
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Biosystems and Agricultural Engineering 
Faculty Publications Biosystems and Agricultural Engineering 

7-14-2020 

Non-Destructive Technologies for Detecting Insect Infestation in Non-Destructive Technologies for Detecting Insect Infestation in 

Fruits and Vegetables under Postharvest Conditions: A Critical Fruits and Vegetables under Postharvest Conditions: A Critical 

Review Review 

Akinbode A. Adedeji 
University of Kentucky, akinbode.adedeji@uky.edu 

Nader Ekramirad 
University of Kentucky, nader.ekramirad@uky.edu 

Ahmed Rady 
University of Kentucky 

Ali Hamidisepehr 
University of Kentucky, ali.hamidisepehr@gmail.com 

Kevin D. Donohue 
University of Kentucky, kevin.donohue1@uky.edu 

See next page for additional authors 
Follow this and additional works at: https://uknowledge.uky.edu/bae_facpub 

 Part of the Bioresource and Agricultural Engineering Commons, and the Entomology Commons 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Repository Citation Repository Citation 
Adedeji, Akinbode A.; Ekramirad, Nader; Rady, Ahmed; Hamidisepehr, Ali; Donohue, Kevin D.; Villanueva, 
Raul T.; Parrish, Chadwick A.; and Li, Mengxing, "Non-Destructive Technologies for Detecting Insect 
Infestation in Fruits and Vegetables under Postharvest Conditions: A Critical Review" (2020). Biosystems 
and Agricultural Engineering Faculty Publications. 230. 
https://uknowledge.uky.edu/bae_facpub/230 

This Review is brought to you for free and open access by the Biosystems and Agricultural Engineering at 
UKnowledge. It has been accepted for inclusion in Biosystems and Agricultural Engineering Faculty Publications by 
an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/bae_facpub
https://uknowledge.uky.edu/bae_facpub
https://uknowledge.uky.edu/bae
https://uknowledge.uky.edu/bae_facpub?utm_source=uknowledge.uky.edu%2Fbae_facpub%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1056?utm_source=uknowledge.uky.edu%2Fbae_facpub%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/83?utm_source=uknowledge.uky.edu%2Fbae_facpub%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
https://uknowledge.uky.edu/bae_facpub/230?utm_source=uknowledge.uky.edu%2Fbae_facpub%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


Non-Destructive Technologies for Detecting Insect Infestation in Fruits and Non-Destructive Technologies for Detecting Insect Infestation in Fruits and 
Vegetables under Postharvest Conditions: A Critical Review Vegetables under Postharvest Conditions: A Critical Review 

Digital Object Identifier (DOI) 
https://doi.org/10.3390/foods9070927 

Notes/Citation Information Notes/Citation Information 
Published in Foods, v. 9, issue 7, 927. 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. 

This article is an open access article distributed under the terms and conditions of the Creative 
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

Authors Authors 
Akinbode A. Adedeji, Nader Ekramirad, Ahmed Rady, Ali Hamidisepehr, Kevin D. Donohue, Raul T. 
Villanueva, Chadwick A. Parrish, and Mengxing Li 

This review is available at UKnowledge: https://uknowledge.uky.edu/bae_facpub/230 

http://creativecommons.org/licenses/by/4.0/
https://uknowledge.uky.edu/bae_facpub/230


foods

Review

Non-Destructive Technologies for Detecting Insect
Infestation in Fruits and Vegetables under
Postharvest Conditions: A Critical Review

Akinbode A. Adedeji 1,* , Nader Ekramirad 1 , Ahmed Rady 1,2 , Ali Hamidisepehr 1,
Kevin D. Donohue 3 , Raul T. Villanueva 4, Chadwick A. Parrish 3 and Mengxing Li 1

1 Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40546, USA;
Nader.Ekramirad@uky.edu (N.E.); radyahme2@gmail.com (A.R.); aha322@g.uky.edu (A.H.);
mengxingli0324@gmail.com (M.L.)

2 Department of Biosystems and Agricultural Engineering, Alexandria University, Alexandria 21526, Egypt
3 Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506, USA;

kevin.donohue1@uky.edu (K.D.D.); chad.parrish@uky.edu (C.A.P.)
4 Department of Entomology, University of Kentucky, Princeton, KY 42445-0469, USA;

raul.villanueva@uky.edu
* Correspondence: akinbode.adedeji@uky.edu; Tel.: +1-859-218-4355

Received: 25 June 2020; Accepted: 6 July 2020; Published: 14 July 2020
����������
�������

Abstract: In the last two decades, food scientists have attempted to develop new technologies that
can improve the detection of insect infestation in fruits and vegetables under postharvest conditions
using a multitude of non-destructive technologies. While consumers’ expectations for higher nutritive
and sensorial value of fresh produce has increased over time, they have also become more critical on
using insecticides or synthetic chemicals to preserve food quality from insects’ attacks or enhance
the quality attributes of minimally processed fresh produce. In addition, the increasingly stringent
quarantine measures by regulatory agencies for commercial import–export of fresh produce needs
more reliable technologies for quickly detecting insect infestation in fruits and vegetables before their
commercialization. For these reasons, the food industry investigates alternative and non-destructive
means to improve food quality. Several studies have been conducted on the development of rapid,
accurate, and reliable insect infestation monitoring systems to replace invasive and subjective methods
that are often inefficient. There are still major limitations to the effective in-field, as well as postharvest
on-line, monitoring applications. This review presents a general overview of current non-destructive
techniques for the detection of insect damage in fruits and vegetables and discusses basic principles
and applications. The paper also elaborates on the specific post-harvest fruit infestation detection
methods, which include principles, protocols, specific application examples, merits, and limitations.
The methods reviewed include those based on spectroscopy, imaging, acoustic sensing, and chemical
interactions, with greater emphasis on the noninvasive methods. This review also discusses the
current research gaps as well as the future research directions for non-destructive methods’ application
in the detection and classification of insect infestation in fruits and vegetables.

Keywords: non-destructive detection; noninvasive technology; insect infestation; post-harvest
technology; online monitoring; fruits; vegetables

1. Introduction

In recent years, there has been significant growth in the consumption of fruits and vegetables,
which can be attributed to several factors, among which is increased awareness of their health
benefits [1]. Consumers, especially the “Generation Z” (post-millennial with ages between 11 and
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23 years) that constitute about 32% of the US population, are more cognizant of what they eat and
many of them tend to eat healthy, often preferring organic foods [2]. The easy access to information
through smart devices has also increased the understanding of consumers on what they eat, and many
more people, beyond the younger generations, are tending toward more natural, minimally processed,
and organic food. This demand is driving the trend for high-quality, consistent, and safe products
at a reasonable price [3]. The agricultural production sector and the food industry as well as the
safety agencies are saddled with the responsibility to meet these increasing demands for produce
with low-toxicity pesticides. In order to be efficient in meeting quality and demand, there is a need to
replace destructive and off-line conventional quality assessment methods with rapid, non-invasive,
environmentally friendly, and accurate methods for quality assessment and safety assurance [4].

Insects cause enormous damage to fruits and vegetables each year, leading to major production
and economic losses in the agricultural production and food industry worldwide. Insect pests are
considered to be responsible for approximately 10–20% of yield losses in major crops worldwide,
and even far more in developing countries, reaching about 50% of annual horticultural production in
Africa, which is a $22.5 billion industry [5]. The havoc caused by insect pests in trans-border trade,
with increased global trade network, is enormous. The detection of these insect pests before they
get into the supply chain is still a major challenge for the industry. The US loses about $40 billion
yearly because of these organisms of quarantine concern [6,7]. On the other hand, insect pests such as
budworms are hard to control [8]. Insect feeding often cryptically occurs within fruits and vegetables
without showing an obvious external symptom until they are nearly fully rotten. This is the case of the
codling moth (Cydia pomonella, Lepidoptera: Tortricidae), one of the most devastating pests in apples.
This insect has four main stages in its life cycle, egg, larva, pupa, and adult moth [9]. The larval phase is
its most devastating phase when it feeds on the flesh and pulp of fruits it was laid on. When the point
of entry is the calyx, the damage is difficult to detect with the subjective method of assessment common
in most apple processing plants and this is why non-destructive detection becomes important [9,10].
Early detection when eggs are laid on the surface of the produce is also very important.

