

If keyboard entry is desired set KBENTRY to 1, 

and for 'read' from file, set KBENTRY to 0  1 (Enter) 

KBENTRY=0  

NUMBER OF LEVELS =7 
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Level 1 has 1 nodes 

Level 2 has 1 nodes 

Level 3 has 3 nodes 

Level 4 has 1 nodes 

Level 5 has 1 nodes 

Level 6 has 1 nodes 

Level 7 has 1 nodes 

Link:11-->21 

Link:21-->31 

Link:31-->41 

Link:41-->51 

Link:51-->61 

Link:61-->71 

Link:21-->32 

Link:32-->41 

Link:11-->33 

Link:33-->51 

Total 10 links 

Node11 needs 4 copies! 

Node21 needs 3 copies! 

Node31 needs 2 copies! 

Node32 needs 1 copies! 

Node33 needs 7 copies! 

Node41 needs 2 copies! 

Node51 needs 8 copies! 

Node61 needs 3 copies! 

Node71 needs 5 copies! 

The cumu probability for link node[1][1]->node[2][1]is 0.350000 

The cumu probability for link node[1][1]->node[3][3]is 1.000000 

Information[1][1].fork=1 processtime=850  
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The cumu probability for link node[2][1]->node[3][1]is 0.800000 

The cumu probability for link node[2][1]->node[3][2]is 1.000000 

Information[2][1].fork=1 processtime=1630  

Information[3][1].fork=0 processtime=1300  

Information[3][2].fork=0 processtime=320  

Information[3][3].fork=0 processtime=2700  

Information[4][1].fork=0 processtime=960  

Information[5][1].fork=0 processtime=1870  

Information[6][1].fork=0 processtime=690  

Information[7][1].fork=2 processtime=1120  

Input the total number of jobs at the topnode:40 

 

Enter the average speedratio of the input jobs at the topnode:200 (Enter) 

 

Enter the total simulation time(in mirco cycles):30000 (Enter) 

 

Would you like to shut down any of CE copies?1-yes, 0-no0 (Enter) 

If variable input rate is desired, set varyinrate to 1, or 0! 

1 (Enter) 

 

No DISV's at the input. Execution interrupted. 

Change the number of input jobs if desired, and run the program again! 

Total simulation time is 17172 micro cycles. 

totaljob=0 jobleft=0 inrate=192 simutime=30000 shut=0 

 



 68 
 

 

5 SIMULATION RESULTS 
 

As mentioned in earlier chapters, the program “hdca” can simulate any given 

dataflow graph, including both cyclic and acyclic graphs. In this section, three 

applications are presented as a demonstration of the application capabilities of the 

program in dynamically simulating the dataflow’s running on HDCA. The first 

application is the example used in Chapter 4. It is adapted from the example radar 

problem presented in [14]. The second application is a two input dataflow graph found in 

[7]. The last one is a cyclic dataflow graph also found in [7]. 

5.1 Application 1 
 This simulation is conducted on the dataflow shown in Figure 3.7. The dataflow 

graph is redrawn in Figure 5.1. The nodes originally represented by circles are now 

represented by square boxes. The α parameters and input files are shown in Table 5-1 and 

Table 5-2.  The rate of input will determine the interval at which the Data Item or tokens 

are inputted into the system. For example, the data input rate at peak load is 3.8 data 

items/millisecond, and the average data input rate is 2.5 data items/millisecond. So the 

SM inputs a data/token every 263 (1000/3.8) microseconds at peak load, and every 

250(1000/4) microseconds at average load. According to these input rates and α 

parameters, the program “COPY” first calculates the number of copies that each and 

every node needs for a queue-free simulation and then saves the results in the file 

“labelset”. The program “hdca” reads the number of copies from file “labelset” and treats 

those numbers as the initial number of copies that the node needs to do the simulation. 

When the input rate is less than the peak load input rate of 3.8 tokens/millisecond, or 

1000/3.8=263 microseconds /token, the program “hdca” should be able to produce a 

queue-free simulation graph without having to initiate an extra copy of a processor for 

each and every node. When the input rate increases, the queue level will also increase. 

When the input rate is high, the queue level at some nodes will exceed the threshold, and 

extra copies will be needed. Simulation has been conducted at three different input rates: 

peak load input rate of 263 microseconds/token, slightly higher than the peak load input 

rate of 200 microseconds/token, and a very high input rate of 100 microseconds/token to 

study whether the simulator can simulate the architecture correctly.  
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Figure 5.1   Dataflow Graph of Application 1 

 

 

 

P11

P21

P31 P32

P71

P61

P51

P41 

P33 

Output 

Input 



 70 
 

 

Table 5-1:   Parameter Values for Data Flow Graph of Application 1 

Process 

Designation 

Execution Time 

(milliseconds) 

Process Length 

(Kilobytes) 

11 0.85 0.425 

21 1.63 2.5 

31 1.3 0.5 

32 0.32 0.05 

33 2.7 1.5 

41 0.96 0.85 

51 1.87 0.45 

61 0.69 15.0 

71 1.12 0.9 

Input Data Rates (data items/millisecond) 

Peak Load: 3.8 

Average Load: 2.5 

Probability Distributions for Forks 

P11->33: 0.65 

P11->21:  0.35 

P21->32: 0.2 

P21->31: 0.8 

Program Memory/Computing Element: 16 kilobytes 

 

Table 5-2:   Input Files for Application 1 

Copyset: 

3 7 1 1 2 1 3 1 4 1 5 1 6 1 7 1 7 1 1 2 1 3 2 4 1 5 1 6 1 7 1 5 1 1 3 3 5 1 6 1 7 1 

0.85    0.425 1.63 2.5 1.3 0.5 0.96 0.85 1.87 0.45 0.69 15.0 1.12 0.9 0.32 0.05 2.7 

1.5 16 3.8 2.5 1 0.35 0.35 0.65 0.8 0.2 1 

Dataset: 

7 1 1 3 1 1 1 1 1 1 2 1 2 1 3 1 3 1 4 1 4 1 5 1 5 1 6 1 6 1 7 1 2 1 3 2 3 2 4 1 1 1 

3 3 3 3 5 1 0 0 0 0 

Informationset:   1 1 0 0 0 0 0 0 2 
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Figure 5.2 shows an actual graphical run of the program “hdca” at the input rate of 

263 microseconds/token, and there are 20 Data Items (or control tokens) at the top node 

for case1. Figure 5.1 a was captured at 1000 Micro-cycles, b was captured at 2000 Micro-

cycles, and so on. Figure 5.3 shows an actual graphical run of the program at the input 

rate of 200 microseconds/token and with the same amount of data items at the input 

nodes. Figure 5.4 shows the graphical simulation results at a very high data input rate, 

100 microseconds/token and with the same amount of tokens at the top node. SM 

assumes that each cycle of the simulation will take 1 microsecond, so we treat the time in 

“microcycles.” For example, if the total simulation time is 10000 microseconds, the SM 

will simulate the program for 10000 cycles. Form now on, we call this cycle 

“microcycles,” and it is treated as the unit of the processing time. Pictures in Figures 5.2, 

5.3, 5.4 and those pictures for application 2 and application 3 are taken every 1000 

“microcycles.”  

By looking at Figure 5.2, there are 3 tokens in node 11 and 1 token in node 33 at 

1000 Micro-cycles (Shown by Figure 5.2a). At 2000 Micro-cycles(Shown by Figure 

5.2b), there are 3 tokens in node 11, 1 token in node 21, and 4 tokens in node 33. By the 

time of 6000 Micro-cycles, all of 20 token have been scattered to nodes 31, 32, 33, 41, 

51, 61, and 71. There is one token stored in the queue of node 33. As time goes on, the 

data items that have been finished will get out of the graph from the node 71 

(“tailpiece”).  
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Figure 5.2 a   Simu. Results of Application 1 (Input Rate=263micro-cycles/token) 

(t =1000 micro-cycles) 
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Figure 5.2 b   Simu. Results of Application 1 (Input Rate=263micro-cycles/token) 

 (t=2000 micro-cycles) 
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Figure 5.2 c   Simu. Results of Application 1 (Input Rate=263micro-cycles/token) 

(t=3000 micro-cycles) 
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Figure 5.2 d   Simu. Results of Application 1 (Input Rate=263micro-cycles/token) 

(t=4000 micro-cycles) 
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Figure 5.2 e   Simu. Results of Application 1 (Input Rate=263micro-cycles/token) 

(t=5000 micro-cycles) 
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Figure 5.2 f   Simu. Results of Application 1 (Input Rate=263micro-cycles/token) 

(t=6000 micro-cycles) 
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Figure 5.2 g   Simu. Results of Application 1 (Input Rate=263micro-cycles/token) 

(t=7000 micro-cycles) 
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Figure 5.2 h   Simu. Results of Application 1 (Input Rate=263micro-cycles/token) 

 (t=8000 micro-cycles) 
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Figure 5.2 i   Simu. Results of Application 1 (Input Rate=263micro-cycles/token) 

 (t=9000 micro-cycles) 
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Figure 5.2 j   Simu. Results of Application 1 (Input Rate=263micro-cycles/token) 

(t=10000 micro-cycles) 
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Figure 5.2 k   Simu. Results of Application 1 (Input Rate=263micro-cycles/token) 

(t=11000 micro-cycles) 
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Figure 5.2 l   Simu. Results of Application 1 (Input Rate=263micro-cycles/token) 

 (t=12000 micro-cycles) 
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Figure 5.2 m   Simu. Results of Application 1 (Input Rate=263micro-cycles/token) 

 (t=13000 micro-cycles) 

 
Total Simulation Time = 12633 Micro-cycles 
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Figure 5.3 a  Simu. Results of Application 1 (Input Rate=200micro-cycles/token) 

 (t=1000 micro-cycles) 
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Figure 5.3 b   Simu. Results of Application 1 (Input Rate=200micro-cycles/token) 

 (t=2000 micro-cycles) 
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Figure 5.3 c   Simu. Results of Application 1 (Input Rate=200micro-cycles/token) 

 (t=3000 micro-cycles) 
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Figure 5.3 d   Simu. Results of Application 1 (Input Rate=200micro-cycles/token) 

 (t=4000 micro-cycles) 
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Figure 5.3 e   Simu. Results of Application 1 (Input Rate=200micro-cycles/token) 

(t=5000 micro-cycles) 
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Figure 5.3 f   Simu. Results of Application 1 (Input Rate=200micro-cycles/token) 

(t=6000 micro-cycles) 
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Figure 5.3 g   Simu. Results of Application 1 (Input Rate=200micro-cycles/token) 

 (t=7000 micro-cycles) 
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Figure 5.3 h   Simu. Results of Application 1 (Input Rate=200micro-cycles/token) 

 (t=8000 micro-cycles) 
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Figure 5.3 i   Simu. Results of Application 1 (Input Rate=200micro-cycles/token) 

(t=9000 micro-cycles) 
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Figure 5.3 j   Simu. Results of Application 1 (Input Rate=200micro-cycles/token) 

 (t=10000 micro-cycles) 
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Figure 5.3 k   Simu. Results of Application 1 (Input Rate=200micro-cycles/token) 

(t=11000 micro-cycles) 
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Figure 5.3 l   Simu. Results of Application 1 (Input Rate=200micro-cycles/token) 

(t=12000 micro-cycles) 
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Figure 5.3 m   Simu. Results of Application 1 (Input Rate=200micro-cycles/token) 

 (t=13000 micro-cycles) 

 
Total Simulation Time = 12834 Micro-cycles 
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Figure 5.4 a   Simu. Results of Application 1 (Input Rate=100micro-cycles/token) 

 (t=1000 micro-cycles) 
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Figure 5.4 b   Simu. Results of Application 1 (Input Rate=100micro-cycles/token) 

 (t=2000 micro-cycles) 
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Figure 5.4 c   Simu. Results of Application 1 (Input Rate=100micro-cycles/token) 

(t=3000 micro-cycles) 
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Figure 5.4 d   Simu. Results of Application 1 (Input Rate=100micro-cycles/token) 

 (t=4000 micro-cycles) 
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Figure 5.4 e   Simu. Results of Application 1 (Input Rate=100micro-cycles/token) 

 (t=5000 micro-cycles) 
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Figure 5.4 f   Simu. Results of Application 1 (Input Rate=100micro-cycles/token) 

 (t=6000 micro-cycles) 
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Figure 5.4 g   Simu. Results of Application 1 (Input Rate=100micro-cycles/token) 

 (t=7000 micro-cycles) 
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Figure 5.4 h  Simu. Results of Application 1 (Input Rate=100micro-cycles/token) 

(t=8000 micro-cycles) 
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Figure 5.4 i   Simu. Results of Application 1 (Input Rate=100micro-cycles/token) 

 (t=9000 micro-cycles) 
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Figure 5.4 j   Simu. Results of Application 1 (Input Rate=100micro-cycles/token) 

(t=10000 micro-cycles) 
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Figure 5.4 k   Simu. Results of Application 1 (Input Rate=100micro-cycles/token) 

 (t=11000 micro-cycles) 

 

 

 



 109 
 

 

 

 

 

 
 

Figure 5.4 l   Simu. Results of Application 1 (Input Rate=100micro-cycles/token) 

(t=12000 micro-cycles) 
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Figure 5.4 m   Simu. Results of Application 1 (Input Rate=100micro-cycles/token) 

(t=13000 micro-cycles) 

 
Total Simulation Time = 12132 Micro-cycles 
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Table 5-3 shows all the relevant data at each node at different input rates and the  

different simulation times. The first row represents the time in “microcycles”. The first 

colum is the node name, with the number of initial copies of a processor which is 

calculated by “COPY” inside the parenthesis. The first number in the table is the queue 

token depth; the second number represents how many processors are busy; and the third 

number is the number of extra processor copies. If the third number is 0, then the 

threshold of the queue is 4. Then the threshold will increase by two each time the extra 

copy number increases by one. So if the third number is 2, two extra copies of the 

processor have been initiated to help reduce the queue depth, and meantime, the threshold 

of this queue has changed to 8. 

