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Abstract: Collecting remotely sensed spectral data under varying ambient light conditions is
challenging. The objective of this study was to test the ability to classify grayscale targets observed
by portable spectrometers under varying ambient light conditions. Two sets of spectrometers
covering ultraviolet (UV), visible (VIS), and near-infrared (NIR) wavelengths were instrumented
using an embedded computer. One set was uncalibrated and used to measure the raw intensity of
light reflected from a target. The other set was calibrated and used to measure downwelling
irradiance. Three ambient-light compensation methods that successively built upon each other were
investigated. The default method used a variable integration time that was determined based on a
previous measurement to maximize intensity of the spectral signature (M1). The next method
divided the spectral signature by the integration time to normalize the spectrum and reveal relative
differences in ambient light intensity (M2). The third method divided the normalized spectrum by
the ambient light spectrum on a wavelength basis (M3). Spectral data were classified using a
two—step process. First, raw spectral data were preprocessed using a partial least squares (PLS)
regression method to compress highly correlated wavelengths and to avoid overfitting. Next, an
ensemble of machine learning algorithms was trained, validated, and tested to determine the overall
classification accuracy of each algorithm. Results showed that simply maximizing sensitivity led to
the best prediction accuracy when classifying known targets. Average prediction accuracy across
all spectrometers and compensation methods exceeded 93%.

Keywords: remote sensing; spectroscopy; machine learning; ambient light compensation;
reflectance target classification

1. Introduction

The ability to sense and quantify spatial variability in parameters of interest within a field is a
key component of precision agriculture [1]. In situ and proximal sensing are commonly used for
real-time control of agricultural inputs. Remote sensing is suitable for prescriptive management,
where measurements are used to build prescription maps that are in turn used to control equipment
as it traverses a field. Remote sensing is currently among the most widely studied topics in precision
agriculture [2] and the recent advances in small unmanned aircraft systems (SUAS) and miniaturized
sensors have provided new tools applied to remote sensing research [3,4]. Remote sensing using
sUAS has covered a wide range of applications including sensing biomass and nitrogen status [5],
monitoring wheat production [6], and monitoring rangelands [7]. UASs provide a versatile method
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for remote data collection with a relatively high spatiotemporal resolution when compared to
conventional satellite- and ground-based methods [8].

Multispectral, thermal, or visible light cameras are most commonly deployed for sUAS-based
remote sensing [9-14]. Most of the commercially available sensors are designed to work in one or two
ranges of wavelengths to reduce sensor cost and data processing complexity. Typically, a small set of
narrow-band ranges that are sensitive to one or more field parameters are selected to create an index
[15,16]. A ubiquitous index in crop production is the normalized difference vegetation index (NDVI),
which typically uses red and near-infrared (NIR) light to estimate crop vigor. While relatively simple
to apply, vegetation indices tend to correlate with a myriad of parameters, which makes
Alli$o ofili i oooooo000 oHolifToA JHov Kov fieY 4iooe
Portable spectrometers are relatively inexpensive tools that can be used to measure a continuous

complete spectrum across a wide range of wavelengths. Recent advances in portability and control
have led to the ability to mount spectrometers on sUAS platforms [17,18]. In these studies, two
identical spectrometers (STS, Ocean Optics) were deployed. One spectrometer was oriented towards
the ground and measured the reflectance from a reference white target. The other was mounted on a
UAS to measure reflectance from land targets. The ratio of the land target reflectance and the
reference white target was considered as compensated reflectance from the land target. Unlike
hyperspectral cameras, spectrometers only collect a single spatial measurement representing a
circular or elliptical area. Equipment costs and data processing requirements are substantially
reduced when using spectrometers versus hyperspectral cameras in instances where spatial
resolution is not important.

