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Abstract
Flowpathways and source water connectivity dynamics are widely recognized to

affect tile-drainage water quality. In this study, we developed and evaluated a frame-

work that couples event-based hydrograph recession and specific conductance end-

member mixing analysis (SC-EMMA) to provide a more robust framework for quan-

tifying both flow pathway dynamics and source connectivity of drainage water in

tile-drained landscapes. High-frequency (30-min) flow and conductivity data were

collected from an edge-of-field tile main located in northwestern Ohio, and the

newly developed framework was applied for data collected in water year 2019. Mul-

tiple linear regression (MLR) analysis was used to evaluate the impact of pathway-

connectivity dynamics on flow-weighted mean dissolved reactive P (DRP) concen-

trations, which were collected as part of the USDA-ARS edge-of-field monitoring

network. The hydrograph recession and SC-EMMA results highlighted intra- and

interevent differences between quick (preferential) flow and new (precipitation) water

transported during events, challenging a common assumption that new water reflects

drainage through preferential flow paths. The analysis of hydrologic flow pathways

demonstrated matrix–macropore exchange (Qquick-old), preferential flow of new water

(Qquick-new), slow flow of old water (Qslow-old), and slow flow of new water (Qslow-new)

contributed 9, 39, 42, and 10% to tile discharge, on average, with interevent variabil-

ity. Matrix water that is transported to tile drains via macropore flowpaths was found

to be activated throughout the year, even under drier antecedent conditions, suggest-

ing that matrix–macropore exchange was more sensitive to within-event hydrological

processes as compared with antecedent conditions. The MLR results highlighted that

pathway-connectivity hydrograph fractions improved prediction of DRP concentra-

tions, although improvement may be more pronounced in landscapes with higher

rates of matrix–macropore exchange.

Abbreviations: APEX, Agricultural Policy/Environmental Extender; DRP, dissolved reactive phosphorus; EMMA, end-member mixing analysis; MLR,

multiple linear regression; NSE, Nash–Sutcliffe efficiency; SC, specific conductance; SE, storm event

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.

© 2021 The Authors. Vadose Zone Journal published by Wiley Periodicals LLC on behalf of Soil Science Society of America

Vadose Zone J. 2021;20:e20154. wileyonlinelibrary.com/journal/vzj2 1 of 18
https://doi.org/10.1002/vzj2.20154

https://orcid.org/0000-0001-7940-9826
mailto:bill.ford@uky.edu
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/vzj2
https://doi.org/10.1002/vzj2.20154


2 of 18 NAZARI ET AL.Vadose Zone Journal

1 INTRODUCTION

Agricultural subsurface tile drainage across the midwestern

United States has increased eutrophication and the persis-

tence of harmful and nuisance algal blooms (Kleinman et al.,

2015; Simard et al., 2000; Van Esbroeck et al., 2016). Tile

drainage networks in fine-textured soils are often the pri-

mary field-scale discharge pathway during stormflows and

can disproportionately affect watershed-scale water and nutri-

ent budgets (King et al., 2014; Schilling et al., 2020; Williams

et al., 2015). Tile-drainage nutrient loadings during storm-

flows reflect variability in flow pathway dynamics and source

water connectivity (Jiang et al., 2021; King et al., 2015;

Ortega-Pieck et al., 2020; Pluer et al., 2020; Smith & Capel,

2018). For the purposes of this study, flow pathway refers

to the subsurface flow domain such as percolation through

micropores in the soil matrix or preferential transport through

macropores, and source connectivity refers to sources of water

such as event water (e.g., precipitation or irrigation water), or

pre-event water (e.g., water residing in the soil matrix prior to

stormflows). Existing methodologies to quantify flow path-

way dynamics and source connectivity during storm events

have limitations ranging from short temporal domains and

coarse sampling resolutions, when using chemical and iso-

topic tracers (Nazari et al., 2020; Pluer et al., 2020), to

uncertainties and long-term data requirements associated with

field-scale numerical models (Ford et al., 2017). Development

and evaluation of a framework that considers both flow path-

way and source connectivity dynamics at the field point of

discharge (referred to herein as “edge-of-field”) to assess the

implications for tile-drain water quality is a major need and

research gap.

Soils in tile-drained fields have been conceptualized as

two-domain hydrologic systems including diffuse percola-

tion through the soil matrix and preferential flows through

macropore networks, with interactions occurring between

the domains (Bishop et al., 2015; Brauer et al., 2014; Frey

et al., 2016; Gerke et al., 2013; Klaus et al., 2013). Diffuse

flow through matrix percolation is associated with slow and

delayed seepage of water from the soil matrix to tile drains.

Preferential flow through macropores reflects the rapid trans-

fer of water to tiles via desiccation cracks, root channels,

worm holes, fractures, and other biopores that bypass per-

colation through the soil matrix (Beven & Germann, 2013;

Flury et al., 1994). There is widespread recognition of bidi-

rectional matrix–macropore interaction during events in tile-

drained fields that has been found to significantly affect con-

taminant loadings (Bishop et al., 2015; Callaghan et al., 2017;

Ford et al., 2018; Klaus et al., 2013; Williams et al., 2015).

Recent advancements in field-scale hydrology and water qual-

ity models (e.g., Hydrus, MACRO, APEX [Agricultural Pol-

icy/Environmental Extender], and DRAINMOD) have been

important for representing these dynamics and water sources

Core Ideas
∙ Hydrograph separation methods are coupled to

study tile flow pathway and source connectivity

dynamics.

∙ Results highlight preferential flow of old and new

water, bypass recharge, and diffuse flow to tile

drainage.

∙ Sources and pathways of subsurface flow improve

prediction of nutrient concentrations.

for agroecosystem management (Askar et al., 2020; Beven &

Germann, 2013; Ford et al., 2017). However, in agroecosys-

tem models, they often require long-term records for rigorous

calibration and validation and neglect or oversimplify simu-

lation of processes including matrix–macropore interaction,

resulting in uncertainties during model evaluation (Djabelkhir

et al., 2017; Pferdmenges et al., 2020).

