
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Biosystems and Agricultural Engineering 
Faculty Publications Biosystems and Agricultural Engineering 

9-1-2020 

Reach-Scale Model of Aquatic Vegetation Quantifies N Fate in a Reach-Scale Model of Aquatic Vegetation Quantifies N Fate in a 

Bedrock-Controlled Karst Agroecosystem Stream Bedrock-Controlled Karst Agroecosystem Stream 

Nolan Lewis Bunnell 
University of Kentucky, bunnell.nolan@yahoo.com 

William I. Ford 
University of Kentucky, bill.ford@uky.edu 

Alex W. Fogle 
University of Kentucky, alex.fogle@uky.edu 

Joseph L. Taraba 
University of Kentucky, joseph.taraba@uky.edu 

Follow this and additional works at: https://uknowledge.uky.edu/bae_facpub 

 Part of the Bioresource and Agricultural Engineering Commons 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Repository Citation Repository Citation 
Bunnell, Nolan Lewis; Ford, William I.; Fogle, Alex W.; and Taraba, Joseph L., "Reach-Scale Model of 
Aquatic Vegetation Quantifies N Fate in a Bedrock-Controlled Karst Agroecosystem Stream" (2020). 
Biosystems and Agricultural Engineering Faculty Publications. 232. 
https://uknowledge.uky.edu/bae_facpub/232 

This Article is brought to you for free and open access by the Biosystems and Agricultural Engineering at 
UKnowledge. It has been accepted for inclusion in Biosystems and Agricultural Engineering Faculty Publications by 
an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/bae_facpub
https://uknowledge.uky.edu/bae_facpub
https://uknowledge.uky.edu/bae
https://uknowledge.uky.edu/bae_facpub?utm_source=uknowledge.uky.edu%2Fbae_facpub%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1056?utm_source=uknowledge.uky.edu%2Fbae_facpub%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
https://uknowledge.uky.edu/bae_facpub/232?utm_source=uknowledge.uky.edu%2Fbae_facpub%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


Reach-Scale Model of Aquatic Vegetation Quantifies N Fate in a Bedrock-Reach-Scale Model of Aquatic Vegetation Quantifies N Fate in a Bedrock-
Controlled Karst Agroecosystem Stream Controlled Karst Agroecosystem Stream 

Digital Object Identifier (DOI) 
https://doi.org/10.3390/w12092458 

Notes/Citation Information Notes/Citation Information 
Published in Water, v. 12, issue 9, 2458. 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. 

This article is an open access article distributed under the terms and conditions of the Creative 
Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

This article is available at UKnowledge: https://uknowledge.uky.edu/bae_facpub/232 

https://creativecommons.org/licenses/by/4.0/
https://uknowledge.uky.edu/bae_facpub/232


 

Water 2020, 12, 2458; doi:10.3390/w12092458 www.mdpi.com/journal/water 

Article 

Reach-Scale Model of Aquatic Vegetation Quantifies 

N Fate in a Bedrock-Controlled Karst Agroecosystem 

Stream 

Nolan L. Bunnell, William I. Ford *, Alex W. Fogle and Joseph Taraba 

Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40546-0276, 

USA; nolan.bunnell@uky.edu (N.L.B.); alex.fogle@uky.edu (A.W.F.); joseph.taraba@uky.edu (J.T.) 

* Correspondence: bill.ford@uky.edu; Tel.: +1-(859)-218-4368 

Received: 19 June 2020; Accepted: 27 August 2020; Published: 1 September 2020 

Abstract: In-stream fate of nutrients in karst agroecosystems remains poorly understood. The 

significance of these streams is recognized given spring/surface water confluences have been 

identified as hotspots for biogeochemical transformations. In slow-moving streams high in 

dissolved inorganic nutrients, benthic and floating aquatic macrophytes are recognized to 

proliferate and drastically impact nutrient fate; however, models that quantify coupled interactions 

between these pools are limited. We present a reach-scale modeling framework of nitrogen 

dynamics in bedrock-controlled streams that accounts for coupled interactions between hydrology, 

hydraulics, and biotic dynamics and is validated using a multi-year, biweekly dataset. A fluvial N 

budget with uncertainty was developed to quantify transformation dynamics for the dissolved 

inorganic nitrogen (DIN) pool using a GLUE-like modeling framework, and scenario analyses were 

run to test for model function over variable environmental conditions. Results from a 10,000 run 

uncertainty analysis yielded 195 acceptable parameter sets for the calibration period (2000–2002), 47 

of which were acceptable for the validation period (2003) (Nash-Sutcliffe Efficiency (NSE) > 0.65; 

percent bias (PBIAS) < ±15), with significantly different posterior parameter spaces for parameters 

including denitrification coefficients and duckweed growth factors. The posterior solution space 

yielded model runs with differing biomass controls on DIN, including both algae and duckweed, 

but suggested duckweed denitrifies at a rate that would place the bedrock agroecosystem stream on 

the high-end of rates reported in the literature, contradicting the existing paradigm about bedrock 

streams. We discuss broader implications for watershed-scale water quality modeling and 

implementation strategies of management practices for karst agroecosystems, particularly with 

respect to stream restoration. 

Keywords: karst agroecosystem; benthic algae; floating aquatic macrophytes; nitrogen fate and 

transport modeling; nitrogen loading; in-stream nitrate removal; in-stream denitrification 

 

1. Introduction 

Agricultural watersheds with karst terrain are highly vulnerable to nutrient leaching, and have 

been a significant source of dissolved inorganic nitrogen (DIN) loads to regional waterbodies such as 

the Gulf of Mexico and Chesapeake Bay [1–5]. Small tributaries streams in these landscapes are 

important given they have high capacity to remove nitrate efficiently because of their high ratios of 

streambed area to water volume and can account for much of the stream length within a drainage 

network [6–8]. Much work in recent years has focused on the impact of hyporheic connectivity to 

impact in-stream N removal (e.g., [9,10]). Surface headwater streams in karst agroecosystems are 

often bedrock controlled and lack prominent hyporheic interaction, which would tend to suggest 



Water 2020, 12, 2458 2 of 29 

 

limited potential for DIN attenuation and transformation [11]. However, surface waters immediately 

downstream of surface-groundwater interfaces (e.g., springs) in karst landscapes have been 

identified as hotspots for biogeochemical transformations [12]. In-stream aquatic vegetation such as 

benthic algae and floating aquatic macrophytes can flourish in these environments and influence 

transient storage and transformation of nutrients, yet their impact on the stream N budget remains 

poorly constrained [11,13,14]. 

Previous research on N removal in low-gradient agricultural stream channels has emphasized 

algal uptake and denitrification in sediment and detrital organic matter as governing mechanisms of 

DIN removal. Open-canopied agricultural streams provide favorable conditions for autochthonous 

algal production, which has been found to drive gross primary production and ecosystem respiration 

in many streams [15]. Algal uptake reflects a transient sink for N and may ultimately be regenerated 

to the stream channel or transported downstream as detrital organic matter or scoured biomass 

[16,17]. Scour and downstream export of algae has been highlighted as a significant component of the 

fluvial N budget in low-gradient agricultural streams [18]. Regarding permanent removal via 

denitrification, several studies have found benthic sediments and organic matter to support 

significantly higher rates of denitrification than plant material [19–21]. This may partially stem from 

decomposition of the particulate organic carbon in detrital organic matter that enhances 

denitrification through reduction of dissolved oxygen concentrations and creation of an anaerobic 

habitat [22]. Nevertheless, denitrification does occur in algal mats, and algae enhances denitrification 

rates because of the supply of a labile source of organic C to fuel heterotrophic bacteria [16,23]. 

Despite findings of high denitrification rates in agricultural reaches for benthic sediments, and to a 

lesser extent benthic algae, many studies note that in-stream denitrification did not substantially 

reduce total nitrate export from watersheds [21,24–26]. 

Although limited research has been conducted on the influence of duckweed on fluvial N 

budgets in surface streams, research on duckweed-algae interactions in other landscapes suggest high 

N removal rates that can exceed algae and detrital N removal. Much of the nutrient removal research 

regarding duckweed has focused on wastewater ponds, stormwater detention basins, and 

constructed wetlands [27–33]. Results from these landscapes have shown that duckweed grows 

rapidly in N-rich environments and is highly efficient at removing N over long-periods of time, with 

active life-spans of mats exceeding 25 days [34]. As a result of rapid growth rates, duckweed is often 

harvested to optimize nutrient removal [27]. Denitrification rates in duckweed have also been found 

to be high, and are impacted by biomass to water volume ratios, velocity, and nutrient enrichment 

and have been found to be on the same order of magnitude as biomass uptake [28,31,35,36]. In studies 

where both algae and duckweed are present, duckweed has been found to have a stronger effect on 

permanent N removal rates [28,30,31,36]. Given duckweed can grow rapidly, it may deplete the 

available N pool in the water body which can induce a nutrient limitation stress to algae [37–39]. 

Further, several studies have found that the surface cover of duckweed prevents sunlight from 

penetrating into the underlying water column, inhibiting algal growth [30,31,36,40]. This can result 

in temporal variability of biological controls that are impacted by environmental conditions of 

temperature and light availability [31]. A need exists to quantify the N budget for streams impacted 

by both duckweed and algal dynamics. 

