Forage Allowance and Cow Genotype, Tools to Increase Animal Production in Native Pastures

Pablo Soca
Universidad de la República, Uruguay

Mariana Carriquiry
Universidad de la República, Uruguay

Martín Do Carmo
Instituto Nacional de Investigación Agropecuaria, Uruguay

Follow this and additional works at: https://uknowledge.uky.edu/igc

Part of the Plant Sciences Commons, and the Soil Science Commons

This document is available at https://uknowledge.uky.edu/igc/22/1-8/18

The 22nd International Grassland Congress (Revitalising Grasslands to Sustain Our Communities) took place in Sydney, Australia from September 15 through September 19, 2013. Proceedings Editors: David L. Michalk, Geoffrey D. Millar, Warwick B. Badgery, and Kim M. Broadfoot

Publisher: New South Wales Department of Primary Industry, Kite St., Orange New South Wales, Australia

This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Forage allowance and cow genotype, tools to increase animal production in native pastures

Pablo Soca A, Mariana Carriquiry A and Martin Do Carmo B

A Animal Production and Pastures Department, School of Agronomy, Universidad de la República, Uruguay, www.fagro.edu.uy/eemac
Contact email: psocape@gmail.com

Keywords: Campos grassland, rainfall, productivity.

Introduction

In eight plots (four per block) the effects of two FA per two cow genotypes were tested from August 2007 to March 2010, on a Campos grassland (major species were Axonopus affinis, Oxalis sp., Cyperus sp., Cynodon dactylon, Eryngium nudicaule, Gaudinia fragilis, Chevreulia sarmentosa, Stipa setigera, Paspalum notatum and Coelorachis selloana) in Uruguay (32° 20' S, 54° 26' W). Forage allowance varied seasonally, in HIGH (5, 3, 4 and 4 kg DM/kg LW) and LOW (3, 3, 2 and 2 kg DM/kg LW) during autumn, winter, spring and summer, respectively. Continuous stocking method was applied throughout the year, with FA adjusted monthly, using the “put and take method” (Mott and Lucas 1952). Thirty PURE (Hereford and Aberdeen Angus) and thirty CROSS (F1 reciprocal Hereford and Angus crosses) multiparous cows, aged four to eight years with normal calving and pregnancies, were randomly assigned to the plots. Cow LW and BCS were measured monthly and in key moments such as calving and at the beginning of the breeding season. BCS was visually assigned on a scale ranking from 1 = very thin to 8 = very fat (Vizcarra et al. 1986). Cows did not breed during summer 2010. Data of cow LW and BCS and calf weight at weaning (94 ± 31 d) were analyzed using the MIXED procedure (SAS Institute, Cary, NC, USA, 2002). The model included FA, cow genotype, year and their interactions as fixed effects, block as random effect, and for cow BCS at the beginning of the breeding season, cow BCS at calving was used as covariate. Tukey–Kramer test were conducted for mean separation (α = 0.05).

Results

Cow BCS at calving was affected by the interaction between forage allowance x year (P<0.01) and cow genotype x year (P<0.01), but not by forage allowance x cow genotype (P>0.5). Cow BCS at calving was higher in HIGH than in LOW only in 2009, after a severe drought. However, cow genotype affected BCS at calving during 2008 (Fig. 1). Cow BCS at the beginning of the breeding season was affected (P<0.05) by forage allowance during 2008 (start of the drought) and tended to be significant during 2007 (3 months after the beginning of the differential FA). Cow BCS at the beginning of breeding was affected by BCS from the previous calving. Reproductive rate is highly influenced by both cow BCS at calving (that affects the length of the anoestrus period), and BCS at the beginning of the breeding season that interacts with BCS at calving to determine early and total pregnancy rate (Soca et al. 2013). On the other hand calf weight at weaning was higher in HIGH than in LOW (120 vs 104 ± 2 kg) and in CROSS than in PURE (119 vs 105 ± 2 kg), which can be explained by the higher milk production in HIGH and CROSS cows (Gutierrez et al. 2012). There was no interaction of FA x cow genotype, but effects were additive, being 96.6, 112, 114 and 126 ± 2 kg for LOW-PURE, LOW-CROSS, HIGH-PURE and HIGH-CROSS respectively.

Figure 1. Body condition score (BCS) of purebred () and crossbred () cows under HIGH () or LOW () forage allowance at calving or beginning of the breeding season. Mean differences (Tukey-Kramer) are indicated with **.
Conclusions

Our works highlights the opportunity to enhance the BCS at calving and at the beginning of the breeding and the weight of calves at weaning through the use of FA and cow genotype. Differences between HIGH and LOW FA were not associated with a difference stocking rate (Do Carmo et al. 2013 at this congress).

References