Utilization of hydrograph recession analysis has been iden-

tified as an effective method to quantify event-scale matrix

and macropore pathway contributions (Ford et al., 2019;

Husic et al., 2019; Nazari et al., 2020). In hydrograph reces-

sion, hydrographs are conceptualized as the drainage of a

series of reservoirs that have variable hydraulic conductivi-

ties and storage volumes (Husic et al., 2019). These reser-

voirs often recede exponentially, resulting in distinct log-

linear regions of the hydrograph. The hydrograph recession

method has been successfully applied in subsurface drained

landscapes with lateral preferential pathways including karst

and tile-drained landscapes to partition flow into diffuse and

preferential flowpaths with varying hydraulic conductivities

(Ford et al., 2019; Husic et al., 2019; Mellander et al., 2013;

Nazari et al., 2020; Schilling & Helmers, 2008).

Regarding tile drainage source dynamics during storm

flows, studies have applied various chemical and isotopic

tracer methods (Ford et al., 2018; Keinzler & Naef, 2008;

Klaus et al., 2013; Vidon & Cuadra, 2010; Williams et al.,

2015). Most studies that assess source water dynamics parti-

tion tile drainage water into “new” and “old” water compo-

nents, in which “old” water reflects storage in the soil prior to

the event, and “new” water reflects either precipitation or irri-

gation inputs during an event (Klaus et al., 2013; Schilling &

Helmers, 2008; Vidon & Cuadra, 2010; Williams et al., 2016).

These studies have found that preferential flow can consist

of both new and old water sources (Smith & Capel, 2018;

Vidon & Cuadra, 2010; Williams et al., 2016). Although these

techniques have been effective at identifying source water

dynamics at the field to watershed scale within events, these

approaches are often limited to coarse resolution sampling of a

few events due to data collection and analytical expense (Pluer

et al., 2020; Williams et al., 2016).



NAZARI ET AL. 3 of 18Vadose Zone Journal

Studies have used high-frequency conductance-based mea-

surements as an inexpensive means to continuously moni-

tor source connectivity dynamics during tile-drain hydrologic

events at the watershed scale (Heppell & Chapman, 2006;

Kronholm & Capel, 2015; Schilling & Helmers, 2008; Vidon

& Cuadra, 2010), and more recently at the field scale (Pluer

et al., 2020; Smith & Capel, 2018). Specific conductance (SC)

can be used as a general indication of runoff age due to change

of drainage water ion concentrations during residence within

the soil profile. Typically, waters with extended residence

times are likely to have a greater ionic content and SC val-

ues (Pilgrim & Huff, 1983). In recent years, advances in the

robustness and reliability of inexpensive in situ water quality

sensors have enabled scientists and practitioners to continu-

ously monitor SC (Snyder et al., 2018). As a result, studies

are now deploying these technologies in tile drains at the edge

of field and coupling these measurements with end-member

mixing analyses (EMMA) to quantify the contribution of pref-

erential flows of new water (Pluer et al., 2020; Smith & Capel,

2018). To date, studies have not coupled hydrograph reces-

sion and SC-EMMA approaches for investigating flow path-

way and source connectivity dynamics.

Several studies have postulated that flow pathway and

source connectivity dynamics impact dissolved reactive

P (DRP) loadings in tile-drained agroecosystems. Water-

extractable P from soils correlates well with tile drain DRP

concentrations during storm events; hence, event water that is

rapidly transported to tile via preferential flowpaths is often

cited as a driver of tile DRP concentrations (Heathwaite &

Dils, 2000; Stamm et al., 1998). Other studies have illustrated

that matrix water may be rapidly transported from variable

depths in the soil column to tile during events, which alters

DRP concentration dynamics (Ford et al., 2018; Klaus et al.,

2013; Williams et al., 2016). We postulate that combining

hydrograph recession analysis of tile flow and SC-EMMA

will improve quantification of flow pathway and source water

connectivity dynamics and consequently improve correlations

with nutrient concentrations in tile drainage.

The overall objective of this study was to develop a new

approach to partition subsurface flow based on both flow path-

way and source connectivity descriptors and elucidate their

impact on P concentration dynamics in tile drainage. Spe-

cific objectives of this manuscript are (a) to apply hydro-

graph recession analysis of subsurface discharge to partition

the tile hydrograph into quick-flow and slow-flow pathways,

and SC-EMMA to partition new water and old water; (b) to

develop and apply a new hydrograph separation framework

that describes both hydrologic pathway (i.e., matrix flow vs.

preferential macropore flow) and source connectivity (e.g.,

new water vs. old water) in tile drainage; and (c) to investi-

gate the relationship between separated hydrograph fractions

and tile-drain DRP concentrations.

2 MATERIALS AND METHODS

2.1 Study site

A field site from the USDA-ARS Soil Drainage Research

Unit edge-of-field monitoring network (Williams et al., 2016)

was secured for this study. The field site (0.158 km2) is

a systematically tile drained field in Wood County, Ohio,

USA. Systematic tile drainage was implemented at 0.9 m

(3 ft) below the soil surface with a lateral spacing of 15.2 m

(50 ft). Laterals were routed to a 0.3-m (12-inch) tile main

that was equipped with a drainage water management struc-

ture before discharging to a downstream ditch (Figure 1a).