Reach-averaged numerical modeling provides an economically feasible alternative to 

continuous monitoring for quantifying stream N budgets; however, existing models have limitations 

that restrict their ability to simulate N dynamics in karst agroecosystem streams. In reviewing 

existing numerical models with regard to their capability of simulating aquatic vegetation pools and 

the associated impacts on the stream N cycle, we find three primary limitations. First, parsimonious 

models of duckweed-algae interactions and their influence on the N cycle have been developed and 

applied primarily for wastewater ponds and treatment wetlands [30,31,41–43]. Existing reach-scale 

stream models that incorporate both benthic algae and floating aquatic macrophytes, such as WASP 

and AQUATOX, are complex and require extensive parameterization [44,45]. Second, existing models 

simulating duckweed biomass assume similar first-order growth kinetics to algae [44,45]. Laboratory 

studies have shown that duckweed requires a variable-order equation derived from a second-order 
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function to capture the rapid growth dynamics and physical surface area limitations on duckweed 

growth [41]. Third, denitrification is often assumed to vary as a function of detrital organic matter or 

sediment carbon content, or it is lumped as a single parameter to account for benthic and water 

column denitrification [30,44–46]. However, field-scale and laboratory studies have found 

denitrification rates are often directly proportional to the biomass pools and more explicit 

consideration of denitrification as a function of biomass pools is needed [21,22,28,31]. 

Improved modeling capabilities will lead to an improved understanding of N removal dynamics 

and can provide insight into how dynamic environmental conditions and spatial variability of 

processes may impact N dynamics in the future. Springs are recognized to have high spatiotemporal 

variability in nutrient concentrations, which stem from soil variability and upland management 

practices [3,11]. Likewise, spring-surface water interfaces are hotspots for biogeochemical processes, 

and downstream reaches will experience gradients in temperature and water chemistry that could 

alter N removal dynamics [12]. Environmental drivers have also been found to have a significant 

impact on stream N removal dynamics. Flow variability and timing of stormflows has been found to 

significantly influence biomass residence times in the region [16]. Changing precipitation patterns are 

strongly expected to impact N loading dynamics from uplands in the future [47], and changing 

temperatures may alter in-stream vegetation dynamics [16]. A need exists to evaluate the behavior of 

vegetation pools and N removal dynamics as a function of environmental drivers and spatial 

heterogeneity of processes, which can ultimately result in improved N management strategies. 

The overarching objective of this work was to investigate and quantify impacts of aquatic 

vegetation and associated biota on DIN dynamics in karst agroecosystem streams with bedrock 

control through development and application of a numerical model. Specific objectives included: (1) 

develop a parsimonious model that couples algae, duckweed, and organic matter recycling that 

explicitly links biomass pools to denitrification dynamics in order to quantify stream N dynamics in 

bedrock controlled agroecosystems, (2) evaluate the model in a karst bedrock agroecosystem stream 

and quantify relative roles of uptake and denitrification removal processes from different pools, and 

(3) determine the sensitivity of the N removal processes under varying environmental conditions to 

improve understanding of impacts of climate, landcover change, and spatial heterogeneity on N 

removal in these landscapes. 

2. Model Formulation 

To meet the objectives of this study, a reach-scale numerical model was developed that simulates 

the influence of vegetative pools on the fluvial N cycle for low-gradient bedrock stream channels. The 

sections below detail the model framework used to reflect the aforementioned conceptual model, and 

the equations and numerical methods used to quantify dynamics. 

2.1. Framework for N Cycling in Bedrock Streams 

In an effort to capture relevant processes, while also considering model parsimony, this model 

simulates the fluvial N cycle in vegetated bedrock streams using four state-variables that capture 

dynamics in the biomass pools and their associated impact on the total DIN pool (Figure 1). The four 

state variables are (1) DIN: total dissolved inorganic nitrogen concentration, (2) Alive: living algal 

biomass, (3) DWlive: living duckweed biomass, and (4) OMDet: detrital organic matter biomass. For each 

state variable, a governing mass-balance is included that considers presumed important processes. 

Microbial biomass is not explicitly considered as a state variable; however, N transformation 

dynamics mediated by microbes are explicitly accounted for by considering biochemical fluxes and 

associated rate limitations, e.g., biomass saturation, light, nitrate availability, and temperature 

[16,30,44,48]. 
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Figure 1. Modeling framework of stream vegetation dynamics in bedrock streambeds with limited 

sediment storage. The model considers presence of benthic periphyton (Alive) and floating aquatic 

macrophytes (DWlive) and their associated detrital organic matter (OMDet). Dissolved inorganic 

nitrogen (DIN) is lumped into a single pool to decrease model parameterization [49]. 

2.2. Model Equations 

The numerical model simulates the aforementioned model framework using one-dimensional 

mass-balance equations that consider advection into and out of the stream reach and biochemical 

processes that impact the fate of the specified state variables. The model uses a finite differencing 

numerical scheme to solve the governing mass-balance equations, which is a common approach for 

similar reach-scale nutrient models [16,50,51]. Spatial discretization is handled through simple 

routing between reaches based on user-supplied hydrologic time-series at reach boundaries. The 

following sections define the spatially (j) and temporally (i) discretized mass-balance equations for 

DIN, Alive, DWlive, and OMDet (gN). 

2.2.1. Dissolved Inorganic Nitrogen Mass-Balance 

Dissolved inorganic nitrogen, DIN (gN), was simulated as a function of advective inputs and 

outputs, assimilative uptake (U) and regeneration (R) by biomass pools, and permanent removal via 

denitrification (Den) as follows. 
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= ������
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+ �����
�����
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���
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where, Qin is the inflow at the upstream boundary of the reach (m3 d−1), ����
��  is the DIN concentration 

at the upstream boundary (gN m−3), Qout is the outflow at the downstream boundary of the reach (m3 

d−1), ����
���  is the DIN concentration at the outlet of the reach and is assumed equal to the DIN 

concentration in the reach during the previous timestep (gN m−3), R is the regeneration of N from a 

biomass pool by endogenous respiration, decomposition or hydrolysis (gN d−1), m is the biomass pool 

(Alive, DWlive, or OMDet), U is the DIN uptake and assimilation rate and is assumed to equal zero for the 

detrital pool (gN d−1), Den is the denitrification rate associated with each biomass pool (gN d−1), and 

∆� is the model timestep (d). Flowrates at the upstream and downstream boundaries of all reaches 

(Qin and Qout, respectively) are supplied to the model. Concentrations of DIN into a reach is supplied 
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at the upper most reach input boundary and calculated for subsequent downstream reaches. Average 

concentrations of DIN in a reach at a given timestep are estimated as follows. 

�����
� =  

����
�

��
�

 (2) 

where, V is the volume of water in the reach and is calculated at each timestep using a water mass-

balance. 

��
�

= ����
�

+ (����
� − �����

�) × ∆� (3) 

Denitrification was simulated as a function of biomass pool size, temperature and nutrient 

limitation [30,52]. Denitrification flux (gN d−1) associated with microbes living on a given biomass 

pool (Denm) was simulated as follows. 

�����
� = �����

(����
�

)(�����) �
�������

�

���� + �������
�

� (4) 

where, �����
 is the denitrification rate constant for each biomass pool, m (gN gNm−1 day−1), � is the 

Arrhenius constant, �  is the water temperature (°C), and  ����  is the half saturation constant of 

available N for microbial denitrification (gN m−3). 

2.2.2. Algal Mass-Balance Model 

Algal N dynamics are simulated using a modified formulation from Rutherford et al. [53]. 

Briefly, Rutherford et al. [53]’s model was developed to simulate the epilithic algal C biomass at the 

reach-scale for nutrient-rich agroecosystem streams, similar to the landscape in this study. While the 

original model assumed negligible nutrient limitation impacts on growth rate, we modify the growth 

term to consider N limitations and then apply C:N ratios to quantify N biomass dynamics. We also 

incorporate a slough and death term that considers the explicit mass flux to the detrital organic matter 

pool. The mass of algae, Alive (gN) is estimated at each spatial and temporal step using the following 

mass-balance. 

����� �
� = ����� ���

� + ����
� + ����

�
− ���

� − ���
�� × ∆� (5) 

where, ��� is the algal colonization rate (gN d−1), and DA is the death/sloughing rate of algae that is 

added to the detrital pool (gN d−1). 

Scour of algae occurred during high flow events, and it was assumed to be completely lost from 

the system given that algae is relatively neutrally buoyant and would not be expected to settle out of 

flows that are high enough to cause scour [16]. This is accounted for using a piecewise function based 

on a critical discharge threshold, QcA (m3 d−1). When flowrate in a reach exceeded the critical threshold, 

algal biomass was reset to a near-zero seed value to ensure recolonization [17]. 

The assimilative uptake rate of algal N ( �� ) is estimated using a modified version of the 

Rutherford et al. [53] growth model considering light, temperature, population saturation, and 

nutrient limitations as follows: 

���
� = �����  

�

�
 ��(�)��(�)��(�����)� �

�������
�

���� + �������
�

� × ���
�
 (6) 

where, ����  is the maximum uptake rate constant (gC m−2 d−1), 
�

�
 is the nitrogen to carbon ratio of 

algae (gN/gC), �� is the light intensity limitation coefficient (dimensionless), �� is the temperature 

limitation coefficient (dimensionless), ��  is the population saturation limitation coefficient 

(dimensionless), ���� is the half saturation constant of available DIN (gN m−3), and �� is the surface 

area of the streambed for the specified reach. 

Light limitations are estimated based on photosynthetically available radiation [53] and consider 

the impact of floating aquatic macrophytes to attenuate light. 
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 ��(�) =  
���

�
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, 0 < ���
� < ��,  (7a) 

��(�) =  1, ���
� > �� (7b) 

where, IA is the photosynthetically available radiation incident on the surface of the algal mat (µmol 

m−2 s−1) and �� is the saturating radiation constant for algae (µmol m−2 s−1). The available radiation at 

the algal mat is estimated as the available radiation at the water surface (�) minus a linear attenuation 

term that accounts for the relative amount of duckweed biomass. 