For lab-based spectrometry, measurements are taken under controlled light conditions, which is
an advantage that does not exist for UAS-deployed spectrometers under field condition with frequent
changes in ambient light. Experiments that collect spectral measurements are typically conducted
during favorable conditions such as full sun around solar noon in order to reduce the effect of
ambient light change in measurements and maximize reflectance [19]. Ambient light variability
caused by atmospheric conditions reduces the accuracy of measurements derived from spectral data
[20]. Thus, spectral measurement systems typically require some form of field calibration to account
for ambient light conditions. Calibration of spectral measurement systems is challenging due to the
large number of factors that can influence spectral response [21]. Targets with known reflectivity are
a vital element in a typical calibration process [22]. The empirical line method is one of the common
approaches for calibrating spectral data against variable illumination. In this approach, tarps or
panels with known reflectivity are placed in a field during data collection. By finding the relationship
between known reflectance values and the raw intensity measurements of the sensor, an equation is
obtained and then applied to all measurements [17,18]. The data collection period is limited since
changing Sun angle during data acquisition affects the reflectance [23]. Transient cloud cover can also
substantially affect the amount of ambient light present over short durations. Another shortfall more
specific to hyperspectral imaging is the practical limitation of having tarps or other reference targets
in all images, especially when high resolution data is desired or a large area is covered [24].

Devising a method that can keep track of ambient light changes while measuring the raw
reflectance from a spectral target using an uncalibrated spectrometer would be useful in precision
agriculture research and on-farm applications where ambient light conditions cannot be controlled.
By automating this measurement process through concurrent ambient light detection, a compensated
reflectance can be obtained for every single wavelength in the spectrum at a low cost and under
various ambient light conditions [25,26].

Obtained spectrums can be analyzed partially or entirely to estimate different agricultural
indices in a field. Nevertheless, calibrating these sensors for various ambient light conditions and
avoiding saturation remain a challenge. Ground-based field spectrometers are mostly limited to data
collection in a specific period and ambient light condition [27-30] and use repeated reference
measurements from calibration tarps [31]. This process does not scale well to UAS-based applications
where large areas are covered and extended time periods with changing ambient light conditions are
necessary to acquire measurements.
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An alternative to processing a small number of wavelengths into an index is to use the full
measured spectrum. Supervised machine learning algorithms are a convenient way to model spectral
data. Spectral data are collected from samples with known parameters and used to train the model
through a variety of techniques. A subset of data is withheld from training and used to validate or
test the model. Different machine learning algorithms have already been used for classification of
hyperspectral images [32], weed detection [33], plant disease detection [34], biotic stress detection
[35], water quality monitoring [36], human learning [37,38], and many other applications. Several
studies focused on developing algorithms and methods for feature selection to reduce the
dimensionality of very large datasets [39,40]. Compressing the dataset into a smaller set of
components reduces processing time and avoids overfitting the model to the data [41].

Applying machine learning has become less difficult due to advances in computational software,
such as MATLAB, that include graphical interfaces for organizing and processing data. Models from
one—dimensional spectral data (e.g., intensity vs. wavelength) derived from a few thousand samples
can be trained in several minutes using a personal computer. The speed at which models can be
trained and validated makes testing a wide range of models feasible. In [42], an ensemble approach
to machine learning was used to classify moisture content (MC) of bare soil and wheat stalk residues
from spectral data collected in a laboratory controlled experiment. Twenty turn-key models available
in MATLAB (R2015b, The Mathworks, Natick, MA, USA) were trained and used to classify MC at
seven levels between 3.3% and 30% on a gravimetric basis. Performance varied between 35% and 96%
classification accuracy, depending on the model used, and several models had large deviations in
performance when classifying soil versus stalk moisture content. Results indicated that choosing a
model solely from past performance in literature may not yield optimal performance for a new
dataset.

Variability in ambient light conditions and performance of classification methods remains a
challenge despite substantial progress in using hyperspectral camera and spectrometer-based remote
sensing used to classify agricultural parameters. Many agricultural parameters (e.g.,, moisture
content) are dynamic, which makes collecting comprehensive datasets of spectral data paired with
reference measurements expensive. Calibration targets with parameters that do not change under
varying ambient conditions are useful first step in testing new sensing and data processing methods
before moving on to more complex scenarios.