During our monitoring period, the structure remained open

as part of a before–after–control–impact assessment, and

thus the field was freely drained. The soils were charac-

terized as silty clay loams consisting of Nappanee (NpA;

fine, illitic, mesic Aeric Epiaqualfs) and Hoytville (HcA;

fine, illitic, mesic Mollic Epiaqualfs ) soil series (Soil Sur-

vey Staff, 2019). Soil P levels were measured using Mehlich-

3 P soil tests at various depths and locations for the field

and were found to average 80.6 mg kg−1 in the upper sur-

face layer (0–5 cm), 36.5 mg kg−1 from 5 to 15 cm, and

6.3 mg kg−1 at depths of 15–60 cm. The typical crop rotation

was corn (Zea mays L.)–soybean [Glycine max (L.) Merr.]–

wheat (Triticum aestivum L.), managed with conservation

tillage. At the onset of monitoring (1 Oct. 2018), the field con-

tained soybean that was harvested on 17 Oct. 2018. The field

remained fallow until wheat was planted the following season

(11 Oct. 2019).

2.2 Data collection and analysis

Precipitation and discharge were collected by the USDA-

ARS using well-accepted edge-of-field monitoring practices

(Williams et al., 2016; Figure 1b). Tipping bucket rain gages

were used to measure 10-min rainfall intensity, depth, and

duration. Tile mains were equipped with a weir insert (Thel-

Mar, Brevard), and an ISCO 4230 bubbler flow meter (Tele-

dyne Isco). Additionally, the tile outlet was equipped with an

ISCO 2150 area velocity sensor for 30-min discharge mea-

surements under submerged conditions. Similarly, a surface

monitoring site was equipped with a 61-cm (2-ft) H flume

and a bubbler flow meter to measure 10-min discharge. Dis-

charge was reported from the standard flume or weir stage–

discharge relationships or as the product of area and velocity

for the tile outlet when submerged. During water year 2019 (1

Oct. 2018–30 Sept. 2019), total tile discharge was 522 mm,

or 41% of precipitation (1,263 mm). Surface runoff was only

8.3 mm (<1% of precipitation), highlighting the importance

of the subsurface flow pathway. Mean 30-min tile discharge
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F I G U R E 1 Location of the tile-drained field located in Wood County, Ohio, USA. (a) Aerial field delineation and monitoring location.

(b) Outlet of the tile network and its installed weir, and ISCO pump sampler. (c) High-frequency sensing YSI EXO2 Sonde and its deployment in a

drainage water management structure

throughout the monitoring period was 0.0025 m3 s−1, whereas

maximum discharge was 0.0343 m3 s−1.

A YSI EXO2 water quality sonde (Xylem/YSI Incorpora-

tion, 2020) was installed in the drainage water management

structure to continuously (15-min interval) measure specific

conductance (see Figure 1c). The sonde was equipped with a

conductivity and temperature sensor, which uses four internal

pure-nickel electrodes to measure solution conductance. Two

of the electrodes are current driven, whereas the other two are

used to measure voltage drop (EXO user manual). Monthly

maintenance was performed on the instrument per manufac-

turer recommendations and was consistent with other studies

(Snyder et al., 2018). A one-point calibration approach was

performed using KorEXO software and a calibration standard

with conductivity equal to 1,000 μS cm−1.

Surface and tile water samples were collected using a Tele-

dyne ISCO 6712 portable sampler and accessories. Surface

samples were collected using a flow proportional method-

ology; that is, a 200-ml aliquot was collected for every 1-

mm volumetric depth. Ten composited aliquots made up one

sample. Due to periodic submergence, a time-proportional

approach was used to collect water samples. A 100-ml aliquot

was collected every 6 h for 48 h and composited into a sin-

gle sample bottle reflecting a 2-d composite sample. During

rainfall events, samples were collected at higher frequencies

(samples collected every 15 min and composited hourly). Col-

lected water samples were analyzed for DRP throughout the

monitoring period by first vacuum filtration (0.45 μm) and

then analyzing for P using the ascorbic acid reduction method

(Murphy & Riley, 1962). Samples rarely fell below method

detection limits. Specific conductance was also measured on

all Isco collected samples using a calibrated SC sensor in the

laboratory.

2.3 Analytical methodology

2.3.1 Hydrograph recession and SC-EMMA
analysis

Hydrograph recessions from events throughout the moni-

toring period were compiled to develop a master recession

curve. We assumed two flow pathways reflecting reservoirs

for matrix and macropore flow, consistent with previous stud-

ies (Nazari et al., 2020; Schilling & Helmers, 2008; Vidon

& Cuadra, 2010; Williams et al., 2016). Recession coeffi-

cients (k) for a linear reservoir are defined by the equation

Q = Q0e–kt (Gregor & Malik, 2012). The master recession

curve (MRC) was automatically created using a genetic algo-

rithm (GA) incorporated in RC 4.0 software (HydroOffice;

Gregor & Malik, 2012; Malik & Vojtkova, 2012). We omitted

events that were either composed of days with zero flow (i.e.,

associated with no flux or tile backwater) or had nonlinear

recessions associated with disruption of the initial recession

and/or secondary flow peaks. For MRC creation, we selected

18 recessions from the site. Then, we selected two linear
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F I G U R E 2 Separation of subsurface hydrograph to combined pathway-connectivity components including matrix–macropore exchange

(Qquick-old), preferential flow of new water (Qquick-new), old water through slow-flow reservoir (Qslow-old), and new water through slow-flow reservoir

(Qslow-new). Subsurface hydrograph is separated into quick flow (Qq) and slow flow (Qs) reservoirs using hydrograph recession analysis in Step 1

(Panel a). Subsurface hydrograph is separated into new water (Qn) and old water (Qo) components using a specific conductance end-member mixing

analysis (SC-EMMA) approach (Panel b). In Step 2, a set of equations are employed and calculated Qquick, Qslow, Qold and Qnew (from Step 1) are

used to separate hydrograph into pathway-connectivity components as shown in Panels c and d

reservoirs and fit two recession curves so that the two reces-

sions provided optimal fit to the data. The goodness-of-fit was

tested using Nash–Sutcliffe efficiency (NSE) value (Moriasi

et al., 2007).

Hydrograph recession analysis was performed for each

storm event using methods described by Husic et al. (2019)

and Ford et al. (2019) (Figure 2a), which has been recently

applied in tile-drained landscapes (Nazari et al., 2020).

