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Ecologists and evolutionary biologists routinely estimate selection gradients. Most researchers seek to quantify selection on

individual phenotypes, regardless of whether fixed or repeatedly expressed traits are studied. Selection gradients estimated to

address such questions are attenuated unless analyses account for measurement error and biological sources of within-individual

variation. Estimates of standardized selection gradients published in Evolution between 2010 and 2019 were primarily based on

traits measured once (59% of 325 estimates). We show that those are attenuated: bias increases with decreasing repeatability

but differently for linear versus nonlinear gradients. Others derived individual-mean trait values prior to analyses (41%), typically

using few repeats per individual, which does not remove bias. We evaluated three solutions, all requiring repeated measures: (i)

correcting gradients derived from classic models using estimates of trait correlations and repeatabilities, (ii) multivariate mixed-

effects models, previously used for estimating linear gradients (seven estimates, 2%), which we expand to nonlinear analyses, and

(iii) errors-in-variables models that account for within-individual variance, and are rarely used in selection studies. All approaches

produced accurate estimates regardless of repeatability and type of gradient, however, errors-in-variables models produced more

precise estimates and may thus be preferable.

KEY WORDS: Bias, measurement error, multivariate mixed-modeling, phenotypic selection, plasticity, repeatability.

Quantifying the strength, direction, and shape of selection is of

interest to a variety of biological disciplines. In evolutionary

biology, estimates of selection are used to predict evolutionary

change (Lande 1979; Lande and Arnold 1983), or to under-

stand the adaptive nature of genetic trait integration (Sinervo

and Svensson 2002; Roff and Fairbairn 2012). In evolutionary

ecology, variation in selection gradients is used to study the

ecology of selection (Siepielski et al. 2009), or to test life history

theory (Stearns 1992; Nussey et al. 2007), while behavioral

ecologists quantify selection to test predictions of optimality

models (Krebs and Davies 1997; Westneat and Fox 2010).

With rapid environmental change altering patterns of selec-

tion in a myriad of ways (Robertson et al. 2013; Santangelo

et al. 2018), accurate estimates of selection are critical (Rivkin

et al. 2019).

Regression techniques represent the dominant approach to

estimate selection since the seminal paper by Lande and Arnold

(1983) published nearly four decades ago. The approach consists,

in its simplest form, of regressing relative fitness of an individual

as a function of its phenotypic value for a variance-standardized

trait to derive standardized selection gradients. Expansion of the

regression to include multiple traits, quadratic terms, or interac-

tions between traits enables quantification of many forms of se-

lection, including stabilizing, disruptive, and correlational (Lande

and Arnold 1983). The unbiased estimation of selection is key to

deriving accurate predictions, and understanding the ecological
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ESTIMATING SELECTION

drivers, of phenotypic evolution (Kingsolver et al. 2001, 2012;

Siepielski et al. 2009). Previous studies have highlighted var-

ious sources of bias, including sampling error (Knapczyk and

Conner 2007; Kingsolver et al. 2012; Morrissey and Hadfield

2012; Ponzi et al. 2018; Videlier et al. 2020), environmental con-

founds (Rausher 1992; Stinchcombe et al. 2002; Videlier et al.

2020), and mistakes in the calculation of selection gradients

(Stinchcombe et al. 2008).

Most researchers seek to quantify selection on individual-

specific phenotypes, regardless of whether fixed or repeatedly

expressed traits are studied. Here, we focus on the problem

that selection gradients estimated to address such questions

are attenuated unless analyses (properly) account for measure-

ment error (Ponzi et al. 2018) and—for repeatedly expressed

traits—biological sources of within-individual variation. Within-

individual variance in fixed traits (e.g., tarsus length in adult

birds) results entirely from measurement error; its quantification

requires repeated measures. For such traits, the individual’s mean

trait value across an infinite number of measurements approx-

imates the single (fixed) trait value characterizing the individ-

ual (Roff 1997). For repeatedly expressed traits (e.g., behavior),

within-individual variation also results from within-individual

plasticity. For such traits, individuals are normally assumed to

exhibit a norm of reaction, characterized by an average pheno-

type in the average environmental condition (similar to above)

and level of responsiveness (plasticity) to within-individual envi-

ronmental change (Nussey et al. 2007). Although some explicitly

study selection on plasticity (e.g., Nussey et al. 2005; Ramakers

et al. 2019), most researchers estimate selection on repeatedly

expressed traits to quantify selection on individual-specific (i.e.,

life-time mean) phenotypes—this is not often stated explicitly.

Thus, most studies quantifying selection on individual-mean trait

values should aim to account for any form of within-individual

variance, whether or not it resulted from a biological (plasticity)

or nonbiological (measurement error) process.

Here, we demonstrate that attenuation bias in estimates of

standardized selection gradients is inversely related to trait re-

peatability (see also Ponzi et al. 2018), though differently so for

linear versus nonlinear gradients. We detail study designs and

statistical approaches enabling unbiased estimation of both types

of gradient, the utility of which we verify with simulations. We

deem our thesis important because a review of papers estimat-

ing standardized selection gradients published in Evolution from

2010–2019 inclusive (Supporting Information Text S1 and Table

S1) demonstrates that most published studies fail to (properly)

control for this form of bias (Table 1). Specifically, most pub-

lished estimates are based on traits measured once (193 out of

325 estimates; 59%); these are attenuated under realistic residual

within-individual error distributions (Ponzi et al. 2018), the ex-

tent depending on the type of selection gradient and level of trait

repeatability (see section “The Problem”; Table 2). Given that re-

peatability of most traits generally varies from 0.2 to 0.9 (Bell

et al. 2009; Holtmann et al. 2017), bias in estimates and its ef-

fect on our ability to interpret patterns of selection is potentially

huge. Some have attempted to purge within-individual variance

in trait values by deriving individual-mean trait values prior to

analyses (132 out of 325 estimates; 41%); most of those calcu-

lated individual-means using two to five repeated measures (66

out of these latter 132 estimates; 50%; Table 1). We demonstrate

mathematically, and using simulations, that those estimates are

also attenuated (see section “The Problem”).