In order to show that the HDCA architecture is very sensitive to the input rate, the 

queue token depth has been plotted at the three different input rates at each node. The 

plots are shown in Figure 5.5. Plots for nodes 21, 31, and 32 are omitted because the 

queue depth at these nodes, and 32 is always 0. One thing worth mentioning is that 

among three different input rates: 263 microcycles/token, 200 microcycles/token, and 100 

microcycles/token, 100 microcycles/token is the highest input rate, while 263 

microcycles/token is the lowest input rate. According to table 5-2, the input rate at peak 

load is 3.8 DI/milliseoconds, that is 3.8 tokens per 1000 microcycles. By inverting this 

number we get 1000/3.8 = 263.158 microcycles/token. So by using the input rate of 263 

micro-cycles/token, which is slightly over the maximum input rate, theoretically we 

should get a very smooth dataflow graph without any tokens in the queue or very few 

tokens in the queue. By looking at the plots in Figure 5.5, we can see the queue token 

depth increases as the input rate increases. This is an indication that this simulator works 

correctly for this application.  
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Table 5-3:   Application 1 Results: 20 Tokens 

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 
Input rate = 263 Micro-cycles/Token 

Node11(4) 0/3/0 0/3/0 0/3/0 0/4/0 0/4/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node21(3) 0/0/0 0/1/0 0/2/0 0/3/0 0/3/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node31(2) 0/0/0 0/0/0 0/0/0 0/0/0/ 0/1/0 0/1/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node32(1) 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/1/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node33(7) 0/1/0 0/4/0 0/7/0 0/6/0 0/6/0 1/7/2000 0/6/0 0/3/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node41(2) 0/0/0 0/0/0 0/0/0 0/1/0 0/0/0 0/2/0 0/2/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node51(8) 0/0/0 0/0/0 0/0/0 0/2/0 0/6/0 0/6/0 0/5/0 1/8/0 0/8/0 0/3/0 0/0/0 0/0/0 0/0/0 
Node61(3) 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/2/0 0/3/0 0/1/0 0/2/0 0/3/0 0/2/0 0/0/0 0/0/0 
Node71(5) 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/4/0 0/4/0 0/3/0 0/5/0 0/5/0 0/0/0 0/0/0 

Input rate = 200 Micro-cycles/Token 
Node11(4) 0/4/0 0/4/0 0/4/0 1/4/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node21(3) 0/0/0 0/1/0 0/1/0 0/1/0 0/2/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node31(2) 0/0/0 0/0/0 0/1/0 0/2/0 0/1/0 0/1/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node32(1) 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node33(7) 0/1/0 0/5/0 2/7/0 3/7/0 3/7/0 2/7/0 0/6/0 0/2/0 0/1/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node41(2) 0/0/0 0/0/0 0/0/0 0/0/0 0/1/0 0/2/0 0/1/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node51(8) 0/0/0 0/0/0 0/0/0 0/2/0 0/6/0 0/6/0 0/7/0 2/8/0 0/5/0 0/2/0 0/1/0 0/0/0 0/0/0 
Node61(3) 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/2/0 0/2/0 0/0/0 1/3/0 1/3/0 0/1/0 0/0/0 0/0/0 
Node71(5) 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/4/0 0/5/0 0/2/0 0/4/0 0/4/0 0/2/0 0/0/0 

Input rate = 100 Micro-cycles/Token 
Node11(4) 4/4/0 7/6/2 0/6/2 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node21(3) 0/1/0 0/1/0 0/3/0 0/3/0 0/1/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node31(2) 0/0/0 0/0/0 0/1/0 0/0/0 0/2/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node32(1) 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0/ 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node33(7) 0/1/0 0/6/0 3/7/0 4/8/1 0/8/1 0/8/1 0/4/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node41(2) 0/0/0 0/0/0 0/0/0 0/2/0 0/0/0 1/2/0 0/1/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node51(8) 0/0/0 0/0/0 0/0/0 0/3/0 1/8/0 0/6/0 0/7/0 3/8/0 0/4/0 0/1/0 0/0/0 0/0/0 0/0/0 
Node61(3) 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/3/0 1/3/0 0/0/0 1/3/0 1/3/0 0/0/0 0/0/0 0/0/0 
Node71(5) 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/4/0 1/5/0 0/4/0 0/4/0 1/5/000 0/1/0 0/0/0 
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Figure 5.5   Queue Depth Plot for Application 1 
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Figure 5.5   Queue Depth Plot for Application 1 ( Continue 2) 
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Figure 5.5   Queue Depth Plot for Application 1 (Continue 3) 
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5.2 Application 2 
Application 2 is represented by the dataflow graph that is shown in Figure 5.6. This 

graph has two top nodes that take input data for the system. Table 5-4 shows all the 

parameters that are needed to do the simulation. 

 

 

 

 

Figure 5.6   Data Flow Graph of Case 2 
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Table 5-4:   Parameter Values for Data Flow Graph of Application 2 

Process 

Designation 

Execution Time 

(milliseconds) 

Process Length 

(Kilobytes) 

11 0.85 0.425 

12 1.87 0.45 

21 1.63 2.5 

22 0.69 10.0 

31 1.0 0.5 

41 0.96 0.85 

 

Input Data Rates (data items/millisecond) 

Peak Load at Node 11: 3.8 

Average Load at Node 11: 2.5 

Peak Load at Node 12: 3.8 

Average Load at Node 12: 2.5 

Program Memory/Computing Element: 16 kilobytes 

Copyset: 

2 4 1 1 2 1 3 1 4 1 4 1 2 2 2 3 1 4 1 0.85 0.425 1.63 2.5 1.0 0.5 0.96 

0.85 1.87 0.45 0.69 10.0 16 3.8 2.5 3.8 2.5 1 1 

Dataset: 

4 2 2 1 1 1 1 2 1 2 1 3 1 3 1 4 1 1 2 2 2 2 2 3 1 0 0 0 0 

Informationset: 

0 0 0 0 0 2 

Since there is no fork in this graph, “probabilityset” is not needed. 

Figures 5.7, 5.8 and 5.9 are the simulation results that are taken every 1000 micro-

cycles at the input rates of 263, 200 and 100 micro-cycles per token for both top nodes. 

There are 20 data items at each top node. So there are 40 tokens that need to be processed 

altogether. Table 5-5 shows the queue depth, number of free copies, and the number of 

extra copies of each node at different times based on the Figures 5.7, 5.8 and 5.9. Plots 

for queue depth at different input rates and different simulation times for all nodes are 

shown in Figure 5.10.  
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Figure 5.7 a   Simu. Results of Application 2 (Input rate = 263 micro-cycles/token)  

(t =1000 micro-cycles) 
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Figure 5.7 b   Simu. Results of Application 2 (Input rate = 263 micro-cycles/token) 

 (t =2000 micro-cycles) 

 

 

 



 120 
 

 

 

 

 

 
 

Figure 5.7 c   Simu. Results of Application 2 (Input rate = 263 micro-cycles/token) 

 (t =3000 micro-cycles) 
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Figure 5.7 d   Simu. Results of Application 2 (Input rate = 263 micro-cycles/token)   

(t =4000 micro-cycles) 
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Figure 5.7 e   Simu. Results of Application 2 (Input rate = 263 micro-cycles/token) 

(t =5000 micro-cycles) 
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Figure 5.7 f   Simu. Results of Application 2 (Input rate = 263 micro-cycles/token) 

(t =6000 micro-cycles) 
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Figure 5.7 g   Simu. Results of Application 2 (Input rate = 263 micro-cycles/token) 

 (t =7000 micro-cycles) 
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Figure 5.7 h   Simu. Results of Application 2 (Input rate = 263 micro-cycles/token) 

(t =8000 micro-cycles) 
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Figure 5.7 i   Simu. Results of Application 2 (Input rate = 263 micro-cycles/token) 

 (t =9000 micro-cycles) 
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Figure 5.7 j   Simu. Results of Application 2 (Input rate = 263 micro-cycles/token) 

 (t =10000 micro-cycles) 

 
Total Simulation Time = 9518 Micro-cycles 
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Figure 5.8 a   Simu. Results of Application 2 (Input rate = 200 micro-cycles/token) 

 (t =1000 micro-cycles) 
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Figure 5.8 b Simu. Results of Application 2 (Input rate = 200 micro-cycles/token) 

(t =2000 micro-cycles) 
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Figure 5.8 c   Simu. Results of Application 2 (Input rate = 200 micro-cycles/token) 

(t =3000 micro-cycles) 
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Figure 5.8 d   Simu. Results of Application 2 (Input rate = 200 micro-cycles/token) 

 (t =4000 micro-cycles) 
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Figure 5.8 e   Simu. Results of Application 2 (Input rate = 200 micro-cycles/token) 

(t =5000 micro-cycles) 
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Figure 5.8 f   Simu. Results of Application 2 (Input rate = 200 micro-cycles/token) 

(t =6000 micro-cycles) 
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Figure 5.8 g   Simu. Results of Application 2 (Input rate = 200 micro-cycles/token) 

(t =7000 micro-cycles) 
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Figure 5.8 h   Simu. Results of Application 2 (Input rate = 200 micro-cycles/token) 

 (t =8000 micro-cycles) 
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Figure 5.8 i   Simu. Results of Application 2 (Input rate = 200 micro-cycles/token) 

(t =9000 micro-cycles) 
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Figure 5.8 j   Simu. Results of Application 2 (Input rate = 200 micro-cycles/token) 

 (t =10000 micro-cycles) 

 
Total Simulation Time = 9216 Micro-cycles 

 
 



 138 
 

 

 
 
 
 
 

 
 
 

Figure 5.9 a   Simu. Results of Application 2 (Iinput rate = 100 micro-cycles/token) 

 (t =1000 micro-cycles) 
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Figure 5.9 b   Simu. Results of Application 2 (Iinput rate = 100 micro-cycles/token) 

(t =2000 micro-cycles) 
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Figure 5.9 c   Simu. Results of Application 2 (Iinput rate = 100 micro-cycles/token) 

(t =3000 micro-cycles) 
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Figure 5.9 d   Simu. Results of Application 2 (Iinput rate = 100 micro-cycles/token) 

(t =4000 micro-cycles) 
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Figure 5.9 e   Simu. Results of Application 2 (Iinput rate = 100 micro-cycles/token) 

 (t =5000 micro-cycles) 
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Figure 5.9 f   Simu. Results of Application 2 (Iinput rate = 100 micro-cycles/token) 

 (t =6000 micro-cycles) 
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Figure 5.9 g   Simu. Results of Application 2 (Iinput rate = 100 micro-cycles/token) 

 (t =7000 micro-cycles) 
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Figure 5.9 h   Simu. Results of Application 2 (Iinput rate = 100 micro-cycles/token) 

(t =8000 micro-cycles) 
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Figure 5.9 i   Simu. Results of Application 2 (Iinput rate = 100 micro-cycles/token) 

 (t =9000 micro-cycles) 
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Figure 5.9 j   Simulation Result for Application 2 for input rate = 100 micro-cycles/token  

(t =10000 micro-cycles) 

 

Total Simulation Time = 9136 Micro-cycles 



 148 
 

 