���
� = ��

�
− 

������ ���
�

���

��

× ��
�
 

(7c) 

where, I is the photosynthetically available radiation incident on the water surface (µmol m−2 s−1), 

DWlive is N duckweed biomass (gN), and DL is the duckweed mat density limit (gN m−2). 

Temperature limitations are assumed to follow an asymmetrical Gaussian distribution when 

temperature of the water deviates from optimum temperature for epilithic algal growth [53]. 

��(�) = exp �− �
��

�
− ����

∆������

�

�

� , �� ���� < ��
�

< ����  (8a) 

��(�) = exp �− �
��

�
− ����

∆������

�

�

� , �� ���� < ��
�

< ����  (8b) 

where, � is the water temperature (°C), ���� is the optimum water temperature for epilithic algae 

(°C), ����  is the minimum temperature for epithilic algae (°C), ����  is the maximum temperature 

for epithilic algae (°C). Assuming ��(�) = 5% at both � = ����  and � = ���� gives 

∆������ =
���� − ����

√ln 20
 ��� ∆������ =

���� − ����

√�� 20
 (8c) 

As population increases, light availability to the entire algal mat decreases as deeper cells 

become shaded [53]. To account for this, population consequences are accounted for as follows. 

��(�����) =

⎝

⎜
⎛ ����� �

�

����� × ��� × �
�
�

�� + ������
�

⎠

⎟
⎞

 (9) 

where, ���� is the saturation density-dependence coefficient (gC m−2). 

The algal colonization rate refers to the rate of colonization by algal cells from upstream reaches 

and is calculated as follows. 

����
�

= ���� ×
�

�
× ��� (10) 

where, ����  is the algal colonization rate (gC m−2 d−1). 

The death and sloughing term for algae (DA) refers to the transfer of live algal biomass to the 

detrital organic matter pool and is simulated using first-order kinetics [49]. The term collectively 

accounts for losses due to grazers, sloughing, and death of algal biomass. 

���
� = �� × ��������

�  (11) 

where �� is the periphyton death and sloughing rate (day−1) from Chapra et al. [49]. 

Regeneration of algal biomass to the DIN pool occurs through endogenous respiration of algal 

biomass and is simulated using an analogous approach to Rutherford et al. [53] as follows. 
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���
� = ������ × �������

��
�

������ × ��������
�  (12) 

where ������ is respiration rate constant (day−1) and ����� is the reference temperature (°C) at which 

������ is measured, and ������� is the temperature coefficient for algal respiration (analogous to the 

Arrhenius constant). 

2.2.3. Duckweed Mass-Balance Model 

Simulation of duckweed N mass (DWlive) was based on processes observed, and models 

developed in, wetland and wastewater pond environments [30,41,42]. The model considers uptake, 

endogenous respiration, advective transport, and mortality of duckweed in the mass balance as 

follows. 

������ �
� = ������ ���

� + (����
� − ����

� − ����
�) × ∆� (13) 

where, ���  is the death/mortality rate of duckweed (gN d−1). Scouring due to high flows was 

accounted for using a piecewise function based on a critical discharge threshold, QcDW (m3 d−1). When 

flowrate in a reach exceeded the critical threshold, duckweed biomass was reset to a near-zero seed 

value to ensure recolonization (�����) [17,44] in the same way as algal biomass. 

The DIN assimilation rate of duckweed ( ��� ) follows variable-order kinetics [41] and is 

estimated as follows. 

����
� =

⎝

⎛
�� −

������ ���
�

���

��

⎠

⎞ × �� �

�
× ���������

�  (14a) 

where, ��  is the duckweed mat density limit (gN m−2), and �� is intrinsic growth rate of duckweed 

(day−1) which varies as a function of temperature, light intensity, and available DIN as follows. 

���

�
= ���������

��
�

������� �
��

�

����

� �
�������

�

����� + �������
�

� (14b) 

where, ������
 is the maximum growth rate (day−1), ��� is the temperature coefficient (Arrhenius 

constant) for duckweed growth and death, ������  is the reference temperature for duckweed 

(℃),  ����  is the saturating radiation constant for duckweed (µmol m−2 s−1), and �����  = half 

saturation constant of available DIN for duckweed (gN m−3). 

Death rate of duckweed follows first order kinetics [30] and reflects the detrital OM component 

for duckweed. 

����
� = ��(���

��
�

�������) × ������ ���
�  (15) 

where, �� is the mortality rate of duckweed (day−1) and follows a piecewise function in order to 

account for severe environmental conditions in which �� = 0.05, �� � ≤ 6℃ �� ≥ 35℃ ��� �� =

0.009 �� 6℃ < � <  35℃. 

Regeneration of DIN to the stream from duckweed occurs through endogenous respiration and 

is simulated using similar first-order kinetics to algae [53] due to the influence of temperature on 

respiration [54]. 

����
� = ������� × ��������

��
�

������� × ������ ���
�  (16) 

where, ������� is duckweed respiration rate (day−1), and PKrespDW is the temperature coefficient for 

duckweed respiration (analogous to the Arrhenius constant). 

2.2.4. Detrital OM Mass-Balance Model 

Detrital organic matter (OMDet) receives inputs from the live organic matter pool and is balanced 

by regeneration of inorganic N to the DIN pool, and scour and subsequent downstream transport. 
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����� �
� = ����� ���

� + ���� �
� + ���

� − ����
�� × ∆� (17) 

where, ROM is the regeneration of detrital organic matter to the DIN pool (gN d−1). 

Regeneration of detrital organic matter to the stream channel occurs through microbial 

decomposition and hydrolysis and hence is modeled as first-order reaction as follows. 

����
� = �� × ����� ���

�  (18) 

where �� = hydrolysis and decomposition rate (day−1) from Chapra et al. [49]. 

Scouring of detrital organic matter due to high flows was accounted for using a piecewise 

function based on a critical discharge threshold, QcOM (m3 d−1). When flowrate in a reach exceeded the 

critical threshold, the detrital organic matter was reset to a near-zero value to preserve model 

continuity [17] in the same way as algal and duckweed biomass. 

3. Case Study Application 

3.1. Study Site and Materials 

Camden Creek is a spring fed, bedrock-controlled stream located within a karst agroecosystem 

watershed in the Inner-Bluegrass Region of Central Kentucky. The Camden Creek watershed 

(drainage area of 10.69 km2; Figure 2) is characterized by broad, shallow sinkholes, low relief, broad 

valleys and ridges, sparse rock outcrops, and thick, fertile, limestone and shale residual soils over 

phosphatic Ordovician limestone [55]. Camden Creek and surface tributaries in the watershed are 

shallow, emanate from springs, flow over limestone bedrock, and are generally unshaded through 

grazed pasture with some riparian vegetation [56], with low streambed sediment storage on exposed 

bedrock [11]. As a result of spatial variability in land use, nutrient concentrations varied across spring 

inputs to the stream channel. In general, nutrient concentrations at springs were high. As an example, 

measured nitrate-N concentrations at spring site Sp1 ranged from 3.8–13.6 mgN L−1, with an average 

of 6.36 mgN L−1. Stream sites (ST8, ST7, and ST4) had nitrate levels below 1 mg L−1 and sometimes 

below detection limits during the summer months in multiple years, contrasting the high nitrate 

concentrations found at the spring sites. This highlights the importance of in-stream N removal in the 

stream and the potential for N-limiting conditions during summer. Regarding dissolved reactive 

phosphorus (DRP), Ford et al. [11] found average slow flow concentrations of 0.233 mg L−1, nearly an 

order of magnitude higher than eutrophic thresholds of 0.02–0.03 mgP L−1 for freshwater algal 

proliferation [39,57], suggesting DRP is likely not a rate-limiting nutrient in this system. A roughly 1 

km stretch of stream was selected for the model application and was discretized into two stream 

reaches based on tributary inputs. Reach 1 (~450 m) and 2 (~570 m) refer to the reach of Camden Creek 

between the junction of ST8 and Sp1 through ST4 (Figure 2). This model domain was selected to 

evaluate the aforementioned model because (1) nutrient concentrations are high and benthic 

sediment storage is low, (2) duckweed, algae, and detrital biomass are all well recognized to 

proliferate in this section of the channel based on long-term monitoring conducted by the authors, (3) 

availability of long-term flow and nutrient datasets for model evaluation, and (4) nitrate levels 

decrease longitudinally downstream, reflecting a significant impact by stream vegetation [11]. 
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Figure 2. Camden Creek surface and cumulative watershed areas and location within the state of 

Kentucky and the United States (modified from Ford et al. [11]; top left). Modeled stream reaches 

(Reach 1 and Reach 2 and their boundary condition inputs) are depicted (bottom). Study site images 

depicting the proliferation of floating aquatic macrophytes (top right). 

Flow data was collected at ST4, ST7 and ST8 across different periods of the long-term monitoring 

effort. Flowrate data for ST4 was available periodically from November 1994 through December 2004 

and continuously from 2000–2003, ST7 from May to December 1999, and ST8 periodically from 

September 1997 to June 1998 and April to December 1999. Flow depth data was collected using 

pressure measurements from an ISCO 4220 flow meter with pressure transducer at the weirs for each 

sampling site. The weirs at all three locations were 90° v-notch, 10 feet wide, with flowrate (m3 s−1) 

estimated using a piecewise function to account for flow within and overtopping the v-notch weir. 