In order to prevent the economic and ecological losses from alien insect pests, increasingly
stringent quarantine measures are being put in place by governments. As an example, Fruits and
Vegetables Import Requirements (FAVIR) of the US government require preclearance of horticultural
consignments in the exporting countries as well as inspections at the ports of arrival for any live larva or
pupa of quarantine pests. In general, a biometrically designed statistical sampling is applied to conduct
phytosanitary physical inspections against any quarantine-significant insect in fruits and vegetable
commodities. In 2017, around 194 million pounds of fresh fruits and vegetables were inspected and
cleared for shipment to the United States [11]. Based on the United States Department of Agriculture
(USDA) report about the US plant inspection stations in 2017, the inspection of plant materials is
mostly conducted physically, along with some modern technologies such as digital imaging, X-ray and
molecular detection tools for low-volume plants, plant cuttings, and seeds. As a result, automatic, fast,
and reliable noninvasive methods of detection are needed to monitor quarantine pest existence and the
internal quality of the fruits and vegetables in high-volume shipments [12].

The rapid advancement in electronic technology and data analytics with greater computing power,
along with their increased application in the agricultural field, have introduced new methods for
non-destructive quality assessment of fruits and vegetables. A range of techniques have been reported
for non-destructive detection of insect infestation such as near-infrared (NIR) spectroscopy [13–16],
acoustic methods—sound/noise/vibration [17–19], imaging—visible light sensing [20], hyperspectral
imaging [3,21], nuclear magnetic resonance [22], X-ray [23,24], volatile emission, and others [25–28].
With these new applications of technology in agricultural processing as well as the multiplicity of
investigations all over the world, up-to-date reviews are needed as an orientation over technological
applications in agriculture and food science. There are currently few reference papers reviewing
some of the state-of-the-art works in non-destructive quality assessment of fruits and vegetables.
Particularly, no review is available focusing on recent postharvest non-destructive methods for the
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detection of insect infestation in fruits and vegetables. Thus, this paper reviews all known techniques
used for postharvest non-destructive detection of internal insect infestation in fruits and vegetables:
their basic principles of operation are explained, the merits, as well as the limitations of each method
are profiled, several examples of applications are presented, and challenges and opportunities for the
future are discussed.

2. Traditional Manual Methods

Traditionally, the insect identification methods in horticultural products are mostly manual and
destructive in nature and based on external morphology, like defects, color and size, protein analysis
like the enzyme electrophoretic discrimination, and molecular tools such as deoxyribonucleic acid
(DNA) analysis [11,29]. Thus, most of the traditional methods applied for quality assessment of fruits
and vegetables are time-consuming, labor-intensive, tedious, cost-intensive, and subjective [30]. On the
other hand, manual and destructive methods of quality evaluation are not suitable in industries such
as the packaging industry as it ruptures the fruit tissue and evaluation of a complete sample cannot
be done. For example, the detection of internal defects is carried out directly by manual destructive
sampling and searching for defects or indirectly by correlating the results obtained on assessing other
chemical or physical characteristics, for instance, measurement of ripening is based on color or firmness.

Non-destructive methods are more effective than traditional conventional methods because
they are based on physical properties that correlate well with certain quality factors of fruits and
vegetables [30]. In addition, non-destructive methods are advantageous over traditional destructive
methods as they do not rupture the fruit tissue and can be used to assess internal structures and quality
of fruits and vegetables. It is useful in sorting superior quality fruits and vegetables from substandard
ones based on their size and shape in the online system and sampling of all fruits or vegetables is
carried out, which ensures maximum quality.

3. Noninvasive Methods

3.1. Spectroscopic Techniques

Spectroscopy methods provide operational information about the chemical and physical
characteristics of fruits and vegetables by obtaining reflectance, transmittance, absorbance, or scattering
of polychromatic or monochromatic radiation from the surface of the sample in the ultraviolet (UV),
visible (Vis), and NIR regions of the electromagnetic spectrum. But, the application of NIR region
(780 to 2500 nm) is particularly compelling because it is sensitive to overtones and combinations of
chemical bonds such as C–H, O–H, and N–H, which are abundantly present in foods. Moreover,
NIR spectroscopy has the capacity of measuring multiple quality attributes of foods simultaneously [28].
Some researchers have proven the high potential of NIR spectroscopy for the detection of insects or
insect damage in food commodities, such as blueberries [14], cherries [31], figs [32], green soybeans [33],
jujubes [16], chestnuts [34], and other foods [25–27,35].

While the technical configurations of the equipment used for spectroscopy, such as sensor type
and resolution, affect the measurement, the two most significant factors affecting the detection of
insect infestation are wavelength range and optical measurement mode (interactance, reflectance,
and transmittance) [36]. According to a recent meta-analysis conducted by Jamshidi [36], summarizing
different studies for non-destructive detection of internal insect infestation in fruits using the
spectroscopy technique, the spectral range of visible/shortwave near-infrared (350–1100 nm) showed
lower classification accuracy compared to NIR or Vis/NIR (total error of 21.71% in comparison to errors
of 13.30%, or 13.65%, respectively). Furthermore, the results showed that applying the interactive mode
for spectroscopy achieved lower errors in classifying infested fruits from healthy ones (error of 6.66%
compared to errors of 15.73% and 16.04% for reflectance and transmittance modes, respectively) [36].

In fact, the detection of insect infestation by NIR spectroscopy can be achieved through either
direct detection of insects and larvae due to their hemolymph, lipids, and chitin content [34], or indirect
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identification of the changes in the spectral properties of infested tissues resulting from internal
browning or darkening, dehydration, or microbial contamination. Since NIR spectra (especially at the
short wavelength and high-frequency region of 850 to 1888 nm) are capable of penetrating the fruit
peel and tissue, useful information can be acquired by measuring the interaction (energy attenuation)
between the IR energy and the food samples. On the other hand, the high moisture content of fruits and
vegetables makes it difficult for the light in the long wavelength near infrared range of 1100–2500 nm to
penetrate through the whole fruit, especially in very large samples. Consequently, the short wavelength
NIR spectroscopy is normally used in the internal quality assessment of fruits to detect the presence of
insects via changes of chemical and optical properties of whole fruit caused by insect infestation.