 

Table 5-5:   Application2 Results: 20 Tokens at Node11, 20 Tokens at Node 12 

 
Case2: 20 Tokens at Node11, 20 Tokens at Node12 

Input rate = 263 Microseconds Per DISV 
 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 
Node11(4) 0/3/0 0/3/0 0/3/0 0/4/0 0/4/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node12(8) 0/4/0 0/7/0 0/7/0 0/7/0 0/8/0 0/4/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node21(7) 0/1/0 0/5/0 0/7/0 0/6/0 0/6/0 0/6/0 0/2/0 0/0/0 0/0/0 0/0/0 
Node22(3) 0/0/0 0/1/0 0/3/0 0/3/0 0/2/0 0/2/0 0/3/0 0/0/0 0/0/0 0/0/0 
Node31(8) 0/0/0 0/0/0 0/4/0 0/8/0 0/8/0 0/8/0 0/7/0 0/5/0 0/0/0 0/0/0 
Node41(8) 0/0/0 0/0/0 0/0/0 0/4/0 0/7/0 0/8/0 0/8/0 0/7/0 0/4/0 0/0/0 

Input rate = 200 Microseconds Per DISV 
Node11(4) 0/4/0 0/4/0 0/4/0 1/4/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node12(8) 0/5/0 1/8/0 1/8/0 2/8/0 0/5/0 0/2/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node21(7) 0/1/0 0/6/0 1/7/0 1/7/0 1/7/0 0/4/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node22(3) 0/0/0 0/1/0 0/3/0 0/3/0 1/3/0 0/3/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node31(8) 0/0/0 0/0/0 0/6/0 0/8/0 1/8/0 1/8/0 2/8/0 0/2/0 0/0/0 0/0/0 
Node41(8) 0/0/0 0/0/0 0/0/0 0/6/0 0/8/0 0/8/0 0/8/0 0/8/0 0/2/0 0/0/0 

Input rate = 100 Microseconds Per DISV 
Node11(4) 4/4/0 7/6/2 0/6/2 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node12(8) 2/8/0 8/10/2 2/10/2 0/7/2 0/2/2 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node21(7) 0/2/0 0/7/0 3/7/0 5/9/1 0/9/1 0/2/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node22(3) 0/0/0 0/2/0 2/3/0 3/3/0 2/4/1 0/3/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node31(8) 0/0/0 0/0/0 0/7/0 0/7/0 2/8/0 4/9/1 0/9/1 0/0/0 0/0/0 0/0/0 
Node41(8) 0/0/0 0/0/0 0/0/0 0/7/0 0/7/0 0/8/0 1/8/0 1/8/0 0/1/0 0/0/0 
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Figure 5.10   Queue Depth Plot for Application 2  

1 2 3 4 5 6 7 8 9 10
2
6
3

2
0
0

1
0
0

0

1

2

3

4

5

6

7

Queue
Token 
Depth 

Time (Milliseconds)

Rate 
(Microcycles/Token)

Node11

263
200
100

1 2 3 4 5 6 7 8 9 10
2
6
3

2
0
0

1
0
0

0
1
2
3
4
5

6
7

8

Queue
Token 
Depth 

Time (Milliseconds)

Rate 
(Microcycles/Token)

Node12

263
200
100



 150 
 

 

 
Figure 5.10   Queue Depth Plot for Application 2 (Continued 2) 
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Figure 5.10   Queue Depth Plot for Application 2 (Continued 3) 
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5.3 Application 3 
The dataflow graph for the 3rd application is shown in Figure 5.11. This graph has 

two feedback paths. One feedback path is from node 41 back to node 21 through node31; 

the other feedback path is from node 41 back to node 22 through node 33. There are two 

forks in this graph, node 11 and node 41.  Node 11 has two branches, while node 41 has 

three branches. The α parameters and input files are shown in Table 5-6. Graphical 

simulation results are shown in Figures 5.12, 5.13 and 5.14. Table 5-7 shows the queue 

depth, number of free copies, and the number of extra copies of each node at different 

time based on the Figures 5.12, 5.13, and 5.14.   

 

 

Figure 5.11   Dataflow Graph of Application 3 
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Table 5-6:   Parameter Values for Data Flow Graph of Application 3 

 

Process 

Designation 

Execution Time 

(milliseconds) 

Process Length 

(Kilobytes) 

11 0.85 0.425 

21 0.65 2.5 

22 0.68 0.9 

31 0.2 2.0 

32 0.4 0.5 

33 0.3 1.3 

41 0.69 0.85 

51 0.75 1.0 

 

Input Data Rates (data items/millisecond) 

Peak Load: 3.8 

Average Load: 2.5 

Probability Distributions for Forks 

P11->21: 0.6 

P11->22:  0.4 

P41->51: 0.8 

P41->31: 0.1 

P41->33: 0.1 

Program Memory/Computing Element: 16 kilobytes 

Copyset: 4 5 1 1 2 1 3 2 4 1 5 1 9 1 1 2 1 3 2 4 1 3 1 2 1 3 2 4 1 5 1 5 1 1 2 2 3 2 4 1 

5 1 9 1 1  2 2 3 2 4 1 3 3 2 2 3 2 4 1 5 1 0.85 0.425 0.65 2.5 0.4 0.5 0.69 0.85 0.75 1.0 0.2 

2.0 0.68 0.9 0.3 1.3 16 3.8 2.5 1 0.6 0.6 0.4 0.4 0.8 0.1 0.8 0.8 0.1 0.8 1 

Dataset: 5 1 2 3 1 1 1 1 2 1 1 1 2 2 2 1 3 2 2 2 3 2 3 2 4 1 3 1 2 1 3 3 2 2 4 1 3 1 4 1 

3 3 4 1 5 1 0 0 0 0 

Informationset: 1 0 0 0 0 0 1 2 

Probabilityset: 0.6 0.4 0.1 0.1 0.8 
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Figure 5.12   Simu. Results of Application 3 (Input rate = 263 micro-cycles/token) 

 (t =1000 micro-cycles) 
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Figure 5.12 b  Simulation Result for Application 3 for input rate = 263 micro-cycles/token 

 (t =2000 micro-cycles) 
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Figure 5.12 c   Simulation Result for Application 3 for input rate = 263 micro-cycles/token 

(t =3000 micro-cycles) 
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Figure 5.12 d   Simulation Result for Application 3 for input rate = 263 micro-cycles/token 

(t =4000 micro-cycles) 

 

 
 
 



 158 
 

 

 
 
 
 
 

 
 
 

Figure 5.12 e   Simulation Result for Application 3 for input rate = 263 micro-cycles/token  

(t =5000 micro-cycles) 
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Figure 5.12 f   Simulation Result for Application 3 for input rate = 263 micro-cycles/token 

 (t =6000 micro-cycles) 

 

 
 
 



 160 
 

 

 
 
 
 
 

 
 
 

Figure 5.12 g   Simulation Result for Application 3 for input rate = 263 micro-cycles/token  

(t =7000 micro-cycles) 
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Figure 5.12 h   Simulation Result for Application 3 for input rate = 263 micro-cycles/token 

 (t =8000 micro-cycles) 
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Figure 5.12 i   Simulation Result for Application 3 for input rate = 263 micro-cycles/token  

(t =9000 micro-cycles) 
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Figure 5.12 j   Simulation Result for Application 3 for input rate = 263 micro-cycles/token  

(t =10000 micro-cycles) 
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Figure 5.12 k   Simulation Result for Application 3 for input rate = 263 micro-cycles/token 

 (t =11000 micro-cycles) 

 

Total Simulation Time = 10488 Micro-cycles 
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Figure 5.13   Simu. Results of Application 3 (Input rate = 200 micro-cycles/token  

(t =1000 micro-cycles) 
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Figure 5.13 b   Simulation Result for Application 3 for input rate = 200 micro-cycles/token 

 (t =2000 micro-cycles) 
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Figure 5.13 c   Simulation Result for Application 3 for input rate = 200 micro-cycles/token  

(t =3000 micro-cycles) 
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Figure 5.13 d   Simulation Result for Application 3 for input rate = 200 micro-cycles/token 

 (t =4000 micro-cycles) 
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Figure 5.13 e   Simulation Result for Application 3 for input rate = 200 micro-cycles/token  

(t =5000 micro-cycles) 
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Figure 5.13 f   Simulation Result for Application 3 for input rate = 200 micro-cycles/token 

 (t =6000 micro-cycles) 
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Figure 5.13 g   Simulation Result for Application 3 for input rate = 200 micro-cycles/token 

 (t =7000 micro-cycles) 
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Figure 5.13 h   Simulation Result for Application 3 for input rate = 200 micro-cycles/token 

 (t =8000 micro-cycles) 
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Figure 5.13 i   Simulation Result for Application 3 for input rate = 200 micro-cycles/token  

(t =9000 micro-cycles) 
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Figure 5.13 j   Simulation Result for Application 3 for input rate = 200 micro-cycles/token  

(t =10000 micro-cycles) 
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Figure 5.13 k   Simulation Result for Application 3 for input rate = 200 micro-cycles/token  

(t =11000 micro-cycles) 

 

 
Total Simulation Time = 10618 Micro-cycles 
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Figure 5.14   Simu. Results of Application 3 (Input rate = 100 micro-cycles/token)  

(t =1000 micro-cycles) 
  

 

 



 177 
 

 

 

 

 

 
 

Figure 5.14 b   Simulation Result for Application 3 for input rate = 100 micro-cycles/token 

 (t =2000 micro-cycles) 
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Figure 5.14 c   Simulation Result for Application 3 for input rate = 100 micro-cycles/token 

 (t =3000 micro-cycles) 
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Figure 5.14 d   Simulation Result for Application 3 for input rate = 100 micro-cycles/token  

(t =4000 micro-cycles) 
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Figure 5.14 e   Simulation Result for Application 3 for input rate = 100 micro-cycles/token 

 (t =5000 micro-cycles) 
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Figure 5.14 f   Simulation Result for Application 3 for input rate = 100 micro-cycles/token  

(t =6000 micro-cycles) 
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Figure 5.14 g   Simulation Result for Application 3 for input rate = 100 micro-cycles/token  

(t =7000 micro-cycles) 
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Figure 5.14 h   Simulation Result for Application 3 for input rate = 100 micro-cycles/token 

 (t =8000 micro-cycles) 
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Figure 5.14 i   Simulation Result for Application 3 for input rate = 100 micro-cycles/token 

 (t =9000 micro-cycles) 
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Figure 5.14 j   Simulation Result for Application 3 for input rate = 100 micro-cycles/token 

 (t =10000 micro-cycles) 

 

Total Simulation Time = 9782 Micro-cycles 
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Table 5-7:   Application 3 Results: 20 Tokens at Node11 

Case3: 20 Tokens  
Input rate = 263 Microseconds Per DISV 

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 
Node11(4) 0/3/0 0/3/0 0/3/0 0/4/0 0/4/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0  0/0/0 
Node21(2) 0/0/0 0/1/0 0/1/0 0/2/0/ 0/0/0 0/0/0 0/0/0 0/2/0 0/0/0 0/0/0 0/0/0/ 
Node22(2) 0/1/0 0/2/0 1/2/0 0/2/0 1/2/0 1/2/0 0/1/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node31(1) 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node32(2) 0/0/0 0/1/0 0/0/0 0/1/0 1/2/0 0/2/0 0/2/0 0/0/0 0/1/0 0/0/0 0/0/0 
Node33(1) 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/1/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node41(4) 0/0/0 0/1/0 0/3/0 0/3/0 0/3/0 0/3/0 0/3/0 0/2/0 0/1/0 0/0/0 0/0/0 
Node51(3) 0/0/0 0/0/0 0/2/0 0/1/0 0/2/0 0/2/0 0/2/0 0/1/0 0/1/0 0/1/0 0/0/0 

Input rate = 200 Microseconds Per DISV 
Node11(4) 0/4/0 0/4/0 0/4/0 1/4/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node21(2) 0/0/0 0/0/0 0/0/0 1/2/0 0/1/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node22(2) 0/1/0 1/2/0 1/2/0 0/0/0 1/2/0 0/2/0 0/1/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node31(1) 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/1/0 0/0/0 0/0/0 0/0/0 
Node32(2) 0/0/0 0/2/0 1/2/0 0/2/0 1/2/0 0/1/0 0/1/0 0/1/0 0/1/0 0/0/0 0/0/0 
Node33(1) 0/0/0 0/0/0 0/0/0 0/1/0 0/0/0 0/1/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 
Node41(4) 0/0/0 0/1/0 0/3/0 0/3/0 0/3/0 0/3/0 0/2/0 0/1/0 0/1/0 0/0/0 0/0/0 
Node51(3) 0/0/0 0/0/0 0/2/0 0/3/0 0/3/0 0/2/0 0/3/0 0/1/0 0/1/0 0/1/0 0/0/0 