Water quality data, including nitrate (NO3−) and total ammoniacal-N (TAN), were collected at 

the specified stream (ST) and spring (Sp) sites throughout the watershed (Figure 2). Of importance to 

this modeling effort, data was collected at ST8, Sp1, ST7, ST6, and ST4. Grab sampling began in 

October 1996 and was conducted through June 2007, with unpreserved samples for nitrate collected 

in 250 mL amber glass bottles and preserved samples for ammoniacal-N collected in 250 mL clear 

glass bottles, with all samples placed on ice immediately after sampling and delivered to Kentucky 

Geological Survey (KGS) laboratories within 6 h of collection [11]. Nitrate was analyzed on a Dionex 

Ion Chromatograph within 48 h of sample collection and ammonia-N was analyzed colorimetrically 

using a UV Vis spectrometer by Varian within 28 days of sample collection [11]. 

3.2. Model Inputs and Parameterization 

Hydrologic and hydraulic inputs into the model included flowrates at upstream and 

downstream boundaries of each reach and channel geometry. Regarding geometry, the channel cross-
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section was assumed rectangular, which was determined to be appropriate based on our site visits. 

Average channel width and length were estimated using aerial imagery from the site for each reach. 

Regarding flowrates, there were three primary hydrologic inputs into the modeled stream reaches, 

ST8 and SP1 at the upstream of Reach 1 and ST6 at the upstream boundary of Reach 2. A four-year 

span of continuous flowrate data collected at ST4 (January 2000–December 2003) was utilized as the 

downstream flowrate boundary condition at the outlet of Reach 2. In absence of continuous flow data 

at the three hydrologic inputs, comparisons of flowrate data from overlapping data collection efforts 

at ST8, ST7, and ST4 from April 1999–December 1999 were used to establish relationships between 

flowrates at upstream locations using ST4 as a response variable. To partition flow inputs to Reach 2 

from ST7 and ST6, the relationship between the flow ratio (RST7 = QST7/QST4) and flowrate at ST4 was 

used. The flow ratios from 0.037 m3 s−1 to 0.34 m3 s−1 showed no discernable trends, and an average of 

76% was used for ST7, with the remaining 24% coming from ST6 for those flow conditions. 

Partitioning between ST8 and SP1, flow ratios (RST8 = QST8/QST7) showed a linear increase (R2 = 0.72) 

with flowrate for QST7 > 0.017 m3 s−1. This linear regression model was used to calculate flow ratios for 

flows above the threshold. For low flow conditions, two parameters (R������
 and R������

) were 

included given the high uncertainty in flow ratios. The model timestep was set to a 30-min interval 

based on average flow travel times in the two reaches. 

Environmental inputs to the model include water temperature and photosynthetically available 

radiation (PAR) which were obtained using a mixture of atmospheric data from a nearby gauging 

station and correlation with field measurements. The water temperature input was estimated 

continuously over the four-year period based on long-term air temperature measurements at the 

research location, as well as a linear regression model of air temperature vs. water temperature using 

high-resolution measurements from 29 August 2018 through 1 January 2019 at the watershed outlet 

(ST1) and air temperature data from a NOAA weather station co-located at the study site. Simple 

linear regression suggests the NOAA air temperature explains much of the variability in the water 

temperature dataset (Water Temp = 0.4174 (Air Temp) + 9.9629; R2 = 0.83). Water temperature inputs 

within the modeled stream reach were corroborated by comparing the model inputs with biweekly-

monthly water temperature measurements at ST8, Sp1, and ST4 from 2000–2003. The PAR was 

estimated from solar radiation data collected at the Blue Grass Airport (roughly 10 miles to the west 

of the research site) and managed by the National Solar Radiation Database (NSRDB). The total solar 

radiation from NSRDB was converted from W m−2 to PAR in µmol m−2 s−1 using a conversion factor 

of 2.02 [58]. 

Boundary conditions for DIN concentrations were considered using flow weighted averages of 

hydrologic inputs at upstream nodes in the model and considering seasonality, flow, and annual 

variability of concentration dynamics at the flow sources. The boundary DIN concentrations were 

compared with flowrate at ST4. The DIN concentration for each of the input sites (ST8 and Sp1) was 

plotted against flowrate at ST4 at that time for each of the seasons outlined above over the four-year 

span 2000–2003. These seasonal concentration-flowrate relationships were used to calculate the DIN 

concentration at each time based on the flowrate for each season in each year to better constrain the 

boundary conditions for year-to-year variability. To avoid over-prediction of concentrations at high 

flows when only low flow conditions are present in the measured dataset, the equations were capped 

at the highest DIN concentration for that particular season and year. While concentrations are 

recognized to dilute at peak flow conditions this would provide a conservative (low-end) estimate of 

N removal percentages for the system. The inputs from ST6 were left as seasonal averages due to the 

lack of flowrate data for 2004–2005 when nutrient concentrations were collected. 

The parameters used for model calibration were obtained from a mixture of published studies 

on algal and floating vegetation models, published data on growth/denitrification rates from stream 

and pond systems, and physical system constraints (shown in Table 1). Since parameter distributions 

were unknown, all prior parameter ranges were assumed to have uniform distributions, which is 

typical of other uncertainty analyses of stream water quality models [51]. 

The algal and detrital biomass input parameters were obtained from previous modeling and 

monitoring studies in nutrient rich stream channels [21,22,49,51,53]. Ranges for algae growth and 
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respiration parameters (Pmax, IkA, Tmin, Topt, Tmax, Psat, PrespA, TrefA, PKrespA, Pcol) were obtained from 

Rutherford et al. [53] and have been successfully applied in a nearby agricultural stream [50]. 

Parameters for death and decomposition/hydrolysis of algal and detrital organic matter (kd, kh) were 

derived from Chapra et al. [49]. The half-saturation constant of available DIN for algae (khsA) was 

assumed to vary from a minimum value of zero to a maximum value reflecting a conservative half 

saturation constant for nitrate [30], given ammonium was rarely present in the system. This range 

encompasses other algal half saturation constants for N used by parsimonious modeling studies that 

simplify DIN to a single pool [49]. The ranges for algal and detrital organic matter denitrification 

parameters (kDenA, kDenOM) were intended to be as conservative as possible, using zero as the minimum 

and maximum denitrification rates for benthic plant material and benthic organic matter reported in 

the literature [21,22]. The half saturation constant of nitrate for denitrification (in all pools), was 

obtained from studies in the wastewater, activated sludge, and bioreactor communities [59–61] and 

compares favorably with half-saturation values reviewed in Arango et al. [22]. The maximum critical 

stream flowrate (QcA, QcOM) values used for advective transport of benthic algae and dead organic 

matter were based on Kazama and Watanabe [17], which suggest complete removal of all biomass or 

matter when the flow reaches or exceeds the top five percent of annual flows. The minimum bound 

was set to zero to be as conservative as possible. 

Table 1. Input parameterization for the Camden Creek application of the parsimonious stream N 

model. 

Input/Parameter Description 

Range 

Simulated in 

Model 

Source Units 

Pmax Maximum fixation rate of algal biomass 0.4–7.7 [51,53] gC m−2 d−1 

IkA Light saturation coefficient for algae 230 [51,53] µmol m−2 s−1 

IkDW 
Light saturation coefficient for 

duckweed 
342 [42] µmol m−2 s−1 

Tmin Minimum temperature for algal growth 5 [51,53] °C 

Topt Optimum temperature for algal growth 20 [51,53] °C 

Tmax Maximum temperature for algal growth 30 [51,53] °C 

Psat Density dependence coefficient 2.5 [51,53] gC m−2 

PrespA Algal respiration rate 0.025–0.15 [51,53] d−1 

TrefA Reference temperature for algae 20 [51,53] °C 

PKrespA 
Temperature coefficient for algal 

respiration 
1.02–1.08 [51,53]  

Pcol Colonization rate of algal biomass 0.001–0.1 [51,53] gC m-2 d−1 

kd Algal death and sloughing rate 0–0.3 [30,49] d−1 

kh Hydrolysis and decomposition rate  0.01–0.1 [49] d−1 

khsA 
Half-saturation constant of available 

nitrogen for algae 
0–2 [30,49] gN m−3 

kDenA 
Denitrification coefficient for algal 

biomass and temperature 
0–0.003 [21,49,53] gN gNalg−1 d−1 

kDenOM 
Denitrification coefficient for dead 

organic matter and temperature 
0–0.01 [22,28] gN gNorg−1 d−1 

QcA Critical stream flowrate for benthic algae 0–36,000 [17] m3 d−1 

QcOM 
Critical stream flowrate for dead organic 

matter 
0–36,000 [17] m3 d−1 

PrespDW Duckweed respiration rate 0.025–0.15 [53] d−1 

TrefDW Reference temperature for duckweed 26 [42] °C 

PKrespDW 
Temperature coefficient for duckweed 

respiration 
1.02–1.08 [53]  

DL Duckweed mat density limit 4–7 [28,41] gN m−2 

rmaxDW Maximum growth rate of duckweed 0.13–0.47 [28,30] d−1 

θDW 
Temperature coefficient for duckweed 

growth (Arrhenius constant) 
1.02–1.08 [30]  
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DWmin Minimum duckweed biomass 0.001–0.1 [53] gN 

khsDW 
Half-saturation constant of available 

nitrogen for duckweed 
0.5 [59–61] gN m−3 

kDenDW 
Denitrification coefficient for duckweed 

biomass and temperature 
0–0.3 [28,62] gN gNdw−1 d−1 

km Duckweed mortality rate * 0.009–0.05 [30] d−1 

θ 
Temperature coefficient for 

denitrification (Arrhenius constant) 
1.02–1.08 [30]  

khsD 
Half-saturation constant of available 

nitrogen for denitrification  
0.95 [42] gN m−3 

C-to-N Ratio Carbon to Nitrogen ratio  5–15 [16,49] gC gN−1 

QcDW Critical stream flowrate for duckweed  6000–36,000 [17] m3 d−1 

RST7low 
Ratio of flow at ST7 to ST4 during low 

flow conditions 
0–1 calibrated  

RST8low 
Ratio of flow at ST8 to ST7 during low 

flow conditions 
0–1 calibrated  

Flowrate (Q) Flowrate model inputs - 
Site measurements at 

ST4 from 2000–2003 
m3 d−1 

Temperature (T) Water temperature model input - 

Air-water temperature 

correlation based on 2018 

site measurements & site 

measured air temperature 

from 2000–2003 

°C 

PAR 
Photosynthetically Available Radiation 

(PAR) model input 
- 

National Solar Radiation 

Database (NSRDB) at 

Blue Grass Airport with 

conversion from Mavi & 

Tupper [58] 

µmol m−2 s−1 

CDIN 
Concentration of dissolved inorganic 

nitrogen (DIN) model input 
- 

Concentration-discharge 

relationships based on site 

measurements from 2000–

2003 & flowrate at ST4 

from 2000–2003 

gN m-3 or mg 

L−1 

* Piecewise function based on temperature (35 °C to 6 °C). 