Briefly, for each hydrologic event, we graphed the falling limb

of the subsurface discharge hydrograph on a logarithmic scale

and manually fit linear curves to distinct log-linear regions

(reflecting drainage of two reservoirs) to determine the inflec-

tion points of the linear trends. Then, a linear increase in

slow flow was assumed from the beginning of the rising

limb of the hydrograph, which represents the start of quick

flow (Qquick), to the determined inflection point on the falling

limb from the previous step, which represents the maximum

of the slow flow reservoir (Husic et al., 2019). To test the

impact of the assumption of linear increase of slow-flow reser-

voir on flow pathway results, we evaluated two alternative

approaches for calculation of the slow-flow hydrograph for

eight events. We used a nonlinear two-parameter digital filter

method (Eckhardt, 2005), in which parameters were calibrated

so that slow-flow reservoir nonlinearly increased to the max-

imum slow-flow value near or before the hydrograph peak,

and then its value remained constant to the inflection point

on the falling limb. We also used a nonlinear one-parameter

digital filter method (Lyne & Hollick, 1979) in which the

recession constant was calibrated so that slow-flow nonlin-

early increased slowly early in the event and then increased

rapidly towards the inflection point on the falling limb of the

hydrograph. Comparing the results of these two approaches

showed limited impact on results (1–4% difference from the

linear assumption), and the timing of flow pathway peaks

remained unchanged. Given the insensitivity of this assump-

tion, we present results using the simplified linear assump-

tion for the 27 events. The area between the hydrograph and

the slow flow curve represented Qquick, and the area under-

neath the slow flow reservoir curve represented Qslow. We per-

formed this analysis on 27 storm events (SEs) from water year

2019.

New water and old water fractions were quantified using

specific conductance end-member mixing analysis (SC-

EMMA; Figure 2b). Following the approach of Smith and

Capel (2018), we solved the following system of equations

at each time step in order to estimate the pre-event and event
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flow contributions to tile drainage.

(
𝑄Tile

)
𝑡
=

(
𝑄old

)
𝑡
+

(
𝑄new

)
𝑡

(1a)

(
SCTile

)
𝑡

(
𝑄Tile

)
𝑡
= SCold

(
𝑄old

)
𝑡
+ SCnew

(
𝑄new

)
𝑡

(1b)

where, (QTile)t, (Qold)t, (Qnew)t were total, old water, and

new water tile discharges at time t, respectively. (SCTile)t was

the measured specific conductance of subsurface tile water

at time t, and (SCold)t and (SCnew)t were specific conduc-

tance of old water and new water at time t, respectively. We

assumed that SCnew was the average specific conductance of

surface water runoff samples collected from the surface site,

and SCold was the specific conductance of subsurface water

at the beginning of each event and varied from one event to

the next, a result of variable soil water conditions.

2.3.2 Hydrograph separation framework

We developed a new hydrograph separation framework that

considers both flow pathway and water source connectivity

(Figure 2c, d). Once Qquick, Qslow, Qnew, and Qold were cal-

culated, we developed the following piecewise functions for

each time step (t) to estimate the portion of old water that

drains to the quick-flow reservoir (Qquick-old), the portion of

new water that drains to the quick-flow reservoir (Qquick-new),

the portion of new water that drains through the slow-flow

reservoir (Qslow-new), and the portion of old water that drains

to the slow-flow reservoir (Qslow-old). In deriving this frame-

work, we assumed that (a) if quick flow exceeded new water,

all new water was attributed to the quick-flow pathway, and

(b) if new water exceeded quick flow, then all quick flow was

attributed to new water. Based on these assumptions, each

pathway-source component of the hydrograph can be calcu-

lated as follows:

{ (
𝑄quick−old

)
𝑡
= (𝑄quick −𝑄new)𝑡 if (𝑄quick)𝑡 ≥ (𝑄new)𝑡(

𝑄𝑞uick−old
)
𝑡
= 0 if (𝑄quick)𝑡 < (𝑄new)𝑡

(2a)

{ (
𝑄quick−new

)
𝑡
=
(
𝑄new

)
𝑡

if (𝑄quick)𝑡 ≥ (𝑄new)𝑡(
𝑄quick−new

)
𝑡
=
(
𝑄quick

)
𝑡

if (𝑄quick)𝑡 < (𝑄new)𝑡
(2b)

{ (
𝑄slow−old

)
𝑡
=
(
𝑄total −𝑄quick

)
𝑡

if (𝑄quick)𝑡 ≥ (𝑄new)𝑡(
𝑄slow−old

)
𝑡
=
(
𝑄total −𝑄new

)
𝑡

if (𝑄quick)𝑡 < (𝑄new)𝑡
(2c)

{ (
𝑄slow−new

)
𝑡
= 0 if (𝑄quick)𝑡 ≥ (𝑄new)𝑡(

𝑄slow−new
)
𝑡
=
(
𝑄new −𝑄quick

)
𝑡

if (𝑄quick)𝑡 < (𝑄new)𝑡
(2d)

We partitioned the tile flow into Qquick-new, Qquick-old,

Qslow-new, and Qslow-old for the entire 2019 water year. For each

selected event (27 events), we calculated total water volume

and fractions for each partitioning.

2.3.3 Comparison with nutrient
concentrations

Dissolved reactive P concentrations (DRPtile) in tile drainage

will reflect mixing of flow contributions and their associ-

ated nutrient compositions, which can be described using a

linear mass-balance mixing model. Based on our pathway-

connectivity framework, we conceptualized tile drain nutrient

concentrations to be influenced by the four hydrograph frac-

tions as follows:

DRPtile𝑄tile = DRPquicknew𝑄quicknew + DRPquickold𝑄quickold

+DRPslownew𝑄slownew + DRPslowold𝑄slowold (3)

where DRP is the daily flow-weighted mean nutrient concen-

tration (mg L−1), and Q is the tile flowrate for each parti-

tion (mm d−1). We used a daily, as opposed to event-based

time step since cumulative event dynamics will smooth out

some variability in pathway dynamics. We also disregarded

the sorption–desorption effects along the pathways for sim-

plification and because the time scale of the events was short.