Although one solution is to correct estimates of selection

gradients based on trait repeatability information (Table 2), two

other solutions exist. First, multivariate mixed-effects models

provide a general solution for estimating individual-level re-

lationships when predictor and/or response variables are mea-

sured with error, or covary differently across hierarchical levels

(Browne et al. 2007; Phillimore et al. 2010). Three papers (out of

72; 4%) in our review applied this approach, in all cases to esti-

mate linear selection gradients (Reed et al. 2016; Thomson et al.

2017; Ramakers et al. 2019). Deriving nonlinear selection gradi-

ents from multivariate mixed-model approaches requires a simple

extension, which we describe below. Second, errors-in-variables

(or “measurement error”) models have recently been introduced

as an alternative solution (Ponzi et al. 2018) and were not em-

ployed in any of the studies we reviewed. All three approaches

strictly require repeated measures; we use simulations to study

bias and precision associated with each approach, for both linear,

quadratic, and correlational selection gradient analyses, and for

trait repeatability (R) values that are either relatively low (0.3) or

high (0.7).

THE PROBLEM

Imagine researchers capturing birds, measuring their tarsus (a

component of structural size; a fixed trait), releasing them, and

tallying lifetime reproductive success. To estimate the strength

of directional selection on tarsus, the researchers can, based on

two assumptions, apply two standard transformations to the data

(Lande and Arnold 1983). First, they assume lifetime reproduc-

tive success (a measure of absolute fitness; W ) divided by the

population-mean (W̄ ) represents relative fitness (ω). Second, they

assume tarsus length (t) divided by the phenotypic standard de-

viation (
√

Vpt ; square-root phenotypic variance (Vp) in t) repre-

sents the variance-standardized trait value (z = t/
√

Vpt ). Re-

searchers then fit a linear regression, assuming the following true

relationships:

ω = α + β∗
1z + ε. (1)

Here, α represents the intercept, β∗
1 is the standardized lin-

ear selection gradient, and ε is the residual variance; throughout,
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Table 1. Summary statistics associated with a literature review of papers estimating standardized selection gradients published in

Evolution from 2010 to 2019 inclusive.

Trait Types Number of studies Percentage

Morphology 195 63%
Behavior 38 12%
Life history 31 10%
Physiology 26 8%
Performance 21 7%
Type of fitness metric

1
[number of repeat measurements per individual]

Lifetime [1] 101 32%
pisodic [1] 195 63%
Episodic [≥2] 15 5%
Number of repeat measurements (N) per trait per individual
N = 1 191 61%
N = 2–5 91 30%
N > 5 29 9%
Analysis based on mean trait values
No 212 68%
Yes 88 28%
Other

2
11 4%

Mentioned repeatability
No 270 87%
Yes

3
41 13%

Types of selection gradient measured
Directional only 133 43%
Quadratic 178 57%
All three

4
107 34%

Statistical approach used to estimate selection gradients
Multivariate mixed-effects model Seven estimates in three papers 2%
Regression/LMM/path analysis 297 estimates from 63 papers 95%
Others (Hurdle, Aster models, splines) Seven estimates from three papers 2%

5

Mean trait values transformed to zero prior to analysis
Mean centered 191 61%
PCA- scores 16 5%
Information not provided 82 26%
Trait correlations provided with estimates of correlational selection
Yes 61 34%
No 117 66%

1
Number of trait-fitness estimates; traits are listed once regardless of whether multiple types of selection gradients were estimated, but listed twice if both

types of fitness metric (lifetime and episodic) were used (N = 311 estimates).
2
Combined traits or data (PCA or BLUPS).

3
Twenty-two of which provided estimates, ranges, or solely noted traits were repeatable.

4
Directional, quadratic, and correlational.

5
We did not investigate how within-individual variance in traits influences estimates from these techniques, although we suspect there will be similar

problems.

parameters ignoring potentially biasing effects of within-

individual variance are denoted with a star (∗). The problem is

that tarsus length is not fully repeatable because it is measured

with error (e.g., Moiron et al. 2019). The fitness effect (β∗
1) of

the variance-standardized trait (z = t/
√

Vpt ), therefore, does not

reflect the true standardized linear selection gradient (β1). This

is because variance due to measurement error (Vet ) makes Vpt an

inflated measure of the among-individual variance (Vit ), and so

too the standard deviation. Thus, the definition of standardized

trait values assumed above was incorrect: trait values were not
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Table 2. Attenuation bias in standardized selection gradients for analyses not (fully) accounting for within-individual trait variance:

Correcting for this bias requires dividing the estimated selection gradient by the bias. (A) Bias for analyses based on one trait value per

trait (t1 = trait 1, t2 = trait 2) per individual. Formulae demonstrate a key role for trait repeatability (Rt ) and, for correlational gradients,

among-individual (rit1t2 ) and phenotypic trait correlations (rpt1t2 ). (B) Bias for analyses using individual-mean trait values (t̄) instead. Bias

then varies with the among-individual variance (Vi), the total phenotypic variance among individual-mean trait values ( Vpt̄ = Vit + Vet
n ,

where n is the number of repeated measures per individual used to calculate individual means; eq. S5.1) and, for correlational gradients,

rit1t2 and the phenotypic correlation between individual-mean trait values (rpt̄1 t̄2
; defined in footnote 2). These formulae simplify to

(A) when n = 1. Formulae apply to phenotypic selection analyses that assume no residual covariance between traits and fitness. See

Supporting Information Texts S2–S5 for mathematical derivations.