The duckweed input parameters (DL, rmaxDW, θDW, km, TrefDW) were obtained from duckweed 

nutrient removal studies conducted in laboratory, wetlands, and wastewater ponds [28,30,41,42]. The 

respiration rate, temperature coefficient, and minimum biomass (PrespDW, PKrespDW, DWmin) were 

assumed analogous to algal biomass, with the respiration temperature coefficient range consistent 

with the range for the Arrhenius constant. The half-saturation constant of available DIN for 

duckweed uptake (khsDW) was based on results Lasfar et al. [42]. The duckweed denitrification 

parameter (kDenDW) range was intended to be as conservative as possible, using zero as the minimum 

and the maximum obtained from the maximum reported denitrification rate for agricultural streams 

[62] normalized by maximum N content of duckweed (gN g dry−1) from Körner and Vermaat [28]. 

The formulation for the maximum critical stream flowrate value for duckweed (QcDW) was also based 

on Kazama and Watanabe [17], as duckweed floats on the surface and would be washed downstream 

when the flow exceeds a certain threshold. The maximum bound for the removal of the duckweed 

biomass was again assumed to be the top five percent of annual flows, analogous to algae and organic 

matter. The minimum bound was set to 6000 cubic meters per day (m3 d−1), roughly 2.5 cubic feet per 

second (ft3 s−1), which is the flowrate through the 90-degree weirs at ST8, ST7, and ST4 when the water 

level is at the top of the weir. When the water level is below the top of the weir, the flow is backed up 

and the surface generally remains calm enough for duckweed to accrue in the reach. 
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3.3. Model Evaluation Procedures 

For the model evaluation procedures, a GLUE-like uncertainty analysis was performed using a 

Monte Carlo simulation with randomized parameter inputs for each run to compare measured and 

modeled results and generate a posterior solution space of acceptable parameter ranges [16,51,63]. 

Based on iterative model improvements and Monte Carlo simulations with each iteration, 10,000 

randomized runs presented the best posterior solution space relative to simulation run time and 

robustness of the prior solution space. We performed two primary tasks to evaluate the model 

performance for our case study. First, we performed a sensitivity analysis to evaluate how different 

components of the model reflected downstream data based on model inputs. Next, we performed a 

robust model calibration and uncertainty analysis of the posterior parameter and solution spaces 

using well-accepted model evaluation statistics and performance criteria. 

Sensitivity analysis was performed for the case-study application to identify potential impacts 

of predominant N transformation pools including algae, duckweed, and its associated detrital 

biomass as well as microbial denitrification associated with each pool. Sensitivity was performed by 

running a series of scenario analysis on our un-calibrated model to identify potentially important 

components of the numerical model structure. Scenarios included: an inert conduit with no biotic 

activity or benthic detritus (1), algal biomass and detritus without denitrification (2) and with 

denitrification (3), duckweed biomass and detritus without denitrification (4) and with denitrification 

(5), and both algal and duckweed biomass and detritus without denitrification (6) and with 

denitrification (7). The scenarios listed above will highlight the differences in the vegetation pools’ 

impact on the stream DIN concentration at the outlet of the reach (ST4) and how that compares with 

measured data. The exclusion and inclusion of denitrification for each of the specific vegetation pools 

is intended to highlight the extent of denitrification impact from each pool. 

Model calibration and validation was performed for the four-year case-study using well-

accepted water quality modeling statistics. The model response variable used for calibration was CDIN 

(mg/L) at the reach outlet (site ST4). We compared the biweekly DIN concentrations from 2000 

through 2002 (3 years) for calibration, and biweekly DIN concentrations from 2003 (1 year) for 

validation. The performance criteria used for evaluation of the randomized runs and creation of the 

posterior solution space were Nash-Sutcliffe Efficiency (NSE) and percent bias (PBIAS). Considering 

their inclusion in the hydrologic and water quality model calibration guidelines outlined in Moriasi 

et al. [64], and their recommended uses, these two performance measures require the model to have 

strong goodness of fit without bias (over or under-estimation). Given the robustness of our boundary 

condition parameterization, we required statistical criterion to meet ‘very good’ thresholds for model 

evaluation statistics [64]. For NSE this required a numerical value of 0.65 or greater for both 

calibration and validation periods. For PBIAS this required a value of ±15%. For parameterizations 

that resulted in acceptable model statistics for both calibration and validation, the parameter sets and 

solutions were accepted into a ‘posterior space’. 

The posterior parameter space was compared with the prior parameter space. To identify if the 

model parameters were sensitive in calibration, we used statistical tests to evaluate if statistical 

differences existed between the prior and posterior parameter spaces. Due to the non-parametric 

nature of the parameter spaces, the Mann-Whitney U, or Wilcoxon rank sum test in SigmaPlot was 

used assuming a 5% significance level. We test for equal variance in SigmaPlot [65] using the Levene 

Median test along with the rank sum test to check for the difference in variability between the prior 

and posterior solution spaces. These were also verified in Matlab using the Brown-Forsythe test, 

assuming 5% significance, which is an adaptation of Levene’s test that uses the median of the values 

as opposed to the mean and can provide better performance on heavily skewed distributions [66]. 

The posterior solution space was used to quantify uncertainty in fluxes and dynamics for in-stream 

N dynamics. 
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4. Results 

4.1. Model Evaluation Analysis 

Results of the sensitivity analysis highlight that inclusion of both vegetation pools and their 

associated denitrification terms are important in order to capture the temporal variability observed 

in the four-year dataset (Figure 3). In scenario 1, the minimum-maximum range for DIN 

concentrations (CDIN) constrains the datapoints for winter months reasonably well with datapoints 

typically falling between the minimum and median lines. Deviation between measured and modeled 

values occur in the spring through the fall and are particularly high in the summer with minimum 

values over-predicting the measured data by as much as 1.66 mgN L−1 (11/8/2000) in the fall. These 

findings highlight the assumption that an inert conduit is inappropriate for the specified stream 

reach. Sensitivity analysis of the algae, its detrital organic matter, and associated microbial 

denitrification show improved capabilities to predict concentrations, particularly in spring and 

summer, but some limitations in fall (Scenarios 2–3). Minimum CDIN in Scenario 2 were able to bound 

much of the measured concentrations of DIN during the spring and summer season except for some 

periods in the fall (see fall of 2000), although median values still vastly over-predicted the data in the 

growing season. Comparing results of Scenario 3 and Scenario 2 illustrate the effects of denitrification 

associated with algae and its detritus are subtle and mainly only impact the magnitude of diel 

fluctuations in CDIN (see the maximum lines during the growing season). Sensitivity analysis for 

duckweed, its detrital organic matter, and associated denitrification also show the ability to capture 

the low CDIN observed during the growing season with some improved predictive capabilities over 

algae, especially in the fall (Scenarios 4–5). Minimum CDIN values in Scenario 4 was able to capture 

much of the variability in the dataset, and when including denitrification (Scenario 5) median 

concentrations were also able to capture much of the variability, suggesting that CDIN is highly 

sensitive to denitrification in the duckweed biomass pool. Comparing Scenario 5 and Scenario 3, we 

found that duckweed showed improved capacity to capture fall DIN concentrations compared with 

algae scenarios. Results for both duckweed and algae (Scenario 6) and their associated denitrification 

(Scenarios 7) more closely reflect the duckweed scenarios, although diel fluctuations were altered 

because algae was able to offset some of the N regenerated by duckweed (see difference in maximum 

lines from Scenario 4 and 6). Cumulatively these results suggest that both algae and duckweed may 

describe dynamics reasonably well, but the CDIN response variable is more sensitive to denitrification 

associated with duckweed than it is with algae and detrital organic matter. 

Scenario 1: No biotic activity Legend 

 
 



Water 2020, 12, 2458 15 of 29 

 

Scenario 2: Algal biomass & detritus Scenario 3: Scenario 2 with associated DEN 

  

Scenario 4: Duckweed biomass & detritus Scenario 5: Scenario 4 with associated DEN 

  

Scenario 6: Algal & Duckweed biomass & detritus Scenario 7: Scenario 6 with associated DEN (all) 

  

Figure 3. Sensitivity analysis of model components for the Camden Creek model application. 