Hence, our analysis reflects average DRP concentrations for

each pathway across events.

Dividing both sides of the Equation 3 by QTile, the equation

can be written as a multiple linear regression (MLR) model,

with DRPtile as the measured dependent variable, fractions of

pathway-source contributions as independent variables, and

concentrations of the sources as unknowns:

DRPtile = 𝐹quicknewDRPquicknew + 𝐹quickoldDRPquickold

+𝐹slownewDRPslownew + 𝐹slowoldDRPslowold (4)

where F is the fraction of total tile discharge for each partition

at a given time step.

Daily subsurface DRP loadings and flow from the tile

drainage network were calculated for all events throughout the

monitoring period. We determined the midpoint of all sam-

ple time steps for each collected water sample, then used lin-

ear interpolation between measured values at the midpoint to

estimate the concentration for each interval, and finally esti-

mated loading as the product of interpolated concentrations
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F I G U R E 3 Master recession curve constructed from 18

subsurface flow recessions for water year 2019. R1 and R2, Reservoirs

1 and 2; MRC, master recession curve; RC, recession curve; Q, tile

discharge

and flow rate (Williams et al., 2015). We calculated daily

Qquick-new, Qquick-old, Qslow-new, and Qslow-old by

summing calculated 30-min flow components. Daily flow-

weighted mean concentrations of DRP were calculated by

dividing daily nutrient load by daily tile discharge. Daily flow-

weighted mean concentration of DRP was used for MLR anal-

ysis in Equation 4.

We performed a MLR at a daily time step in order to esti-

mate “best-fit” concentrations for the partitioned hydrograph

sources. The MLR models were performed in RStudio soft-

ware. The F statistic was used to test the null hypothesis that

individual coefficients (DRP values in Equation 4) were not

equal to zero, as well as the null hypothesis that the over-

all MLR model provided a superior fit to a mean trend. The

p values were calculated for the F statistics in both hypothe-

sis testing scenarios, and significance results are reported for

p < .05, p < .01, p < .001, and p < .0001. We performed an

analogous analysis using only Qquick/Qslow and Qnew/Qold to

assess the improvement in predictions when using our new

coupled hydrograph separation framework over each isolated

hydrograph separation method.

3 RESULTS AND DISCUSSION

3.1 Hydrograph recession and SC-EMMA
results

Master recession curve analysis for the 2019 water year data

resulted in two discernable reservoirs reflecting preferential

flow through macropores and diffuse drainage through the

soil matrix (Figure 3). Reservoir 1 (R1) reflected a steeply

recessing quick-flow pathway, whereas Reservoir 2 (R2) was

characteristic of a mildly recessing slow-flow pathway. The

recession coefficients for R1 and R2 were 0.9 and 0.25 d−1,

respectively (Figure 3). The NSE value was equal to 0.81, sug-

gesting very good fit (Moriasi et al., 2007). Given that the

recession coefficients vary by greater than threefold (Husic

et al., 2019; Rimmer & Hartmann, 2012; Schilling & Helmers,

2008), these finding are indicative of two distinct flow path-

ways. Results of the master recession curve suggest that R1

accounted for 54% of the subsurface flow while the remain-

der, or 46% was attributed to R2. These values were consis-

tent with ranges reported for preferential and diffuse flow at

nearby loam and clay fields with similar long-term manage-

ment practices (Ford et al., 2017; Nazari et al., 2020) and indi-

cated that both preferential and matrix flow are significant

contributors to subsurface drainage.

Specific conductance (SC) measurements during storm

events showed a consistent pattern of maximum values occur-

ring prior to the event, a decrease to minimum values slightly

before or after peak discharge, and then increasing values on

the receding limb toward pre-event levels (Figure 4). Pre-

event SC averaged 566.5 μS cm−1 for the 27 events. Mini-

mum event SC averaged 240.5 μS cm−1, reflecting decreases

towards values reported for precipitation (e.g., 12 μS cm−1

in Smith & Capel, 2018) and measured SC in the surface

runoff samples (15 μS cm−1 from 55 surface runoff samples).

Interestingly, the time to minimum SC values differed sig-

nificantly for fall and winter events (mean = 698 min; with

range of 165–1,260 min) compared with spring and summer

events (mean = 183 min, with a range of 60–390 min). Simi-

lar quick responses (141 min) from spring and summer events

on silty clay loam sites in Iowa (Smith & Capel, 2018) have

been reported and may be associated with differences in man-

agement practices, precipitation patterns, and seasonal differ-

ences in preferential flow paths (Graham & Lin, 2011; Pluer

et al., 2020; Williams et al., 2016).

Based on our results, we postulate seasonal differences and

precipitation pattern dynamics both play an important role in

timing of new water delivery to tile drains. Regarding pre-

cipitation patterns, our results showed that average event pre-

cipitation intensity (PI) in summer and spring (PI = 9.8 mm

d−1) were twofold greater than for the events in fall and win-

ter (PI = 4.2 mm d−1). With regard to seasonal environmen-

tal conditions, previous studies in tile-drained landscapes sug-

gest that during the growing season, low-moisture conditions

promote desiccation crack expansion, which enables water to

rapidly transfer to tiles or bypass the drainage system (Nazari

et al., 2020). Conversely, during winter, a large amount of

infiltration can occur via preferential flow because under par-

tially saturated conditions a considerable portion of macrop-

ores remain air filled (Granger et al., 1984; Mohammed et al.,

2018; Pittman et al., 2020; Stadler et al., 2000). Nevertheless,

infiltrated meltwater may freeze due to matrix–macropore

heat and water transfer, and the frozen water can block the

macropore pathway, and consequently reduce infiltration of
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F I G U R E 4 (a) Time series of data including 30-min tile flow (mm) and 15-min specific conductance (SC, μS cm−1). Two events are

highlighted at different times of year including (b) fall and (c) summer

event water (Demand et al., 2019; Mohammed et al., 2021;

Stadler et al., 1997; Watanabe & Kugisaki, 2017). Cumula-

tively, these seasonal environmental factors in precipitation

and soil dynamics are likely drivers of short time to peaks

in spring and summer and longer time to peaks in fall and

winter.