General formula
(A) Formula for one trait value

per trait per individual
(B) Formula for mean of n trait values

per trait per individual

Type of gradient Attenuation bias Attenuation bias
1

Attenuation bias
1,2

Linear (β1)
√

Rt
√

Rt

√
Vit
Vpt̄

Quadratic (γ11)
√

Rt2 Rt
Vit
Vpt̄

Correlational
(γ12)

√
Rt1t2

√
Rt1 Rt2

√
r2

it1t2
+1

r2
pt1t2

+1

√
Vit1
Vpt̄1

Vit2
Vpt̄2

√
r2

it1t2
+1

r2
pt̄1 t̄2

+1

1
For nonlinear gradients, attenuation biases printed here apply solely to mean-centered traits. Equations (S3.11) and (S4.7) describe biases for, respectively,

standardized quadratic and correlational selection gradients when traits were not mean-centered.
2
The equation rpt̄1 t̄2

= (Covit1t2
+ Covet1t2

n )/

√
(Vit1

+ Vet1
n )(Vit2

+ Vet2
n ) (eq. S5.3) shows that the phenotypic correlation between individual-mean trait values

(rpt̄1 t̄2
) is affected by the residual within-individual covariance (Covet1t2

) and thus not solely shaped by among-individual covariance (Covit1t2
), although

increasingly shaped by the latter with increasing sample size per individual (n).

divided by the true among-individual standard deviation (
√

Vit )

but by an upward-biased proxy (
√

Vpt = √
Vit + Vet ). Further-

more, even if standardization had been applied correctly, β∗
1

would still not equal β1 (see also Ponzi et al. 2018). We demon-

strate this by first deriving the true unstandardized linear selec-

tion gradient (b1) from the unstandardized linear selection gradi-

ent that ignores within-individual variance (b∗
1), which we then

standardize to derive β1.

Parameter b∗
1 represents the slope of the regression of t on

W :

W = α + b∗
1t + ε. (2)

Here, b∗
1 represents the total covariance between the trait and

fitness (Cpt,W ) divided by the total variance in the trait (Vpt ), where

Cpt,W represents the summation of the true among-individual

(Cit,W ) and residual covariance (Cet,W ) between W and t , and where

Vpt = Vit + Vet :

b∗
1 = Cpt,W

Vpt

= Cit,W + Cet,W

Vit + Vet

= Cit,W

Vit

Vit

Vit + Vet

+ Cet,W

Vet

Vet

Vit + Vet

= b1Rt + b1e (1 − Rt ). (3)

Here, b1 = Cit,W

Vit
, Vit

Vit +Vet
represents the trait’s repeatability

(Rt ) and Vet
Vit +Vet

represents (1 − Rt ). Thus, b∗
1 varies with b1 as a

function of Rt . Mathematically, b∗
1 is also affected by the resid-

ual (variance) effect of the trait on fitness ( b1e = Cet,W

Vet
) but if we

assume that measurement error is random with respect to fitness,

this term is zero (see Discussion section for consequences of vi-

olating this assumption). Equation (3) thus simplifies as follows:

b∗
1 = b1 Rt . (4)

Equation (4) demonstrates the well-known attenuation effect

on (standardized) covariances for predictors measured with error

(Fuller 1987; Carroll et al. 2006; Adolph and Hardin 2007). β1

equals the change in relative fitness per standard deviation unit

trait (Lande and Arnold 1983), calculable by dividing b1 by mean

fitness (W̄) and by multiplying this fraction by the square-root

of the variance in trait values at the focal level of analysis, thus

β∗
1 =

√
Vit +Vet

W̄ b∗
1 and β1 =

√
Vit

W̄ b1. The relationship between β1,

β∗
1, and Rt is therefore:

β1 = β∗
1/

√
Rt . (5)

For proof, see Supporting Information Text S2. Notably,

Ponzi et al. (2018) derived this bias starting with equations where

residual variance (ε) is added to standardized trait values (z); bias

then equals Rz∗ (where z∗ = z + ε) rather than
√

Rt . We ex-

press bias in units of unstandardized trait values because using

repeatability (widely reported in the literature; Bell et al. 2009;

EVOLUTION APRIL 2021 809
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Figure 1. Estimates of standardized linear selection gradients not

accounting for within-individual variance (β∗
1) are attenuated by

the square-root trait repeatability (
√
Rt ). Attenuation varies with

trait repeatability (Rt ). Dotted lines are true values (β1). Types of

traits differ in typical ranges of R (colored zones) and thus in level

of bias in estimates of linear selection acting on them.

Holtmann et al. 2017) to correct bias in published estimates of

selection gradients is one solution to the problem (see below).

Equation (5) implies all estimates of standardized linear se-

lection gradients are underestimated. Indeed, traits are never fully

repeatable. In Figure 1, we plot β∗
1 as a function of trait repeata-

bility and the true standardized linear selection gradient (β1) and

assigned the typical range of repeatability values (low, moderate,

high) to different types of traits to visualize the problem. It shows

that, for some types of traits (e.g., behavior, physiology), esti-

mates of directional selection are greatly underestimated when

biasing effects of within-individual variance are ignored. Divid-

ing β∗
1 by

√
Rt corrects for this bias, which would obviously

require accurate estimates of trait repeatability. One may apply

this correction to published estimates. Meta-analytical estimates

of trait repeatability are increasingly available in the literature

(Holtmann et al. 2017), offering ample opportunities for re-

analysis using freely available databases (Kingsolver et al. 2012).

In Supporting Information Texts S3 and S4, we derived at-

tenuation bias for nonlinear standardized selection gradients (γ).

Bias in standardized quadratic (stabilizing or disruptive) selec-

tion gradients equals the square-root repeatability of squared

trait values (
√

Rt2 ; Supporting Information Text S3);
√

Rt2 varies

with trait mean and variance among- and within-individuals (eq.

S3.11). Bias in correlational selection gradients equals square-

root repeatability of the product of the two focal traits (t1, t2) in

the analysis (
√

Rt1t2 ; Supporting Information Text S4);
√

Rt1t2 is

additionally affected by within- and among-individual trait co-

variances (eq. S4.7). Attenuation biases in nonlinear gradients

thus do not vary solely with trait repeatability. Fortunately, our

review implies that most studies mean-center traits prior to selec-

tion analysis (Table 1). This removes dependencies on trait means

and allows expressing biases in fractions (repeatabilities) and cor-

relations. Attenuation bias (
√

Rt2 ) in quadratic gradients (γ11)

based on analyses of mean-centered traits equals (eq. S3.12):

√
Rt2 = Rt . (6)

Attenuation bias (
√

Rt1t2 ) in correlational gradients (γ12)

based on mean-centered traits varies solely with geometric mean

trait repeatability (
√

Rt1 Rt2 ), and among-individual (rit1t2
) and

phenotypic (rpt1t2
) trait correlations (eq. S4.9):

√
Rt1t2 = √

Rt1 Rt2

√√√√ r2
it1t2

+ 1

r2
pt1t2

+ 1
. (7)

Here, rpt1t2
represents the sum of among- (rit1t2

) and within-

individual (ret1t2
) correlations weighed by

√
Rt1 Rt2 (Searle 1961;

Dingemanse and Dochtermann 2013):

rpt1t2
= √

Rt1 Rt2 rit1t2
+

√(
1 − Rt1

) (
1 − Rt2

)
ret1t2

. (8)

Trait correlations, therefore, do not affect attenuation

bias when among- and within-individual correlations are the

same, or both zero, because equation (7) then simplifies to√
Rt1t2 = √

Rt1 Rt2 .