As an example, Xing et al. [31] applied visible and NIR spectroscopy (550–980 nm), in the
transmittance mode, to detect plum curculio (Conotrachelus nenuphar) infestation in tart cherries and
achieved an overall detection accuracy of 82–87%. Their spectral analysis showed that the maturity
level of tart cherry has some effects on the classification accuracy because the over-ripened cherries have
similar spectral characteristics as the infested tissues. As a result, they suggested that the classification
accuracy for the samples harvested at the right time is better than that for the late-harvested samples.
Additionally, they declared that total soluble solid (TSS) and firmness could be complementary factors
for explaining the difference between the insect-infested and intact tart cherries in order to build better
classification models. It shows that investigating the correlation between internal quality attributes
relating to insect infestation, such as firmness and TSS, as well as calculating and using spectral
indices combining the spectra at two or more wavelengths, can improve the classification accuracy
in spectroscopic methods. In another work, Peshlov et al. [14] examined three NIR instruments in
diffuse reflectance mode in spectral ranges between 600 and 1700 nm, for classifying fruit fly larvae
damages in wild blueberries. The three instruments showed different infestation detection accuracies
between 58% and 82%. Wang et al. [16] used three NIR sensing modes (i.e., reflectance, absorbance,
and transmittance) in different spectral regions of 400 to 2000 nm for the detection of insect infestation
in jujubes. They reported that absorbance for 1000–2000 nm and transmittance for 400–1000 nm gave
better results than reflectance mode. Saranwong et al. [15] evaluated the possibility of the use of NIR
spectroscopy for non-destructive detection of fruit fly eggs and larvae in intact mangoes at different
infestation levels. The best classification was attained applying spectra of green mangoes obtained
after 48 h of infestation, and this has an error rate of 4.2% for infested fruit and 0% for the control
fruit. In another study, Biancolillo et al. [34] demonstrated the feasibility of using NIR spectroscopy
to detect hidden damages by Indian-meal moth (Plodia interpunctella) in stored rice sourced from
six different countries in Asia and Europe. They applied partial least square discriminant analysis
(PLS-DA) and soft independent modeling of class analogies (SIMCA) analysis classification methods
and achieved the classification rate between 95.6% of the edible 97.5%, with SIMCA proving to be
more sensitive. In a recent study, Jamshidi et al. [37] investigated the possibility of using Vis/NIR
spectroscopy combined with pattern recognition methods (PCA-DA) to detect pomegranate fruits with
internal infestation caused by Carob Moth (Ectomyelois ceratoniae) larvae. Their results showed a total
classification rate of 90.6% for test data, suggesting that Vis/NIR spectral data collected from the calyx
region of pomegranate fruit and analyzed by the PCA-DA method can provide useful information for
non-destructive detection of internally damaged pomegranates by Carob Moth.

3.2. Visible Light Sensing

In the last four decades, machine vision systems have been extensively investigated to replace
the human role in several agricultural applications, including sorting, detecting defects and diseases,
and characterizing other quality attributes of agricultural products [38,39]. Visible light sensors at a
wavelength from 380 to 750 nm falls in the range that is generally used for detecting external or surface
features [8].

A glossary of studies where computer vision was used for detecting insect infestation in fruits and
vegetables are shown in Table 1. Blasco et al. [40–42] implemented several studies for assessing the
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Thrips (Thysanoptera), Scales (Coccoidea), and Medfly (Ceratitis capitata) egg decomposition in citrus
fruits using (Red, Green and Blue) RGB couple-charged (CCD) cameras as well as other optical sensors
through a system that detects several defects in citrus fruits. In the first study by Blasco et al. [40],
acquired images were analyzed in the XYZ, H.S.I. (hue, saturation, intensity), International Commission
on Illumination color standard-CIE L*a*b*, and L*u*v* color spaces in addition to RGB index, and only
the color features were considered. The linear discriminant analysis (LDA) classifier was utilized and
the classification rates for the defected fruits were in the range of 43.2–78.1%. In the second study by
Blasco et al. [41], an unsupervised defect detection algorithm, called a region-oriented segmentation
algorithm (ROSA), was developed to identify the symptoms of various diseases and defects in citrus
fruits. This algorithm depends on creating different segmentation of the image of the fruit surface based
on the color homogeneity of each region, and each segment grows by taking the neighboring pixels until
healthy and defected areas are totally segmented. The referred algorithm enhanced the classification
performance of defected fruits to 93.4–100%. Later, Blasco et al. [42] developed a system to identify 11
types of external citrus defects, among which are the Thrips, Scales, and Medfly egg decomposition.
Along with a visible camera, there were two other cameras acquiring images in the NIR region and
using a fluorescence light source. ROSA was also used to segment regions and then the Bayesian
discriminant classifier was applied. The ratios of the defected fruits correctly classified were 73–86%.
In another study carried out by López et al. [43] to detect the level of infestation on the citrus surface,
an RGB camera with a fluorescence light source was used. Image processing was conducted using
the multivariate image analysis algorithm developed by López et al. [44], which mainly depends on
unfolding each image of the healthy samples to each R, G, and B channel, then intensity is transformed
using a window of a certain size (3 × 3 or 5 × 5, etc.). Principle component analysis (PCA) was first
implemented on the RGB images for feature extraction. T2 value, which implies the Mahalanobis
distance of pixel neighborhood, was computed for each pixel in the set of training images and a value
of T2 threshold was set. The process was applied for test samples’ images and the T2 was compared
with the T2 threshold and a T2 map was created. The Bayesian discriminant classifier was then applied
and yielded a classification rate for defected samples up to 92.8%.

Table 1. Studies on detection of insect infestations in fruits and vegetables using visible color cameras.

Sensor Type Crop Insect Type Machine Learning
Technique

Classification
Results Reference

RGB camera Citrus Scale insect (Coccoidea) MIA 92.8% [43]

RGB camera Citrus Thrips (Thysanoptera), Scales,
and Medfly (Ceratitis capitata) egg BDA 73–86% [42]

RGB camera Citrus Medfly BDA NA [45]
RGB camera Citrus Thrips, Scales, and Medfly egg ROSA 93.4–100% [41]
RGB camera Citrus Thrips, Scales, and Medfly egg LDA 43.2–78.1% [40]

Line scan cameras Pistachio Insect damage DF 74–91.8% [46]

MIA: multivariate image analysis; BDA: Bayesian discriminant analysis; LDA: Linear discriminant analysis; ROSA:
region-oriented segmentation algorithm; DF: discriminant function; RGB—Red, Green and Blue color spaces;
NA—not applicable.

Although the listed studies (Table 1) mainly focused on citrus fruits and two types of insect
infestation, it is also clear that the idea of using color images to detect surface defects is effective as long
as the infested tissue has different color or texture properties. Nonetheless, the use of visible color vision
is not beneficial for the detection of internal defects as such problems cannot be recognized [47,48].
Moreover, some symptoms of surface infestation cannot be accurately detected with a color vision
camera because of interference from the sample’s surface color. This requires using a more accurate
and wavelength-based technique, such as hyperspectral or multispectral imaging systems [47,48].
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3.3. Imaging Techniques

3.3.1. Hyperspectral Imaging Systems

The hyperspectral imaging (HSI) technique is a relatively recent approach that is gaining extensive
use in the agricultural production systems and food processing for noninvasive detection of properties
and classification into quality categories. In the past decade and a half, it is among the most widely
studied techniques for noninvasive monitoring of quality and ensuring the safety of fruits, vegetables,
and food products [3,10,49–53]. The result of a sample scanning using the HSI system is a data cube
(hypercube), where two (x and y) dimensions represent the spatial coordinates and the third dimension
(λ) represents the wavelength coordinate [3]. The spectral responses can be related to the physical and
chemical constituents of different agricultural products.

Detecting insect infestation in fruits and vegetables is an important application of this technique
because it increases the accuracy of detection beyond random sampling, which is the common practice
currently, reduces the risk of shipping infested samples, and decreases the cost of processing expended
on an undetected infested sample that enters the supply chain. The HSI technique has the capability of
accurate detection of hidden internal damage from insect infestations without sample destruction.

The main components of an HSI system are a light source in the visible and NIR ranges,
a wavelength dispersive device, which is also called a spectrograph, and a camera that is either a
charge-coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS). Data acquisition
occurs in different scanning modes. Figure 1 shows a complete set-up example of the push-broom
HSI system [10]. The most common mode of acquiring data via an HSI system is the line scanning or
push-broom mode (Figure 2b) [3]. The other three modes of HSI scanning, point scanning, area scanning,
and single shot, are shown in Figure 2a,c,d.
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Figure 2. The basic hyperspectral imaging scanning modes: (a) point scanning, (b) line scanning, (c) area
scanning, (d) single shot. x and y represent the spatial coordinates, λ represents the wavelength [3].