Objectives

The application area of this work is remote sensing in precision agriculture using portable
spectrometers. Previous work using spectrometers under variable ambient light conditions revealed
the need to compensate for ambient light to optimize instrument sensitivity and improve the
feasibility of classifying targets from spectral signatures [14,43]. This study aimed to expand upon
the previous work by devising methods to update integration time (measurement period) and
incorporate calibrated irradiance measurements. Specific objectives included:

1. Fabricate a set of “grayscale” calibration targets and quantify their spectral reflectance relative to
a calibration standard.

2. Develop methods for adjusting integration time and incorporating irradiance measurements to
automate ambient light compensation.

3. Test the ability of the system to classify different targets under a wide range of ambient light
conditions.

The grayscale targets presented in this study were used in lieu of agriculture targets to simplify
testing ambient light compensation methods prior to moving on to more complex scenarios.
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2. Materials and Methods

2.1. Instrumentation

Two spectral measurement systems were deployed for data collection—an ambient light system
for collecting downwelling solar irradiance and a reflectance system for collecting upwelling
reflectance measurements from targets located underneath the sensors (Figure 1). Each system
consisted of three Ocean Optics STS spectrometers in the ultraviolet (UV), visible (VIS), and
near—infrared (NIR) ranges; a Raspberry Pi 3 (RPi) embedded computer (Model B V1.2, Raspberry Pi
Foundation, Cambridge, United Kingdom); and a custom 3D printed plastic enclosure for mounting
each system to a test stand. The test stand aligned the reflectance system 1 m above reflectance targets
and positioned the ambient light system directly above the reflectance system.

Ambient Light
Spectrometers

Reflectance
Spectrometers

Test Stand

Reflectance

Target

Figure 1. Spectral measurement systems consisting of three ambient light spectrometers and three
reflectance spectrometers mounted on a test stand over a reflectance target.

The UV  (STS-UV-L-25-400-SMA, Ocean Optics, Largo, FL, USA), VIS
(STS-VIS-L-50-400-SMA, Ocean Optics, Largo, FL, USA), and NIR (STS-NIR-L-25-400-SMA,
Ocean Optics, Largo, FL, USA) spectrometers used in the ambient light system were equipped with
a direct-attach cosine corrector (CC-3-DA, Ocean Optics, Largo, FL, USA) and factory calibrated to
convert raw intensity measurements to units of energy (uJ). The cosine corrector provided a 180°
field-of-view (FOV) facing upward and normal to the ground. The UV and NIR spectrometers had
an optical resolution of 1.5 nm and the VIS spectrometer had an optical resolution of 3 nm.
Spectrometer integration times were fixed at 1000 ms for the UV and NIR spectrometers and 180 ms
for the VIS spectrometer. Ambient light spectrometer configurations were selected based on the
manufacturer’s recommendation.

The UV  (STS-UV-L-100-400-SMA, Ocean Optics, Largo, FL, USA), VIS
(STS-VIS-L-100-400-SMA, Ocean Optics, Largo, FL, USA), and NIR (STS-NIR-L-100-400-SMA,
Ocean Optics, Largo, FL, USA) spectrometers used in the reflectance system were equipped with a
direct-attach collimating lens (74-DA, Ocean Optics, Largo, FL, USA). The 100 pum slit combined with
the collimating lens produced an elliptical FOV with a semi-major axis length of 9 cm and a semi-
minor axis length of 4 cm. All three spectrometers used in the reflectance system had an optical
resolution of 6 nm. Spectrometer integration time varied continuously as described in section 2.3.
Reflectance spectrometer configurations were selected based on the manufacturer’s
recommendation. Spectrometer specifications for the ambient light and reflectance systems are
summarized in
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Table 1.
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Figure 7. Normalized reflectance measurements divided by ambient light energy (M3).