These derivations imply weaker attenuation bias for linear

versus nonlinear gradients. For example, when trait correlations

do not differ between levels, and for traits mean-centered prior

to analyses, attenuation bias for nonlinear gradients equals (ge-

ometric mean) trait repeatability (Rt for quadratic;
√

Rt1 Rt2 for

correlational) rather than its square root (
√

Rt ; linear gradients).

As above, correcting published estimates of nonlinear gradients

is possible but requires estimates of trait means and (co)variances

(un-centered traits) or trait repeatabilities and correlations (mean-

centered traits), thus information on whether traits were mean-

centered. Unfortunately, many studies do not provide all required

information (Table 1); correcting published nonlinear estimates

may prove challenging. This underlines the need for new studies

reporting key descriptive statistics, and above all, applying study

designs and statistical approaches avoiding biases altogether.

Few traits have repeatabilities >0.9 and any exhibiting

within-individual plasticity often have considerably lower re-

peatabilities (0.1–0.7; Holtmann et al. 2017). Thus, the attenua-

tion problem is omnipresent and often substantial. Ever since the

introduction of the Lande–Arnold approach, researchers have im-

plemented approaches to purge within-individual variation. For

example, in his seminal paper on predator-induced correlational

selection on stripedness and escape behavior, Brodie (1992)
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repeatedly scored each snake’s behavior, and used mean values

in subsequent selection analyses. This approach is regularly used:

41% of our sample of 325 published values of selection gradients

used individual-mean trait values. Taking the mean is, unfortu-

nately, ineffective in purging within-individual error; estimated

means only approximate true means when sample sizes approach

infinity (Roff 1997).

Specifically, the phenotypic variance among individual-

mean trait values (Vpt̄ ) approximates the sum of Vit plus Vet
n (eq.

S5.1), where n represents the number of observations per indi-

vidual used to calculate individual means (Snijders and Bosker

1999). In Supporting Information Text S5, we make use of this

(and other) approximation(s) to derive attenuation bias for selec-

tion analyses using individual-mean trait values (Table 2). These

derivations imply many repeats are required per individual (n) to

fully purge bias caused by effects of within-individual variation,

particularly for highly labile traits. For example, when trait re-

peatability is 0.3, an underestimation of the true standardized lin-

ear selection gradient by almost 10% occurs even in the unlikely

scenario where individual means were based on 10 replicate mea-

surements per individual. In Table 1, we show that most studies

used smaller numbers of measurements per individual (50% of

132 published values used ≤5) or failed to provide this informa-

tion (35 of 132 estimates where ≥2 measures were taken; 27%).

For 282 of 325 (87%) estimates, trait repeatability was not men-

tioned, and for only 21 estimates (6%) a repeatability value was

given. Correcting published estimates of standardized gradients

based on mean trait values will thus also be challenging.

TWO SOLUTIONS

The unbiased estimation of selection gradients requires the

partitioning of variances in trait values within versus among

individuals, and the estimation of among-individual relationships

between traits and fitness. We illustrate the idea by further

developing our example of researchers measuring tarsus (t)

and lifetime reproductive success (W ). Each bird’s tarsus was

measured repeatedly as part of the study design to estimate—and

statistically control for—measurement error. We discuss two

types of statistical model proposed to achieve this aim; both

strictly require repeated measures data.

Multivariate Mixed-Effects Models
Multivariate mixed-effects models have previously been intro-

duced to estimate linear selection gradients (Morrissey et al.

2010, 2012). The multivariate mixed-effects model offers a

two-step solution that starts with estimating among-individual

(co)variances between unstandardized trait(s) (t) and absolute fit-

ness (W ) from repeated measures data, followed by calculating

standardized gradients based on estimated variance components.

One can achieve this by fitting the trait (t) and absolute fitness

(W ) as two responses into a bivariate mixed-effects model with

random intercepts for individual identity, resulting in the follow-

ing phenotypic equation:[
thi

Whi

]
= β0 + Ii + ehi. (9)

Here, each observation of each response is modeled as a

population-mean intercept (β0) plus the individual’s deviation

from the population-mean (+Ii) plus a residual within-individual

error (+ehi). Subscripts distinguish between observations (h) and

individuals (i). This simplest of bivariate mixed models can be

extended by including additional fixed and random effects, ig-

nored here for simplicity. We assume random intercepts (�I ) and

residuals (�e) follow a multivariate normal distribution (MVN):[
It

IW

]
∼ MVN (0,�I ) :

[
Vit Cit,W

Cit,W ViW

]
[

et

eW

]
∼ MVN (0,�e) :

[
Vet Cet,W

Cet,W VeW

]
.

(10)

Equation (10) may be usefully applied to situations where

fitness is episodic and thus repeatedly measured. This bivariate

formulation assumes that variances (V ) and covariances (C) be-

tween the trait and fitness exist both within (e) and among (i)

individuals. In the special situation described here (with a sin-

gle integrative fitness metric per individual), the second term of

the equation may be simplified to [et ] ∼ N (0,�e) : [VeW ] (Sup-

porting Information Text S8). Other error distributions may be

applied to different types of traits. The true standardized linear

selection gradient (β1) detailed in section “The Problem” equals:

β1 = Cit,W

Vit

√
Vit

β0W

. (11)

The standardized linear selection gradient (β1) is thus cal-

culated by multiplying the unstandardized linear gradient ( b1 =
Cit,W

Vit
) by the standard deviation in among-individual trait values

(
√

Vit ) and by dividing it by the intercept for fitness (β0W ); this

latter parameter represents mean absolute fitness (W̄ ) in formula-

tions like eq. (9) (where the population-mean intercept is the only

fixed effect). Performing these standardizations after rather than

before model fitting allows accounting for uncertainty in proxies

of means (β0W ) and variances (
√

Vit ) used to estimate standard-

ized gradients, and thus avoids compounding of estimation error

(Hadfield et al. 2010; Houslay and Wilson 2017).