In a push-broom/line scanning system, the imaging system conducts a line-by-line scanning (could
be by pixel or by depth) from the entire field of view and generates a two-dimensional image at the
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end of each scanning, such that the first dimension contains spatial information and the other one
provides a full spectrum from a specific spot on a sample. Also, spectra can be collected in different
forms, namely reflectance, absorbance/transmittance, and interactance modes. Each form is chosen
based on the type and dimension of the sample and the position of the light source, spectrograph,
and the camera [31,54,55]. Figure 3 shows a schematic diagram of the positioning of these components
in the transmittance and reflectance HSI technique.
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In order to normalize reflectance spectra to obtain relative reflectance (Equation (1)), a standard
white reference is used to represent maximum reflectance, and by blocking the light source or scanning
a complete dark surface, the minimum reflectance is obtained:

Rλ =
Mλ −C0

λ

C1
λ
−C0

λ

(1)

where Rλ is the normalized/relative reflectance (%), C0 is the background (dark) intensity (counts),
C1 is the reference (white) measurement intensity (counts), M is the sample’s measured reflectance
intensity, and λ is a specific wavelength (nm). By normalizing the imaging spectral data, all sample
spectral measurements are placed somewhere between the minimum and maximum intensity [49,56].
This normalizes the error that may ensue as a result of the change in intensity of illumination source
during scanning.
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In order to reduce the dimensionality of hypercube data for a quicker analysis and feedback process,
and also to increase the potential application in online/inline settings, certain mathematical approaches,
like partial least square (PLS) [31], stepwise discrimination analysis (SDA) [57], genetic algorithm
(GA) [31], Bayesian discriminant analysis [15], sequential forward selection (SFS) and sequential
backward selection (SBS) [10], and soft independent modeling of class analogy (SIMCA) [58], are applied
for feature selection. Determining those wavelength regions allows for building a much simpler model,
called a multispectral model. Multispectral imaging systems use the same principle of operation as
the HSI systems, with the difference being fewer wavelengths, which accelerates data analysis and
decision processes.

The application of HSI systems for detecting fruits and vegetables infested with insects has shown
some promising results, even though there are more variations of targeted insects. Table 2 shows
some of the recent studies where the HSI system was used for detecting insect infestation in fruits and
vegetables. Several studies have researched insect infestation of citrus fruits using visible/near-infrared
(Vis/NIR) HSI systems. A study conducted by Li et al. [59] applied an HSI system (400–1000 nm) to
detect insect damage in citrus fruits. Principal components analysis (PCA) was used for dimension
reduction and the band ratio algorithm was then used for classification. The classification rate was
100% for scale-infested samples.
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Table 2. Studies on insect infestations detection in fruits and vegetables using hyperspectral imaging systems (HSI).

Sensor Type: Wavelength, nm Crop Imaging Mode Insect Machine Learning
Technique Classification Results Reference

HSI: 400–900 Apple Reflectance Codling moth DT Healthy: 81%
Infested: 86% [10]

HSI: 400–1000 Citrus: Orange Reflectance N/A PCA and BR 100% [59]

HSI: 450–930 Citrus: Red Ruby
Grapefruit Reflectance Leafminers SID 95.2% [60]

HSI: 400–720 Jujube Reflectance External insect SDA Healthy: 98%
Infested: 94% [57]

HSI: 900–1700 Jujube Reflectance Carposina niponensis
walsingham BR Healthy: 100%

Infested: 93.1% [61]

HSI: 400–1000 Mango Reflectance Fruit fly DA Up to 99% [62]
HSI: 400–1000 Mango Absorbance Fruit fly DA Up to 99.1 % [15]

HSI: 1000–1600 Mung bean Reflectance Callosobru-chus maculatus LDA and QDA Healthy: 93.7%
Infested: 75.5–95.7% [55]

HSI: 740–1000 Pickling cucumbers Transmittance and Reflectance Fruit fly PLS-DA 88–93% [21]

HSI: 580–980 and 590–1550 Tart cherry Transmittance and Reflectance Plum curculio GA and PLS-DA Healthy: 81.3%
Infested: 95.8% [31]

HSI: 460–800 Tomatoes Reflectance Tomato hornworms frass Detecting algorithm Healthy: 86–95%
Infested: 71–99% [63]

HSI: 400–1100 Tomatoes Transmittance Tuta absoluta (Meyrick) ANN 95% Classification accuracy [58]

HSI: 400–1000 Vegetable soybean Transmittance Etiella zinckenella
Treitschke (moth) SVDD Healthy: 97.3%

Infested: 87.5% [54]

HSI: 400–1000 Vegetable soybean Transmittance Pod borer (Maruca vitrata) SVM Healthy: 100%
Infested: 91.7% [64]

ANN: Artificial Neural Network; BR: Band Ratio; DT: Decision Tree; DA: Discriminant Analysis; LDA: Linear Discriminant Analysis; QDA: Quadratic Discriminant Analysis; PCA:
Principal Component Analysis; PLS-DA: Partial Least Square Discriminant Analysis; SID: Spectral Information Divergence; SVDD: Support Vector Data Description; SVM: Support Vector
Machine; N/A: Not Available.
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In other studies, the detection of insect infestations in mango fruits was also investigated.
Saranwong et al. [15] studied the application of HSI (400–1000 nm) to assess fruit fly larvae infestation
in mango. Reflectance spectra obtained were fed into a discriminant analysis classifier and the
classification rate for infested and healthy fruits was up to 99.1% and 94.3%, respectively. It was found
that the longer the post-infestation time, the easier the detection and the higher the classification
rate is, which was attributed to the more visibility and intensity of symptoms of infestation with
time. Haff et al. [62] also studied the same insect in mango using the same system. These researchers
developed an algorithm to identify and mark the infested areas using four steps: background removal,
Gaussian blur, thresholding, and particle counting. Discriminant analysis was applied, and the
classification rates reached 99% for infested samples.

The identification of external insect infestation of jujube fruits was investigated by Wang et al. [57]
using the visible range of HSI (400–720 nm). The relative reflectance spectra were extracted for each
image and a stepwise discriminant classifier was applied. The classification rates for infested and
healthy fruits were 98% and 94%, respectively. On the other hand, Liu et al. [61] utilized the NIR
region of HSI (900–1700) to detect a fruit moth (Carposina niponensis walsingham) infestation in Jujube
fruits. Relative reflectance was also determined for each image and the band ratio (BR) algorithm
was applied for classification. The rates of classification for healthy and infested fruits were up to
100% and 93.1%, respectively. The most influential wavelengths were found to be 987, 1028, 1160,
1285, and 1464 nm. Huang et al. [54] used the Vis/NIR HSI (400–1000 nm) in the transmittance mode
to detect insect infestation on vegetable soybean (green soybean seed). They applied the support
vector data descriptor (SVDD) on the relative transmittance spectra and determined classification
rates for healthy and infested samples to be 97.3% and 87.5%, respectively. The work on vegetable
soybean was expanded by Ma et al. [64] to include automatic selection of the region of interest (ROI)
based on threshold segmentation. They performed wavelengths selection using a fuzzy-rough set
model. The SVDD classifier was applied and the classification rates boosted to 100% and 91.7% for
healthy and infested samples, respectively. The optimal wavelengths were found to be 705 and 943 nm
using entropy characteristics, and 692, 743, and 975 nm for both energy and mean characteristics.
Rady et al. [10] applied push-broom reflectance Vis/NIR HSI (400–1000 nm) to detect codling moth
larvae in GoldRush apples. They applied several classifiers on the relative reflectance including LDA,
partial least square discriminant analysis (PLS-DA), feed forward artificial neural networks (FFNN),
decision tree (DT), and K-nearest neighbors (Knn). The highest classification rates were 81% and 86%
for healthy and infested fruits respectively, using the DT classifier. Wavelength selection was performed
using the sequential forward selection technique that led to the following wavelengths, 434.0, 437.5,
538.3, 582.8, and 914.5 nm to be selected for codling moth infestation detection and classification in
GoldRush apples.