Results of the event-based continuous recession and SC-

EMMA analysis illustrated noticeable differences in magni-

tude and timing of the quick flow and new water fractions,

challenging the assumption that new water is equivalent to

preferential flow (Table 1, Figure 5). Cumulatively, Qquick was

estimated to be 172 mm (48% of total tile discharge) and Qnew

was estimated to be 176 mm (49% of total tile discharge).

For individual events, we found quick-flow contribution to

total subsurface flow varied from 8 to 77%, and new water

contributions varied from 3 to 82% (Table 1). However, new

water and quick-flow hydrographs often differed in terms of

peak timing and magnitude between events (Figure 5). The

peak of Qquick often occurred before Qnew except for SE12

and SE26. The difference between time to peak of Qquick and

Qnew averaged 164 min for fall and winter events, and 87 min

for spring and summer events. Studies have often assumed the

amount of preferential flow is equated to the amount of new

water transported to tile (Klaus et al., 2013). For example,

Smith and Capel (2018) and Pluer et al. (2020) interpreted

conductance-based unmixing results as separation of prefer-

ential flow and slow flow. Similarly, Williams et al. (2016)

used δ18O to define event and pre-event water to tile drains

and assumed that event water transported to tile drains within

a storm event was only possible through macropore flows. Our

findings suggest that new water during storm flows may be

transported to tile through both preferential and diffuse flow

paths, suggesting caution should be used with tracer-based

approaches.

3.2 Pathway-connectivity results

Results of the pathway-connectivity framework indicates all

four hydrograph components had a significant, but vari-

able contribution to tile hydrology. Cumulatively, Qquick-old,

Qquick-new, Qslow-old, and Qslow-new contributed 9, 39, 42, and

10% of tile discharge for the analyzed events (Table 1). The

Qquick-old contributions ranged from 0.05 to 27%, Qquick-new

contributions ranged from 1.86 to 66%, Qslow-new contri-

butions ranged from 0.7 to 33%, and Qslow-old contribu-

tions ranged from 13 to 98% of total tile discharge. Many

agroecosystem water management models make simplifying

assumptions that limit their ability to represent the abovemen-

tioned pathway-connectivity dynamics. For instance, APEX,

DRAINMOD-P, ADAPT (Agricultural Drainage and Pes-

ticide Transport), RZWQM2-P (Root Zone Water Quality

Model-Phosphorus), SimplyP (a Simple Phosphorus Model),

SWAP (Soil Water Atmosphere Plant), and SWAT (Soil and
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F I G U R E 5 Tile discharge (Q), quick flow calculated using hydrograph recession analysis, and new water calculated using specific

conductance end-member mixing analysis for each storm event (SE) at the study site during water year 2019

Water Assessment Tool) do not actively simulate matrix–

macropore processes explicitly through dual-porosity or dual-

permeability frameworks (Pferdmenges et al., 2020). This

is important not only for hydrologic simulations, but also

contaminant transport given source connectivity has a major

impact on nutrient, pesticide, and sediment transport pro-

cesses, as will be discussed in Section 3.3. As modeling

frameworks in agroecosystems evolve to incorporate robust

hydrologic processes, the coupled hydrograph-recession SC-

EMMA framework proposed herein may be useful for quanti-

tative model evaluations given the heterogeneity observed at

the event-scale in pathway-connectivity dynamics.

Results for Qquick-new support existing perceptions that

preferential transport of surface water occurs through both
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F I G U R E 6 Results of pathway connectivity framework for (a) Storm Event 26 (SE26) and (b) SE2. These two events were selected from

summer and fall because they reveal seasonal differences in subsurface flow pathway and source connectivity. In this figure, Qquick-old, Qquick-new,

Qslow-old, and Qslow-new represent matrix–macropore exchange, preferential flow of new water, old water through slow-flow reservoir, and new water

through slow-flow reservoir, respectively

saturated and unsaturated conditions through macropores in

fine-textured, tile-drained soils. The Qquick-new for the 27

events had a positive linear relationship with event precipi-

tation (R2 = .4), and a weak negative correlation with 10-d

antecedent rainfall (R2 = .12). Further, under low antecedent

conditions in summer (Figure 6a), two Qquick-new peaks

were observed, one of which occurred 60 min into the event,

and the other occurred 210 min into the event. This finding

illustrates that fine-textured tile-drained landscapes are not

solely drained by binary flow reservoirs but instead reflect

a spectrum of slow to rapid flows. For example, Schilling

et al. (2008) illustrated recessions in tile-drained landscapes

of Iowa may be separated into quick, intermediate, and slow

flow regimes. The timing of the second peak is reflective of

the time to peak for Qquick-new in fall as evidenced by sim-

ilar magnitude drainage events with greater antecedent mois-

ture (Figure 6b). Although further work is needed to illus-

trate the prominence and mechanisms driving these early-

event peaks, one potential mechanism is that desiccation

crack networks may be more prominent during these low

antecedent moisture periods, promoting unsaturated film flow

to tiles (Ford et al., 2017; Mirus & Nimmo, 2013 Nimmo,

2012). Regardless, these findings support a growing body of

research in tile-drained landscapes that suggest macropore

flows of surface-derived water sources are significant under

a range of antecedent moisture conditions (Cey & Rudolph,

2009; Ford et al, 2017; Smith & Capel, 2018; Tokunga &

Wan, 1997).