In Supporting Information Text S6, we introduce an exten-

sion to estimate nonlinear selection gradients from multivariate

mixed-effects models. We propose that unattenuated quadratic

selection gradients (γ11) may be acquired by fitting the squared

term of the trait (t2
hi) as an additional response (eq. S6.2), or
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product of two focal traits (t1t2) for correlational selection gra-

dients (γ12). Information embedded in �I is then extracted to

calculate unstandardized selection gradients (eq. S6.3); impor-

tantly, these calculations differ from the linear scenario because

nonlinear selection gradients represent partial regression coef-

ficients (Lande and Arnold 1983), which may be derived by

multiplying the inverse matrix of the predictors by the covari-

ance between the traits and fitness (eq. S6.4; for R-code, see

Supporting Information Text S8 and future updates on https://

github.com/YimenAraya-Ajoy/SelectionBias). Furthermore, for-

mulae for standardizing unstandardized quadratic (b11→γ11; eq.

S6.5) and correlational (b12→γ12; eq. S6.7) selection gradients

differ from those used to standardize linear gradients (b1→β1;

eq. 11). Standardized quadratic (γ11; eq. S6.5) versus correla-

tional selection gradients (γ12; eq. S6.7) are, respectively, calcu-

lated as (Supporting Information Text S6):

γ11 = 2b11

√
Vit2

β0W

, (12)

γ12 = b12

√
Vit1t2

β0W

. (13)

In Supporting Information Texts S3 and S4, we detail how

among-individual variances in squared terms (Vit2 ; eq. S3.10) and

products (Vit1t2
; eq. S4.5) can be calculated from trait means and

(co)variances.

Errors-in-Variables Models
Errors-in-variables models offer an alternative solution for

acquiring unbiased estimates of selection gradients when

individual-specific traits values are measured with error. Those

models have been called “measurement error” models when in-

troduced to estimate selection gradients (Ponzi et al. 2018);

we use the term errors-in-variables models throughout because

we apply them here to control for both methodological (mea-

surement error) and biological (phenotypic plasticity) sources

of within-individual variance. Compared to multivariate mixed-

effects models, errors-in-variables models resolve the problem

fundamentally differently: they jointly estimate the expected trait

value for each individual as well as its relationship with fitness,

which can be described using the following two equations:

thi = β0t + Iit + ehit

Wi = β0W + b1Iit + eiW .
(14)

Here, the first equation is akin to a univariate mixed-effects

model, whereas the second to a linear regression (with unstan-

dardized data) performed at the among-individual level. The stan-

dardized gradient (β1) is then calculated using eq. (11) as above.

The example here assumes a simple scenario where within-

individual variance results from a single process (e.g., only mea-

surement error); more complex scenarios may also be accom-

modated (Ponzi et al. 2018). Extending such errors-in-variables

models to estimate nonlinear selection requires adding further

terms to the second equation (e.g., I2
it for modeling quadratic ef-

fects). Importantly, β0W (eq. 14) does not represent population-

mean fitness (W̄) when nonlinear terms are added; this compli-

cates the calculation of standardized gradients; we advise fitting

relative (ωi) instead of absolute (Wi) fitness as a pragmatic solu-

tion. See our worked example (Supporting Information Texts S7

and S8) for the subsequent calculation of standardized gradients.

Accuracy and Precision of Each
Solution
We used simulations to assess, first, whether classic approaches

produced attenuated estimates and second, whether proposed

solutions (correcting traditional estimates with measures of

repeatability, multivariate mixed-models, and errors-in-variables

models) adequately address the problem. We compared system-

atic error (inaccuracy) and random error (imprecision) across the

proposed solutions. We summarize the simulation approach here;

we fully describe the approach in Supporting Information Text

S7, and provide R-code in Supporting Information Text S8 and

on Github (https://github.com/YimenAraya-Ajoy/SelectionBias).

We simulated data assuming a given (linear or nonlinear) re-

lationship between (a) trait(s) and fitness, and then drew three ob-

servations per trait per individual; to each observation, we added

within-individual variation to generate a target trait repeatabil-

ity (0.3 or 0.7). Following the generation of the full dataset (n

= 800 individuals), we generated two subsets. The first con-

tained one randomly drawn trait value (of the three produced)

per individual. The second contained one mean value per indi-

vidual calculated over all three observations. We then used either

classic regression approaches (two subsets), multivariate mixed-

effects models (full dataset), or errors-in-variables models (full

dataset), to estimate standardized selection gradients. For sim-

plicity, we assumed mean-centered traits, and for correlational

selection analyses, zero trait correlations. Under such conditions,

all expected attenuation biases were calculable by estimating

among- and within-individual trait variances (see Table 2 and

Supporting Information Text S8), which we calculated by fit-

ting univariate mixed-effects models (with individual intercepts)

to the full dataset. We then calculated “corrected” values by di-

viding the estimated gradients by the expected attenuation bias.

For each (type of) estimate produced, we calculated bias (i.e.,

inaccuracy or systematic error) as the difference between the es-

timated (β1) minus true (β̂1) standardized gradient, divided by the

true gradient (i.e., (β1 − β̂1)/β̂1 for linear gradients). This pro-

duced a percentage (upward or downward) bias. For both levels
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Figure 2. 2Box plots of percent bias in estimates derived from 100 replicate (A) linear, (B) quadratic, or (C) correlational selection analyses.

White versus gray boxes indicate results from traditional regression analyses based on a single versus mean (of three) trait value(s) per

individual. Black and blue boxes are results from traditional regression analyses based on, respectively, a single versusmean (of three) trait

value(s) per individual to which we applied corrections based on predicted bias. Green boxes are results from multivariate mixed-effects

models and yellow boxes represent the errors-in-variables models. We estimated bias as the difference between the observed minus

simulated standardized selection gradient divided by the simulated standardized selection gradient. Interquartile ranges are inversely

related to level of imprecision associated with the given scenario.

of repeatability, we created 100 datasets for linear, quadratic, and

correlational selection scenarios. We used the variance among the

100 datasets within a given scenario to assess the expected un-

certainty in parameter estimates, in the same way as parametric

bootstrapping provides a measure of uncertainty for parameter

estimates.