Input rate = 100 Microseconds Per DISV 
Node11(4) 4/4/0 7/6/2 0/6/2 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0  
Node21(2) 0/0/0 0/1/0 1/2/0 1/2/0 0/0/0 0/0/0 0/1/0 0/0/0 0/0/0 0/0/0  
Node22(2) 0/2/0 1/2/0 1/2/0 4/2/0 1/2/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0  
Node31(1) 0/0/0 0/0/0/ 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0  
Node32(2) 0/0/0 0/2/0 1/2/0 1/2/0 3/2/0 0/2/0 0/1/0 0/1/0 0/0/0 0/0/0  
Node33(1) 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/1/0 0/0/0 0/0/0 0/0/0 0/0/0  
Node41(4) 0/0/0 0/1/0 0/3/0 0/4/0 0/3/0 0/4/0 0/1/0 0/1/0 0/1/0 0/0/0  
Node51(3) 0/0/0 0/0/0 0/2/0 0/2/0 1/3/0 1/3/0 1/3/0 0/1/0 0/1/0 0/0/0  
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Queue token depth plots for each node are shown in Figure 5.15 except for node 31, 

33, and 41. The queue token depth plots for these three nodes are omitted because the 

queue depth are all zeros for all three input rates based on the simulation results shown in 

Figures 5.12, 5.13, and 5.14. It is easy to see from Figure 5.15 that the queue token depth 

is much higher when the input rate is 100micro-cycles/token for all nodes. When the 

input rate is 200micro-cycles/token, the queue depth equals to 1 at node 11, 21, 22, and 

32 at certain time. This is what we expected. But when the input rate is 263 micro-

cycles/token, theoretically there should be no token in the queue at any time, but we got 

one token at node 22 at time 3000, 5000, and 6000 micro-cycles and one token at node 32 

at time 5000 micro-cycles. Does this mean that the simulation is not correct? Consider 

how the input file “copyset” was formed for program “COPY.” In this file, it is listed that 

there are 4 pipelines in this graph: 11→21→32→41→51; 

11→21→32→41→31→21→32→41→51; 11→22→32→41→51; 

11→22→32→41→33→22→32→41→51. This is based on the assumption that the token 

only circulates in the graph once. That is, when the token reaches node 41 the second 

time, it will be routed to node 51. But actually it is still possible to be routed back to node 

31 or node 33. So the actual input rates for node 21, 22, 31, 32, and 33 are a little bit 

higher than the input rates that we used. With this fact in mind, it is still reasonable to 

have one token in the queue occasionally. So the simulation result is still correct! 
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Figure 5.15   Queue Depth Plot for Application 3 
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Figure 5.15   Queue Depth Plot for Application 3 (Continued 2) 
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Figure 5.15   Queue Depth Plot for Application 3 (Continued 3) 
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6 CONCLUSIONS AND FUTURE RESEARCH 
A new graphic software “hdca” has been developed, tested and evaluated for 

simulating an application described by a  dataflow (process flow) graph running on the 

HDCA. This new software first utilizes the result of a “static resource allocation” 

algorithm to statically assign resources to meet the timing requirement of the application; 

then it simulates the HDCA architecture executing the application using statically 

assigned resources by graphically displaying the parameters which are important to the 

architectures operation and performance. In doing such, a user can visually observe 

dynamic load balancing and resource allocation characteristics of the architecture from 

the simulation graph. Observable characteristics include flow of control tokens, changes 

in queue levels, load distribution, load work-flow progress, process overload detection, 

start up of idle processors and their cessation after workload reduction. The user can also 

study the effect of different input rates on dynamic load balancing activity and overall 

system performance and the fault tolerance analysis of the architecture by using this new 

software 

Chapter one included the background about the HDCA architecture. Chapter two 

provided a brief overview of the architecture and the application mapping and load-

balancing strategy of HDCA. Chapter three reviewed queuing theory models for basic 

components of dataflow graphs representing computer algorithms and the static load-

balancing algorithm that was used in program “COPY.”  Chapter four presented the 

algorithm for the simulation program “hdca” in great detail. Chapter five showed 

simulation results and analysis for three applications. From the simulation results in 

Chapter 5, we easily saw that the queue token level is indeed very sensitive to the input 

rate. When the input rate increases, the queue token depth increases too. Queue depth 

affects the whole architecture. The simulation behaved in a predictable manner and the 

results obtained were as expected. The overall performance of the simulator is very good. 

The program “hdca” has the basic framework required for simulation of the HDCA 

architecture and would be a good candidate for incorporating future developments and 

adding new functionalities to the architecture. Further research can add queues for all 

different processors, which can simulate HDCA more accurately. Using a 3D potting 
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utility may give a better graph. A better visual graph will lead to better understanding of 

the concepts of the HDCA architecture. 
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APPENDIX A       C Code for Program copy.c 

 
 
 
/*This Program is a “C” translation of “copy” written in “BASIC” by Jim Cochran  
(see A Dynamic Computer Architecture for Data Driven System: Final report,  
chap. 5 page nos.5-45,5-50), then translated by Matura Suryanarayana Rao. 
This program caculates the number of copies required at each node to minimize  
the clog point effect in the pipeline */ 
 
#include <stdio.h> 
#define SEL 1 
 
main() 
{ 
   int a,a2,a3,c8,c9,i,i1,j,j1,k,l,m1,n,p,x,x2,x5,x9,w,y; 
   int c5[200],c6[200][2],c7[200][12],f[20],j2[200][20],n1[20],s[20],v[200], 
       v1[20],v2[20],v3[200],v4[20]; 
   int q,q1,q2,q3; 
   int t1,t2,t3,t4,t5,t6,t9; 
   int cplevel,cpnode,cpl,cpn,cp,cp1,sel; 
    
   float b2,b3,s1,x1,y1; 
   float b1[200],c[200],c4[200],p9[20][20],r[200],r4[200],t[200]; 
    
   struct out{ 
          int copies; 
          float time; 
   } copyvalue[20][20]; 
    
   struct name{ 
          int level; 
          int node; 
   } 
   z[200]; 
   FILE *fp,*fp1,*fopen(); 
    