Results for quick flow of old water (Qquick-old) highlight

the importance of intrinsic event properties to control the

magnitude of matrix–macropore flow. The Qquick-old com-

ponent of the hydrograph, by definition, reflects matrix

water that is transported to tile-drains via macropore flow-

paths and was found to be activated throughout the year,

even under drier antecedent conditions. Like Qquick-new, we

found a positive linear relationship between Qquick-old and

precipitation (R2 = .52), and a weak negative relationship

with 10-d antecedent rainfall (R2 = .08). We also found

Qquick-old to have a positive linear relationship with Qquick-new

(R2 = .40). Klaus et al. (2013) performed irrigation exper-

iments on a tile-drained hillslope and found old water was

mobilized through shallow surface soil depths (20–40 cm)

and transported through macropores because macropore–

matrix interaction leads to an initiation of macropore flow

after a moisture threshold was exceeded. Several other stud-

ies have highlighted macropore flow under porewater ten-

sion conditions and associated importance of macropore–

matrix interaction in controlling this flow (Bishop et al., 2015;

Callaghan et al., 2017; Cey & Rudolph, 2009; Tokunaga &

Wan, 1997). The findings of our study support that increas-

ing preferential flow of new water enhances mixing with

the soil matrix (i.e., bidirectional matrix–macropore inter-

action). Likewise, our findings support that larger precip-

itation events will result in greater saturation of soils and

thus greater rates of matrix–macropore exchange. Contrary to

anticipated outcomes, antecedent rainfall had little impact on
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matrix–macropore exchange. This finding suggests that

antecedent conditions may be insensitive when compared

with intrinsic storm event hydrologic characteristics with

regards to magnitude of matrix–macropore exchange.

Apart from near-surface initiation of macropore flow, rapid

transport of old water to tile drains could occur because of

rapid transition of the capillary fringe from tension satura-

tion to positive pressure (Sklash & Farvolden, 1979). In tile-

drained systems, the groundwater elevation is at or near the

tile drain elevation; therefore, it is possible that part of the

correlation between macropore flow and matrix–macropore

exchange is associated with the rapid transition of the cap-

illary fringe tension saturation to positive pressure near tile

drains. Nevertheless, as will be discussed in Section 3.3, we do

not feel this is a prominent source for our study since regres-

sion analyses with DRP concentrations indicated high levels

of DRP in the Qquick-old pathway.

Our findings show contributions of both new water and old

water to the slow flow pathways, suggesting that groundwater

recharge of new water plays an important role in tile drainage

fluxes. The average time to peak of Qslow-new for all the events

was 32 ± 4 h. Using a one-dimensional form of Darcy’s law

in which we assumed area weighted hydraulic conductivity

averaged 5.5 cm d−1 and 45% of porosity for our site (Soil

Survey Staff, 2019; Vidon & Cuadra, 2010), we found that

for new stormwater to reach tile drains through diffuse per-

colation alone could take on the order of a week. This result

suggests that new water, at least to some degree, bypasses

portions of the soil matrix before ultimately draining through

the soil drainage reservoir. Previous studies have indicated

that unsaturated-zone preferential flow can significantly

contribute to groundwater recharge (Cuthbert et al., 2013;

Lee et al., 2006; Mirus & Nimmo, 2013). For tile-drained

landscapes, Frey et al. (2012) highlighted that under partially

saturated conditions, water transport via macropores to sub-

surface can then be laterally transmitted to tiles via short slow-

flow pathways in the vicinity of tile lines. Although we did

not measure groundwater level and its responsiveness to pref-

erential flow, we found that there was a negative relationship

between Qslow-new time to peak and 10-d antecedent rainfall

(R2 = .19). This finding is consistent with Lee et al. (2006),

where the authors found that groundwater recharge with pref-

erential flow is dependent on both thickness and degree of

saturation of the unsaturated zone. Collectively, these results

suggest that groundwater recharge could be an important reg-

ulator of timing and flow pathway dynamics in tile discharge.

3.3 Implications for P delivery at the edge
of field

Daily flow-weighted mean DRP concentrations were poorly

correlated with discharge, stemming primarily from signifi-

F I G U R E 7 Flow-weighted daily mean dissolved reactive P

concentrations (DRP conc) for the study site in water year 2019 plotted

against tile discharge (Q)

cant variability at low tile discharges (Figure 7). We found

that tile drainage only predicted about 10% of the variabil-

ity in DRP. The simple regression underestimates DRP con-

centrations at low-flow conditions where DRP concentration

was highly variable and overestimated DRP concentrations

at high-flow conditions when concentrations were less vari-

able. This finding suggests that during high-flow conditions,

subsurface discharge can be a more reliable predictor of DRP

concentration, whereas under low-flow conditions, other envi-

ronmental factors may influence DRP such as P (de)sorption,

redox conditions, and water source (King et al., 2015; Klein-

man & Sharpley, 2002; Wright et al., 2001).

Multiple linear regression analysis suggests that includ-

ing both pathway and connectivity partitioning was impor-

tant for estimating tile drainage DRP concentrations (Table 2;

Figure 8). The p value of the F statistic for all three mod-

els was <2 × 10−16, suggesting all models were significant

predictors of tile DRP concentrations. Further, all beta coef-

ficients were found to be significant at a .05 significance

level. Comparing the visual results of predicted DRP values

and measured DRP values (Figure 8) illustrates that our new

pathway-connectivity framework provided improvements at

low-moderate DRP concentrations (<0.05) as evidenced by

datapoints converging on the 1:1 line (Figure 8c). Further

indication of improvement of prediction using our pathway-

connectivity framework is evidenced by increases in the NSE

(0.46; see Moriasi et al., 2007), as compared with SC-EMMA

(0.41; Figure 8b), and hydrograph recession (0.27) results

(Figure 8a). Although the improvement may partially reflect

additional variables in the regression analysis, all regression

variables were significant (Table 2), and the coefficients dif-

fered between each of the hydrograph partitions. This method-

ology may become particularly important for understanding

dynamics at sites where matrix exchange of old water to

macropores constitutes a greater proportion of the tile hydro-

graph. Further, this methodology may help with evaluating

drivers of DRP delivery to tile at sites where new water is
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T A B L E 2 Results of the multiple linear regression analysis for daily flow weighted mean dissolved reactive P (DRP) concentrations