Our simulations showed estimates of linear selection gradi-

ents were always biased downward when based on traditional ap-

proaches, regardless of whether single or individual-means (over

three observations) were used. As expected, attenuation bias was

less severe for the latter (Fig. 2A), and decreased with increasing

trait repeatability. Percentage bias was −45.0% (R = 0.3) versus

−16.0% (R = 0.7) for the single-trait value model, and −24.9%

versus −6.0% for the mean-trait value model. These biases disap-

peared after applying corrections based on predicted bias (single-

trait value model: R = 0.3: 0.9%, R = 0.7: 0.5%); mean-trait

value model: R = 0.3: 0.5 %, R = 0.7: 0.6%). The bivari-

ate mixed-effects model produced accurate estimates (Fig. 2A),

both for low (R = 0.3; 2.2%) and high (R = 0.7; 0.7%) values

of repeatability; the same was true for errors-in-variables mod-

els (0.3% for R = 0.3; 0.4% for R = 0.7). Precision was not

affected by choice of analytical approach or level of repeata-

bility (Supporting Information Table S7). This is apparent in

Figure 2A, where interquartiles (colored ranges) do not vary

among box plots.

Simulations applied to quadratic (Fig. 2B) or correlational

(Fig. 2C) gradients showed similar patterns of attenuation as

above (Fig. 2A), though as expected, nonlinear selection gra-

dients were attenuated more (note differences in y-axis scal-

ing across Fig. 2A–C). Corrections were effective in removing

bias. Multivariate mixed-effects models produced unbiased esti-

mates as did errors-in-variables models (Supporting Information

Table S7; Fig. 2A and B). When repeatability was low, levels

of imprecision differed among scenarios (Supporting Informa-

tion Table S7). Multivariate mixed-effects models then produced

relatively imprecise estimates for nonlinear selection gradients.

This is evident from comparing interquartile ranges among box

plots in Figure 2B and C. Errors-in-variables models were the

exception, producing precise estimates regardless of level of

repeatability.

GUIDE FOR EMPIRICISTS

How might empiricists go about acquiring unbiased estimates?

Our mathematical derivations imply three potential strategies.

First, researchers can use a three-step approach by (i) apply-

ing classic regression analyses to calculate standardized selec-

tion gradients (based on single or individual-mean trait values),

(ii) applying mixed-effects models to repeated measures of traits

to estimate the (co)variance components required to calculate the

expected attenuation bias (using the formulae in Table 2), and

(iii) dividing the estimates of standardized selection gradients

by their expected attenuation biases. Second, researchers may

use multivariate mixed-effects (Morrissey et al. 2010, 2012) or,

third, errors-in-variables models (Ponzi et al. 2018). Our simula-

tions imply that multivariate and errors-in-variables models both

function appropriately when applied to simple scenarios (linear
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selection). Applying classic approaches followed by corrections

may, by contrast, often produce estimates dependent on unknown

assumptions that may not hold.

An important benefit of errors-in-variables models is that

they can produce both accurate and precise estimates under a

range of repeatabilities and for all types of selection gradients,

although we note that our simulations addressed a limited set

of (ideal) conditions. Errors-in-variables models can also use-

fully consider more complex—yet conceivable—biological sce-

narios where the residual within-individual variance in one trait

is conditional on that of another. For example, measurement er-

ror in behavior may differ between large and small animals.

This issue is important because it can result in “reverse attenu-

ation” (i.e., overestimation rather than underestimation) in non-

linear selection models (Muff and Keller 2015). Extensions of

multivariate mixed-effects models incorporating heterogeneous

variance structures (Cleasby et al. 2015) may (partly) achieve

the same aim. Importantly, errors-in-variables models allow for-

mulating statistical hypotheses closely matching hypothesized

methodological and biological processes. These models are so

flexible because observed phenotypes are modeled by formulat-

ing distinct equations (e.g., “error” versus “exposure” parts), each

with its own distributional assumptions (e.g., binomial versus

Gaussian).

Our simulations overall suggest that errors-in-variables

models are the preferred approach, certainly when modeling non-

linear selection on traits with low repeatability. A potential con-

cern is that relatively sophisticated programming skills are re-

quired and that relatively few software packages are (currently)

available for fitting such models. A multivariate mixed-effects

modeling approach may therefore also represent a pragmatic so-

lution. Nevertheless, researchers should best invest in learning

statistical tools that enable sufficient flexibility to appropriately

model the hypothesized data generation processes and thus pro-

duce unbiased estimates of selection.

Solutions for propagating uncertainty in estimated param-

eters are required for all approaches. For multivariate mixed-

effects and errors-in-variables models, this may readily be

achieved by fitting them in a Bayesian framework (Hadfield

2010; Houslay and Wilson 2017). Bayesian models produce pos-

terior distributions of each parameter, which can be taken to

estimate uncertainty associated with derived parameters (e.g.,

standardized gradients). Similar solutions for the three-step

approach associated with classic regression analyses are not

obvious.

Discussion
Accurate estimates of selection are crucial for a variety of evo-

lutionary questions. Failure to appreciate that traits are not fully

repeatable will result in biased selection gradients (Ponzi et al.

2018). This bias will often come in the form of attenuation (this

paper) but “reverse attenuation” (Muff and Keller 2015) may also

occur (detailed below). Attenuation bias is arguably problematic

regardless of the source of within-individual variation (measure-

ment error or within-individual plasticity). The magnitude of this

form of bias differs between types of gradient (Table 2); most pa-

pers published in Evolution over the past 10 years—presumably

a representative sample—fail to appropriately control for it. Our

mathematical derivations and literature review imply that many

meta-analyses (e.g., Kingsolver et al. 2001, 2012) are based on

downward-biased estimates, particularly for nonlinear gradients,

and more so for traits with low repeatabilities. This warrants re-

consideration of meta-analytical conclusions, by applying correc-

tions to published estimates of selection gradients, re-analyses

of repeated measures datasets using more appropriate statistical

models, or study-wide adjustments based on meta-analytical es-

timates of trait repeatability stratified per trait type. We suggest

the wide use of the standard approach developed by Lande and

Arnold (1983) has resulted in an underestimation of selection,

and that new studies should use repeated measures data (regard-

less of the nature of the trait) and errors-in-variables (or multi-

variate mixed-models) to acquire unbiased estimates.