3.4. Spectral Data Preprocessing

The PLS regression method compressed spectral data consisting of 1024 measurements per
spectrometer into a reduced set of components. Figure 8 shows an example of how the number of
components affects estimated mean square prediction error and percent variance explained in the
output. Estimated mean square prediction error refers to an estimate of how well the model predicts
the correct target. Percent variance explained refers to the percentage of variance of the given dataset
accounted for by the model. A model with around 20 components produced the lowest estimated
mean square prediction error while still accounting for roughly 90% of the variability explained in
the output. Increasing the number of components beyond 20 resulted in a linear increase in the
estimated mean square prediction error due to overfitting. On the other hand, increasing the number
of components resulted in a first-order step response (exponential approach) towards 100% of the
variability explained in the output.

2.5 100
A &k 90 .
502 --AAA 80 &
5, = 8 5
3 g A ® 70 é @)
g§H 15 + 60 ¢ 2
U S [C =]
= g 50 Z g
T .2 1 S o
R 057
g & & 3 25
E 0.5 -é) A Estimated Mean Squared Prediction Error 20 L%"
O Percent Variance Explained in the Output 1 10
0 } } } } } } t } } 0
0 10 20 30 40 50 60 70 80 20 100

Number of Components

Figure 8. Estimated mean square prediction error and the variance explained in the output versus

number of components in a model.

3.5. Target Classification using Machine Learning

Figure 9 illustrates the performance of the machine learning algorithms available in the
Classification Learning App in MATLAB at the time of this study. Prediction accuracy represents the
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percent of targets that were correctly identified from the testing data subset. Most machine learning
algorithms performed well with prediction accuracies greater than 90% for all spectrometer types
and ambient light compensation methods. Discriminant and SVM models tended to produce the most
accurate target classifications. The quadratic discriminant performed the best for the UV and VIS
spectrometers. The quadratic SVM performed the best for the NIR spectrometer. Variability in results
due to the random distribution of training, validation, and testing data was low, as exhibited by the
error bars which represent one standard deviation.

Overall, results on which ambient light compensation method produced the best prediction
accuracy were mixed. The ambient light compensation method had little effect on prediction accuracy
in most instances with the largest deviations occurring when the prediction accuracy was low. The
variable integration time method (M1) generally performed the best for the UV and VIS
spectrometers and dividing by integration time (M2) performed best for the NIR spectrometer.
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Figure 9. Prediction accuracy for 22 turn-key machine learning algorithms applied to reflectance
intensity data collected using UV (top), VIS (middle), and NIR (bottom) spectrometers of six distinct
targets and three different methods of ambient light compensation. M1 represents automatic

adjustment of the integration time. M2 represents the result of M1 divided by integration time. M3

represents the result of M2 divided by ambient light energy on a wavelength basis. Bars represent

average prediction accuracy. Error bars represent +1 standard deviation.

Table 2 presents the average prediction accuracy for all targets broken down by reflectance
spectrometer, compensation mode, and machine learning algorithm. Several of the machine learning
algorithms perfectly classified the targets when using the UV and VIS spectrometers with the variable
integration time ambient light compensation method. This result indicates that the targets were likely
too easy to distinguish despite the wide range of ambient light conditions. Performance would likely
decrease had a larger number of targets or measurements been used. In total, the highest prediction
accuracy was obtained using data collected with the VIS spectrometer and applying compensation
mode M1 with a model generated using the quadratic discriminant algorithm.

Table 2. Average prediction accuracy for 22 turn-key machine learning algorithms applied to

reflectance intensity data collected using UV, VIS, and NIR spectrometers of six distinct targets and

three different methods of ambient light compensation. M1 represents automatic adjustment of the

integration time. M2 represents the result of M1 divided by integration time. M3 represents the result

of M2 divided by ambient light energy on a wavelength basis. Bars represent average prediction