   /*Open the file Copyset and get data*/ 
   fp=fopen("copyset","r"); 
   x5=0; 
   a=1; 
   printf("If keyboard entry is desired set KBENTRY to 1,\n"); 
   printf("and for 'read' from file, set KBENTRY to 0\n"); 
   printf("KBENTRY="); 
   scanf("%d",&sel); 
   if(sel==SEL) 
   {  
        printf("pipeline\n"); 
        scanf("%d",&p); 
   } 
   else   fscanf(fp,"%d",&p); 
   for(j=1;j<=p;j++) 
   { 
        s[j]=a;  /* a is the next empty location, s[] is the position of initial node of pipeline */ 
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        if(sel==SEL) 
        { 
             printf("how many nodes in pipe %d \n",j); 
             scanf("%d",&x); 
        } 
        else   fscanf(fp,"%d",&x); 
        n1[j]=x; /*n1[] is the number of nodes in each pipeline */ 
        x=n1[j]; 
        if(sel==SEL) 
            printf("nodes in pipe %d\n",x); 
        f[j]=a+n1[j]-1; /* f[]: Position of the final node of each pipeline */ 
        if(sel==SEL) 
            /*Enter the names of nodes in each pipe*/ 
            printf("name of each node in pipe %d\n",j); 
        for(i=1;i<=n1[j];i++) 
        { 
             if(sel==SEL) 
             { 
                 printf("node %d\n",i); 
                 scanf("%d %d",&q,&q1); 
             } 
             else  fscanf(fp,"%d %d",&q,&q1); 
             z[a].level=q; 
             z[a].node=q1; 
             a=a+1; 
        } 
   } 
   if(sel==SEL) 
            printf("alpha parameters\n"); 
   for(i=1;i<=f[p];i++) 
   { 
         if(v3[i]==1) goto r630;  //Repeated node 
         q=z[i].level; 
         q1=z[i].node; 
         /*Input Process time in milliseconds followed by amount of memory  
         occupied by the Process associated with the node, in Kilobytes*/                    
         if(sel==SEL) 
         { 
               printf("%d %d\n",q,q1); 
               scanf("%f %f",&x1,&y1); 
         } 
         else fscanf(fp,"%f %f",&x1,&y1); 
         t[i]=x1;  //Process time in miliseconds 
         b1[i]=y1; //Amount of memory occupied by process associated by node[i] 
         /*assign alpha parameters to same nodes in other pipes*/ 
         for(j=i+1;j<=f[p];j++) 
         { 
               q2=z[j].level; 
               q3=z[j].node; 
               if(q1!=q3||q2!=q) goto r620; 
               t[j]=t[i]; 
               b1[j]=b1[i]; 
               v3[j]=1; 
   r620:; 
        } 
   r630:; 
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    } 
    /*Input Memory available for Process in the Node, in Kilobytes*/ 
    if(sel==SEL) 
    { 
         printf("memory per node\n"); 
         scanf("%f",&b2); 
    } 
    else   fscanf(fp,"%f",&b2); 
    for(i=1;i<=p;i++) 
    { 
         if(v4[i]==1) goto r820; 
         x=s[i];  //x is the first position of each pipeline */ 
         q=z[x].level; 
         q1=z[x].node; 
         /*Input maximum and average rates(data items per millisecond)*/ 
         if(sel==SEL) 
         { 
                printf("max.rate %d %d\n",q,q1); 
                scanf("%f",&x1); 
         } 
         else   fscanf(fp,"%f",&x1); 
         r[x]=x1; 
         if (sel==SEL) 
         {      
               printf("ave.rate\n"); 
               scanf("%f",&y1); 
         } 
         else   fscanf(fp,"%f",&y1); 
         r4[x]=y1; 
         /*assign maximum and averge initial rates for all the nodes*/ 
         for(j=i+1;j<=p;j++) 
         { 
               y=s[j]; 
               q2=z[y].level; 
               q3=z[y].node; 
               if(q3!=q1||q2!=q) goto r810; 
               r[y]=r[x]; 
               r4[y]=r4[x]; 
               v4[j]=1; 
   r810:; 
          } 
   r820:; 
            /* donot change input rates*/ 
            v[x]=2; 
            /*Assign initial rate to all nodes.*/ 
            for (k=s[i]+1;k<=f[i];k++) 
            { 
                  r[k]=r[x]; 
                  r4[k]=r4[x]; 
            } 
   }             
   w=f[p]; 
   v[w+1]=2; 
   /*Setup the j2 matrix to contain all duplicate nodes.  
   A duplicate node is one which appears in more than one pipeline. */ 
   j1=0; 
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   for(j=1;j<=p;j++) 
   { 
         for(i=s[j];i<=f[j];i++) 
         { 
               if(v[i]==1) goto r1100; 
               m1=1; 
               q=z[i].level; 
               q1=z[i].node; 
               for(k=i+1;k<=a;k++) 
               {  
                     q2=z[k].level; 
                     q3=z[k].node; 
                     if(q1!=q3||q!=q2) goto r1090; 
                     m1=m1+1; 
                     if(m1!=2) goto r1040; 
                     j1=j1+1; 
                     j2[j1][2]=i; 
   r1040:; 
                     j2[j1][1]=m1; 
                     j2[j1][m1+1]=k; 
                     /*Alter v[] for all duplicate nodes 
                     (nodes appearing in the j2 matrix*/ 
                     v[i]=1; 
                     v[k]=1; 
   r1090:; 
               } 
   r1100:; 
          } 
   } 
   /*Input probabilities if desired.*/ 
   if(sel==SEL) 
   { 
           printf("forks1(yes) or 0(no)\n"); 
           scanf("%d",&x2); 
   } 
   else  fscanf(fp,"%d",&x2); 
   if(x2==0) goto r1420; 
   /*change v2[] for all forks.*/ 
   for (i=1;i<=j1;i++) 
   { 
         /*skip terminal nodes.*/ 
         for (i1=1;i1<=p;i1++) 
         { 
              if(j2[i][2]==f[i1]) goto r1280; 
         } 
         for(j=2;j<=j2[i][1]+1;j++) 
         { 
              x=j2[i][2]; 
              y=j2[i][j]; 
              x=x+1; 
              y=y+1; 
              q=z[x].level; 
              q1=z[x].node; 
              q2=z[y].level; 
              q3=z[y].node; 
              if(q1==q3&&q==q2) goto r1270; 
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              v2[i]=1; 
              goto r1280; 
   r1270:; 
         } 
   r1280:; 
   } 
   /*v2[] now contains 1's in positions corresponding positions of forks in j2 matrix.*/ 
   /*Input probabilities for forks in decimal.*/ 
   if(sel==SEL) 
          printf("probability (decimal)\n"); 
   for(i=1;i<=j1;i++) 
   { 
        if(v2[i]!=1) goto r1400; 
        for(j=2;j<=j2[i][1]+1;j++) 
        { 
              x=j2[i][2]; 
              y=j2[i][j]; 
              q=z[x].level; 
              q1=z[x].node; 
              q2=z[y+1].level; 
              q3=z[y+1].node; 
              if(sel==SEL) 
              { 
                   printf("from %d %d to %d %d \n",q,q1,q2,q3); 
                   scanf("%f",&x1); 
              } 
              else    fscanf(fp,"%f",&x1); 
                 p9[i][j]=x1; 
        } 
   r1400:; 
   } 
   /*prob. matrix p9 is complete*/ 
   /*calculate new rates for all the nodes except for source node. */ 
   r1420:; 
   x9=0; 
   r1440:; 
   c9=0; 
   for(i=1;i<=j1;i++) 
   { 
         /*skip the source node. 
         i.e.,donot alter input rate*/ 
         for (i1=1;i1<=p;i1++) 
         { 
              if(j2[i][2]==s[i1]) goto r1790; 
         } 
         s1=0; 
         for(i1=1;i1<=11;i1++) 
         { 
              v1[i1]==0; 
         } 
         for(j=2;j<=j2[i][1]+1;j++) 
         {  
              if(v1[j]==1) goto r1710; 
              for(l=j+1;l<=j2[i][1]+1;l++) 
              { 
                   x=j2[i][j]; 
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                   y=j2[i][l]; 
                   x=x-1; 
                   y=y-1; 
                   q=z[x].level; 
                   q1=z[x].node; 
                   q2=z[y].level; 
                   q3=z[y].node; 
                   if(q!=q3||q!=q2) goto r1580; 
                   v1[l]=1; 
   r1580:; 
              } 
              /*check for previous fork.*/ 
              if(x2!=1) goto r1700; 
              for (l=1;l<=j1;l++) 
              { 
                   w=j2[1][2]; 
                   x=j2[i][j]; 
                   x=x-1; 
                   q=z[x].level; 
                   q1=z[x].node; 
                   q2=z[w].level; 
                   q3=z[w].node; 
                   if(q1!=q3||q!=q2) goto r1690; 
                   if(v2[1]==0) goto r1690; 
                   for(k=2;k<=j2[1][1]+1;k++) 
                   { 
                       if((j2[i][j]-1)==j2[l][k]) 
                        goto r1670; 
                   } 
   r1670:; 
                   x=j2[i][j]-1; 
                   s1=s1+(r[x]*p9[1][k]); 
                   goto r1710; 
   r1690:; 
              } 
   r1700:; 
              x=j2[i][j]; 
              x=x-1; 
              s1=s1+r[x]; /*s1 is the new rate*/ 
   r1710:;    
         } 
         /*if the rate is changed alter matrix r.*/           
         y=j2[i][2]; 
         if(s1==r[y]) goto r1790; 
         for(j=2;j<=j2[i][1]+1;j++) 
         { 
              x=j2[i][j]; 
              r[x]=s1; 
              c9=c9+1; 
         } 
         /*change rates for all singular nodes following a fork.*/ 
  r1790:; 
         for (j=2;j<=j2[i][1]+1;j++) 
         { 
                for(k=j2[i][j]+1;k<=a;k++) 
                { 
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                        if(v[k]==1) goto r1920; 
                        if(v[k]==2) goto r1920; 
                        if(x2==1) goto r1870; 
                        x=j2[i][j]; 
                        s1=r[x]; 
                        goto r1880; 
  r1870:; 
                        x=j2[i][j]; 
                        s1=r[x]*p9[i][j]; 
  r1880:; 
                        if(s1==r[k]) goto r1920; 
                        r[k]=s1; 
                        c9=c9+1; 
                } 
  r1920:; 
          }               
  }                        
  x9=x9+1; 
  if(x9<=20) goto r1980; 
  printf("converge failed\n"); 
  goto r3010; 
  r1980:; 
  if(c9!=0) goto r1440; 
  /*rate matrix is finalized*/ 
  if(x5==1) goto r2240; 
  /*caculate the number of copies required of each node.*/ 
  for(i=1;i<=f[p];i++) 
  { 
        c[i]=r[i]*t[i]; 
  } 
  printf("node # of copies \n"); 
  t9=0; 
  for(i=1;i<=f[p];i++) 
  { 
          if (v3[i]==1) goto r2140; 
          q=z[i].level; 
          q1=z[i].node; 
          printf("%d %d  %d\n",q,q1,(int)(c[i]+0.99)); 
          copyvalue[q][q1].copies=(int)(c[i]+0.99); 
          copyvalue[q][q1].time=t[i]; 
          t9=t9+(int)(c[i]+0.99); 
  r2140:; 
  } 
  printf("total %d\n",t9); 
  copyvalue[0][0].copies=1; 
  copyvalue[0][0].time=(int)(t[0]); 
  /*prepare r with ave. rates.*/ 
  for(i=1;i<=f[p];i++) 
  { 
          r[i]=r4[i]; 
  } 
  x5=1; 
  goto r1420; 
  r2240: 
  /*caculate the copies with ave. rate.*/ 
  for(i=1;i<=f[p];i++) 
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  { 
            c4[i]=r[i]*t[i]; 
  } 
  /*caculate # copies max. only.(refer to page 5-26 of [5])*/ 
  for(i=1;i<=f[p];i++) 
  { 
         c5[i]=(int)(c[i]+0.99)-(int)(c4[i]+0.99); 
  } 
  if(sel==SEL) 
  { 
         printf("if combinable processes desired?1(yes)0(No)\n"); 
         scanf("%d",&x2); 
  } 
  else  fscanf(fp,"%d",&x2); 
  if(x2==0) goto r3010; 
  /*search for processes that can be combined for execution by one C.E. (node).*/ 
  a2=0; 
  for(i=1;i<=f[p];i++) 
  { 
         if (v3[i]==1) goto r2540; 
  r2410: 
         if(c5[i]<=0) goto r2540; 
         for(j=i+1;j<=f[p];j++) 
         { 
              if(v3[j]==1) goto r2530; 
              if(c5[j]<=0) goto r2530; 
              if((b1[i]+b1[j])>b2) goto r2530; 
              a2=a2+1; 
              c6[a2][1]=i; 
              c6[a2][2]=j; 
              c5[i]=c5[i]-1; 
              c5[j]=c5[j]-1; 
              goto r2410; 
  r2530:; 
        } 
  r2540:; 
  } 
  printf("following pairs are combined in one C.E.(node)\n"); 
  for(i=1;i<=a2;i++) 
  { 
             x=c6[i][1]; 
             y=c6[i][2]; 
             q=z[x].level; 
             q1=z[x].node; 
             q2=z[y].level; 
             q3=z[y].node; 
             printf("%d %d  %d %d\n",q,q1,q2,q3); 
  } 
  /*search for combinable processes(more than two in a group).*/ 
  a2=0; 
  for(i=1;i<=f[p];i++) 
  { 
          if(v3[i]==1) goto r2870; 
  r2670: 
          if(c[i]<=0) goto r2870; 
          a3=0; 



 201 
 

 

          c8=0; 
          b3=b1[i]; 
          for(j=i+1;j<=f[p];j++) 
          { 
               if(v3[j]==1) goto r2850; 
               if(c[j]<=0) goto r2850; 
               if((b3+b1[j])>b2) goto r2850; 
               a3=a3+1; 
               b3=b3+b1[j]; 
               if(a3!=1) goto r2810; 
               a2=a2+1; 
               c7[a2][1]=i; 
               c[i]=c[i]-1; 
  r2810: 
               c7[a2][a3+1]=j; 
               c[j]=c[j]-1; 
               c8=c8+1; 
               if(a3==4) goto r2670; 
  r2850:; 
         } 
         if(c8!=0) goto r2670; 
  r2870:; 
  } 
  /*print the combinable groups that can be combined within one C.E.(node).*/ 
  printf("For absolute minimization\n"); 
  printf("The following groups of Processes are\n"); 
  printf("combined in one C.E.(node)\n"); 
  for(i=1;i<=a2;i++) 
  { 
       printf("group %d\n",i); 
       for(j=1;j<=5;j++) 
       { 
            if(c7[i][j]==0) goto r3000; 
            w=c7[i][j]; 
            q=z[w].level; 
            q1=z[w].node; 
            printf("%d %d\n",q,q1); 
       } 
  r3000:; 
  } 
  r3010:; 
  fclose(fp); 
  a=a-1; 
  cpl=z[a].level; 
  for(i1=1;i1<=a;i1++) 
  { 
         cp1=z[i1].node; 
         for(i=i1+1;i<=a;i++) 
         { 
              cp=z[i].node; 
              cpn=(cp1>=cp)?cp1:cp; 
              cp1=cpn; 
         } 
         if(cpn==cp1) 
              break; 
   } 



 202 
 

 

   fp1=fopen("labelset","w"); 
   fp=fopen("timeset","w"); 
   for(cplevel=0;cplevel<=cpl;cplevel++) 
   { 
    for(cpnode=0;cpnode<=cpn;cpnode++) 
     { 
       if(copyvalue[cplevel][cpnode].copies!=0) 
        fprintf(fp1,"%d \n",copyvalue[cplevel][cpnode].copies); 
       if(copyvalue[cplevel][cpnode].time!=0) 
        fprintf(fp,"%f \n",copyvalue[cplevel][cpnode].time); 
      } 
    } 
    fclose(fp1); 
    fclose(fp); 
}                    
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APPENDIX B       C Code for Program hdca.c 
 
  
  /* In order to run this program, you need to run copy.c first to get 
the copyset, which specify the copies each node needs. Then you have to 
get dataset ready,  dataset is in the form of "# of level, # of nodes 
from first level to the last level" */ 
#include <stdio.h> 
#include <math.h> 
#include <plot.h> 
#define MAXLIMIT 11 
 
/*  level: the number of total levels, maximum is 10; 
    node[10]: the number of nodes in each level, maximus is 10; 
    copy[10][10]: the number of copies for each node; */ 
int 
level,node[10],copy[10][10],initialcopy[10][10],qthreshold[10][10],max_
extracopy[10][10]; 
int x,y,dec,inc,decval[10][10]; 
int l,n,cp,copynum,linknum,repitfactor; 
char lab[3],lab2[3]; 
int totaljob,job[10], jobleft=0, nodejob[10][10], queue[10][10]; 
int varyinrate,inrate[10],speedratio[10],simutime,shut,updateflag; 
   
/* totaljob: total number of jobs need to be processed ; 
   jobleft: the number of left jobs. when jobleft=0, the simulation 
ends; 
   nodejob[10][10]: the number of jobs that has entered each node; 
   queue[10][10]: the number of jobs in the queue for each node;  
   inrate: input rate, or speed ratio; 
   simutime: the simulation time; 
   shut: whther need to shutdown some copies; 1: yes, 0: no */ 
struct link{ 
   int lf;   /* level of from box */ 
   int nf;   /* node of from box */ 
   int lt;   /* level of to box */ 
   int nt;   /* node of to box */ 
   float probability;  /* only for when from node is fork */ 
   }path[100]; 
    
struct data{ 
    int x1; /*bottom midpoint*/ 
    int y1; 
    int x2; /* upper midpoint */ 
    int y2; 
    int qx; 
    int qy; 
}midpoint[10][10]; 
 
struct nodeinfo{ 
    int fork;  /*1:fork; 0:singular; 2:tailpiece */ 
    int processtime;  /* the processtime for this node */ 
     