Our mathematical derivations suggest relatively straightfor-

ward relationships between biased and true selection gradients

that vary either with trait repeatability or with its square root (at

least for mean-centered data; Table 2). We note that the biases

(and how they affect the shape of selection surfaces, discussed

below) apply solely when residual covariances (Ce) between traits

and fitness are zero. For phenotypic selection analyses based on a

single integrative fitness measure per individual (e.g., lifetime re-

productive success), this assumption is defendable when one can

argue that residual variance in integrative fitness reflects mea-

surement error, and that measurement error should not covary

between traits and fitness (because they were determined sepa-

rately). By contrast, residual covariances are arguably more likely

to exist when episodic measures of fitness—like annual reproduc-

tive success in species breeding multiple years—are used instead,

a common practice in published analyses (Kingsolver et al. 2001,

Kingsolver et al. 2012). This is because traits and episodic fitness

measures may exhibit within-individual plasticity in response to

the same environmental factors. Estimates of selection gradients

can then be biased in any direction, depending on whether and

how effects of traits on episodic fitness differed within- versus

among-individuals. Specifically, there will be no bias caused by

failure to account for trait repeatability when among-individual

effects of traits on fitness (b1) do not differ from within-individual

effects (b1e ). This can be seen in eq. (3), where b∗
1 then equals

the true gradient b1. Indeed, bias occurs only when associations

between responses and predictors are underpinned by processes
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differing across levels (van Noordwijk and de Jong 1986; Reznick

et al. 2000; van de Pol and Wright 2009), such as selection versus

measurement error (Dingemanse and Dochtermann 2013), or se-

lection versus plasticity (also called “environmental covariance”;

Schlichting 1989; Rausher 1992; Stinchcombe et al. 2002). This

is probably the rule than the exception and means that re-analyses

using errors-in-variables or multivariate mixed-models may of-

ten be required for published estimates of selection inferred from

repeated measures of episodic fitness. This makes our call for

new studies applying repeated measures designs and statistical

approaches avoiding this form of bias even more pressing.

Our analyses imply that bias in selection gradients caused

by ignoring within-individual variance may also bias conclusions

regarding the ecology of selection. This will particularly be the

case when the same ecological factor affects patterns of selec-

tion and trait repeatability in concert. Such ecological patterns

of covariance between repeatability (or heritability) and selec-

tion have been repeatedly demonstrated in wild birds (Brommer

et al. 2008; Husby et al. 2011; Nicolaus et al. 2013; Abbey-Lee

and Dingemanse 2019). Previous research implied that patterns

of selection are stronger in ecological conditions where traits are

more repeatable or heritable, potentially speeding up microevolu-

tionary change (Husby et al. 2011; but see Ramakers et al. 2018).

Our mathematical derivations demonstrate that such patterns of

ecological covariance also result from biases described in this

paper (Figure 1; Table 2). Morrissey and Hadfield (2012) implied

that an appearance of fluctuating selection where none exists may

result from sampling error; our analyses suggest that ecological

variation in selection can also be spurious due to unaccounted

ecological variation in trait repeatability. Similarly, traits under

stronger correlational selection are also more strongly genetically

correlated (Roff and Fairbairn 2012), suggesting adaptive evolu-

tion of trait correlations. Again, patterns of attenuation bias could

also produce such relationships: attenuation bias in correlational

selection gradients (
√

Rt1t2 ) is inversely related to the strength of

the among-individual trait correlation (eq. 7). These examples

thereby illustrate a myriad of ways by which unaccounted within-

individual variance can result in the appearance of adaptive eco-

logical variation in selection where none exists. Along the same

lines, scenarios may also be conceived where ecological variation

in selection is masked instead.

Attenuation bias attributable to within-individual variance

will also affect conclusions qualitatively. This is because bias

differs mathematically between linear (
√

Rt ), quadratic (
√

Rt2 ),

and correlational (
√

Rt1t2 ) selection gradients (Table 2). We give

two examples here. First, attenuation bias can spill over to bias

estimates of optimal trait values, and second to bias the shape

of correlational selection surfaces. Optimal trait values estimated

from quadratic selection analyses are of interest in the context of

stabilizing selection. The optimal trait value represents the trait

value at the inflection point of the parabola, which equals the

linear slope divided by two times the quadratic slope ( −β1

2γ11
) (Bron-

shtein et al. 2015). Because within-individual variability biases

linear versus quadratic selection gradients differently (Table 2),

estimates of optimal trait values in stabilizing selection scenarios

are also affected. For example, for mean-centered traits, the trait

value at the parabolic peak is overestimated by a factor
√

Rt (eq.

S3.16). This mismatch is relevant for fields like behavioral ecol-

ogy that focus on highly labile traits like behavior and routinely

ask whether observed trait means match those predicted by opti-

mality theory (Westneat and Fox 2010; Davies et al. 2012). For

example, various adaptive explanations have been proposed for

why passerines produce smaller clutches than expected accord-

ing to predictions derived from phenotypic selection analyses

(Davies et al. 2012). Because avian clutch size is only moderately

repeatable (e.g., Browne et al. 2007), overestimation of the adap-

tive peak due to failure to account for within-individual variation

may thus offer a viable alternative to adaptive explanations.

Attenuation bias can also affect the shape of complex

selection surfaces, as commonly derived from correlational

selection analyses (Brodie et al. 1995). Surface shape varies with

the ratio of the product of the quadratic selection gradients of

two focal traits over the square of their correlational selection

gradient (i.e., γ11γ22/γ
2
12), which describes a saddle-shaped

fitness surface when below one (assuming γ11 and γ22 are both

negative) but a fitness peak when above one (Phillips and Arnold

1989). In Supporting Information Text S4, we show that the

true ratio ( γ11γ22

γ2
12

) equals the ratio derived when one ignores

within-individual error ( γ∗
11γ

∗
22

γ∗
12

) and that for mean-centered traits

(regardless of trait repeatabilities) the fitness surface is unbiased

provided trait correlations do not differ between hierarchical lev-

els (e.g., because they are zero). By contrast, the fitness surface

is estimated with bias in a conceivable scenario (Dochtermann

2011; Niemelä and Dingemanse 2018; but see Brommer and

Class 2017) where among-individual correlations are tighter than

overall phenotypic correlations (eq. S4.11), for example, because

within-individual variation resulted entirely from measurement

error but measurement errors were uncorrelated between traits.