accuracy.
) M1 M2 M3

Algorithm
UV VIS NIR uv VIS NIR uv VIS NIR
Complex Tree 969 96.6 90.3 96.4 95.6 95.5 98.9 94.4 92.6
Medium Tree 969 96.6 81.6 96.4 95.5 92.9 98.9 94.0 90.8
Simple Tree 78.0 81.1 532 78.9 74.5 64.9 87.4 75.4 69.6
Linear Discriminant 100 100 96.4 99.3 99.0 95.9 994 99.2 93.9
Quadratic Discriminant 100 100 99.5 99.9 99.9 99.4 99.7 99.4 97.5
Linear SVM 99.9 100 99.0 99.6 99.8 98.5 99.7 99.4 97.2
Quadratic SVM 99.9 100 99.5 99.8 99.9 99.7 99.9 99.4 98.6
Cubic SVM 99.9 100 99.3 99.9 99.9 99.4 99.7 99.6 98.5
Fine Gaussian SVM 889 80.7 812 83.6 78.9 73.0 88.2 89.4 87.3
Medium Gaussian SVM 99.9 100 98.6 99.5 99.5 99.1 99.1 98.4 97.5
Coarse Gaussian SVM 100 100 90.9 98.7 97.9 94.8 99.3 99.5 93.5



Sensors 2020, 20, 5375 16 of 20

Fine SVM 999 998 96.5 99.6 99.6 98.7 995 98.9 98.1
Medium KNN 99.6 98.7 921 98.8 96.7  93.8 97.4 97.1 93.8
Coarse KNN 89.7 873 61.7 63.7 511 41.6 62.7  59.8 34.4
Cosine KNN 99.5 985 913 99.1 97.3 96.4 97.9 97.7 943
Cubic KNN 99.2 983 887 984 95.9 90.5 96.7  96.6 924
Weighted KNN 99.8 99.8 95.6 99.5 99.2 96.5 99.0 98.1 96.8

Ensemble Boosted Trees 98.2 86.8 925 97.9 97.6 97.8 21.0 96.5 95.2
Ensemble Bagged Trees 999 992 978 993 996 991 9.6 990 9738
Subspace Discriminant 100 100 86.9 98.8 98.8 91.0 98.2 98.8 92.7
Subspace KNN 99.9 100 98.1 99.7  99.6 99.2 99.7  99.0 98.5
RUSboosted Trees 98.8 975 923 98.1 97.9 98.3 99.1 97.6 93.9

3.6. Statistical Analysis

An analysis of variance was conducted to see if the effect of different compensation modes and
the type of spectrometer had significant impact on overall prediction accuracy when using the
quadratic discriminant algorithm. Based on Table 3, both treatments had a significant effect on
prediction accuracy and the null hypothesis was rejected because of the low p-value (a = 0.05). The
results of the Tukey’s HSD multiple comparison test in MATLAB (Figure 10a) showed that the
difference between compensation mode M3 and compensation modes M1 and M2 was significant.
Compensation mode M1 provided a slightly higher prediction accuracy than compensation mode
M2 —however, there was no significant difference between these two compensation modes. The NIR
spectrometer had a lower overall prediction accuracy on different compensation modes and it was
observed from the multiple comparison test that there was a significant difference between NIR and
both VIS and UV. No significant effect was observed between UV and VIS spectrometers although
prediction accuracy was slightly better when using the VIS spectrometer (Figure 10b).

Table 3. Significance testing of compensation mode and spectrometer type on overall accuracy of the
quadratic discriminant algorithm.

Source Sum of Squares Df Mean Square F Prob>F
Compensation mode 4.43 2 221 117.31 1.19e-24
Spectrometer type 8.068 2 4.03 213.44 5.13e-33
__ 100 100
R R
< ~ a a
2 99.8 a a 2 99.8
£ £
= =
S 99.6 S 99.6
< <
= =
£ 994 £ 994
= b °
e e "
& 99.2 l & 992
<% <%
I8} 18]
g 99 g 99 .—
z M1 M2 M3 z uv VIS NIR
(a) Compensation Mode (b) Spectrometer Type

Figure 10. Tukey’s HSD multiple comparison test between different compensation modes (a) and
spectrometer types (b) using the quadratic discriminant algorithm. Bars denoted with different letters
are significantly different (a = 0.05).
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4. Discussion

While not explicitly hypothesis driven, the underlying assumption of this experiment was that
dividing normalized spectral measurements by their integration time (M2) and individual
wavelengths using ambient light measurements (M3) would improve prediction accuracy when
classifying multiple “grayscale” targets across a wide range of ambient light conditions. The results
showed that simply optimizing integration time to produce the most sensitive measurement (M1)
was the best approach to maximize prediction accuracy.