The studies profiled provide various levels of accuracy, demonstrating the potential application
of HSI as a diagnostic, detection, and classification tool for various types of insects in fruits and
vegetables in real-time systems. Because insect infestation happens deep inside the fruit or vegetable,
it is challenging to recognize the issue using RGB-based machine vision. The HSI technique is more
appropriate. The exploration of this technique is becoming more popular because of continuous price
reduction in hardware to build a system, the increasing computing power of systems to handle big
datasets, and the noninvasive usefulness in agricultural applications. HSI systems measure the light
intensity at several wavelengths from visible to near infrared. Among these many wavelengths, a few
of them that are useful are selected for building a model that can predict infestation. These wavelengths
are usually figured out using machine learning statistical approaches such as PLS, SDA, GA, and so on.
In spite of this promise, HSI technology is still not very rampant in commercial applications with regards
to insect infestation detection. One of the limitations of HSI is the accuracy of detection or classification
(Table 2). There are some applications where 100% accuracy is a must—for example, in fruits for the
international market where failure can have a far-reaching effect. This challenge is being addressed with
some new and more effective analytical approaches, like deep learning, bagging, and boosting, and the
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potential to further increase the accuracy of HSI measurement is waiting to be further explored [65–68].
Also, while the major steps (data acquisition, preprocessing, calibration, validation, dimensionality
reduction, re-calibration, and re-validation) in developing an HSI solution are well defined, there is no
simple way to determine the most effective mathematical-analytical approach needed for some of these.
It is mostly trial and error to determine the most effective algorithm or model. There is a need to address
this challenge going forward. The appropriate algorithm is determined case-by-case, even though
several approaches, such as principal component analysis, used for size reduction, and LDA and
artificial neural networks, are often implemented in classification tasks.

3.3.2. X-ray Imaging

The principle of an X-ray imaging system is based on the transmission imaging technique in which
an X-ray beam emitted from a source penetrates an object and attenuates based on the density variance
of the object. The attenuated energy that passed through the object is detected using a photodetector, a
film, or an ionization chamber on the other side. The attenuation coefficients of the object components
lead to different contrast between such components [69–71]. Computed Tomography (CT) X-ray
imaging is a more recent and advanced technique than plain X-ray technology. The latter technique
solves the problem of having overlapping layers of soft tissues or complex bone structures [71].
The source and detector rotate around the object to generate an enormous number of 2-dimensional
slices or images, which are used to create a 3-dimensional image called a tomogram [26,71].

X-ray imaging falls within the electromagnetic spectrum with a wavelength range of 0.01 to
10 nm, which corresponds to the frequencies range of 30 to 30,000 Petahertz [72]. It has energy
from 0.12 to 12 keV with low penetration power, called soft X-ray, which has been explored as a
non-destructive process for internal quality inspection of various agricultural products. Although the
onset of the application of X-ray imaging was solely targeted to medical purposes—diagnostic and
security inspection areas—using the system to detect defects and quality properties in agricultural
commodities research commenced around the 1950s [73]. Because of the inherent limitations of X-ray
(discussed in Section 6), its studies in agricultural products mainly focused on X-ray irradiation
quarantine treatments [74] and on dry or lower water-containing materials, e.g., checking seed quality
with soft X-ray radiography [75] and for detecting hidden infestation of crop plants. Because the
grayscale of X-ray images is a function of the density and thickness of the test samples, the relative
contrast of infestation spot to the intact region inside a typical fruit will vary. The gray intensity of
X-ray images depends on the density and thickness of the test samples, so the relative contrast of the
infestation site to the intact region inside a typical fruit varies with its position. In order to accurately
determine whether a fruit has signs of insect infestation using an X-ray imaging analysis, an effective
adaptive image segmentation algorithm based on the local pixels’ intensities and an unsupervised
thresholding algorithm is developed.

The layout for architecture of an X-ray system developed by Chuang et al. [23] used for detecting
insects in different agricultural produce is shown in Figure 4. The obtained values of 96.8%, 98.6%,
97.7%, and 98.7% were for sensitivity, specificity, accuracy, and precision, respectively. The mean time
for scanning was 3.87 min per 100 fruits, which is an average of 2.3 s per fruit. Other studies where
X-ray imaging was applied are profiled in Table 3.
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Table 3. Studies of detecting insect infestations in fruits and vegetables using X-ray imaging, MRI, and thermal systems.

Sensor Type Crop Insect Machine Learning Technique Classification Results Reference

X-ray machine Dates Saw-Toothed Beetles (Oryzaephilus surinamensis) LDA and SDA Healthy: 99%
Infested: 100% [76]

Soft X-ray machine in
IICPT Mango Fruit fly N/A N/A [77]

X-ray cabinet Olives Fruit fly DA Healthy: 90%
Infested: 50–86% [78]

X-ray images Olives Olive fly(Bactrocera oleae) IDA 50–88% [79]
X-ray CT imaging and

film X-ray
Apples

Cherries
Codling moth

and western cherry fruit fly (Rhagoletis indifferens) N/A N/A [80]

Soft X-ray machine Mango Mango pulp weevil(Sternochetus frigidus) N/A N/A [81]
Film and on-line scanning

X-ray equipment Apples Codling moth None—visual 6–99% [82]

X-ray machine Pistachio Navel orange worm(Amyelois transitella) SDA 40–67% [83]
X-ray machine Pistachio Insect damage ANN 54–96% [84]
X-ray machine Mango Seed weevil (Sternochetus mangiferae) N/A 100% [85]

Low-field MRI equipment Apples Peach fruit moth (Carposina Sasakii Matsumura) N/A 100% [86]

Low-field MRI equipment Peaches Fruit fly N/A Healthy: 58%
Infested: 71% [87]

IR thermal camera Apples Codling moth Paired t-test Significant at α = 1% [88]
IR Thermal camera Cowpea Cowpea seed beetle (Callosobruchus Maculatus) QDA 80% [89]