Results of the model calibration and uncertainty analysis showed that several parameterizations 

were able to provide strong model statistics, which is reflected in the visual fit of the model solution 

space to the measured data (Figure 4). The 10,000 Monte Carlo analysis yielded 195 individual runs 

that met or exceeded the “very good” performance criteria of NSE > 0.65 and PBIAS < ±15 [64] for the 

calibration period (2000–2002), and 47 of these 195 individual runs met or exceeded the performance 

criteria in the validation period (2003). The NSE values for the calibration and validation periods 

ranged from the low end of 0.656 and 0.651 to as high as 0.814 and 0.752, respectively. The PBIAS 

values for the calibration and validation periods ranged from the low end of −14.9 and −14.8 to a high 

end of −4.61 and 0.843, respectively. Acceptable model results were visually compared to the 

measurements of DIN calibration and validation period and showed good visual agreement with 

some periodic over and under-estimation. Generally, the model accurately predicts CDIN during 

spring through fall, bounding measured concentrations in all years with the measured values falling 

closest to the minimum model outputs in Figure 4, suggesting highest rates of biotic activity most 

accurately predict CDIN in this system. However, the acceptable model runs showed the potential for 

strong diel oscillations during these periods, particularly in dry years (e.g., 2000), suggesting the 

relationship between DIN removal through denitrification and DIN regeneration through respiration 

and decomposition may be of particular importance in dry periods of the summer and fall. 
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Figure 4. Maximum, minimum, and median CDIN for the calibration and validation periods with 

observed data points for comparison of model fit. 

Of the 23 variable parameters in the uncertainty analysis, 9 were found to have statistically 

significant differences between the prior and posterior solution spaces by either the Mann-Whitney 

Rank Sum Test, Brown-Forsythe Test, or both. The posterior parameter spaces found to be significant 

by the Mann-Whitney Rank Sum Test were kh (p = 0.016), PrespDW (p < 0.001), rmaxDW (p < 0.001), kDenDW (p 

< 0.001), C-to-N Ratio (p = 0.015), QcDW (p < 0.001), RST7low (p < 0.001), and RST8low (p < 0.001). The posterior 

parameter spaces found to be significant by the Brown-Forsythe Test were PrespDW (p < 0.001), DL (p = 

0.027), rmaxDW (p < 0.001), kDenDW (p < 0.001), QcDW (p < 0.001), RST7low (p < 0.001), and RST8low (p < 0.001). 

Histograms for each of these statistically significant parameters are shown in Figure 5. 

Duckweed limit density, DL, shows a skew to the lower and higher ends of the parameter range with 

a median of 5.40 gN m−2. The respiration rate for duckweed biomass, PrespDW, shows the majority of 

acceptable values around the lower third of the parameter range with a median value of 0.05 d−1. The 

maximum intrinsic growth rate for duckweed, rmaxDW, trends towards the upper end of the range with 

roughly 23 percent of the values falling in the uppermost end of the parameter range with a median 

value of 0.40 d−1. The denitrification coefficient for duckweed, kDenDW, trends heavily towards the 

upper end of the range with roughly 75 percent of the values falling in the upper half of the range 

(median of 0.19 gN gNdw−1 d−1), highlighting the potential for denitrification in the duckweed mats to 

exert a strong influence on N dynamics in the system. The carbon to nitrogen ratio trends towards 

the lower end, with a median of 8.99 gC gN−1, higher than the value of 5.56 gC gN−1 used in Chapra 

et al. [49]. The decomposition/hydrolysis rate of organic matter, kh, also trends towards the lower end 

with a median of 0.04 d−1, indicative of the sensitivity of regenerated DIN on the overall stream DIN 

concentration. The posterior spaces of both RST7low and RST8low only gave acceptable model solutions 

for the upper 80th and 50th percentiles of the prior parameter spaces, respectively, emphasizing the 

impact of main-stem DIN concentrations inputs on overall N dynamics in the study reach. The critical 

discharge threshold for duckweed, QcDW, skewed towards the upper half of the parameter range with 

a median of 28,370 m3 d−1, indicating the potential for duckweed mats to survive higher flow 

conditions. 
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Figure 5. Prior and posterior solution space histograms for statistically significant differences from 

the uncertainty analysis. 

4.2. Timeseries of Continuous Model Results 

Results for the four years of environmental model inputs (flowrate, PAR, and temperature) show 

event-based, seasonal, and annual variability (Figure 6). The input flowrates to the model from 

collected data at ST4 show seasonal and annual variability. The average flows for each year vary by 

as much as 0.09 m3 s−1, with individual averages of 0.05, 0.07, 0.13, and 0.14 m3 s−1 for years 2000–2003. 

Overall, 2003 is the wettest year in the period and 2000 is the driest. The seasonal averages range from 

0.02 m3 s−1 in the summer to 0.15 m3 s−1 in the winter, with the highest average flows in winter and 

spring of 2003 and the lowest average flows in the summer and fall of 2000. The input PAR shows 

relatively consistent values for yearly averages, with 2001 having the highest yearly average at 356.81 

µmol m−2 s−1 and 2003 having the lowest at 334.31 µmol m−2 s−1. The seasonal averages show more 

variability, with spring and summer averages of 475.99 and 466.05 compared to winter and fall 

averages of 228.93 and 206.01 µmol m−2 s−1. The highest seasonal average, 503.49 µmol m−2 s−1, was 

from spring 2001 and the lowest, 177.64 µmol m−2 s−1 was from fall 2002. The water temperature shows 

similar trends to the PAR with consistent yearly averages and larger differences between 

spring/summer and winter/fall. The yearly averages range from 15.56 (°C) in 2002 to 15.10 (°C) in 

2003, while the seasonal averages range from 17.45 (°C) and 19.33 (°C) in the spring and summer to 
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11.46 (°C) and 13.17 (°C) in the winter and fall. The highest average temperature, 20.09 (°C), was from 

the summer of 2002 and the lowest, 10.78 (°C), was from the winter of 2003. As can be seen, timing of 

seasonal maxima and minima temperatures differ from maxima and minima PAR values. 

  

  

  

Figure 6. Flowrate, photosynthetically available radiation (PAR), and temperature modeling inputs 

over the four-year span 2000–2003 (left column). Modeled CDIN concentration, vegetation pool 

biomass (algae, dead organic matter, and duckweed) and modeled denitrification rates for each pool 

(algae, dead organic matter, and duckweed) over the four-year span 2000–2003 (right column). 

The modeled DIN concentrations, biomass pools and associated denitrification rates are 

presented from a representative model run (45) in the posterior solution space (Figure 6—right 

column). Regarding CDIN we found that the calibrated model solution most reflects the minimum 

values for Scenario 5 (duckweed dominated system with denitrification) reflecting the 

aforementioned findings of insensitive algal model parameters in calibration. This result is further 

supported by the modeled biomass values, which highlight differences in the prevalence of the 

different vegetation pools. Although duckweed biomass dominates total biomass and typically peaks 

in the summer, algae may be present throughout the winter and begins growing earlier in the spring 

and continues to grow later in the fall, providing a longer growing season for N uptake and 

periphyton based denitrification, particularly in the spring of 2000 and 2001 and the fall of 2003. The 

organic matter pool can be seen to eclipse algal biomass as duckweed increases, as it is made up of 

detrital material from both pools, and it continues to increase until removed by scour. The modeled 

denitrification rates for each vegetative pool further highlights the effect of the dominant time 

periods for each of these vegetative pools, as the associated denitrification is shown to occur 
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concurrently. Duckweed associated denitrification dominates overall denitrification by two orders 

of magnitude over algae and organic matter. 

4.3. Nitrogen Budget Results 

A comprehensive budget of modeled N transformations is provided (Table 2), showing seasonal 

and annual DIN loadings into and out the modeled stream reach over the four-year span. Regarding 

annual loadings, the DIN removal was highest in 2000 and 2001, with the seasonal medians averaging 

0.39 and 0.55 kgN d−1, respectively, with lower average median removal rates of 0.13 and 0.23 kgN 

d−1 in 2002 and 2003. The higher median DIN removal rates correspond to the two years with the 

lowest average flows, particularly 2000, and the lower removal rates correspond to the two years with 

higher average flows in 2002 and 2003. The average median input loadings of 2002 and 2003 (38.27 

and 40.89 kgN d−1, respectively) were also higher than the average input loadings of 21.47 and 21.46 

kgN d−1 in 2000 and 2001, respectively. The annual removal percentages vary over an order of 

magnitude from 0.33 percent in 2002 to 2.6 percent in 2001. Together, these results underscore the 

importance of flow condition and DIN input on total removal rate due to in-stream processes. 

Regarding seasonality, median DIN removal was highest in the spring, summer, and fall, with very 

little removal during the winter season of any of the four years and was strongly regulated by flow 

variability and N inputs. The highest median removal occurred in the spring and summer of 2001 

(0.75 kgN d−1 and 1.21 kgN d−1, respectively). Spring and summer removal rates during the dry years 

in 2000 and 2001 corresponded to 4.2%, 43.4%, 4.8%, and 52.6% of the DIN input loads. Comparing 

these values to the spring and summer median removals of 2002 and 2003 (0.46, 48.15, 0.39, and 8.08 

percent, respectively) emphasizes the impact of flow condition and nutrient concentration on overall 

DIN removal. Although the median summer removal percentage in 2002 (48.15 percent) is 

comparable to 2000–2001, the DIN input during this summer season was considerably lower than the 

other summer periods, making the total median removal rate 0.13 kgN d−1, which was considerably 

smaller than in previous summers. This lower input DIN decreased overall removal loads through 

nutrient stress on biota. The lowest median percent removal in summer occurred during 2003 (8.08 

percent in the summer). As evidenced in Figure 6, this summer had frequent high-flow events which 

washed out biomass, limiting residence time for denitrification to occur. These findings suggest 

moderate flow conditions promote optimal conditions for DIN removal during warm months to 

minimize environmental stressors on the biomass pools. 