Attenuation bias would then make finding saddle-shaped fitness

surfaces more likely (Supporting Information Text S4). This

problem increases with increasing values of among-individual

(rit1t2
) relative to phenotypic (rpt1t2

) correlations (eq. 7). The

occurrence of within-individual variation therefore comes with

a large number of (previously unanticipated) consequences with

far-reaching consequences.

Applying our proposed approach therefore requires prudent

decisions regarding study design and data analyses. First, avoid-

ing repeatability-related biases in selection gradients requires

the collection of repeated measures using sampling designs that

avoid confounding within- and among-individual associations
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(Araya-Ajoy et al. 2015; Ponzi et al. 2018; Mitchell et al. 2019;

Westneat et al. 2020). Specifically, inflated estimates of among-

individual variance in traits can occur when environmental con-

ditions eliciting reversible plasticity within-individuals are them-

selves repeatable among individuals (Dingemanse et al. 2010;

Westneat et al. 2011, 2020). Ensuring that repeated measures are

sufficiently spaced over the lifetime of the individual might help

mitigate inflating effects of autocorrelations on trait repeatabil-

ity (Araya-Ajoy et al. 2015; Allegue et al. 2017; Niemelä and

Dingemanse 2017; Ponzi et al. 2018; Mitchell et al. 2019). Sec-

ond, data analysis strategies should not blindly follow sugges-

tions made here, but be adjusted to specific need. For exam-

ple, the estimation of age-dependency of selection, or selection

on reaction norms, will require modifications of the framework.

The meaning of estimated gradients depends also on whether

additional fixed or random effects are fitted (e.g., De Lisle and

Svensson 2017), an issue also widely applicable to quantitative

genetics (Kruuk 2004; Nussey et al. 2007; Hadfield et al. 2010).

Continuing the bird example, one might statistically control for

size dimorphism by fitting sex as a fixed effect. Assuming lack

of sex specificity in �I , application of eq. (9) would then retrieve

the standardized linear selection gradient for the reference sex.

This is because β0W reflects mean fitness (W̄) of the reference

category. The standardized selection gradient for the opposite sex

would be calculated by adding the sex-difference in mean fitness

(βsexW ) to β0W in eq. (9). Researchers might also be interested in

estimating mean-standardized rather than variance-standardized

selection gradients (Houle 1992; Matsumura et al. 2012). If stan-

dardizations are applied after rather than before model fitting, this

would only require subtle changes in the exact elements used to

perform downstream calculations.

Finally, our mathematical derivations (Supporting Infor-

mation Texts S2–S5) show that the common practice of

mean-centering traits prior to analyses, simplifies formulae for

attenuation bias in selection analyses not acknowledging within-

individual variation. For example, with centered data, the bias in

quadratic selection gradients (
√

Rt2 ) then equals trait repeatability

(Rt ; eq. 6). Similarly, centering makes bias in correlational selec-

tion gradients (
√

Rt1t2 ) vary with geometric mean repeatabilities

(
√

Rt1 Rt2 ) and trait correlations (eq. 7). Centering thus makes us-

ing classic regression analyses followed by correcting biased es-

timates easier. The associated overestimation of optimal trait val-

ues in the presence of stabilizing selection then also conveniently

equals
√

Rt (eq. S3.16). Mean-centering may also strategically be

applied when using multivariate mixed-effects models, because

it facilitates model convergence, and biological interpretation of

patterns of stabilizing selection (Supporting Information Fig. S3).

In conclusion, our paper highlights the fundamental role of

trait repeatability in producing biases in estimates of phenotypic

selection gradient analyses. We discuss the possibility of cor-

recting published estimates but highlight that such fixes often

may not be applicable, particularly when applied to nonlinear

selection gradients. This clarifies that we should do better. We

should start using study designs where we always measure traits

repeatedly rather than assuming that the level of repeatability

does not matter. Only then are we able to apply statistics such

as errors-in-variables or multivariate mixed-effects models that

enable controlling for biasing within-individual effects. Impor-

tantly, our simulations imply that there may not be a single opti-

mal approach; for example, the multivariate mixed-effects mod-

els sometimes produce relatively imprecise estimates compared

to alternative approaches. Studies using pedigree information and

multivariate animal models to estimate genetic gradients, notably,

already correct for the highlighted form of bias by partitioning

genetic from residual (environmental) variation. Applying any

of these two approaches will not only produce better estimates

but also more accurate conclusions about the ecology of natural

selection.
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Table S1. Studies publishing estimates of linear and nonlinear selection in Evolution from 2010 to 2019, with species, trait studied, category of trait
44 (MO = morphological, BEH = behavioral, LH = life history, PHY = physiological, PER = performance), fitness measure (L = lifetime, typically
survival; E = one measure of an episode of fitness; E2 = at least two measures of episodic fitness), number of measures taken, whether the mean was used
if more than one measure (or if ≥2 traits were combined with PCA), whether repeatability was mentioned and its magnitude if known, type of selection
measured (D = directional, Q = quadratic, C = correlational), whether multivariate models were used, if traits were mean-centered before analysis (? =
either authors did not say or simply stated they “standardized” without defining; residuals and PCA were counted as mean-centered) and if among-trait
correlations were provided in cases of nonlinear selection. Entries left blank if non-applicable.
Figure S3. Illustration of a parabolic relationship between trait (t) on absolute fitness (W ), where the dotted line represents the population-mean trait
value, the star represents the optimal trait value; (a) the orange dot represents the tangent line where the trait value has the value zero. (b) the blue dot
represents the tangent line at the population-mean trait value.
Table S7. Estimates of accuracy and precision in linear (β1), quadratic (γ11), and correlational (γ12) selection gradients derived from regression models
fitting one observed trait value or a mean of three observed trait values, multivariate mixed-effects models, and errors-in-variables models.
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