ANN: Artificial Neural Network; DA: Discriminant Analysis; LDA: Linear Discriminant Analysis; IR: Infrared; QDA: Quadratic Discriminant Analysis; MRI: Magnetic Resonance Imaging;
SDA: Stepwise Discriminant Analysis; IDA: Iterative Discriminant Analysis; CT: Computed Tomography; N/A: Not Available.
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Thomas et al. [85] used a medical-oriented X-ray radiography machine to assess the presence
of seed weevil in mango. Images were evaluated visually, and no features were extracted. Later,
Velasco and Medina [81] investigated the application of soft X-ray imaging to detect pulp weevil in
freshly harvested green mango. Their results showed that the mango position affects the detection
rates. Fruits scanned parallel to their shoulders showed less detection rates than those scanned
perpendicular. Soft X-ray emission spectroscopy was also applied by Veena et al. [77] to detect fruit fly
in Mango fruits. Color features were extracted from each image and differentiation between sound
and infested fruits was feasible. However, no numerical values of the classification results were
provided. Stone fruits—apples and cherries—were scanned for the response of codling moth and
western cherry fruit fly respectively, using X-ray imaging by Schatzki et al. [82]. The tests performed
included physical inspection of X-ray images by two operators on computers, and the results of both
operators were averaged. Real-time sorting was stimulated by scrolling frames containing healthy
and defected fruits on the computer screen at different rates, with the operators having the ability to
identify the defected fruit on the screen. Classification rates for inspection tests were 0–96%, with the
lower rates at the beginning of the infestation. However, such rates were much lower (8–58%) for
scrolled frames. Haff and Pearson [79] utilized X-ray imaging to evaluate olive fruits for fruit fly.
An algorithm for feature extraction was developed based on selecting 64 arbitrary features from each
image. Iterative discriminant analysis was then used to select the optimal subset of only three features.
Results showed that the best classification rates were 50–88%, with the lowest rates associated with
fewer infestations. Haff et al. [78] developed a Bayesian classification algorithm to detect fruit fly
on X-ray images of olive fruits. The same 64 features were used for Fruit fly detection in olives and
discriminant analysis was applied to select the optimal set of three features. A 90% classification
rate was obtained for healthy samples and 50–86% for infested samples. The feasibility of applying
X-ray imaging for monitoring saw-toothed beetle in stored dates was studied by Al-Mezeini et al. [76].
The extracted features were 44 in total, based on the histogram and textural characteristics of the
images (Figure 5). Linear discriminant analysis (LDA) was then performed along with bootstrapping
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for classification, and the best rates were 99% and 100% for healthy and infested samples, respectively.
However, the infested tissue was not visually clearly differentiable from the healthy tissue, which tends
to oppose the application of X-ray imaging in this case compared with other noninvasive systems such
as HSI or spectroscopy that base their detection on differences in spectra formed by infested part and a
healthy portion.
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Another major downside of X-ray imaging is the large image dataset that impedes quick feedback
time needed for the large quantity of produce often involved. This poses a challenge in online
assessment and classification of insect-infested fruits and vegetables. Increasing computing power
could significantly reduce the feedback time, then it adds significant cost to the technology. This is the
improvement this technique needs.

3.3.3. Magnetic Resonance Imaging (MRI)

MRI is a non-ionizing imaging technique in contrast to X-ray or computed tomography (CT)
imaging and was first used for medical applications. The principle of MRI is such that a high-resolution
image can be obtained by a strong and uniform magnetic field applied to hydrogen nuclei that are
mainly located in water [71]. The image is formed as a result of the different levels of contrast of the
object tissues as a response to a vigorous magnetic field and radio frequency waves. Applications
of MRI in food quality monitoring is still considerably limited mainly due to the high cost of MRI
systems. Torres [87] studied the application of a low-field MRI system to detect fruit fly in peaches,
with classification rates of 58% and 71% for healthy and infested fruits, respectively. Haishi et al. [86]
applied a low-field MRI using a 0.2 Teslaa or T magnet field to track the presence of peach fruit
moth on apple fruits by analyzing multi-slice two-dimensional (2D) images. It was shown that the
detection of larvae inside the fruit is feasible using a single slice gradient echo method in 6.4 s. Whereas,
the multi-slice 2D measurement provided 6 images in 2 min, and these images covered a larger
image area in a short time. Although MRI technology has a promising possibility for an effective
noninvasive determination of fruits and vegetable defects, several problems still arise, especially
when compared to other noninvasive systems such as color vision, hyperspectral and multispectral
imaging, and spectroscopic systems. Such problems include the high cost for building, running,
and maintenance, and the large volume and heavy weight of the MRI systems [86,90].
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3.3.4. Thermal Imaging

Thermal imaging (TI) is a sensing technique that was first illustrated for military applications.
Later, TI was extended to agriculture and food process monitoring [71]. A typical TI system consists of a
thermal camera that has an infrared detector, a signal processing unit, and an image acquisition unit [91].
The main idea of forming a TI image is based on the difference in surface temperatures radiated by an
object that is linked to the thermal energy values. Such values are translated to electrical pulses which
are processed in the signal processing unit to form an image. The same image segmentation approach
applied in X-ray imaging to localize the infested region of interest is applied to thermal imaging.

Hansen et al. [88] used an infrared camera that was sensitive to 7.5–15 µm wavelengths to track
codling moth in apple fruits. Data analysis was conducted via paired t-test and the results showed
a significant difference (at α = 0.01) between healthy and infested fruits. In their thermal images,
the infested area appeared to be slightly colder than the un-infested tissue. Detecting the infested
area was not affected by the storage temperature nor the infestation location. Chen et al. [92] used
an android powered TI system based on an Otsu image processing algorithm to detect maize tumor
powdery mildew. Their goal was to use the segmentation result as a reference guide in unmanned area
vehicles for precision spraying of pesticides. Chelladurai et al. [92] applied a thermal imaging system
to delineate Callosobruchus maculatus (F.) (Cowpea seed beetle) infestation in mung bean and reported
an accuracy of up to 80% detection using a machine learning approach.

Although TI is a promising non-destructive technique that can be effectively applied for insect
detection in fruits and vegetables, either in the field or post- harvest, the sensitivity of a TI system
is affected by the weather condition and the relatively high cost required to obtain a high-resolution
thermal imaging camera. Combining the TI system with another noninvasive system such as color
vision might enhance the sensitivity to weather conditions [93].

4. Acoustic Techniques for Insect Infestation Detection

Acoustics is the study of sound, which is generated by propagating mechanical waves of energy
through an elastic medium by causing particle displacement and vibration. One of the most popular
acoustic techniques used in agricultural product processing is ultrasound [94]. Insect pests usually
bore deep into vegetable/fruit where other techniques may not be able to detect the infestation.
Acoustic detection of insect activities is based on distinct sounds made by the larvae displacement
when they are feeding or biochemical reactions in the pest-infested food that creates low-intensity
ultrasonic sounds [17,95]. For example, crawling and feeding of two insects Callosobruchus chinensis and
Callosobruchus maculatus in chickpea (Cicer arietinum) and mung bean or green gram (Vigna radiata) were
monitored using a condenser-type microphone probe, with a frequency range of 20–16 KHz, placed
inside an acoustic-proof bin [96]. Their results provided sound signatures for Callosobruchus chinensis
and Callosobruchus maculatus insects as having a sound duration of 59 and 68 ms, and amplitude of 79.32
and 97.65 dB in chickpea and 84.01 and 95.53 dB in green gram, respectively. Moreover, they selected
formants, formant bandwidth, frequency, and spectral power as principal features in their analysis
for the infestation detection. They concluded that their method can be used for non-destructive early
detection of insect infestation in bulk stored foods.