Table 2. Seasonal average nitrogen loadings for median (minimum–maximum) DIN values across all 

47 posterior solutions for the calibrated model. 

Year Winter Spring Summer Fall Annual Average 

 Median 

(Min–Max) 

Median 

(Min–Max) 

Median 

(Min–Max) 

Median 

(Min–Max) 

Median 

(Min–Max) 

Average Input DIN Loading (kgN d−1) 

2000 
58.32 

(58.13–58.68) 

16.98 

(16.70–17.52) 

0.83 

(0.71–1.04) 

9.73 

(9.55–10.00) 

21.47 

(21.27–21.81) 

2001 
41.66 

(41.41–42.06) 

15.78 

(15.43–16.41) 

2.30 

(2.06–2.73) 

26.08 

(25.66–26.70) 

21.46 

(21.14–21.98) 

2002 
49.33 

(48.81–50.19) 

30.35 

(30.13–30.75) 

0.27 

(0.22–0.36) 

73.14 

(72.82–73.57) 

38.27 

(38.00–38.72) 

2003 
74.71 

(74.32–75.39) 

51.47 

(51.03–52.27) 

7.55 

(7.16–8.23) 

29.81 

(29.52–30.22) 

40.89 

(40.51–41.53) 

Average Output DIN Loading (kgN d−1) 

2000 
58.28 

(57.75–58.69) 

16.26 

(15.13–17.01) 

0.47 

(0.36–0.61) 

9.29 

(9.11–9.74) 

21.08 

(20.59–21.51) 

2001 
41.64 

(41.07–42.12) 

15.03 

(13.35–16.05) 

1.09 

(0.77–1.70) 

25.87 

(25.21–26.58) 

20.91 

(20.10–21.61) 

2002 
49.28 

(48.59–50.20) 

30.21 

(29.02–30.76) 

0.14 

(0.06–0.25) 

72.96 

(72.36–73.43) 

38.15 

(37.5–38.66) 

2003 
74.68 

(74.06–75.43) 

51.27 

(49.61–52.20) 

6.94 

(5.93–7.69) 

29.74 

(29.14–30.19) 

40.66 

(39.69–41.38) 
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Comprehensive budget results for biomass pools displayed the importance of uptake for both 

algal and duckweed pools, but showed denitrification was primarily associated with the duckweed 

pool (see Supplementary Materials Tables S1 and S2). The DIN assimilation through vegetation 

uptake was more variable than denitrification, showing dominance by algae or duckweed at different 

points in time and under different seasonal conditions. Duckweed growth in the winter periods of 

each year is negligible while algae dominates, contributing all of the DIN removal during those 

periods (median rates of 0.34 to 0.60 mgN m−2 h−1), reflecting the difference in optimum temperatures 

for the two pools. The spring periods show a similar trend, with median duckweed rates beginning 

to make an impact (6.04 × 10−2 to 3.27 mgN m−2 h−1), but algal biomass still dominating the overall 

assimilation (median range of 1.81 to 3.13 mgN m−2 h−1). Duckweed was the prominent uptake pool 

in summer with median rates of 1.16 to 5.49 mgN m−2 h−1 compared to 0.57 to 1.88 mgN m−2 h−1 for 

algal assimilation, likely indicating the potential for duckweed populations to grow rapidly and 

shade the benthos during the warmer summer months. In the fall, median algae and duckweed 

uptake rates were comparable (0.24 to 1.24 mgN m−2 h−1 and 5.55 × 10−3 to 1.63 mgN m−2 h−1, 

respectively). When considering the influence of each potential denitrification pool on the total 

denitrification removal, duckweed dominates the total rate (median range of 3.58 × 10−6 to 8.86 mgN 

m−2 h−1), with rates for algae (1.38 × 10−9 to 0.22 mgN m−2 h−1) and organic matter detritus (1.76 × 10−10 

to 0.80 mgN m−2 h−1) often several orders of magnitude smaller than duckweed. 

5. Discussion 

5.1. Implications for Stream N Modeling 

The parsimonious modeling framework from this study was able to provide acceptable 

modeling statistics for simulation of DIN dynamics in the low-gradient bedrock agroecosystem 

stream and highlighted the importance of modeling components that are unique to this study. Results 

of the model calibration and validation highlight in-stream vegetation and microbial N removal 

processes were able to capture dynamics in spring-fall that were unable to be explained by boundary 

conditions alone (Figures 3 and 4). Duckweed had the most sensitive model parameters in calibration, 

with 5 of 12 parameters having a statistically significant difference between their prior and posterior 

parameter space. This included both the limit density and intrinsic growth rate, as well as the 

associated denitrification rate of duckweed, which was based on the variable-order growth model of 

duckweed and the biomass-specific denitrification terms that have not been explicitly considered in 

existing stream N models [16,44,45,48]. The results of the uncertainty analysis confirm the importance 

of duckweed and its associated denitrification for stream N removal, as the median duckweed 

biomass and associated denitrification was often orders of magnitude higher than algae and detrital 

organic matter. These findings underscore the importance of duckweed biomass and its substrate-

specific denitrification rates for simulating N removal in other stream ecosystems where floating 

aquatic macrophytes occur. 

The importance of accurate representation of growth kinetics and environmental stressors of 

biomass pools is further highlighted by the results our sensitivity and uncertainty analysis whereby 

duckweed was observed to outcompete algae for nutrients and light under favorable environmental 

conditions, resulting in higher rates of duckweed production and, subsequently, denitrification. The 

results of the sensitivity analysis in this study showed that both algae and duckweed could bound 

observed gradients in DIN measurements. Nevertheless, when considering both pools during model 

calibration, duckweed often outcompeted algae for nutrients and sunlight as evidenced by 37 of the 

47 acceptable models runs having higher duckweed biomass than algae. The use of a variable-order 

growth rate for duckweed biomass enabled a faster proliferation of duckweed that outcompetes algae 

for DIN, which then exerts a control on light availability. Cumulatively, our results suggest that rapid 

uptake of duckweed may decrease algal biomass by creating N and light limiting conditions, 

particularly during summer and fall. Our visual inspection of the stream channel throughout the year 

qualitatively support these findings, as we often found thick duckweed mats at the water surface 

during summer that was underlain by senescing or detrital algal biomass. Further, numerous studies 
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in the wetland and wastewater communities have highlighted that duckweed grows rapidly in 

comparison to algae and that in wastewater ponds and wetlands duckweed has the capability to 

reduce the abundance of algae due to shading and nutrient limitations during certain periods of the 

year [29–31,36–40]. 

5.2. Stream N Dynamics in Low-Gradient Bedrock Agroecosystem Streams 

Broader comparison of model results with other agricultural streams suggest bedrock karst 

agroecosystem headwater streams can be hotspots for permanent N removal, which contrast existing 

perceptions. Cumulatively, average denitrification rates for the bedrock stream was in the upper 50th 

percentile of rates reported for agricultural streams in Mulholland et al. [62], indicating these systems 

are hotspots for permanent N removal. These findings are counterintuitive given the results of 

Argerich et al. [67], which showed metabolic activity in bedrock sections of a low-order stream in 

Oregon were significantly lower than an adjacent alluvial reach. The differences likely are reflective 

of the steep gradients, canopy cover, and low-disturbance conditions in Argerich et al. [67], which 

create unfavorable conditions for vegetation proliferation. Our results emphasize the importance of 

considering duckweed in fluvial N budgets of low-gradient disturbed headwater streams. 

Permanent N removal via denitrification in the bedrock agroecosystem stream contrast 

dynamics observed in wastewater ponds as well as sediment dominated streambeds in the region. 

Our results showed that denitrification accounted for an average of 46 percent of total N removal in 

the studied stream reach which was higher than rates reported is wastewater ponds ranging from 10-

40% of total N removal [28,31,36]. This finding likely reflects harvesting operations that are commonly 

performed in wastewater ponds that promote higher removal through biomass uptake as well as the 

higher velocities of the stream system which allow nutrients to advect to anoxic microsites where 

denitrification can occur. The budget results highlight the dominance of duckweed on overall 

denitrification rates in the spring, summer, and fall, often close to 100 percent of total denitrification, 

but found minimal contributions in winter. This was likely influenced by the favorable environmental 

conditions during the warm periods, particularly in the summer, creating longer residence times and 

increased organic carbon retention for more efficient denitrification [26,68–70]. The lack of 

importance of denitrification in winter contrasts results from a nearby third-order stream with 

extensive fine sediment deposits and presence of surficial fine-grained laminae [16] which found 

more than 70% of N removal to be associated with denitrification in winter. Given that the study of 

Ford et al. [16] was a higher-order stream, our results suggest that there may be variable in-stream 

control points along the fluvial continuum on N removal dynamics throughout the year in karst 

agroecosystems. 