}information[10][10]; 
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struct copyinfo{ 
    int shutflag[10];  /*1: this copy is shutdown; 0: this copy is not 
shutdown*/  
    int stopcount[10]; /* the shutdown time, the number should be the 
times of processtime */ 
    int busyflag[10]; /* 1: this copy is busy; 0: this copy is not busy 
*/ 
    int exetime[10]; /* execution time of this copy */ 
}nodecopy[10][10]; 
   
void draw_dataflow(plPlotter *plotter); 
void draw_link(plPlotter *plotter); 
void arrow(plPlotter *plotter, int x3, int y3); 
void simulation(plPlotter *plotter); 
void shutoff(); 
void redraw(plPlotter *plotter); 
void update(plPlotter *plotter, int level, int node, int cp); 
void draw_queue(plPlotter *plotter, int level, int node); 
void clear_one_queue(plPlotter *plotter, int level, int node); 
void draw_shut(plPlotter *plotter, int level, int node, int copy); 
void clear_shut(plPlotter *plotter, int level, int node, int copy); 
void draw_busy(plPlotter *plotter, int level, int node, int copy); 
void clear_busy(plPlotter *plotter, int level, int node, int copy); 
void draw_extracopy(plPlotter *plotter, int level, int node); 
int varate(int speedratio); 
 
main() 
{ 
 
int i,w,h1,h2,h3,h4,sel; 
FILE *fp,*fp1,*fp2,*fopen(); 
 
printf("If keyboard entry is desired set KBENTRY to 1,\n"); 
printf("and for 'read' from file, set KBENTRY to 0\n"); 
printf("KBENTRY="); 
scanf("%d",&sel); 
 
/********************************************************************/ 
/* Input the number of levels and the number of nodes in each level */ 
/********************************************************************/ 
 
if(sel==1) 
 { 
   printf("Input the number of levels:\n"); 
   scanf("%d",&level);  
 } 
else   
{ 
 fp=fopen("dataset","r");  
 fscanf(fp,"%d",&level);  /*Level is the total number of levels */ 
} 
printf("NUMBER OF LEVELS =%d\n\n",level); 
if (level>=MAXLIMIT) 
{ 
   printf("\nExceeded the limit, excute with a smaller value of 
LEVEL\n"); 
   exit(1); 
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} 
for(i=1;i<=level;i++) 
{ 
  if(sel==1) 
  { 
   printf("Enter the number of nodes of level%d:\n",i); 
   scanf("%d",&w); 
  } 
  else fscanf(fp,"%d",&w); 
 node[i]=w; 
 printf("Level %d has %d nodes\n",i,node[i]); 
 } 
/**Input the link ***/ 
for(l=1;l<=100;l++) 
{ 
 if(sel==1) 
 { 
  printf("Input the link in the form of [from level][from node][to 
level][to node]\n"); 
  printf("Ending the link, enter '0 0 0 0'!\n"); 
  scanf("%d %d %d %d",&h1,&h2,&h3,&h4); 
 } 
 else fscanf(fp,"%d %d %d %d",&h1,&h2,&h3,&h4); 
if((h1&&h2&&h3&&h4)==0) 
   break; 
path[l].lf=h1; 
path[l].nf=h2; 
path[l].lt=h3; 
path[l].nt=h4; 
path[l].probability=1.0; 
linknum=l; 
printf("Link:%d%d-->%d%d\n",path[l].lf,path[l].nf, 
path[l].lt,path[l].nt); 
} 
 if(sel==0) fclose(fp); 
 printf("Total %d links\n", linknum); 
/*******************************************************************/ 
/***************Input the copies for each node *********************/ 
/*******************************************************************/ 
/*copyset is the result file produced by copy.c , it includes the 
number of copies of each node*/ 
fp=fopen("labelset","r");   
for(l=1;l<=level;l++) 
{ 
  for(n=1;n<=node[l];n++) 
  { 
    if(sel==1) 
    { 
     printf("Input the number of copies of the processor for 
node%d%d:\n",l,n); 
     scanf("%d",&w); 
    } 
    else  fscanf(fp,"%d",&w); 
    copy[l][n]=w; 
    initialcopy[l][n]=w; 
    printf("Node%d%d needs %d copies!\n",l,n,copy[l][n]); 
  } 
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} 
fclose(fp); 
 
 
/***************** Initialization all the data structure 
*********************/ 
updateflag=1; 
for(l=1;l<=level;l++) 
  {  
    for(n=1;n<=node[l];n++) 
    { 
     nodejob[l][n]=0; 
     queue[l][n]=0; 
     qthreshold[l][n]=4; 
     max_extracopy[l][n]=4; 
     for(i=1;i<=copy[l][n];i++) 
     { 
       nodecopy[l][n].busyflag[i]=0; 
       nodecopy[l][n].shutflag[i]=0; 
       nodecopy[l][n].stopcount[i]=0; 
       nodecopy[l][n].exetime[i]=0; 
     } 
    } 
  } 
 
/********Graphical Module begins here *************/ 
 
//draw_dataflow(plotter);   /* Draw all the nodes, each node represent 
a process */ 
//draw_link(plotter);  /* Draw all the links between nodes */ 
/*****Graphical module ends here***********/ 
 
 
/***************Simulation Module begins here******************/ 
 
/* Read from files the relevent data parameters for simulation */ 
int word; 
float processtime,prob,protemp; 
fp=fopen("informationset","r"); 
fp1=fopen("timeset","r"); 
fp2=fopen("probabilityset","r"); 
 
for(l=1;l<=level;l++) 
{ 
  for(n=1;n<=node[l];n++) 
  {  
    if(sel==1) 
    { 
     printf("Whether node[%d][%d] is fork? 1-fork, 0-singular node, 2-
tailpiece.\n",l,n); 
     scanf("%d",&word); 
     printf("Enter the processtime for node[%d][%d]:\n",l,n); 
     scanf("%f",&processtime); 
    } 
    else 
    { 
      fscanf(fp,"%d",&word); 
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      fscanf(fp1,"%f",&processtime); 
    } 
    information[l][n].fork=word; 
    information[l][n].processtime=(int)(processtime*1000+0.99); 
    if(word==1) 
    { 
      protemp=0; 
      for(i=1;i<=linknum;i++) 
      { 
        if(l==path[i].lf&&n==path[i].nf) 
        { 
          h1=path[i].lt; 
          h2=path[i].nt; 
          if(sel==1) 
          { 
            printf("Input the probability for link node[%d][%d]-
>node[%d][%d]\n",l,n,h1,h2); 
            scanf("%f",&prob); 
          } 
          else   fscanf(fp2,"%f",&prob); 
          protemp=protemp+prob; 
          path[i].probability=protemp; 
          printf("The cumu probability for link node[%d][%d]-
>node[%d][%d]is %f\n",l,n,h1,h2,path[i].probability); 
        } 
      } 
    } 
    printf("Information[%d][%d].fork=%d processtime=%d \n", 
         l,n,information[l][n].fork,information[l][n].processtime); 
  } 
} 
 
fclose(fp); 
fclose(fp1); 
fclose(fp2); 
 
for(i=1;i<=node[1];i++) 
{ 
  printf("Input the total number of jobs at the topnode 1%d:",i); 
  scanf("%d",&word); 
  job[i]=word; 
printf("Job[%d]=%d",i,job[i]); 
  totaljob=totaljob+job[i]; 
  printf("\nEnter the average speedratio of the input jobs at the 
topnode1%d:",i); 
  scanf("%d",&speedratio[i]); 
} 
jobleft=totaljob; 
printf("\nEnter the total simulation time(in mirco cycles):"); 
scanf("%d",&simutime); 
printf("\nWould you like to shut down any of CE copies?1-yes, 0-no"); 
scanf("%d",&shut); 
printf("If variable input rate is desired, set varyinrate to 1, or 
0!\n"); 
scanf("%d",&varyinrate); 
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/******************************************************************/ 
/***Initialize the plotter*****************************************/ 
/******************************************************************/ 
plPlotter *plotter; 
plPlotterParams *plotter_params; 
plotter_params=pl_newplparams(); 
pl_setplparam(plotter_params,"BITMAPSIZE","750x750"); 
pl_setplparam(plotter_params,"VANISH_ON_DELETE","no"); 
pl_setplparam(plotter_params,"USE_DOUBLE_BUFFERING","YES"); 
pl_setplparam (plotter_params, "BG_COLOR", "white"); 
pl_setplparam (plotter_params, "FILLTYPE", "0"); 
 
/* Create an X plotter with the specified parameters */ 
if((plotter=pl_newpl_r("X",stdin,stdout,stderr,plotter_params))==NULL) 
{ 
  fprintf(stderr,"Couldn't open Plotter\n"); 
  return 1; 
} 
if (pl_openpl_r(plotter)<0) 
{ 
  fprintf(stderr,"Couldn't open Plotter\n"); 
  return 1; 
} 
pl_space_r(plotter,0,0,4000,4500); 
pl_pencolorname_r(plotter,"red"); 
pl_linewidth_r(plotter,10); 
 
simulation(plotter); 
printf("\ntotaljob=%d jobleft=%d  simutime=%d shut=%d\n", 
                            totaljob,jobleft,simutime,shut); 
draw_link(plotter);   
if(pl_closepl_r(plotter)<0) 
{ 
  fprintf(stderr,"Couldn't close Plotter\n"); 
  return 1; 
} 
if(pl_deletepl_r(plotter)<0) 
{ 
  fprintf(stderr,"Couldn't delete Plotter\n"); 
  return 1; 
} 
 
} 
 
 
void simulation(plPlotter *plotter) 
{ 
  int t,moreshut,flag=0; 
  int k,inflag[10]; 
  for (k=1;k<=10;k++) 
  { 
    inflag[k]=1; 
  } 
  if (shut==1) 
  shutoff(); 
  for(t=1;t<=simutime;t++) 
  { 
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  /************************************************************/ 
  /***********Input a DISV to topnode***************************/ 
  /************************************************************/ 
  for(n=1;n<=node[1];n++) 
  {  
  if(t==inflag[n]&&job[n]>0) 
   { 
    nodejob[1][n]++; 
    job[n]--; 
    if(varyinrate==0) 
      {inrate[n]=speedratio[n];} 
    else 
      {inrate[n]=varate(speedratio[n]);} 
   printf("Input rate for node[1][%d] is %d:\n",n,inrate[n]);    
    inflag[n]=inflag[n]+inrate[n]; 
   }  
   } 
   /**************************************************************/ 
   /*********Check all nodes**************************************/ 
   /**************************************************************/ 
   for(l=1;l<=level;l++) 
   { 
     for(n=1;n<=node[l];n++) 
     { 
     /***********************************************************/ 
       if(nodejob[l][n]>0) 
       { 
         flag=0;  
         for(cp=1;cp<=copy[l][n];cp++)                   // If there is 
a free copy, executue the job 
          {                                                 
           if(nodecopy[l][n].shutflag[cp]==0) 
           { 
             if(nodecopy[l][n].busyflag[cp]==0) 
             {  
                nodecopy[l][n].busyflag[cp]=1; 
                nodecopy[l][n].exetime[cp]=0; 
                nodejob[l][n]--; 
                flag=1; 
                break; 
             } 
           } 
         }  //If there is not free copy, put the job in the queue 
         if(flag==0) /*No free copy availabel */   
         { queue[l][n]++;  
     nodejob[l][n]--; 
   } 
       }  /* nodejob[l][n]>0 ends here! 
       /********************************************************/ 
       /* Do another loop to check all busy copies */ 
       for(cp=1;cp<=copy[l][n];cp++) 
        
         {  
           if(nodecopy[l][n].shutflag[cp]==1) 
           { 
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if(nodecopy[l][n].stopcount[cp]!=repitfactor*information[l][n].processt
ime) 
               nodecopy[l][n].stopcount[cp]++; 
            else 
              { 
               clear_shut(plotter,l,n,cp); 
               nodecopy[l][n].shutflag[cp]=0; 
               printf("Node[%d][%d].copy[%d]'s shutdown time is 
up!\n",l,n,cp); 
               printf("If you need more shutdown, set moreshut=1, or 
0.\n"); 
               scanf("%d",&moreshut);  
               if(moreshut==1) 
               shutoff(); 
              }  
                      
           } 
           else if(nodecopy[l][n].busyflag[cp]==1) 
           { 
             
if(nodecopy[l][n].exetime[cp]!=information[l][n].processtime) 
                nodecopy[l][n].exetime[cp]++; 
             else  
               {  
                 update(plotter,l,n,cp); 
   clear_busy(plotter,l,n,cp); 
               } 
                  