Acoustic emission (AE) is one of the recently evolved areas of acoustics that can detect and monitor
hidden insects and their activities in plants [97]. AE is the phenomenon where acoustic (elastic) waves
are generated and radiated in solids that occurs when a material undergoes irreversible changes in
its internal structure [98]. Differing from the conventional signaling techniques, AE can detect the
physical signals produced from food crops to foodborne bacteria. Yang et al. [99] established the
relationship between AE and crop disease stress, which allowed the detection of diseased crops from
healthy ones. A highly sensitive AE device is capable of detecting the signal emitted by Escherichia coli
and Lactococcus lactis, ssp. during their growth phases [97,100]. Ghosh et al. [101] used an AE system to
acquire real-time data on L. lactis, ssp. metabolic activity and to dynamically monitor phase infection
of cells. Application of AE for vegetable and fruit quality and safety assessment, specifically for
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insect activity detection, has been limited. Some previous studies showed that acoustic devices could
be optimized to predict watermelon firmness [102], and to classify extruded bread with different
water activity [103], and a contact AE detector was applied to evaluate apple texture with mechanical
destruction of apples [104]. However, most of the studies that applied an AE technique are associated
with food quality attributes by mechanically destroying the food. In a recent study, Li et al. [17]
reported that AE detected codling moth activities in infested apples and they obtained a very high
classification rate (83%) utilizing 0.5 s of acoustic signal collection. Also, an attempt was made
by Ekramirad et al. [105] to authenticate the specific source and signature of acoustic emission in
codling moth-infested apples through correlating visually observed larvae activities, such as chewing
and locomotion, with patterns in the synchronized signals from the contact Lead zirconate titanate
(PZT) sensors. For this objective, they video recorded the larval behavior while the acoustic signals
were being collected at the same time. They found that larvae activities resulted in transient and
quasiperiodic signals with frequency content lower than 6 Hz, where chewing signals show a rate of
1 to 2.3 times a second, while internal movement signals showed a large transient spike at irregular
intervals. In Figure 6, it is shown that the signals from infested samples (on the right) are clearly
different from the ones from non-infested samples. These results, they said, are not conclusive but they
can authoritatively claim that there is a strong correlation between vibro-acoustic signal patterns and
activities of the larvae within the apple fruits.
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The use of acoustic technology to replace labor-intensive and less-effective detection and
monitoring methods on insect activity started to expand in the last three decades [19]. Acoustic
technology has successfully detected the presence or absence of target insects [106], estimated the
population density [107], and mapped insect populations [108]. The original AE system for detecting
fruit fly (Drosophila) larvae activity was depicted by Litzkow et al. [109], which is shown in Figure 7.
Nowadays, an AE system is usually composed of acoustic sensors, preamplifier, an input-output (I/O)
board, and signal preprocessing software [17]. The acoustic sensor (diaphragm) serves as the device for
collecting sound signals (Figure 7), and it is placed in direct close contact with the surface of the sample,
thus the acoustic signal is propagated from the sample to the sensor [110]. The sensor sensitivity can
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vary from 40 to 100 kHz [109,111]. A reference sensor can be used to identify background or electrical
noise since the sound generated by an insect is of higher energy [19].
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A signal triggered by the sensor is amplified through the preamplifier and digitized by the I/O
board that serves as an oscilloscope. Signal amplification can range from 40 to 100 dB to minimize
noise depending on the signal strength from larvae. Amplifiers can also eliminate extremely low- and
high-frequency noises with appropriate filters [109]. Much of the background noise can be discarded by
high-pass filters to remove long-duration and low-frequency background noises [112]. Filters can also
help differentiate insect larvae at different development stages. Jalinas et al. [113] found that younger
larvae have a shorter duration cycle than older (>30 days) larvae. Movements of insects are expected
to generate impulses with a broader, higher-frequency spectrum than low-energy movements [114].
Signals acquired after amplification have a good signal-to-noise ratio [19]. The digital signal is then
processed by commercial signal processing software to extract AE features. Common AE features
derived from the original signal in previous literature include events and mean amplitude [115],
duration, peak amplitude, rise time, ring down count, and event gap [116], energy rate [101], and larvae
burst rate [113]. These are time-domain (also called temporal) AE features. A typical time-domain AE
features’ derivation is shown in Figure 8. Through Fast Fourier Transform (FFT), frequency domain
(also called spectral) features such as frequency range [117], frequency centroid, and peak frequency
can be obtained [17].

For example, the frequency band most sensitive for insect detection was found to be from 0.4 to
1 kHz [118] through the analysis of signal spectrogram. The more features are extracted, the higher
the probability to detect insect infestation from fruits and vegetables. In the study by Li et al. [17],
11 features (rise time, counts, energy, duration, amplitude, peak frequency, frequency centroid, average
signal level, root mean square of signal, signal strength, and absolute energy) were collected from
codling moth-infested apples. However, a higher quantity of features requires more computation power
during signal processing and data analysis. Moreover, not all the features contribute to the detection
of insect infestation, and this reduces the concern of higher computational power. In their study,
Li et al. [17] determined that only 8 out of the 11 features are important in insect infestation detection.
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For data analysis, most researchers applied simple statistical models (analysis of variance
(ANOVA), multiple mean comparison) based on acquired AE features [101,102]. Powerful data analysis
methods have been shown to enhance the detection performance of insects. Some advanced statistical
and mathematical methods have been used and achieved success in recent years. Pinhas et al. [119]
used Gaussian mixture modeling to obtain a detection ratio as high as 98.9%. Trifa et al. [120] used
hidden Markov models to realize a species recognition rate of 99.5%. Li et al. [17] applied adaptive
boosting to achieve a classification rate of 100%. Novel models for data analysis from insect AE data
can be adapted from novel human speech recognition models, such as recurrent and convolutional
neural networks [121]. It is expected that these advanced and novel models can improve insect acoustic
recognition performance.

The promise that AE portend for insect infestation detection is strong, with a high detection rate
that needs marginal improvement for industrial deployment, and a short signal collection time for
a quick system feedback. However, it is not still clear the exact source of sound being detected that
allows for differentiation between healthy and infested fruits. The literature has conflicting reports on
the source of sound [101,109,122]. Future studies should address the speculation that this is due to
insect displacement, or, it could be due to biochemical reactions where gas implosion is creating the
peculiar sounds being detected.

The relatively recent Laser Doppler Vibrometer (LDV) technology was developed for measuring
the surface vibrations in a non-contact manner. The LVD sensor emits a laser beam towards the
surface of the vibrating specimen in order to extract the vibration amplitude and frequency from the
Doppler shift induced in the incident laser beam [123]. One of the first attempts to apply the LDV
method for the detection of insect infestations, based on larval feeding and locomotion vibrations in
the specimen, was conducted by Zorovic and Cokl [124]. They used a portable digital laser vibrometer
(PDV-100, Polytec GmbH, Waldbronn, Germany) to detect the activity of Asian long-horned beetle
(Anoplophora glabripennis) in logs of Populus. The log samples were prepared by fitting a 4 mm2

reflective tape in the point of laser beam incident in order to receive a good reflection of the laser
beam. Their results revealed that there were three types of vibrational pulses: low-frequency pulses,
high-frequency pulses, and broadband pulses. They hypothesized that the broadband signal was
correlated to larvae activity of biting the wood fiber, while the low-frequency and high-frequency
pulses were related to non-feeding movements. Their results confirmed the ability of the LDV method
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to detect insects in wood, but they did not provide the exact size, position, or number of insects inside
the specimen. In another study, the LDV system (Polytech PDV-100 Digital Laser Vibrometer) was
used to direct the laser beam on the surface of rice within the test container in order to detect the
Trogoderma inclusum and Tenebrio molitor infestation [118]. They concluded that the system was not very
promising in the detection of small insects in grains, due to the need for getting the insect as close as
two inches to the laser beam incident point. As a non-contact method, this technique is advantageous
in terms of avoiding the interference between sensor and sample, not being affected by background
noises, no need to attach the sensor on specimen, and covering a wide frequency range and working
distance [8,124]. On the other hand, the application of this method is currently limited because of poor
results for the specimens with rough surface, which is not a good reflector of laser beams as well as
being susceptible to the so called ‘speckle noise’ [125]. Thus, further studies are needed to expand the
application of this method in a variety of agricultural products.

5. E-Nose and E-Tongue

Early-stage detection of insect infestation on vegetable/fruit production and logistics is highly
desirable to reduce economic loss and to ensure food safety. When vegetable and fruit are under
insect attack, the physical, chemical, and biological changes are difficult to determine. Electronic nose
(E-nose) and tongue (E-tongue) technologies are effective in determining these changes by applying
biosensors to qualify and quantify the changes [126]. E-nose works as artificial olfaction devices that
mimic the mammalian olfactory system. Both devices are composed of non-selective or semi-selective
sensors interacting with aromatic or tasty compounds to produce electronic signals [126,127]. E-noses
have been successfully used for the detection of insect-infested fruits and vegetables, and insect
population dynamics [128]. Under different growth conditions, tomato plants infested with spider
mites (Tetranychus urticae Koch) were correctly classified without a prior knowledge based on the
volatile organic compounds (VOCs) profiles emitted by infested tomato plants [129]. E-nose has
demonstrated the ability to precisely predict the gender and species of stink bugs [130,131].