Results of the study provide insight regarding the coupled impacts of environmental drivers and 

nutrient gradients on N removal potential of bedrock agroecosystem streams. The optimal DIN 

removal percentage (52.6%) and removal rate (1.21 kgN d−1) occurred during summer of 2001 when 

temperature and solar radiation were maxima, and flow conditions were moderate, i.e., higher 

average flow and DIN loading than 2000 or 2002 but less than the wet summer of 2003. Under low 

flow periods of 2000 and 2001, assimilative and dissimilative DIN removal processes occur at faster 

rate than DIN inputs, creating rate-limiting nutrient conditions. Conversely, the high flows in 2003 

resulted in continuous flushing of duckweed biomass, limiting the amount of denitrification that can 

occur. As a result of the temporal variability in environmental drivers, we found N removal can vary 

by an order of magnitude on a year-to-year basis. These findings have implications for landscape 

variability and behavior of N removal dynamics in the future given land-use change may alter 

flowrates and nitrate loadings delivered to stream channels, and climatic variables such as 

temperature and precipitation may also alter the hydrologic and nitrate loading dynamics [47,71–74]. 

We further explored how changes in nitrate loading and temperature may impact the N removal 

using a scenario analysis of the calibrated model (Figures 7 and 8). Regarding DIN input 

concentrations, increasing constant DIN input concentrations results in rapid initial increases in 

biomass and denitrification for all three biomass pools, but each begins to plateau as the 

concentrations rise, starting with algae (due to nutrient and light limitation by duckweed). Both 
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organic matter and duckweed begin to level off at higher concentrations (due to the impact of 

duckweed mortality on the detrital pool), indicating that although nutrients are available for uptake, 

the biomass begins to reach a saturation point for the available stream area (limit density, DL). The 

denitrification rate in duckweed shows a more sustained increase at the higher DIN inputs due to the 

available concentrations remaining above the half-saturation constant for denitrification, however, 

the denitrification rate is still tied to the biomass pool and would be limited by the saturated biomass 

were concentrations to continue to increase. Regarding temperature, adjusting the average 

temperature over a ±5 °C range had contrasting impacts on algal and duckweed biomass due to the 

difference in optimal temperatures for growth. While algal biomass is low under colder and warmer 

temperatures, duckweed biomass increases under warmer average temperatures, which in turn 

increases duckweed denitrification. The relatively low biomass values for each pool compared to 

those under higher DIN loadings in Figure 7, however, suggest the influence of temperature is less 

important to overall biomass than DIN availability, meaning that the influence of the two conditions 

should be taken together when considering future scenarios (i.e., higher DIN loads and temperatures 

together could inhibit algae and substantially increase duckweed growth up to the limiting biomass 

density). These findings indicate that under potential changes in land-use and climatic regimes, small 

headwater streams with higher nutrient loading, temperatures, and flowrates could see significant 

increases in vegetation growth capable of partially offsetting increased inputs. However, population 

saturation conditions of biomass and flow threshold exceedance for scour and washout may result in 

reductions in nutrient removal potential under high DIN loading regardless of temperature, which 

may enhance downstream eutrophication of receiving waterbodies. These findings thus have 

implications for management strategies which are further discussed in the next section. 

  

  

  

Figure 7. Biomass and denitrification rate variability across a range of constant CDIN inputs. 
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Figure 8. Biomass and denitrification (Den) rate variability across a range of average temperature 

changes. 

5.3. Broader Implications 

The findings of this study provide insight into the potential spatial and temporal variability of 

N removal processes in bedrock-controlled streambeds of karst agroecosystems. Briggs and Hare [12] 

note spring-surface water interfaces as potential hotspots for biogeochemical reactions due to 

buffered temperature, high nutrients (particularly DIN in agriculturally impacted systems), and low 

dissolved oxygen. The parameterization of the modeling structure presented here, the results of 

duckweed literature suggesting growth is optimal at higher temperatures than algae [36,42], and the 

scenario analysis results that higher temperatures will promote high production of duckweed (and 

subsequent denitrification) indicate that spring-surface water interfaces may not be optimal locations 

for duckweed proliferation. Although the incoming nitrate loading may be considerably higher than 

downstream locations, the lower temperatures after mixing could hinder duckweed growth. To 

increase denitrification in these locations, enhanced residence times at the interface may be necessary 

to enable surface radiation to warm the water to more favorable temperatures for duckweed growth. 

Such improvements may be achieved through implementation of treatment wetlands or stream 

restoration at these interfaces. 

In this regard, stream restoration in disturbed landscapes promote favorable conditions for 

duckweed biomass. Lorenz et al. [75] found a prevalence of Lemna minor, or common duckweed, in 

restored reaches in Germany following restoration even in systems that did not have detectable levels 

prior to restoration. Griffiths et al. [70] notes that while implemented restoration strategies, namely 

increased floodplain connectivity, in Midwestern agricultural streams promote bank stability and 
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decrease erosion [76–78], they may also result in increased residence times, allowing for 

denitrification of excess nitrate. Increased residence time may also result in increased regeneration of 

ammonium through decomposition of detrital organic matter, which could induce more coupled 

nitrification/denitrification in the duckweed mats, resulting in higher permanent removal of nitrate 

[31]. With the potential of duckweed to become a prominent feature in restored reaches, and the high 

denitrification rates associated with duckweed shown in this study, the potential exists for duckweed 

to exert strong controls on N dynamics in restored reaches during low-flow periods, and will be an 

important area of investigation in future work. 

The model developed for this study provides a validated tool that may be used to help inform 

sustainable management strategies in restored and natural streams with abundant duckweed 

biomass. Harvesting of duckweed biomass is common in wastewater and wetland treatment systems 

[27,29–31,34,36,40], and has indicated that periodic, planned duckweed harvest could improve the 

overall N uptake by reducing the biomass periodically to allow for rapid regrowth of duckweed mats. 

This would also permanently remove the assimilated N from the stream, reducing the loss of living 

organic matter to receiving waterbodies during storm events that cause catastrophic scour. Harvested 

duckweed also has the potential to be a feed supplement, as highlighted in Körner et al. [29] and 

Cheng and Stomp [79]. Although the harvest of duckweed would likely be more difficult in a stream 

than wastewater ponds designed for surface skimming, the restoration process for impacted streams 

often includes widening the channel and connecting the stream with its floodplain, which increases 

the surface area and, potentially, accessibility for harvest. Modeling results may help to inform 

optimum timing of harvesting. For instance, in our study, we found DIN removal percentages were 

lowest in late fall through early spring (0.04–4.75 percent). Harvesting may therefore have the greatest 

impact in late spring, when the N supply is abundant, and other conditions are non-rate-limiting 

(e.g., temperature and light availability). The numerical model used in this study could provide a tool 

for site-specific harvest scheduling plans based on anticipated environmental conditions. 

5.4. Model Limitations and Future Work 

Notwithstanding the important findings of this study to inform vegetation impacts on N cycling 

in bedrock-controlled karst agroecosystem streams, we observed broad ranges in our uncertainty 

analysis which reflects the infrequent measurements used for model evaluation purposes and 

suggests a need for improved databases for model evaluation. In particular, we were unable to 

properly constrain diel fluctuations in CDIN, which can be seen to be substantial in both the sensitivity 

analysis (Figure 3) and the calibrated and validation model output (Figure 4), showing fluctuations 

as high as roughly 1 mg L−1. The use of high-frequency water quality sensors and high-resolution 

data, though, has been seen to provide important insights into diel fluctuations of nitrate (see [80] 

and references within) as well as provide estimates of primary productivity and gross primary 

production using coupled dissolved oxygen (DO) and nitrate diel variability [81,82]. Given the large 

diel fluctuations in these modeling results, the inclusion of high-resolution data and methodologies 

could better constrain these CDIN oscillations, which in turn could provide improved estimates of 

biotic uptake and removal and overall DIN budget improvements. 

Further, while the modeling structure presented here offers a parsimonious representation of 

DIN, which is applicable to our system due to low levels of total ammoniacal nitrogen (TAN) year-

round, explicit modeling of TAN and nitrate could be an important consideration elsewhere. While 

both TAN and nitrate are biologically available, aquatic vegetation has been shown to prefer uptake 

of ammonium when both species are abundant [83]. In a duckweed pond N transformation model, 

Peng et al. [30] considers ammoniacal-N and nitrate separately, and has different half-saturation 

coefficients for the uptake of each individual N pool. Surface streams with high organic runoff from 

pastures or point source contributions of wastewater would benefit from explicit consideration of 

each N form, which could aid in more appropriate estimates of biomass growth, overall N removal, 

and more realistic loading estimates. This could be of particular importance when determining 

management strategies for consistent inputs or estimating the effects of accidental overflow or 

wastewater system failure. 
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6. Conclusions 

The model developed in this study offers a parsimonious approach for inclusion of algae and 

floating aquatic macrophytes into stream water quality modeling and provides an alternative 

approach to the estimation of denitrification rates in streams with negligible benthic sediments (i.e., 

streams with bedrock control). The results indicate the potential of this model to capture the controls 

on N dynamics in karst agroecosystem streams, offers insights into the seasonality of competing 

controls on DIN concentrations, provides inferences into changing N dynamics under differing 

hydrologic or climatic regimes, as well as highlights the possibility for duckweed to control overall 

denitrification rates. The modeling results also suggest these streams have the capacity to perform 

denitrification on the same order of magnitude as other agricultural streams, often considered to have 

higher denitrification potential due to their extensive benthic sediments and hyporheic exchange, 

highlighting their potential importance to watershed and regional N fate and transport studies. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/12/9/2458/s1, Table 

S1: Seasonal average DIN removal rates, DIN vegetation uptake rates, denitrification rates, and regeneration 

rates for median (minimum–maximum) DIN values across the 47 posterior solutions for the calibrated model, 

Table S2: Seasonal average DIN assimilation and DIN denitrification rates in each biotic pool for median 

(minimum–maximum) DIN values across all 47 posterior solutions for the calibrated model. 
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