DRP
Estimated
coefficients p value of flow fractions

p value of
overall model

Regression using new pathway-connectivity framework

DRPquick-old .076 (.02)*** .00033 <2 × 10−16

DRPquick-new .091 (.008)**** <2 × 10−16

DRPslow-old .028 (.003)**** 2.65 × 10−12

DRPslow-new .153 (.019)**** 8.8 × 10−13

Regression using only hydrograph recession analysis

DRPquick .088 (.006)**** <2 × 10−16 <2 × 10−16

DRPslow .043 (.003)**** <2 × 10−16

Regression using only specific conductance end-member mixing analysis

DRPnew .108 (.007)**** <2 × 10−16 <2 × 10−16

DRPold .034 (.003)**** <2 × 10−16

Note. Estimated coefficient column shows estimated dissolved reactive P concentration (mg L−1) associated with each flow fraction with standard error in parentheses
***Significant at the .001 probability level. ***Significant at the .0001 probability level.

F I G U R E 8 Multiple linear regression analysis results for daily

flow-weighted mean concentrations of dissolved reactive P (DRP) as

compared with (a) hydrograph recession results, (b) specific

conductance end-member mixing analysis (SC-EMMA) results, and

(c) the new pathway-connectivity framework results

a poor predictor of DRP concentrations (Pluer et al., 2020).

Although predictions could be improved by accounting for

variability in individual source compositions, our results sup-

port the importance of considering both hydrologic source

and pathway to accurately predict DRP concentration dynam-

ics. Furthermore, our analysis reflects an average DRP con-

centration from pathways; however, between events, there

are likely complex sorption–desorption and solute diffusion

dynamics that result in variability in each pathway. Con-

sidering redox or other conditions that can effect sorption–

desorption dynamics between events can reduce uncertainty

associated with our MLR analysis and improve the NSE value.

Best-fit concentrations from the regression model provide

insight into sources of DRP in the soil profile and the impacts

of preferential flow on groundwater recharge. Results of the

regression analysis showed DRPquick-old was slightly less than

DRPquick-new. This result suggests DRPquick-old was initiated

from near-surface matrix waters, given that water extractable

P is highly stratified at the study site (see study site descrip-

tion). Such stratification and subsurface labile P accumulation

is typical of tile-drained agroecosystems in the region (King

et al., 2015; Xu et al., 2020). Additionally, concentrations for

DRPslow-new were high, similar to quick-flow pathways. This

finding was somewhat surprising considering that the slow-

new source ultimately drains through the matrix reservoir. In

part, this finding may partially reflect uncertainties in the new

water SC end-member, particularly later in the event when SC

values may be nonconservative (Vidon & Cuadra, 2010). Nev-

ertheless, the finding is of interest because it suggests ground-

water recharge through preferential flowpaths is an important

source of greater DRP concentrations in tile drainage, which

is rarely emphasized in tile DRP studies (King et al., 2015)

and merits further consideration in future tile drainage water

quality research, particularly when studying practices such as
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drainage water management which directly affects water table

dynamics.

The results of this study highlight that coupled character-

ization of flow pathway and water source are important for

predicting DRP concentrations in tile drainage. Few studies

have assessed the impact of flow pathway and source connec-

tivity dynamics on tile P concentrations during storm events

(Jiang et al., 2021). Previous studies have either used total

Q, preferential flow, or new/old water estimates to predict P

concentrations and loading in tiles. For instance, Pluer et al.

(2020) found that preferential flow (estimated by conductiv-

ity based unmixing) was weakly correlated with P concen-

tration, although the relationship between P and preferential

flow was positive suggesting that preferential flow was a sig-

nificant driver of P transport to tiles (Grant et al., 2019; Pluer

et al., 2020). Given the relatively low cost of specific con-

ductance, flow, and temperature sensors, widespread appli-

cation of pathway-connectivity frameworks across environ-

mental and management gradients has significant potential for

advancing our understanding of contaminant transport in tile-

drainage.

4 CONCLUSIONS

A new method was presented that combines SC-EMMA and

hydrograph recession approaches to describe both hydro-

logic pathways and source connectivity by separation of sub-

surface hydrograph into Qquick-new, Qquick-old, Qslow-new, and

Qslow-old. Results highlight event-to-event and seasonal vari-

ability in dominant source-pathway dynamics. New water and

quick flow hydrographs often differed in terms of peak timing

and magnitude between events. Our results support that new

water through macropore flow can occur under both dry and

saturated conditions. Likewise, matrix–macropore exchange

occurs under a range of antecedent conditions. Contribu-

tions of new water in the slow-flow reservoir highlighted that

groundwater recharge plays a significant role in tile drainage

fluxes.

Using the pathway-connectivity flow components as

descriptors of DRP delivery in a MLR model improved pre-

diction of DRP concentrations in tiles as compared with tile

flow or hydrograph recession results, although it provided

comparable results to new water and should be evaluated else-

where at sites where matrix–macropore exchange constitute a

larger percentage of the tile water budget. We found that new

water that routes through quick-flow and slow-flow reservoirs

play a significant role in delivery of DRP in tiles as compared

to old water. Results show that DRP concentrations associ-

ated with matrix–macropore exchange revealed initiation of

this water source from the near-surface matrix. This study

highlights a data-driven approach using inexpensive sensors

to assess flow pathway and connectivity dynamics and can be

used to help inform numerical model evaluations and assess

environmental gradients across sites in future work.
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