            }      
          } 
      /******************Check the queue*********************/ 
      if(queue[l][n]>0) 
      { 
        /* If queue length is greater than QTHRESHOLD, start a new copy 
of 
        computing element. */ 
        if(queue[l][n]>(qthreshold[l][n]+1)) 
        { 
          if((copy[l][n]-initialcopy[l][n])<max_extracopy[l][n]) 
          { 
            copy[l][n]++; 
            cp=copy[l][n]; 
            nodecopy[l][n].busyflag[cp]=0; 
            nodecopy[l][n].shutflag[cp]=0; 
            nodecopy[l][n].stopcount[cp]=0; 
            nodecopy[l][n].exetime[cp]=0; 
            qthreshold[l][n]=qthreshold[l][n]+2; 
            updateflag=1;//Redraw the threshold line 
          } 
        } 
        for(cp=1;cp<=copy[l][n];cp++) 
        { 
          if(nodecopy[l][n].busyflag[cp]==0) 
          { 
            nodecopy[l][n].busyflag[cp]=1; 
            nodecopy[l][n].exetime[cp]=0; 
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     clear_one_queue(plotter,l,n); 
            queue[l][n]--; 
          } 
        } 
      } 
      /******************Finish checking quequ**************/ 
      /************Check whether extracopy need to be deactivate****/ 
      if(copy[l][n]>initialcopy[l][n]) 
      { 
        if(queue[l][n]<qthreshold[l][n]) 
         { 
           cp=copy[l][n]; 
           if(nodecopy[l][n].busyflag[cp]==0)   
              { 
                 copy[l][n]--; 
                 qthreshold[l][n]=qthreshold[l][n]-2; 
                updateflag=1;//Erase the extra copy 
              } 
          } 
      } 
     } 
   } 
   
/**********************************************************************
/ 
   /*****Finish checking all level and all nodes, redraw the dataflow 
****/ 
   
/**********************************************************************
/ 
    
   redraw(plotter); 
    
   /*******Check simulation time****************************/ 
   if(t==simutime&&jobleft>0) 
   { 
     printf("Simulation time is not sufficient. Set simutime to a 
larger value\n"); 
     break; 
   } 
   if(jobleft<=0) 
   { 
     printf("No DISV's at the input. Execution interrupted.\n"); 
     printf("Change the number of input jobs if desired, and run the 
program again!\n"); 
     printf("Total simulation time is %d micro cycles.\n", t); 
     break; 
   } 
    
  } 
//Finish one time simulation 
 
} 
 
void update(plPlotter *plotter, int l, int n,int cp) 
{ 
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  int word,j,lt,nt,a,b,c,d,e,f,s=dec/5,a1,b1; 
  float prob,w; 
  word=information[l][n].fork; 
  switch(word) 
  { 
    case 0:  /* Singular Node */ 
    for(j=1;j<=linknum;j++) 
    { 
      if(l==path[j].lf&&n==path[j].nf) 
       { 
         lt=path[j].lt; 
         nt=path[j].nt; 
         nodejob[lt][nt]++; 
         a=midpoint[l][n].x1; 
         b=midpoint[l][n].y1; 
         e=midpoint[lt][nt].qx; 
         f=midpoint[lt][nt].qy; 
         if(l<lt) 
         { 
         pl_line_r(plotter,a,b,a,b-s); 
         pl_line_r(plotter,a,b-s,e,f+s); 
         pl_line_r(plotter,e,f+s,e,f); 
         arrow(plotter,e,f); 
         } 
         else 
         { 
          if(e<=a) 
            a1=midpoint[lt][nt].x1-500; 
          else 
            a1=midpoint[lt][nt].x1+500; 
          b1=b-s; 
          pl_line_r(plotter,a,b,a,b-s); 
          pl_line_r(plotter,a,b-s,a1,b1); 
          if(e<a){ 
            pl_line_r(plotter,a1+50,b1+25,a1,b1); 
            pl_line_r(plotter,a1+50,b1-25,a1,b1); 
           } 
           else{ 
            pl_line_r(plotter,a1-50,b1+25,a1,b1); 
            pl_line_r(plotter,a1-50,b1-25,a1,b1); 
           }           
          pl_line_r(plotter,a1,b1,a1,f+s); 
          pl_line_r(plotter,a1,f+s,e,f+s); 
          if(e<a){ 
            pl_line_r(plotter,e-50,f+s+25,e,f+s); 
            pl_line_r(plotter,e-50,f+s-25,e,f+s); 
          } 
           else{ 
          pl_line_r(plotter,e+50,f+s+25,e,f+s); 
          pl_line_r(plotter,e+50,f+s-25,e,f+s); 
          } 
         pl_line_r(plotter,e,f+s,e,f); 
         arrow(plotter,e,f); 
         } 
         nodecopy[l][n].busyflag[cp]=0;  /*execution is over, set 
busyflag to 0 */ 
         nodecopy[l][n].exetime[cp]=0; 
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       } 
    } 
    break; 
     
    case 1:  /* Fork */ 
    for(j=1;j<=linknum;j++) 
    { 
      if(l==path[j].lf&&n==path[j].nf) 
      { 
        lt=path[j].lt; 
        nt=path[j].nt; 
        prob=path[j].probability; 
        w=random(); 
        w=w/1000000000; 
        if(prob>=w) 
        { 
          nodejob[lt][nt]++; 
          a=midpoint[l][n].x1;         
          b=midpoint[l][n].y1; 
          c=midpoint[lt][nt].qx; 
          d=midpoint[lt][nt].qy; 
            if(lt>l) 
            { 
              pl_line_r(plotter,a,b,a,b-s); 
              pl_line_r(plotter,a,b-s,c,d+s); 
              pl_line_r(plotter,c,d+s,c,d); 
              arrow(plotter,c,d); 
            } 
          else 
          { 
             if(c<=a) 
            { 
             a1=midpoint[lt][nt].x1-500; 
            } 
            else 
            { 
             a1=midpoint[lt][nt].x1+500; 
            }  
           b1=b-s; 
           pl_line_r(plotter,a,b,a,b-s); 
           pl_line_r(plotter,a,b-s,a1,b1); 
           if(c<a){ 
           pl_line_r(plotter,a1+50,b1+25,a1,b1); 
           pl_line_r(plotter,a1+50,b1-25,a1,b1); 
           } 
           else{ 
           pl_line_r(plotter,a1-50,b1+25,a1,b1); 
           pl_line_r(plotter,a1-50,b1-25,a1,b1); 
           } 
           pl_line_r(plotter,a1,b1,a1,d+s); 
           pl_line_r(plotter,a1,d+s,c,d+s); 
           if(c<a){ 
           pl_line_r(plotter,c-50,d+s+25,c,d+s); 
           pl_line_r(plotter,c-50,d+s-25,c,d+s); 
           } 
           else{ 
           pl_line_r(plotter,c+50,d+s+25,c,d+s); 
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           pl_line_r(plotter,c+50,d+s-25,c,d+s); 
           } 
           pl_line_r(plotter,c,d+s,c,d); 
           arrow(plotter,c,d); 
          } 
          nodecopy[l][n].busyflag[cp]=0;  /*execution is over, set 
busyflag to 0 */ 
          nodecopy[l][n].exetime[cp]=0; 
          //printf("nodejob[%d][%d]=%d\n",lt,nt,nodejob[lt][nt]); 
          break; 
        } 
       } 
    } 
    break; 
     
    case 2: /* Tailpiece */ 
    nodecopy[l][n].busyflag[cp]=0;  /*execution is over, set busyflag 
to 0 */ 
    nodecopy[l][n].exetime[cp]=0; 
    jobleft--; 
    a=midpoint[l][n].x1; 
    b=midpoint[l][n].y1; 
    pl_line_r(plotter,a,b,a,b-s-20); 
 arrow(plotter,a,b-s-20); 
  } //switch ends here! 
 
 
} 
 
 
 
void shutoff( ) 
{ 
     int yesorno; 
repeat:; 
     printf("Input the LEVEL,NODE,and COPY# of which you want to shut 
down!"); 
     printf("\nLevel="); 
     scanf("%d",&l); 
     printf("\nNode="); 
     scanf("%d",&n); 
     printf("\ncopy="); 
     scanf("%d",&cp); 
     nodecopy[l][n].shutflag[cp]=1; 
     nodecopy[l][n].stopcount[cp]=0; 
     printf("\nSet the interval of shut down time!\n"); 
     printf("Interval should be the interger time number of the 
processtime of this node!\n"); 
     scanf("%d",&repitfactor); 
     printf("Any other copy need to be shut down? 1-Yes, 0=No\n"); 
     scanf("%d",&yesorno); 
     if(yesorno==1) 
     goto repeat; 
         
} 
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void redraw(plPlotter *plotter) 
{ 
  int s=dec/3; 
  int a,b; 
  if(updateflag==1) 
  { 
    pl_erase_r(plotter); 
    updateflag=0; 
    draw_dataflow(plotter); 
  } 
   
  /********************Draw input data line 
***************************/ 
 for(n=1;n<=node[1];n++) 
 { 
  if(job[n]>0) 
  { 
    a=midpoint[1][n].qx; 
    b=midpoint[1][n].qy; 
    pl_line_r(plotter,a,b+s,a,b);  
    arrow(plotter,a,b); 
  } 
 } 
  /*****************Draw data link **********************************/ 
  for(l=1;l<=level;l++) 
  { 
    for(n=1;n<=node[l];n++) 
    { 
      if(queue[l][n]>0) 
      draw_queue(plotter,l,n); 
      for(cp=1;cp<=copy[l][n];cp++) 
      { 
        if(nodecopy[l][n].shutflag[cp]==1) 
        draw_shut(plotter,l,n,cp); 
        if(nodecopy[l][n].busyflag [cp]==1) 
        draw_busy(plotter,l,n,cp); 
      } 
    } 
  } 
} 
 
void draw_shut(plPlotter *plotter,int l, int n, int cp) 
{ 
  int a2,b2,d; 
  int x1,x2,y1,y2; 
  a2=midpoint[l][n].x2; 
  b2=midpoint[l][n].y2; 
  d=decval[l][n]; 
  x1=a2-100; 
  x2=a2+100; 
  y1=b2-d*(cp-1); 
  y2=b2-d*cp; 
  pl_line_r(plotter,x1,y1,x2,y2); 
  pl_line_r(plotter,x1,y2,x2,y1); 
   
} 
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void clear_shut(plPlotter *plotter,int l, int n, int cp) 
{ 
  int a2,b2,d; 
  int x1,x2,y1,y2; 
  a2=midpoint[l][n].x2; 
  b2=midpoint[l][n].y2; 
  d=decval[l][n]; 
  x1=a2-100; 
  x2=a2+100; 
  y1=b2-d*(cp-1); 
  y2=b2-d*cp; 
  pl_pencolorname_r(plotter,"white"); 
  pl_line_r(plotter,x1,y1,x2,y2); 
  pl_line_r(plotter,x1,y2,x2,y1); 
  pl_pencolorname_r(plotter,"red"); 
} 
 
void draw_busy(plPlotter *plotter, int l, int n, int cp) 
{ 
  int a2,b2,d,x1,y1; 
  a2=midpoint[l][n].x2; 
  b2=midpoint[l][n].y2; 
  d=decval[l][n]; 
  if(cp>initialcopy[l][n]) 
  { 
    pl_pencolorname_r(plotter,"green"); 
    x1=a2-225; 
    y1=b2-200+50*(cp-initialcopy[l][n]-1)+25; 
    pl_marker_r(plotter,x1,y1,5,10); 
    pl_pencolorname_r(plotter,"red"); 
  } 
  else 
  { 
    x1=a2; 
    y1=b2-d/2-(cp-1)*d; 
    pl_marker_r(plotter,x1,y1,5,10); /* Marker type 5 is a asterisk; 10 
is marker size */ 
  }   
} 
 
void clear_busy(plPlotter *plotter, int l, int n, int cp) 
{ 
  int a2,b2,d,x1,y1; 
  a2=midpoint[l][n].x2; 
  b2=midpoint[l][n].y2; 
  d=decval[l][n]; 
  pl_pencolorname_r(plotter,"white"); 
  if(cp>initialcopy[l][n]) 
  { 
    x1=a2-225; 
    y1=b2-200+50*(cp-initialcopy[l][n]-1)+25; 
    pl_marker_r(plotter,x1,y1,5,10); 
  } 
  else 
  { 
    x1=a2; 
    y1=b2-d/2-(cp-1)*d; 
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    pl_marker_r(plotter,x1,y1,5,10); /* Marker type 5 is a asterisk; 10 
is marker size */ 
  }   
  pl_pencolorname_r(plotter,"red"); 
} 
 
void draw_queue(plPlotter *plotter, int l, int n) 
{ 
  int a2,b2,x1,y1,x2,y2,copies,i; 
  copies=queue[l][n]; 
  a2=midpoint[l][n].x2; 
  b2=midpoint[l][n].y2; 
  x1=a2+140; 
  y1=b2-50; 
  for(i=1;i<=copies;i++) 
  { 
    x2=x1+100; 
    y2=y1+25; 
    if(i>qthreshold[l][n]) 
    { 
      pl_pencolorname_r(plotter,"green"); 
      pl_box_r(plotter,x1,y1,x2,y2); 
      pl_marker_r(plotter,x1+50,y1+12,4,4); 
      pl_pencolorname_r(plotter,"red"); 
    } 
    else 
    { 
      pl_box_r(plotter,x1,y1,x2,y2); 
      pl_marker_r(plotter,x1+50,y1+12,4,4); 
    } 
    y1=y1+25; 
  }   
} 
 