A schematic diagram illustrating E-nose and E-tongue in comparison with biological noses and
tongue is shown in Figure 9. An E-nose or E-tongue system is composed of two main components:
a sensing system and a signal processing system [132]. The most commonly used sensors in E-nose
include metal oxide semiconductor (MOS) sensors, conducting polymer (CP) sensors, optical sensors,
and piezoelectric sensors [132]. The most commonly used sensors in E-tongue include electrochemical
(potentiometric, voltammetric, amperometric, impedimetric, and conductimetric), optical, mass,
and enzymatic sensors (biosensors) [49,132]. Fundamentals of different types of sensors for E-nose
and E-tongue are explicitly explained by Wang et al. [132]. In the process of detection, reversible
physicochemical changes to the sensing materials are triggered and electrical properties such as
resistance and electrical potential will change [128]. Sensors measuring the resistance and electrical
potential include conductivity and gravimetric sensors. The conductivity sensor is based on a
conducting polymer and/or metal oxide semiconductor, both of which work on the principle of
variations in conductivity or resistance. Gravimetric sensors are based on the wave produced along
with or through the surface of the sensor. The working principle involves a change in the mass of the
piezoelectric sensor coating which results in a change in the resonant frequency [133]. The operation of
an optical sensor is based on the changes in chemical properties, such as reactivity, redox potential,
and acid–base interactions [134]. Optical sensors use a wavelength-selectable light source, a light
detector, and sensor materials that interact with gases. Colorimetry and fluorometry are the two typical
techniques used for analyzing the signal obtained from optical sensors [134].
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One of the most applicable E-noses is based on the phytohormones and VOCs emitted by insects
or insect-infested vegetables/fruits. Phytohormones and VOCs are defensive chemical messengers and
substances respectively, which will change dramatically when fruits/vegetables are under attack [135].
Differential sensor arrays can transform the VOCs information into electrical signals. Similarly,
insect antenna-based E-nose can also be a valuable tool for the detection of pest infestation [132].
One available commercial E-nose (PEN2) comprising 10 metal-oxide semiconductor (MOS) sensors
successfully fingerprinted the VOCs present in insect-damaged samples [136]. The E-nose systems are
manufactured by Win Muster Airsense (WMA) Analytics Inc. of Schwerin Germany [136]. Despite
using commercial E-nose instruments, recently there have been some studies trying to self-design
E-nose systems to match case-specific parameters of control and to avoid the costs of using general
commercial devices. As an example, Wen et al. [137] developed a sweeping electronic nose system
(SENS), composed of 8 metal-oxide-gas (MOS)-type chemical sensors, combined with PCA and
LDA data processing methods to detect the early damage of oriental fruit fly (Bactrocera dorsalis) in
mandarin (Citrus reticulate Blanco) citrus fruit. Their results showed that the SENS could classify the
B. dorsalis-infested citrus fruits with a recognition accuracy of 98.2%. They concluded that more study
is needed to analyze the effects of other pest invasion on VOCs emitted from citrus fruits, and to collect
enriched data covering different levels of citrus fruit infested by B. dorsalis, different varieties, and ripe
stages of citrus fruit.

The aforementioned studies used E-nose and E-tongue with promising results. The development
of intelligent E-nose systems for the specific purpose of detection of insect in fruits and vegetables is
the research direction of the future. Specific applications include the discrimination of insect species
and gender, insect development stage, insect population dynamics, and damage status of fruits and
vegetables. Biosensors are the key to the success of E-nose and E-tongue. Insect odorant receptor based
on the sensor is sensitive at ppb levels [138]. However, fruit and vegetable processing involves high
humidity, which shortens the sensor lifetime and deteriorates sensor performance [128]. Performance
of the sensor is important for practical industrial applications, though there is a simple problem:
it requires an enduring solution beyond using hydrophobic materials as substrates for the sensor
manufacture, which in turn shortens its shelf-life.

6. Critical Comparison between Different Noninvasive Methods

Table 4 provides an overall comparison of non-invasive methods used for insect infestation
detection in fruits and vegetables by summarizing their advantages and disadvantages.
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Table 4. Merits and demerits of the different nondestructive methods.

Method Advantages Disadvantages

Spectroscopy

No sample preparation needed,
determining both chemical and physical
characteristics, ease of use and suitable
for on-line applications [16,139]

Large amount of samples/data and
different chemometric methods are
needed to build accurate
models [140]. Does not provide
spatial data.

Visible light sensing Simple and cost-effective, accurate and
suitable for on-line monitoring [61,141]

Only suitable for detecting external
defects, sensitive to external
lighting variations

HSI

Merges the advantage of a color vision
system with that of spectroscopic
system [142]. Provides both spectral
and spatial features for accurate
segmentation and identification of
region of interest, it can detect internal
defects [140]

HSI data are voluminous, contain
huge redundant data that requires
tedious analysis to upgrade to
multispectral images by selecting
useful wavelengths), its hardware is
costly, different chemometric
methods are required to extract
useful information [140]

X-ray imaging Can detect internal defects causing
density differences, such as cavities

High costs, poor penetration in
materials with high water content,
and difficulty in effectively
differentiating normal and infested
tissues with similar densities [143]

MRI

No harmful ionizing radiation,
high-resolution visual information of
internal structure, it gives quality 2D
and 3D images [144]

High costs, large dimensions,
and heaviness [86,90]

Thermal imaging Easy handling and portability [144]
Sensitivity to the environmental
condition and relatively high costs
to obtain high-resolution images [93]

Acoustic

Sensitive, efficient, and clear detection
capabilities of various insects [145].
Inexpensive, automatic, and continuous
monitoring [19]

Prone to background noise [19].
Incapable of detecting insect eggs

E- nose and E-tongue Low-cost, rapid, and environmentally
friendly testing [146]

Reported detection levels and
accuracies are not very high [146]

7. Conclusions

The significance of ineffective insect infestation detection in fruits and vegetables is broad. It lies
in the reduction in the value of produce that may ensue when they enter the supply chain without
detection and control, the economic losses when infestation causes a ban of produce export, spread or
damage occurring to high-quality produce, and the safety issues related to consuming or processing
infested produce. This paper reviewed different methods that have been explored in the last few years
for non-destructive detection and classification of fruits and vegetables infested with different types of
insect pests. Agricultural production is at a scale and stage where subjective assessment is insufficient
to meet the scale of quality needed by the industry. The development of highly sensitive and accurate
technologies for performing the role typically done by human subjects is essential for quick turnover
to meet regulatory and consumer demands. Several of the technologies available have prospects and
limitations. Some of the challenges include the high cost of implementation, sensitivity, accuracy,
feedback time, and in some cases, safety. Techniques such as hyperspectral imaging, electronic nose,
and acoustic emission are emerging as the sensors needed for artificial intelligent system deployment
to address this need. HSI especially has been applied as the baseline technology in some other
industries, and its potential for success in insect infestation prediction is promising, so long as the
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accuracy is guaranteed. A lot of these techniques require a machine learning computational approach
for development and deployment. Advanced machine learning approaches like sensor data fusion
and ensemble machine learning have allowed for combining the strengths of different approaches,
and models for better results have shown the potential benefits of improving the models for quality
assessment of fruits, vegetables, and food products [147]. Current improvement in the analytical
approach of big data and feedback speed will benefit these methods and make them more amenable.
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