The results for compensation mode M3 were not surprising given that a second set of calibrated
instruments were used to collect the ambient light measurements. The ambient light spectrometers
had different optical resolutions from the reflectance spectrometers and, although they report the
same wavelengths, incoming light was not distributed across the sensor in the same manner. It might
have been more appropriate to simply compute the average ambient light energy from the ambient
light spectrometers before applying the normalization rather than by individual wavelength, but the
method used in this experiment was chosen to be consistent with existing literature [17,18]. Another
potential source of uncertainty is that the integration times of the ambient light spectrometers were
fixed while the reflectance spectrometers varied. This resulted in measurements over different
periods that may not capture the same variability in ambient light conditions.

The results for compensation mode M2 were not expected given that dividing by the integration
time is a scalar operation. A plausible explanation is that the signal that distinguished the targets is
not the average intensity but the variability between wavelengths. It is unlikely that the ambient light
spectrometers incorrectly applied the desired integration time or incorrectly reported the actual
integration time. The small reduction in prediction accuracy may have been due to the rounding that
occurred when using integer operations.

While the difference in prediction accuracy between the NIR and the UV/VIS spectrometers was
significant, the actual amount was small. Much of this difference can likely be attributed to the targets
used. The painted targets did not reflect light uniformly as compared to the Spectralon calibration
standard. The most obvious discrepancies between the targets occurred in the UV and VIS ranges,
hence the better performance by these spectrometers. A set of “greyscale” calibrated standards with
more uniform reflectance would better reveal differences in spectrometer performance. Ultimately,
the actual target will define which type of spectrometer should be used for remote sensing. Future
work should use more challenging targets, such as crops in a breeding study or soils for moisture
analysis, rather than simple “grayscale” targets.

The best performing machine learning methods for classifying targets presented in this study
should not be considered optimal for all scenarios. The simplicity of the “greyscale” targets likely
masked the true difficulty in classifying parameters in natural targets. Previous work [14] did show
that models developed using support vector machines and ensemble bagged trees perform well on
agricultural targets, but several of the well-performing models presented here previously failed when
using agricultural targets. This emphasizes the importance of not selecting a machine learning model
solely based on performance in one domain and further reinforces the need to test ambient light
compensation techniques using actual targets for a given application.

5. Conclusions

Six “greyscale” reflectance targets were fabricated and benchmarked using a calibration
standard. The targets were then used in an outdoor experiment to determine performance differences
in ambient light compensation methods when classifying the targets using pairs of ambient light and
reflectance spectrometers covering UV, VIS, and NIR wavelengths. Spectral data were collected over
five days at varying times during the day to cover a large portion of ambient light conditions. Three
successive methods were used to compensate for ambient light variability. The first automatically
adjusted the reflectance spectrometer integration time to optimize sensitivity (M1). The second
divided the result of the first method by the integration time to normalize the spectrum (M2). The
third divided the result of the second method by the ambient light energy on a wavelength basis to
directly account for incoming light (M3). The resulting spectra were used to train a series of machine
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learning algorithms using the Classification Learning app in MATLAB. Most of the algorithms had a
prediction accuracy over 90% with an average of 93% across all spectrometer types and compensation
methods. The quadratic discriminant model generated from VIS spectrometer data with
compensation mode M1 produced the highest prediction accuracy. Statistical analysis revealed that
both spectrometer type and compensation mode had a significant effect on the prediction accuracy
of targets.
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