void clear_one_queue(plPlotter *plotter, int l, int n) 
{ 
  int a2,b2,x1,y1,x2,y2,copies,i; 
  copies=queue[l][n]; 
  a2=midpoint[l][n].x2; 
  b2=midpoint[l][n].y2; 
  x1=a2+140; 
  y1=b2-50; 
  pl_pencolorname_r(plotter,"white"); 
  x2=x1+100; 
  y2=y1+25*copies; 
      pl_line_r(plotter,x1,y2,x2,y2); 
      pl_marker_r(plotter,x1+50,y2-13,4,4); 
      pl_pencolorname_r(plotter,"red"); 
 } 
 
void draw_dataflow(plPlotter *plotter) 
{ 
 int a1,a2,b1,b2; 
 int y1,lab1; 
 x=1250; 
y=4300; 
pl_move_r(plotter,x,y); 
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pl_ffontsize_r(plotter,150); 
pl_alabel_r(plotter,'l','c',"HDCA DATAFLOW GRAPH"); 
pl_ffontsize_r(plotter,75); 
 y=4000; 
 dec=(y/level)-200; 
 y=y-(dec/2); 
  
 for(l=1;l<=level;l++) 
 { 
  x=4000; 
  inc=(x/node[l])-200; 
  x=100+inc/2; 
  for(n=1;n<=node[l];n++) 
  { 
   pl_box_r(plotter,x,y,x+200,y-200); 
   copynum=copy[l][n]; 
   itoa(copynum,lab);  //copynum was changed after this instruction! 
   x=x-120; 
   y=y-270; 
   pl_move_r(plotter,x,y); 
   copynum=copy[l][n]; 
   if(copynum>initialcopy[l][n]) 
    { 
     pl_pencolorname_r(plotter,"green"); 
     pl_alabel_r(plotter,'l','c',lab); 
     pl_pencolorname_r(plotter,"red"); 
    } 
   else 
   pl_alabel_r(plotter,'l','c',lab); 
   x=x+120; 
   y=y+270; 
   copynum=initialcopy[l][n]; 
   decval[l][n]=200/copynum; 
   y1=y;   /*bring the cursor back to original position */ 
   midpoint[l][n].x1=x+100; 
   midpoint[l][n].y1=y-200; 
   midpoint[l][n].x2=x+100; 
   midpoint[l][n].y2=y; 
   a1=midpoint[l][n].x2+140; 
   a2=a1+100; 
   b1=midpoint[l][n].y2-50; 
   b2=b1+200; 
   midpoint[l][n].qx=a1+50; 
   midpoint[l][n].qy=b2; 
   pl_line_r(plotter,a1,b2,a1,b1); 
   pl_line_r(plotter,a1,b1,a2,b1); 
   pl_line_r(plotter,a2,b1,a2,b2); 
/* Label the threshold for each node */ 
   pl_pencolorname_r(plotter,"green"); 
   pl_linemod_r(plotter,"dotted"); 
   
pl_line_r(plotter,a1,b1+25*qthreshold[l][n],a2+50,b1+25*qthreshold[l][n
]); 
   pl_linemod_r(plotter,"solid"); 
   pl_move_r(plotter,a2+60,b1+25*qthreshold[l][n]); 
   pl_alabel_r(plotter,'l','c',"Th["); 
   lab1=qthreshold[l][n]; 
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   itoa(lab1,lab2); 
   pl_alabel_r(plotter,'l','c',lab2); 
   pl_alabel_r(plotter,'l','c',"]"); 
   pl_pencolorname_r(plotter,"red"); 
/* Label the queue name for each queue */ 
   pl_move_r(plotter,a2+10,b1-10); 
   pl_alabel_r(plotter,'l','c',"Q"); 
   lab1=l; 
   itoa(lab1,lab2); 
   pl_alabel_r(plotter,'l','c',lab2); 
   lab1=n; 
   itoa(lab1,lab2); 
   pl_alabel_r(plotter,'l','c',lab2); 
/* Label then node name for each node */ 
   pl_pencolorname_r(plotter,"cyan"); 
   pl_move_r(plotter,midpoint[l][n].x2-300,midpoint[l][n].y2+100); 
   pl_alabel_r(plotter,'l','c',"Node:"); 
    lab1=l; 
   itoa(lab1,lab2); 
   pl_alabel_r(plotter,'l','c',lab2); 
   lab1=n; 
   itoa(lab1,lab2); 
   pl_alabel_r(plotter,'l','c',lab2); 
   pl_pencolorname_r(plotter,"red"); 
    
  pl_line_r(plotter,a1+45,b1,a1+45,b1-50); 
  pl_line_r(plotter,a1+45,b1-50,a1-40,b1-50); 
  pl_line_r(plotter,a1-40,b1-50,a1-10,b1-20); 
  pl_line_r(plotter,a1-40,b1-50,a1-10,b1-80); 
   for(cp=1;cp<=(copy[l][n]-1);cp++) 
   { 
    if(cp>(copynum-1)) 
      draw_extracopy(plotter,l,n); 
    else 
     {pl_line_r(plotter,x,y1-decval[l][n],x+200,y1-decval[l][n]);/* 
draw copies */ 
      y1=y1-decval[l][n]; 
     } 
   } 
    
   x=x+200+inc; 
  } 
  y=y-200-dec; 
 }   
} 
 
// The following program is taken verbatim from page59 if the C 
programming Language 
reverse(s) 
char s[]; 
{ 
    int c,i,j; 
    for(i=0,j=strlen(s)-1;i<j;i++,j--) 
    { 
        c=s[i]; 
        s[i]=s[j]; 
        s[j]=c; 
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    } 
} 
 
// The following program is taken verbatim from page60 of The C 
Programming Language 
itoa(n,s) // convert n to characters in s  
char s[]; 
int n; 
{ 
    int i,sign; 
    if ((sign=n)<0) // record sign  
         n=-n; 
    for(i=0;i<strlen(s);i++) 
    { 
      s[i]=' '; 
    } 
     
    i=0; 
     
    do{   // generate digits in reverse order  
        s[i++]=n%10+'0';  // get next digit  
    } 
    while((n/=10)>0);  //delete it  
    reverse(s); 
} 
 
void draw_link(plPlotter *plotter) 
{ 
 int i,j,a,b,c,d,e,f,e1,f1,e2,f2,a1,b1,s=dec/5; 
 /* Draw lines to the top level boxes */ 
 for(i=1;i<=node[1];i++) 
 { 
   a=midpoint[1][i].qx; 
   b=midpoint[1][i].qy; 
   pl_line_r(plotter,a,b+s,a,b); 
   arrow(plotter,a,b); 
 } 
 
 
 for(i=1;i<=node[level];i++) 
 { 
   a=midpoint[level][i].x1; //bottom midpoint x 
   b=midpoint[level][i].y1; //bottom midpoint y 
   pl_line_r(plotter,a,b,a,b-s-20); 
   arrow(plotter,a,b-s-20);  
   for(j=1;j<=linknum;j++) 
   {     
    e1=path[j].lf; 
    f1=path[j].nf; 
    e2=path[j].lt; 
    f2=path[j].nt; 
    if(e1==level&&f1==i)  //Then draw feedback line! 
    {       
      c=midpoint[e2][f2].qx; //queue upper midpoint x of the 
destination node 
      d=midpoint[e2][f2].qy; //queue upper midpoint y of the 
destination node 



 221 
 

 

      b1=b-s; 
      if(f2<f1) a1=midpoint[e2][f2].x1-500; 
      else a1=midpoint[e2][f2].x1+500; 
      pl_line_r(plotter,a,b,a,b-s); 
      pl_line_r(plotter,a,b-s,a1,b1); 
      if(f2<f1) 
        { 
         pl_line_r(plotter,a1+50,b1+25,a1,b1); 
         pl_line_r(plotter,a1+50,b1-25,a1,b1); 
        } 
      else 
        { 
         pl_line_r(plotter,a1-50,b1+25,a1,b1); 
         pl_line_r(plotter,a1-50,b1-25,a1,b1); 
        } 
      pl_line_r(plotter,a1,b1,a1,d+s); 
      pl_line_r(plotter,a1,d+s,c,d+s); 
      if(f2<f1) 
      { 
        pl_line_r(plotter,c-50,d+s+25,c,d+s); 
        pl_line_r(plotter,c-50,d+s-25,c,d+s); 
      } 
      else 
      { 
        pl_line_r(plotter,c+50,d+s+25,c,d+s); 
        pl_line_r(plotter,c+50,d+s-25,c,d+s); 
      } 
     pl_line_r(plotter,c,d+s,c,d); 
     arrow(plotter,c,d); 
    }  
   } 
 } 
 /* Draw connections to the rest of the boxes */ 
 for(i=1;i<=linknum;i++) 
 { 
  e1=path[i].lf;         /* Level value of "from" box */ 
  f1=path[i].nf;         /* Node value of "from" box */ 
  a=midpoint[e1][f1].x1;  /*Bottom x coord. of "from" box */ 
  b=midpoint[e1][f1].y1;  /*Bottom y coord. of "from" box */ 
  e2=path[i].lt;         /* Level value of destination box */  
  f2=path[i].nt;         /* Node value of desitination box */ 
  c=midpoint[e2][f2].qx;  /* Upper x coord. of destination box */ 
  d=midpoint[e2][f2].qy;  /* Upper y coord. of destination box */ 
  if(e1<e2) 
  { 
    pl_line_r(plotter,a,b,a,b-s); 
    pl_line_r(plotter,a,b-s,c,d+s); 
    pl_line_r(plotter,c,d+s,c,d); 
    arrow(plotter,c,d); 
  } 
  else 
  { 
   if(c<=a) 
   { 
    a1=midpoint[e2][f2].x1-500; 
   } 
   else 
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   { 
     a1=midpoint[e2][f2].x1+500; 
   }  
   b1=b-s; 
   pl_line_r(plotter,a,b,a,b-s); 
   pl_line_r(plotter,a,b-s,a1,b1); 
   if(c<a) 
        { 
         pl_line_r(plotter,a1+50,b1+25,a1,b1); 
         pl_line_r(plotter,a1+50,b1-25,a1,b1); 
        } 
      else 
        { 
         pl_line_r(plotter,a1-50,b1+25,a1,b1); 
         pl_line_r(plotter,a1-50,b1-25,a1,b1); 
        } 
   pl_line_r(plotter,a1,b1,a1,d+s); 
   pl_line_r(plotter,a1,d+s,c,d+s); 
   if(c<a) 
      { 
        pl_line_r(plotter,c-50,d+s+25,c,d+s); 
        pl_line_r(plotter,c-50,d+s-25,c,d+s); 
      } 
      else 
      { 
        pl_line_r(plotter,c+50,d+s+25,c,d+s); 
        pl_line_r(plotter,c+50,d+s-25,c,d+s); 
      } 
   pl_line_r(plotter,c,d+s,c,d); 
   arrow(plotter,c,d); 
  } 
 } 
} 
 
void arrow(plPlotter *plotter, int x3, int y3) 
{ 
 pl_line_r(plotter,x3-30,y3+30,x3,y3); 
 pl_line_r(plotter,x3+30,y3+30,x3,y3); 
 pl_move_r(plotter,x3,y3); 
} 
 
int varate(int mean) 
{ 
  int n,drand; 
  float rand1,rand2; 
  float pi=3.14159; 
  rand1=random(); 
  rand2=random(); 
  rand1=sin(2*pi*rand1); 
  drand=sin(2*pi*rand1)*rand2/100000000; 
  n=mean+drand; 
  return(n); 
} 
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void draw_extracopy(plPlotter *plotter, int l, int n) 
{ 
int a1,b1,x1,y1,copies,i; 
copies=copy[l][n]-initialcopy[l][n]; 
a1=midpoint[l][n].x1; 
b1=midpoint[l][n].y1; 
x1=a1-325; 
y1=b1; 
pl_pencolorname_r(plotter,"green"); 
for(i=1;i<=copies;i++) 
{ 
  pl_move_r(plotter,x1,y1); 
  pl_box_r(plotter,x1,y1,x1+200,y1+50); 
  y1=y1+50; 
} 
pl_pencolorname_r(plotter,"red"); 
} 
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